A Problem Generator

Jorg Fliege
Fachbereich Mathematik
Universitat Dortmund
44221 Dortmund
Germany
email fliege@math.uni-dortmund.de

September 1, 1999

Abstract

Scientists in Operations Research and Optimization face a prob-
lem which increases in it’s difficulty almost daily. More and more
different objective functions have been considered for minimization,
and it is therefore more and more difficult to find a new, previously
unconsidered one. We propose a problem generator that can auto-
matically generate new optimization problems. These problems can
then be analyzed by scientists with, e. g., standard techniques, and
standard algorithms can be applied. After such a generating process,
all that remains is to invent an application for the new problem.

1 Introduction

Scientists in Operations Research and Optimization face a problem which
increases in it’s difficulty almost daily. More and more different objective
functions have been considered for minimization, and it is therefore more
and more difficult to find a new, previously unconsidered one. We propose a
simple remedy for this situation.

While it might be possible to come up with new research results even for
objective functions which have been considered before, this is seldom seen as
a solution to the problem described above. In order to come up with results
that can be classified as new, it is often the case that one has to know at least
a part of the literature. As a consequence, the generation of new problems
can be considered as easier. This the approach taken in this paper.

We propose a simple problem generator that can automatically gener-
ate new optimization problems. These problems can then be analyzed by
scientists with, e. g., standard techniques, and standard algorithms can be
proposed to solve them.

2 The Problem Generator

We propose a simple problem generator that can generate new objective
functions. The problem generator starts with a string of length 1 containing
the symbol ”@”, takes as input a number of grammatical rules of the form

@ — string,

where the string may contain the symbol ”@” again, and applies these rules
recursively at random to the resulting string. It stops after a prespecified
number of recursions. Any unresolved occurences of the recursion symbol @
are then replaced by a variable name z;, (= 1,...,n), where ¢ is chosen
randomly and the number of unknowns n has to be prespecified by the user.

3 Numerical Results

Actual numerical results, are of course, unimportant. Instead, a simple im-
plementation of the principle described in the last section will be given. It
was found that the idea described above is so simple that it can even be
implemented in Pascal. See the appendix for the corresponding source code.
Of course, the implementation is totally inefficient, as it has to be the case
for a prototype code. The input parameters as well as the rules have to be
given in a file with name rules. The output is standard BKTEX code. This is,
at the moment, the only important output format, since actual calculations
with the generated functions within a computer code are not an issue when
one tries to find efficient algorithms. In our example, the input file looks like
this:

5

2

18

@+ @

@ - \left(@ \right)

(G

\sqrt{\left| @ \right|}
\frac{1}{d+\left (@\right) "2}

\cos\left (@\right)

\sin\left (@\right)

@ +c

\alpha @

x"{\top} a

\Vert x \Vert_2

\Vert x \Vert_1

\Vert x \Vert_{\infty}

\Vert x \Vert_p

\sum_{i=1}"m w_i \left(@ - a_i \right)
\max_{i=1}"m w_i \left(@ - a_i \right)
\left| @ \right|~p

\sqrt[pl{\left| @ \rightl|}

As it can be seen, we employ the recursive rules exactly five times, we
consider problems with two unknowns, and we have specified eighteen rules.
The first rule given takes the form

e— Q@+ @,
while, e. g., the last one has the form

@ — \sqrt[pl{\left| @ \rightl|}

i. e. the place holder @ is replaced by {/@ . Of course, more or completely
different rules can be specified at will. Note also that several rules are able
to stop the recursive process prematurely. Moreover, as it can be seen in
the input file displayed above, the rules used here are rather locationally
oriented, i. e. they mimic problems typically encountered in location science.
One of the first applications of the program produced the following results:

f(x_1, x_2) :=\alpha \sin\left(\Vert x \Vert_{\infty} + x_{1} + c\right)

f(x_1, x_2) :=\sqrtlpl{\left| \sqrt{\left| \max_{i=1}"m w_i
\left(x_{2} + c"{\top} a - a_i \right) \right|} \rightl|}

f(x_1, x_2) :=\sum_{i=1}"m w_i \left(\sqgrt{\left| \left|
\sum_{i=1}"m w_i \left(x_{1} - a_i \right) \right|~p \right|} -
a_i \right)\Vert x \Vert_2

f(x_1, x_2) :=\sum_{i=1}"m w_i \left(\sqrt{\left| x_{2} \sum_{i=1}"m
w_i \left(x_{1} + x_{2} - a_i \right) \right|} - a_i \right)

These outputs translate readily to

f(z1,22) := asin (||z]|w + 21 +),

f xl:x2 = \l

max w; (3 +cTa — a;)l],

f(l“hivz) = Zwi <\l zwi (331 - a'i) ai) ||33||2,
and
f(z1,29) := iwi (\I :@iwi (1 4+ 20 — ;)| — ai))

The author firmly believes that none of these functions has ever been
considered in location science. It it perhaps surprising that a comparatively
simple strategy as the one proposed here can make such a significant contri-
bution to research. After such a generation process, all that remains is to
apply a standard optimization strategy and to invent an application with a
corresponding model for the objective function. Then, a new paper has been
finished.

The present implementation uses randomly chosen rules and recursion
symbols. As a consequence, the results are somewhat arbitrary. Of course, it
is relatively simple to replace this random element by a deterministic proce-
dure. In this way, a complete list of all problems composed with the specified
rules and with a fixed recursion depth can be generated. When the rules are
chosen to reflect all functions appearing in a specific application field, one
could therefore generate all objective functions which might occur in this
field. After the generation process, these function can then be classified
according to some criterion.

4 QOutlook

The prospects are rather bright. Preliminary analysis of the computational
results on an old 486 Intel machine showed that it is possible to generate
several thousands objective functions within a few hours. Of course, not all
of them are new. Nevertheless, it should be possible to write several hundred
technical reports a year based on this scheme.

These reports can then be submitted to journals.

Even if only a fraction of these papers get accepted, a conservative esti-
mate shows that it should be possible to produce about 10-20 publications

4

a year. This is a great advantage for young scientists, whose prospects of
getting a position are based only on the number of publications they have.
Moreover, with a correspondingly enlarged bibliography, it should also be
easier to get funding.

Further work should now be directed to automatic report-writing pro-
grams, which can improve the quantity of the output even more. However,
it might be argued that the scheme outlined above puts a great pressure on
the peer-review system, employed by most editors in the scientific publishing
business, on the publishers, who have to print all these results, and on the
readers. But the publishing houses can simply increase the prices for the
journals, and nobody reads scientific publications anyway. What remains is
the problematic refereeing process. To facilitate this process, an automatic
rejection generator, following the lines of the program above, is in develop-
ment. Further research is under away.

Disclaimer. The author takes no responsibility for any kind of damage
to a brain or to a career that this work produces. The views and opinions
expressed in this work are those of the author. No person except the author
has proofread this paper, and the author did not listen to any suggestions at
all. Moreover, while producing the scientific results outlined in this work, the
author was neither partially nor fully supported by a grant from a research
agency.

Appendix. The Source Code

PROGRAM Generator;

CONST place = ’Q@’;

CONST max_places = 255;
CONST max_no_op = 127;
CONST max_depth = 255;
CONST max_unknowns = 255;

VAR no_op : 1..max_no_op;

VAR no_place : 0..max_places;

VAR depth : 1..max_depth;

VAR unknowns : 1..max_unknowns;

VAR i, position, newindex : INTEGER;

VAR formula, localformula, newpart, firstpart : STRING;
VAR operator : ARRAY[1l..max_no_op] OF STRING;

VAR index_place : ARRAY[1..max_places] OF INTEGER;

VAR inputfile : TEXT;
BEGIN;
RANDOMIZE;

ASSIGN(inputfile, ’rules’);
RESET (inputfile);
READLN (inputfile, depth);
READLN (inputfile, unknowns);
READLN (inputfile, no_op);
FOR i := 1 TO no_op DO
READLN (inputfile, operator[il]);
CLOSE(inputfile);

formula := place;

FOR i := 1 TO depth DO
BEGIN;
localformula := formula;
no_place := 0;
REPEAT
position := POS(place, localformula);
IF (position<>0) THEN
BEGIN;
no_place := no_place + 1;
IF (no_place=1) THEN
index_place[1] := position
ELSE index_place[no_place]
:= position + index_place[no_place-1];
DELETE(localformula, 1, position);
END
ELSE localformula := ’’;
UNTIL(localformula=’’);
position := index_place[1+RANDOM(no_place)];
newindex := 1 + RANDOM(no_op);
newpart := operator[newindex];
DELETE (formula, position, 1);
INSERT (newpart, formula, position);
END;

WRITEC’£(’);
IF (unknowns=1) THEN WRITE(’x_1’);
IF (unknowns=2) THEN WRITE(’x_1, x_2’);
IF (unknowns=3) THEN WRITE(’x_1, x_2, x_37);
IF (unknowns>3) THEN WRITE(’x_1, \ldots, x_{’,unknowns,’}’);
WRITE(’) :=7);
REPEAT
i := POS(place, formula);
IF (i<>0) THEN
BEGIN;
firstpart := COPY(formula, 1, i-1);
DELETE(formula, 1, i);
WRITE(firstpart) ;
WRITE(’x_{’,1+RANDOM (unknowns),’}’) ;
END
ELSE
BEGIN;
WRITELN (formula) ;
formula := 7’;
END;
UNTIL(formula=’’);

END.

