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Abstract. In this paper, an inexact Newton scheme is presented which
produces a sequence of iterates in which the problem functions are
differentiable. It is shown that the use of the inexact Newton scheme does
not reduce the convergence rate significantly. To improve the algorithm
further, we use a classical finite-difference approximation technique in
this context. Locally superlinear convergence results are obtained under
reasonable assumptions. To globalize the algorithm, we incorporate
features designed to improve convergence from an arbitrary starting
point. Convergence results are presented under the condition that the
generalized Jacobian of the problem function is nonsingular. Finally,
implementations are discussed and numerical results are presented.
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1. Introduction

We will study the following system of nonsmooth equations:
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where F: Rn ->Rn is a locally Lipschitz mapping.
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The problem of finding solutions to such systems arises, in particular,
in the study of nonlinear complementarity problems and both smooth and
nonsmooth optimization problems; see Refs. 1-7.

There has been considerable recent attention in the literature on numeri-
cal methods for solving (1). The main methods of solution are based on
the classical Newton method and quasi-Newton methods. Quasi-Newton
methods are efficient in the smooth case as they do not require the computa-
tion of a Jacobian at each iterate. Unfortunately, they cannot be easily
generalized to the nonsmooth case. Ip and Kyparisis (Ref. 8) obtained local
linear convergence of general quasi-Newton methods under the assumptions
that a bound on the deterioration of the updating matrix can be maintained
and that F is B-differentiable at a solution point. They also obtained local
superlinear convergence results under the condition that F is Frechet differ-
entiable at a solution point. This is of course restrictive for nonsmooth
functions. Chen and Qi (Ref. 9) obtained stronger results for some specific
classes of mappings. However, it is unclear yet whether linear and superlinear
convergence results can be obtained when the Broyden method is applied
to general locally Lipschitz mappings.

In contrast, the research on generalized Newton methods is seemingly
more promising; see Refs. 4 and 10-14 for details. Among the available
surveys, the recent one by Qi and Sun (Ref. 14) seems to be most interesting.
They have developed a generalized Newton iterative scheme for (1); the
iteration matrix is explicitly taken from the generalized Jacobian defined by
Clarke (Ref. 15). Similar to the classical Newton method, there are essen-
tially two questions to be answered for the generalized Newton method: (a)
How can the iteration matrix or even the generalized Jacobian be computed?
and (b) How can the algorithm be globalized? In relation to (b), Qi (Ref.
13) developed a globally convergent hybrid method. However, there are two
conditions inherent in implementing this algorithm: One is that an element
of dBF(x) is available; the other is that dBF(x) must be nonsingular. Chen
and Qi (Ref. 9) successfully avoided the difficulty caused by the possible
singularity of dBF(x) by using a parameterized Newton method. However,
the problem of how to compute an element of the generalized Jacobian
remains unresolved. In Ref. 16, Xu defined a type of e-generalized Jacobian
to approximate the actual generalized Jacobian, but the computation is
slightly complicated, since the Lipschitz continuity of F has not as yet been
fully exploited.

The main purpose of this paper is to present algorithms which attempt
to avoid the computation of the generalized Jacobian. For this purpose, we
introduce an inexact Newton iterative scheme in which the iterates produce
points at which F is differentiable. This is, at least theoretically, guaranteed
by the Rademacher theorem, which states that a locally Lipschitz mapping
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is almost everywhere differentiable. In this way, we make the generalized
Newton method implementable when it is applied to problems in which an
element of the generalized Jacobian is not readily available. We are also
able to avoid the exact solution of a linear Newton system at each iteration,
which may need considerable effort when the problem is of large scale or
the current point is far from the solution point. Indeed, this was the original
motivation of Dembo, Eisenstate, and Steihaug, who first proposed an inex-
act Newton method in Ref. 17. To improve our algorithm further, we use
a classical finite-difference approximation technique in this context. We also
incorporate features designed to improve convergence from an arbitrary
starting point by referring to recent work of Eisenstat and Walker (Ref. 18).

We should comment briefly on the inexact Newton method for non-
smooth equations proposed recently by Martinez and Qi (Ref. 19). They
investigated two inexact Newton schemes and employed the Broyden scheme
to solve the linear Newton systems at each iterate. The fundamental differ-
ence of the work presented here from that of Ref. 19 is that their results are
based on the assumption that an element of the generalized Jacobian is
available.

The remainder of this paper is organized as follows. In Section 2, we
define a weak Jacobian, which was first considered by Qi in Ref. 13, and
the concept of semismoothness for Lipschitz mappings. We show that the
theory developed by Qi and Sun can be explained from an alternative point
of view. In Section 3, we develop an inexact Newton method and present
an analysis of local convergence results under reasonable assumptions. In
Section 4, we present a further version of our algorithm by using a classic
finite-difference approximation technique. In Section 5, we establish a global
inexact Newton algorithm for (1). We show that the algorithm is globally
convergent under the condition that the generalized Jacobian is nonsingular
at the limiting point of the iterates. Initial numerical results are presented
and discussed in Section 6.

2. Weak Jacobian and Corresponding Newton Iteration

Throughout the paper, we use || • || to denote the standard Euclidean
norm in Rn and the induced matrix norm in the real n X n matrix space
L(Rn). We denote by DF the set of points in Rn at which F is differentiable.
We let S(x, d) denote an open ball in Rn (sometimes in Rm, when x e Rm)
with center x and radius d. The closure of a set S is denoted by S. For
convenience, the open unit ball in L(Rn) will be denoted by B. If {ak}
and {Bk} are two real sequences, and if ak /Bk->0, as k ->I, then we say
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and hence,

Let t be sufficiently small so that y + the S(x, D). Then, by (2),

Proof.

(a) The proof is similar to that of Proposition 2.6.2 in Ref. 15. We
include it for completeness. Let 5 be sufficiently small so that (2) holds. For
each yeDF n S(x, D/2) , heRn, we have

is called the weak Jacobian of F at x, where JF(x) denotes the Jacobian of
F at the differentiable point x.

This set was first considered by Qi in Ref. 13. Generally W F ( x ) = J F ( x ) ,
even when x e DF .

Proposition 2.1. For every x e Rn, the following results hold:

(a) WF(x) is nonempty, bounded, and closed;
(b) WF(x) is upper semicontinuous at x in the sense that, for every

e > 0, there exists d > 0 such that

Here, L is called the Lipschitz constant of F near x.
According to the Rademacher theorem, F is differentiable almost every-

where in Rn.

Definition 2.1. The set

for sufficiently large k, then we say that ak = O(Bk ).
We assume throughout that F is locally Lipschitz continuous on Rn in

the sense that, for every x, there exist a positive constant L and a sufficiently
small positive constant 8 such that

ak = o(B k). If there exist positive constants C', C" such that
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which implies

Since F is differentiable almost everywhere in S(x, D), by Definition 2,1,
WF(x) must be nonempty and bounded. We now show that WF(x) is closed.
Let We WF(x). Then, there exist a sequence {W i} c WF(x) such that
Wi -> W. For every Wi, there is a sequence of Jacobians {JF(xin)} such that
JF(xin) ->Wi as xin ->x. Hence, there exists a subsequence JF(x ink) ->W. By
definition, W e WF(x).

(b) We proceed by contradiction. For some e0 > 0 and every dn>0,
there exists yneS(x, dn) and Vne WF(yn) such that Vn E WF(x) + e0B. For
each Vn, there exists by definition a subsequence of Jacobians (JF(yk)} such
that when yk ->yn, JF(yk) ->Vn. Now let dn= 1/n. Then, there exists
ykn e S(yn, 1 /n 2 ) n DF such that ||JF(ykn)- Vn||< 1/n. Since JF(ykn)) is
bounded, and since ykn ->x as n - > I , there exists a subsequence of {JF(ykn)}
converging to some V' e WF(x), which implies that a subsequence of {Vn}
tends to V'. This leads to a contradiction. The proof is complete.

Clarke (Ref. 15) introduced a generalized Jacobian of F as follows:

where conv denotes convex hull. It is clear that

Definition 2.2. WF(x) is said to be nonsingular if all V e WF(x) are
nonsingular.

In Ref. 13, Fis called strongly BD-regular at x if WF(x) is nonsingular.

Assumption 2.1. For x e Rn and for all h e Rn, the following limit exists:

Proposition 2.2. Assumption 2.1 is equivalent to the existence of the
following limit:
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Proof. It suffices to prove that Assumption 2.1 implies (4). For every
VedF(x + th), it follows from the Caratheodory theorem and the definition
of dF(x) that there exist

such that

Letting t -»0, we have Vt h -» a, where a is a constant. Hence, Vh -» a. This
completes the proof.

Definition 2.3. We say that F is semismooth if the following limit exists
for any heRn:

It is obvious that this definition is equivalent to that of Ref. 14. Due
to the equivalence of the two definitions, we can present another version of
some important results of ref. 14, which are stated without proof.

Theorem 2.1. Under Assumption 2.1, the following results hold:

(a) the classic directional derivative F'(x, h) exists;
(b) if in addition, F is semismooth at x, we have

Now we recall briefly the version of the generalized Newton method
developed by Qi (Ref. 13). Let xc denote the current iterate and x+ the
next iterate. Suppose that WF(xc) is nonsingular. A modification of the
generalized Newton iteration was given by Qi (Ref. 13) as follows:

where Vce WF(xc ).

Theorem 2.2. See Lemma 2.6, Ref. 13. If WF(x) is nonsingular, then
there exist d>0, C >0 such that WF(y) is nonsingular for all yeS(x, D)
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and

Theorem 2.3. Local Convergence. See Theorem 3.1, Ref. 13. Suppose
that F is semismooth at the solution point x* and that WF(x*) is nonsingu-
lar. Then, for x0 sufficiently close to x*, the iteration (5) is well defined and
convergent.

3. Inexact Generalized Newton Method

It is clear that both the generalized Newton iteration in Ref. 14 and its
variation (5) depend on the condition that one element of dF(x) or WF(x)
is available. In general, it is difficult to calculate either WF(x) or dF(x).
However, when xeDF, JF(x) exists and it is computable. This motivates us
to design a new version of the Newton method for (1).

Let xc denote the current point. Suppose that xc e DF . Compute

The existence of such an rc is theoretically guaranteed by the Rade-
macher theorem. In this way, we keep the remaining iterates in the set DF.
Accordingly, we have the following new algorithm.

Algorithm 3.1.

Step 0. Given x0eDF, set k = 0.
Step 1. If F(xk) = 0, stop.
Step 2. Solve the Newton system

where rk is appropriately chosen.
Step 3. Set xk = xk+1, k = k +1; go to Step 1.

let yk = Xk+sk and

If yce DF, then set x+=yc and repeat the iteration. Otherwise, choose a
proper perturbation rc so that



Proof. By assumption, WF(x*) is nonsingular. It follows from
Theorem 2.2 that there exist C > 0 and d1 >0 such that JF(x0) is nonsingular
and

for x0eS(x*, d1) n DF. Hence,

Step 3. Step xk+1 = xk + sk, k = k+ 1; go to Step 1.

Here, nk may depend on xk.

We now present an analysis of the convergence results for Algorithm
3.2.

Theorem 3.1. Let x* be a solution point of (1). Suppose that F is
semismooth at x* and that WF(x*) is nonsingular. Assume also that
nk< nmax< 1/(2 + L)C, where L is the Lipschitz constant of F at x* and C
is some constant. Then, there exists d>0 such that, if x0eS(x*, d) n DF,
then the sequence {xk} generated by Algorithm 3.2 is well defined and con-
verges to x*. Moreover, the convergence is linear, in the sense that
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We have another motivation for introducing the modified scheme. For
some large-scale problems, it can be very expensive to solve (6) exactly using
a direct method such as Gaussian elimination; this may not be justified when
xk is far from x*; see Ref. 17. It is often reasonable to solve the subproblem
inexactly by an iterative method such as the conjugate gradient method,
while the convergence rate is not significantly reduced. In this case, we regard
rk as a residual. For both the purposes stated above, we modify Algorithm
3.1 as follows.

Algorithm 3.2.

Step 0. Given x0eDF, set k = 0.
Step 1. If F(xk) = 0, stop.
Step 2. Find some nk e [0, 1) and sk such that
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On the other hand, it follows from (2) and (7) that there exist constants L,
d2 (with 0 < d2< d1) such that

for x0eS(x*, d2) c DF. By Theorem 2.1, for n0 > 0, there exists, with
0 < d < d2, such that

for x0eS(x*, d ) n DF . Now, letting

and combining (9)-(12), we have

Setting

we obtain (8) for k = 0. The rest can be easily obtained by induction. The
proof is complete.

From the proof of the theorem, we observe that nk influences the con-
vergence rate of Algorithm 3.2. We can accelerate the convergence rate by
reducing ||rk||.

Theorem 3.2. Let x* be a solution of (1). Suppose that F is semismooth
at x* and that WF(x*) is nonsingular. The points {xk} generated by Algo-
rithm 3.2 converge to x*. Then, {xk } converges to x* superlinearly iff

Proof. Assume that xk converges superlinearly to x*. Note that
xk e DF. Then,
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It follows from Theorem 2.1 that

for sufficiently large k. Since {xk } converges superlinearly to x*, we have

for some p > 0, which proves (13). Conversely, suppose that (13) holds. The
proof proceeds in a similar way to that of Theorem 3.1, and hence the details
are omitted. The proof is complete.

4. Finite Difference Approximations

Just as in the smooth case, following Ref. 20 we now proceed to discuss
how to find a substitute for JF(x) in Algorithm 3.2 when the computation
of the derivatives is very complicated or even impossible. We propose to use
a finite-difference matrix to approximate the Jacobian JF(x).

We first give a general definition of difference approximation.

Definition 4.1. Let A: SA x Sh < Rn x Rm –> L(Rn). Then, A is called a
discrete consistent approximation (DCA) to JF(x) on S0 n DF c SA if 0 e Rm

is a limiting point of Sh and

If there are constants M and 8 > 0 such that

then A is a discrete strongly consistent approximation (DSCA) to JF(x) on
S0 n DF .

The definition is a generalization of Definition 11.2.1 of Ortega and
Rheinboldt (Ref. 21). The word discrete is employed to emphasize that (14)
or (15) only holds in S0 n DF rather than S0. The former may be discrete.

We say that F(x) is first-order discrete consistently (FODC)
approximatable in Rn if, for every x e Rn, there exist a mapping
A: SA x Sh c Rn x Rm -» L(Rn) and a neighborhood of x (S0 say) such that
(14) holds. If in addition (15) holds, then F(x) is called first-order discrete
strongly consistently (FODSC) approximatable in Rn.
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Many mappings arising in applications are FODSC approximatable in
Rn. For example, consider the standard nonlinear complementarity problem:
Find x solving

where h and f are two continuously differentiable functions from Rn to Rm.
This problem can be formulated as

Clearly H(x) is FODSC approximatable in Rn.
More generally, the piecewise C1 mapping defined by Kojima and

Shindo (Ref. 10) is FODSC approximatable in Rn.
We now consider another version of Algorithm 3.2.

Algorithm 4.1.

Step 0. Given x0eDF, set k = 0.
Step 1. If F(xk ) = 0, stop.
Step 2. Find some nk e [0, 1) and sk such that

where hk is appropriately chosen.
Step 3. Set xk+1 = xk + sk, k = k+ 1; go to Step 1.

Theorem 4.1. Let x* be a solution point of (1). Suppose that F(x)
is FODSC approximatable in Rn and semismooth at x*, that WF(x*) is
nonsingular, and that A(x, h) is a DSCA to JF(x) in the neighborhood of
xk, with ||h|| = O(||F(xk)||). Assume also that nk<n]max< 1/2(L + 2)C, where
L is the Lipschitz constant of F at x* and C is some constant. Then, there
exists d > 0 such that, if x0eS(x*, d) n DF, the sequence {xk } generated by
Algorithm 4.1 converges to x*. Moreover, the convergence is linear in the
sense that

Before we present the proof, we give a simple preliminary result.

Lemma 4.1. Suppose that F(x) is FODSC approximatable in Rn and
that A(x, h) is a DSCA to JF(x) in the neighborhood of x e DF , with ||h|| =
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O( | |F(x ) ||); suppose that x* is a solution of (1) and that WF(x*) is nonsingu-
lar. Then, there exist d >0, C >0, such that A(x, h) is nonsingular and

Proof. Notice that, for x e DF, A(x,h) is a DSCA to JF(x) in the
neighborhood of x. Hence,

By Lipschitz continuity, there exists d1 > 0 such that

Hence,

equivalently, for every e > 0, there exists 0<d2<d1 such that

On the other hand, by Proposition 2.1, for e > 0, there exists 0 < d < d2 such
that

that is, JF(x) is nonsingular and there exists C > 0 such that

for sufficiently small e > 0 and xeS(x*, d) n DF . By the Banach perturba-
tion theorem, it follows that A(x, h) is nonsingular and that

where

Letting

we have

The proof is thus complete.

Proof of Theorem 4.1. By assumption, WF(x*) is nonsingular. It fol-
lows from Lemma 4.1 that there exists d1 > 0 and a constant C > 0 such that
A(x0, h0) is nonsingular and
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Letting x0 be such a point, we have

Similar to the proof of Theorem 3.1, for every n0 > 0, there exists 0 < d2 < d1

such that

for all x0eS(x*, d2) n DF.
On the other hand, it follows from (17) that, for n0, there exists

0<d<d2 such that

Consequently,

By letting

we obtain (16) for k = 0. The rest can be easily proven by induction. The
proof is complete.

Theorem 4.2. Suppose that the conditions in Theorem 4.1 are satisfied.
Then, {xk} converges to x* superlinearly iff

We shall not present the proof, since it is straightforward.

5. Global Inexact Newton Method

In the previous sections, only local convergence of the algorithms was
discussed. The iterates may not necessarily converge if a starting point is
far from the solution. Therefore, it should be interesting to globalize the
algorithms.
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For the sake of convenience, we only globalize Algorithm 3.2. In Ref.
18, Eisenstat and Walker develop a globally convergent inexact Newton
method for smooth equations. They employ the following algorithm.

Algorithm 5.1. Global Inexact Newton Method.

Step 0. Given a starting point x0 and te[0, 1), set k = 0.
Step 1. If F(xk) = 0, stop.
Step 2. Find some n k e[0 , 1) and sk such that

Step 3. Set xk+1=xk + sk, k = k + 1; go to Step 1.

For our purpose, we modify Algorithm 5.1 as follows.

Algorithm 5.2. Global Inexact Newton Method.

Step 0. Given a starting point x0 and t e [0 , 1), set k = 0.
Step 1. If F(xk ) = 0, stop.
Step 2. Find some rk e [0, 1) and sk such that

Step 3. Set xk+1 = xk + sk, k = k + 1; go to Step 1.

Before analyzing the convergence of the new algorithm, we discuss the
existence of an inexact Newton step sk in Step 2.

Proposition 5.1. There exists sk satisfying (18)-(20) if and only if either
F(xk) = 0 or F(xk)JLR(JF(xk)), where R(A) denotes the range of A.

Proof. We consider only the case where F(xk) = 0. Inequality (20) is
equivalent to

letting Sk = ad, and substituting it into the above, we have
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If F(xk)±R(JF(xk)), then there are no real a, d satisfying (22); i.e., there is
no sk satisfying (19)-(20). If F(xk)JLR(JF(xk)), then there exists d satisfying

thus, there exists a real number a satisfying (22) for d=d; equivalently,
there exists sk satisfying (19)-(20). An arbitrary small perturbation of sk can
be made under the same condition and sk satisfying (18)-(20) exists. The
proof is complete.

Lemma 5.1. Let xeDF and te[0, 1) be given. Assume that there exists
s satisfying | |F(x)+JF(x)s | |<| |F(x) | | . Then, there exists nmine[0, 1) such
that, for any ne[nm i n , 1), there exists s satisfying

and x + s e DF.

Proof. There are two differences between this lemma and Lemma 3.1
of Ref. 18. First, F is assumed to be continuously diiferentiable in Lemma
3.1 of Ref. 18, while here we only require F to have a Frechet derivative at
x. Second, we require x + s e DF . Actually, Lemma 3.1 of Ref. 18 can be
proved without any modifications under the condition that F has a Frechet
derivative at x. We do not restate it here, but this result does not guarantee
that x + s e DF. Suppose now that there is s satisfying (23)-(24), but
x + sEDF. It is clear that (23)-(24) still holds when an arbitrary small pertur-
bation on s is made and n is replaced by (1 + 1 / M ) n , where M is sufficiently
large such that nmin(1 + 1/M) < 1. By the Rademacher theorem, we can find
8s such that x + s+dseDF and x + s+ds satisfies (23)-(24). The proof is
complete.

Remark 5.1. Algorithm 5.2 breaks down at some xk if and only if
F(xk) =0 and xk is a stationary point of ||F(x) ||.

Theorem 5.1. Assume that {xk} c DF is a sequence such that F(xk) -»0
and, for each k,

where sk = X k + 1 -x k and n is independent of k. If x* is a limit point of {xk }
such that F is semismooth at x* and dF(x*) is nonsingular, then F(x*) = 0
and xk->x*.
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Proof. Clearly, F(x*) = 0. It follows from Proposition 3.1 of Ref. 14
that there exist d >0, C >0 such that dF(y) is nonsingular and

On the other hand, by Theorem 2.1,

for 8 sufficiently small. Consequently,

By Lemma 2.2 of Ref. 14, there exists V e dF(x*) such that

Thus,

Consequently,

equivalently,

Let ee(0, d /4) . Since x* is a limit point of xk and F(x*) = 0, there exists k
such that

Then,

So, xk+1 eS(x*, d). Since

by (25),
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which implies that xk+1eSe. Therefore, xkeSe for sufficiently large k. Since
| |F(x k) || -»0, it follows that xk –> x*. The proof is complete.

Remark 5.2. We do not require that n < 1 in the proof.

Theorem 5.2. Global Convergence of Algorithm 5.2. Suppose that
Algorithm 5.2 does not break down, if Ek >0 (1 — nk) is divergent. Then,
F(xk) ->0. If in addition, x* is a limit point of {xk} such that F is semismooth
at x* and dF(x*) is nonsingular, then F(x*) = G and [xk} ->x*.

Proof. By (21),

It follows from the assumptions that ||F(xk)||-»0. The rest follows from
Theorem 5.1 and Remark 5.2. The proof is complete.

6. Computational Experiments

As stated in the previous sections, our method is to maintain the iterates
generated by the algorithms in DF. One challenging issue is how to imple-
ment it practically for general locally Lipschitz continuous functions. One
possible way that we suggest is to make a random perturbation rc if yc =
xc + sc$DF. Theoretically, via the Rademacher theorem, the probability that
yc + rc is in DF is one. The process is repeated when yc + rc$DF.

We implemented two typical examples taken from Refs. 8-9 and 19
with rk = n k | | F ( X k ) | | d k , where dk is a random vector satisfying | |d k | | I <1. The
numerical results are satisfactory as we shall demonstrate; however, further
numerical experimentation is still required and will be the focus of further
research.

Example 6.1. Consider the following function F: Rn –>Rn:
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where

This example was considered by Martinez and Qi in Ref. 19. As it is easily
verified, the solution of F(x) = 0 is (1 +2k1 n,. . . , 1 + 2knK)T, where
k 1 , . . . ,kn are arbitrary integers. By adjusting the difference |c1 — c2|, one
may get different degrees of nondifferentiability of F.

We implemented Algorithm 3.2 for this example with the starting point
x0 = ( 0 , . . . , 0)T. The numerical results are presented in Table 1. In the table,
Nv denotes the number of variables of the problem, Nout denotes the number
of Newton iterations needed to reach the required precision, which is
specified as exp(-6), while Nin represents the number of times that the
random correction in Step 2 was carried out.

In comparison with Table 1 of Ref. 19, we find that generally the
number of outer iterations is greater than in Ref. 19 when the problem
dimension increases. Although the two Nin columns have different meanings,
we can still conclude that the policy of a random correction in Step 2 is
successful.

Computational experiments were also conducted for another set of
problems arising from nonlinear complementarity problems.

Example 6.2. Consider the following nonlinear complementarity prob-
lem: Find xeR4 such that

Table 1 . Computational results, Example 6. 1 , Algorithm 3.2.

Nv

1
2
3
4
5
6
7
8
9
10
11
12
20
30
40

C1

1
1
1
1
1
1
100
100
100
100
100
100
100
100
100

C2

-1
-1
-1
-1
-1
-1
-100
-100
-100
-100
-100
-100
-100
-100
-100

nk

0.5
0.5
0.5
1/(2 + k)
1/(2 + k)
1/(2 + k)
0.5
0.5
0.5
1/(2 + k)
1/(2 + k)
1 / ( 2 + k)
1/(2 + k)
1 / ( 2 + k )
1 / ( 2 + k)

NOUT

5
5
5
7
7
7
64
41
51
40
35
32
44
104
228

Nin

0
0
0
1
1
1
15
10
12
10
9
8
12
23
54



Table 3. Computational results, Example 6.2, Algorithm 4.1.

Starting point

(1 ,0 , 1, -5)T

(1 ,0 , 1, 0)T

(1,0, 0, 1)T

(1, 0, 0, 0)T

(0, 0, 0, 1)T

Nout

6
5
5
6
Failed

Nin
0
1
1
0
—

|| F(Xk)||
2.3747E-07
9.6286E-08
6.5154E-08
2.3747E-07
—

Solution

(R6/2, 0,0, 0.5)T

(R6/2,0,0,0.5)T

(1,0, 3, 0)T

(R6/2,0, 0, 0.5)T

—

Table 2. Computational results, Example 6.2, Algorithm 3.2.

Starting point

(1, 0, 1, -5)T

(1,0, 1,0)T

(1, 0, 0, 1)T

(1 ,0 , 0, 0)T

(0, 0, 0, 1)T

Nout

5
4
4
5
Failed

Nin

1
1
1
0
—

||F(xk)||

3.7007E-09
8.8413E-10
5.0936E-07
3.7007E-09
—

Solution

(R6/2,0, 0,0.5)T

(R6/2, 0, 0, 0.5)T

(1,0, 3, 0)T

(R6/2,0,0,0.5)T

—
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where F: R4 -> R4 is given by

The problem is equivalent to solving the nonsmooth equations

and min denotes the componentwise minimum. This problem has two
solutions,

Also, F(x) is differentiable at x* but nondifferentiable at x**. Numerical
results are displayed in Table 2. The algorithm failed at the starting point
(0, 0, 0, 1)T, since it is only a local algorithm.

Furthermore, we applied Algorithm 4.1 to Example 6.2. Numerical
results are displayed in Table 3. In Step 2, hk was simply (0.01, 0.01, 0.01,
0.01 )T. From Tables 2 and 3, we find that there is little significant difference
between the two algorithms.

Finally it should be noted that Algorithm 5.2 is yet to be implemented
due to the practical difficulties inherent in Step 2 of the algorithm. This will
be the focus of future research.
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