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Approximate Newton Methods
for Nonsmooth Equations'

H. Xu® AND X. W. CHANG®

Communicated by D. Q. Mayne

Abstract. We develop general approximate Newton methods for solv-
ing Lipschitz continuous equations by replacing the iteration matrix
with a consistently approximated Jacobian, thereby reducing the compu-
tation in the generalized Newton method. Locally superlinear conver-
gence results are presented under moderate assumptions. To construct
a consistently approximated Jacobian, we introduce two main methods:
the classic difference approximation method and the e-generalized
Jacobian method. The former can be applied to problems with specific
structures, while the latter is expected to work well for general problems.
Numerical tests show that the two methods are efficient. Finally, a norm-
reducing technique for the global convergence of the generalized Newton
method is briefly discussed.
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1. Introduction

We study the following system of nonsmooth equations:
F(x)=0, (1)

where F: R"—R" is locally Lipschitz continuous.
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Since the introduction of B-derivatives by Robinson (Ref. 1), efforts
have been made to generalize the Newton method and quasi-Newton
methods to the nondifferentiable case. Among them are Refs. 2-10, most of
which are intended to solve some specific nondifferentiable equations such
as those transformed from nonlinear complementarity problems and mathe-
matical programming problems. Kojima and Shindo (Ref. 11) first discussed
a Newton-like method for systems of piecewise continuously differentiable
equations. Ip and Kyparisis (Ref. 12) extended the classic quasi-Newton
methods, especially the Broyden method, to B-differentiable equations.
Locally superlinear convergence results were obtained under the condition
that F(x) has Gateaux derivatives at a solution point of (1). However, the
extension seems to be limited, since a bound on the deterioration of the
updating matrix cannot be maintained if F is not differentiable at a solution
point.

Qi and Sun (Ref. 13) proposed a generalized Newton method for (1).
They employed the following iteration:

Xew1=Xe— Vi "F(x), Vi€ 0F(x,), (2)

where dF(x; ) is the generalized Jacobian of F at x,, defined by Clarke (Ref.
14), and V, is arbitrarily taken from 0F(x,). The iterates produced by (2)
were proved to be locally superlinearly convergent under mild conditions.
However, difficulties may occur when (2) is applied to solve real-life prob-
lems. The obvious one is the calculation of V, when F is not differentiable
at x,. A simple idea that we are familiar with is to replace V) with the
Jacobian of F at a point near x;, but the computation of a Jacobian is also
a formidable task, even in the smooth case. Another difficulty is that the
iteration (2) may not work well if there is no significant reduction of {| F(x)|
when the initial guess is far from a solution point.

Pang and Qi (Ref. 15) developed a new kind of Gauss-Newton method
for solving a certain class of nonsmooth equations. They also extended the
classical superlinear convergence results of Dennis and Moré for smooth
equations and those of Ip and Kyparisis for B-differentiable equations. There
are also other new surveys on the topic; see Refs. 1618, for instance.

In this paper, we develop general approximate Newton methods for (1)
in order to avoid the complicated computation of ¥} in (2). In Section 2,
we establish a general approximate Newton iterative scheme by introducing
the concept of consistently approximated Jacobian (CAJ in brief ); local
convergence results are presented under some mild conditions. In Section 3,
we propose two practical methods: the classic difference approximation
method and the e-generalized Jacobian method. The former can be applied
to a few problems with specific structures, while the latter is expected to
work well for more general problems. In Section 4, we introduce briefly a
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norm reducing technique to force the generalized Newton algorithms to
converge when the initial point is far from a solution point of (1). Finally,
we give numerical experiments in Section 5.

2. General Approximate Newton Iteration

2.1. Notation. Throughout this paper, we use the following notation.
R" denotes the vector space of n-tuples with 2-norm | - ||, and L(R") the
matrix space of nxn real matrices with the induced norm | - [|. S(x, §)
denotes the open ball in R" with center x and radius &, and B is an open
unit ball in L(R"). The closure of a set D is specified by D. If a(h) is a
vector-valued function (in this context, we simply call it a function for
brevity) or a matrix function of heR", we use a(h) =o(|hll) to denote the
case where

e (R)|/lIA] -0, as [l —0;
and we use a(h)= O(| h|) if there exist constants C,, C,>0 such that
Gilhl<a(h)<ClAal,  as|k|—0.

The set of positive integers [1, ..., n] is denoted by 7. The set of points of
R at which F is differentiable is denoted by Dr.

2.2. Basics. We assume throughout this paper that F is locally
Lipschitz continuous in R” in the sense that, for every x, there exist L>0
and 6 >0, such that

1E(y)—F(2)| <Llly—z|,

for all y, ze S(x, & ). Here, L is called the Lipschitz constant of F at x.

According to the Rademacher theorem, Fis differentiable almost every-
where in R”. The generalized Jacobian of F at x is defined by Clarke in Ref.
14 as follows:

0F(x)=conv[ lim VF(x;)].
x;—+x,x,€Dr

Here and later on, VF(x) denotes the Jacobian of F at xe Dr; conv denotes
the convex hull.

Proposition 2.1. See Proposition 2.6.2., Ref. 14.  0F(x) is compact and
upper semicontinuous in the sense that, for every €>0, there exists 6 >0
such that

O0F(y)c 0F(x)+€B, YyeS(x, ).
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For the sake of convenience in the subsequent discussion, we summarize
some preliminary concepts and results given by Qi and Sun in Ref. 13. Fis
said to be semismooth at x if, for every AeR”, the following limit exists:

lim Vi,

VedF(x+th') )W —ht—0

Lemma 2.1. Suppose that Fis semismooth at x. Then, for every he R",
lim [F(x+th')—F(x)l/t= lim Vi =F'(x, h).

h—h,t—0 VedF(x+th) —=ht—0
In particular, when A’ =h,
F'(x,h)= lim VhedF(x)h

VedF(x+th),t—0

and
F(x+h)—F(x)—F'(x, h)=o(|h|). (3)
Proof. It follows directly from Propositions 2.1 and 2.17 of Ref. 13
and the definition of semismoothness. |

If there exists 0<p <1 such that, for any VedF(x+h), h—0,
Vh—F'(x, ))=0(|h|'*?),

then Fis said to be p-order semismooth at x. In Ref. 13, Qi and Sun proved
that, if F is P-order semismooth at x, then

F(x+h)—F(x)—F'(x, k)= O0(|[h]'"?).
Lemma 2.2, See Lemma 2.2, Ref. 13. Suppose that F'(x, 4) exists at
x for any A. Then for every A, there exists F'edF(x) such that
F'(x, h)=Vh.
Lemma 2.3. See Theorem 2.3, Ref. 13. The following statements are
equivalent:

(a) Fis semismooth at x;
(b) for any VedF(x+h), h—0, Vh—F'(x, h)=o(|h|);
(c) limy_o[F'(x+h, h)—F'(x, h)]/|h| =0.

OF(x) is said to be nonsingular if all VedF(x) are nonsingular.

Lemma 2.4. See Proposition 3.1, Ref. 13.  Suppose that dF(x) is non-
singular. Then, there exist § >0, C, >0, such that, for each ye S(x, &), 0F(y)
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is nonsingular and

IV'"<C, VVedFy),yeS(x,8§).

2.3. Approximate Newton Method. We now introduce an approximate
Newton iteration. Let x, be the current point, and let x,; be the next point.
Then, x4+, is computed by

Xerr =Xk = I, 56) 7 F(xi), 4

where J(x;, s, YeEL(R") is an approximation of some V,edF(x,) and sy is
an /-dimensional parameter vector.

The iteration (4) is a generalization of approximate Newton methods
in the smooth case, which were discussed extensively by Ortega and Rhein-
boldt in Ref. 19. The main difficulty here is the construction of J(x, s). For
the sake of convenience, we present a strict theoretical definition of J(x, s).

Let N(x, ) denote the closed ball with center x and radius & in R' in
order to distinguish it from S(x, 8).

Definition 2.1. Let J: DxD,cR"x R'-L(R"). If 0eR’ is a limiting
point of D,, and if

Iim dist[J(x, s); 0F(x)]=0, (5)

s—0

for all xeD, then J(x, s) is called a consistently approximated Jacobian of
Fin D. We call it CAJ for brevity. Here,

dist[J(x, 5}; 0F(x)]= min [J(x,s)—V]. (6)
VedF(x)

Lemma 2.5. Let x*eR". Suppose that F is semismooth at x* and that
J(x, s) is a CAJ of F(x) in a neighborhood of x*. Then,

|F/(x* +h, k)= J(x* + h, s)h|| <w(h, s)||h], @)
where
lim w(h, s)=0. (8)
h—0,5—0

Proof. Let 6 >0 be sufficiently small so that J(x, s) is a CAJ of F in
S(x*, §). By Definition 2.1,

lim dist[J(x* + A, s); OF(x* + h)] =0,

50
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uniformly with respect to ||| <8. Note that 6F(x* +#) is closed. Then for
each s, there exists a V(x*+h, s)edF(x* + h) such that

1V(x*+h, )= J(x*+h,s)|

=dist[J(x* + h, 5); OF(x™* + h)] -0, (9)

uniformly with respect to [|A]| <8, as s—0. Since F is semismooth at x*,
from Lemma 2.3 (b),

V(x*+h, )h—F'(x*, hy=o(||h]]), (10)
uniformly with respect to s. Using Lemma 2.3 (¢), we get
F'(x*+h, h)—F'(x*, hy=o(|h]). (1D
Write
w(h; s)= | V(x*+h)~J(x*+h, )|
+[IF(x*+h, )= F'(x*, b)|
H V(X +h, s)h—F'(x*, ) {|1/1A].
Then, we see that (8) holds from (9)-(11) and
[F'(x*+h, hy—J(x* +h, $)h|
< F'(x*+h, h)y— F'(x*, h)| + | V(x* +h, s)h— F'(x*, b))
+ | V(x* +h, 5) = J(x*+h, )| |4
=w(h, s)|A].
The proof is complete. a

Now, we can state our main results.

Theorem 2.1. Let x*D be a solution of (1). Suppose that F is semi-
smooth at x* and that F(x*) is nonsingular. Let J: D X D,c R" x R'»L(R")
be a CAJ of Fin D, and assume that 0e D,. Then, there exist § >0 and y >0
such that J(x, s) is nonsingular for xeS(x*, ), se N(0, y). Furthermore,
the function

G(x, s)=x—J(x,5)" ' F(x) (12)
1s contractive in the sense that
Ix* = G(x, s) | <ulx, s)llx—x*|,

VxeDn S(x*, &), seD,;n N(0, y), (13)
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where

lim u(x,s)=0. (14)

x-x* 50

Proof. First, we show that there exist 6 >0 and y >0, such that J(x, s)
is nonsingular for any xe D n S(x*, §) and any se D, N(0, 7). It follows
from Definition 2.1 that, for each €>0, there exists a constant ¥ >0 such
that

dist[J(x, 5); 0F(x)] <€, VxeD,seD,n N0, y). (15)

Since dF(x*) is nonsingular, by Lemma 2.4, there exist a constant C;>0
and 8 >0, such that 0F(x) is nonsingular and

V(x)<C,  ¥xeDnS(x*6).
Let
17(x) =arg min||J(x, s) — V(x)|.
)

VedF(x
Then, from (15) and (6), we have
1(x, 5)= V(x)l <e. (16)

Suppose without loss of generality that e, <1. Then, by the Banach pertur-
bation theorem and (16), J(x, s) is nonsingular and satisfies

1Ce, )< V)™ 1/ = 1700 11 8) = Vo))
<C /(1—€C)). (17)
Now, we prove (13). In fact,

Ix* = G(x, 9)|
= lJ(x, )" [F(x) = J(x, )(x = xH)]|
<IJ(x, )7 IUIFCx) — Fx*) = F/(x*, x = x*)]

+ | F'(x, x=x*)— F'(x*, x— x*)|

+ I F(x, x = x*) = J(x, 8)(x —x*)] ]
<Gy /(1—€C)o(llx =x*1) +o(lx—x*| ) +w(x—x*, 5)|x—x*|1]
=u(x, $)O(|x—x*|), say.

The last inequality is due to Lemma 2.3, Lemma 2.5, (3), and (17). Clearly,
(14) holds. The proof is complete. 4
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Corollary 2.1. Suppose that the assumptions in Theorem 2.1 are satis-
fied. Let G(x,s) be defined by (12), and let g: R"> R’ be a continuous
function with g(x*)=0. If s=g(x), then there exists §>0 such that
G(x, g(x)) is contractive in S(x*, §). Thereby, the sequence produced by
(4) converges to x* superlinearly for a sufficiently good starting point.

Proof. From (14), it follows that, for any given € > 0, there exist §, >0
and o >0 such that

u(x,s)<e,  VxeS(x* 8)), sl <o.

Since s=g(x) and g is continuous at x* with g(x*)=0, there exists § <§,
such that

Isli=llg(x) <o, VxeS(x*, 6);
thereby,
u(x, g(x)) <e, VxeS(x*, 8).

The conclusion is obvious as € can be arbitrarily small. U

3. Practical Approximation Methods

In Section 2, we established a unified framework of superlinearly con-
vergent approximate Newton methods based on CAJ. The results may be
regarded as theoretical, since there are no practical methods presented for
the construction of a CAJ. In this section, we discuss how to construct a
CAJ practically. Obviously, the existence of a CAJ depends on the local
property of F(x). It seems unlikely to provide a unified approach for general
problems. In what follows, we propose two methods: the finite difference
approximation method and the e-generalized Jacobian approximation
method.

3.1. Finite Difference Approximation. We first introduce some useful

notation. If @;, jeA, are n vectors of R", we will denote by [ay, ..., a,] the
matrix whose jth column is g;. Similarly if 4;, jen, are subsets of R", then
[4:,...,4,] will be [[a:,...,a.]: qeA,, for all jer].

Now, we suppose that F is semismooth in R”. By Lemma 2.1, for each
xeR”,

F/(X, ej)eaF(x)ef’ jEﬁa
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where ¢; is the jth unit vector. On the other hand,
OF(x)eje] =[0,...,0/F,...,0], jen,
where

dF=conv[ lim V,F(x;)]

xieDp.x;—x

and J;F denotes the derivatives of F with respect to the jth component of
the variable x at a point x;e Dr. Hence,

F'(x, e,-)e,-Te[O, v, OF, 0] jen;
consequently,

Y F'(x,¢)e] €l0iF, . .., 0,F).

jen
In general,
[6,\F, ..., 8,F]1#0F,

but equality holds at least in two particular cases: first, when all functions
J;» except possibly one (say f, ), are strictly differentiable at x, in such a case,

OF=[0f, V... .. Vfu]";
another equality case is when the functions are nondifferentiable but only
with respect to nonrelated variables.
Example 3.1, Let F: R*— R* be defined by
F(x)=(|x;| +X2, X1+ |x2])".
Then,

1
ap={[‘l’ ﬂ], ael-1, 1], Be[-1, l]}=[6.F, 8,F].
So far, we are able to reach the following conclusions.

Lemma 3.1. Suppose that Fis a function whose components are either
nondifferentiable only with respect to nonrelated variables or strictly differ-
entiable, except for one, and F is semismooth in R". Then,

Jx,5)=Y [[F(x+s¢)— F(x)]/s]e,Te 0F(x)+ o(s). (18)

jen
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Proof. Since F(x) is semismooth, by Lemma 2.1,
[F(x+se) = F(x)l/s—F'(x,¢)=0(s),  jer.

Hence,

J(x,8)= [ Y [F(x+se) —F(x)]/s]ef
JEA
=Y F'(x,¢)e] +o(s)e[0iF, . .., 0,F]+o(s).
jenr
By assumption, we get
[64F, ..., 0,F]1=0F(x).

This completes the proof. O

Theorem 3.1. Let x™ be a solution of (1). Assume that F is semismooth
in a neighborhood of x* and that 0F(x*) is nonsingular. Suppose that the
assumptions of Lemma 3.1 are satisfied and that J(x, s) is defined by (19),
which holds uniformly with respect to x in a neighborhood of x*. Then, for
s=O(||F(x)]), there exists § >0 such that, if the starting point x,e S(x*, §),
the sequence {x,} generated by (4) is well defined and converges to x*
superlinearly.

Proof. It follows from Lemma 3.1 that J(x, s) is a CAJ of F in some
neighborhood of x* under the assumption that (18) holds uniformly with
respect to x in a neighborhood of x*. The rest follows directly from Corollary
2.1. O

Remark 3.1. Theorem 3.1 is a nonsmooth version of the classic differ-
ence approximate Newton method. It seems that the nonsmooth finite
approximation only fits a small class of problems. Therefore, we are led
to develop other techniques which are likely to deal with more general
problems.

3.2. e-Generalized Jacobian Approximation. In nonsmooth optimiza-
tion, when the steepest subgradient method failed to solve the Wolfe counter-
example, people realized that the subdifferential of a nonsmooth function
contains too little information for finding a convergent search direction. A
larger set, called e-subdifferential, was then introduced and the existing
difficulties were consequently overcome. In this context, using the same
method as for defining the e-subdifferential, we try to define an e-generalized
Jacobian for a vector-valued function. However, rather than in light of
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convergence considerations, the definition here is intended to provide more
practical substitutes of the generalized Jacobians, which are usually difficult
to compute.

Definition 3.1. Let F(x) be locally Lipschitz continuous. Then, we say
that 0.F(x) is the e-generalized Jacobian of F at x if

dF(x) =conv[oF(x'): x'€S(x; €)]. (19)

The e-generalized Jacobian has many interesting properties.

Proposition 3.1. Let d.F(x) be defined by (19). Then:

(a) for every xeR", 0,F(x)=0F(x);

(b) for every xeR", if e<é€’, then 0.F(x)<0.F(x);

(c) for any € >0, d.F(x) is convex and bounded on a bounded set;
(d) for every u >0, there exists 6 >0 such that

0F(y) cO0F(x)+ uB, VyeS(x, 8), €<é.
Proof. We only prove (d). By Proposition 2.1, for every u >0, there
exists 6 >0 such that
OF(x")c O0F(x)+uB, Vx'eS(x, 8).
From Definition 3.2, we have, for €<46/2, yeS(x, 6/2),
0F(y)=conv[dF(x"): x'€S(y, €)]
cconv[0F(x'): x'eS(x, 6 )]« dF(x)+ uB. O

Proposition 3.2, For each V.€d.F(x),
lim V.e0F(x). 20)

€—~0

Proof, Note that, for V.ed.F(x), €>0, {V.} is bounded for
€€[0, €o]. Assume that there is a subsequence {V,}, with V. —V'¢0F(x)
as €,—0, and seek a contradiction. Since

oF(x)= () 0.F(x),

O<e<ep

we have

vig () 0.F(x),

0<e<eqy
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or equivalently,

V’e(o N 65F(x))= U (2Fx)),

<€<€p O0<ex<eg

where A denotes the complementary set of 4. Thus, there exists 0 < €' < €
such that

V'e(0eF(x))". @2n
On the other hand, let j be so large that €,<¢’. Then, by Proposition
3.1 (b),

Ve, €0 F(x) = 0o F(x).
Since d¢F(x) is compact, we have

V'edeF(x),

which leads to a contradiction to (21). d

In general, it is very restrictive if we require (20) to hold uniformly with
respect to x in some open set D. Therefore, V. is not necessarily a CAJ in
general cases. This leads us to consider a weaker condition for the conver-
gence of the approximate Newton methods.

Lemma 3.2. Suppose that F is semismooth at x* and that E: R, —R,
is a real function with E(0)=0 and lim, o £(¢)/t=0. Then, for every
Ue g x-x+y F(X), there exists VedF(x) such that

lim'(U- VY(x=x*)/|lx—=x*||=0. (22)

Proof. Let
t=|x=x*|,  h=(x-x*)/|lx—x*|.

Then, for each Uedgx— ) F(x), we have by Definition 3.2 and the Cara-
thedory theorem that
1(x)
U=3 ai(x)Ui(x).
i=1
Here, {(x) is an upper-bounded positive number; a;(x), i=1, ...,/ (x), are
nonnegative scalars with Z""’ a;(x)=1; and

i=1

Ui(x)edF(x™* + th+ 0,(x)E(£)s;(x)),
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with 5;(x)eR", |s;(x}|| =1, and 6;(x)€[0, 1], fori=1,...,[(x). Let
hi(I)Eh+ ai(X)E(l)Si(X)/t.

Suppose without loss of generality that h—h as 1—0. Since F is semismooth
at x*, it follows from Lemma 2.1 that, for every VedF(x),

lim U;(x)hi (1) =lim U;(x)h=1lim Vh=F'(x*, h),
t—0 1—0

=0

which implies (22). ad

Remark 3.2. The conclusion of Lemma 3.2 still holds when E(?) is
replaced by kE(t) for some positive constant k.

Theorem 3.2. Let x* be a solution point of (1). Suppose that F is
semismooth at x* and that 0F(x*) is nonsingular. Let E: R, — R, be a real
function with E(0)=0 and lim,_¢ E(¢)/t=0. Then, the iteration

Xp+1 =X = U 'F(xp), Uk€ 0y — v F(Xi ), (23)

is well defined and superlinearly convergent to x* in a neighborhood of x*.

Proof. Since 0F(x*) is nonsingular, by Proposition 3.1 (d), there exists
6 >0 such that d.F(x) is also nonsingular and [ U™'{| is bounded for every
Ued.F(x), when € <6, xeS(x*, §). Hence,
otk + 1= x*| < WU NI Fx ) — FO6*) = F'(x*, xie— x®)|
FIF (X, x=x*) = F'(x*, x—x*)|
FIF (X, x—x*) = Vi (i~ ™) + 1 (U= Vi) (= x*)11]
=o(llxe—x*|).

The last equality follows from Lemma 2.1, Lemma 2.3, and Lemma 3.2.
The proof is complete, ad

The methods for the construction of 0.F(x) vary from problem to prob-
lem. For some problems, a detailed knowledge of .F(x) is needed; for some
others, maybe one element of d.F(x) is enough. In what follows, we present
an integral method which can be regarded as a generalization of the results
of Ref. 20,

Let | - [, denote the infinity norm of vectors of R”"; set

P(x)=[yeR": |y—xlo<€]
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Define
Fax)=(f{(X), ..., fex), (24)
where

fi(X)EG(G)f Sy,  ole)=1/(2¢)".

Pe(¥)

Then, we have the following proposition.

Proposition 3.3, F.(x) is continuously differentiable with respect to x
and

Vife(x)=[1/(2€)"] U Ji(y) dy—f Si(y) dy}, Lj=1,...,n,
Die(x) De—(x)
(25)
where
D (x)=[yeR": lly~xllo =€, (y);=(x);+¢€]
=[x+s:(8),=¢€,|(s)| <€, i#], 1 <i<n],
Die-(x)=[yeR": [y=xlow=¢, (y);=(x),— €
=[x—s:(8);=¢€,|(s)]| L€, i#), 1<i<n],
and where (x); denotes the jth component of vector x.
Proof. The proof can be obtained by a simple calculation. O

Lemma 3.3. Let F.(x) be defined by (24). Then, for every he R" with
Al =1,

VE(x)hed, i+ 1yeF(X)h. (26)

Proof, Let heR" with | h|| = 1. Since F.(x) is differentiable,
VF (x)h=lim[F(x+th) — F(x)]/t
t—0
=lim o(€) [(Fe(x+y+ith)—F(x+y))/t]dy
=0 Pe(®)

1
=lim o(€) J f VF(x+s+t0h)h db ds.

t—0 Pi0) Yo
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Note that
s+ @thl| < sl +t<nlsll. +t<Jne+t.
Hence, by letting t <€, we have
VE(x+s+th)ed m+eF(x),
and consequently,
VF(x+s+thhe B(ﬁ+ neF(x)h,
which implies (26). ]
Lemma 3.4. Let VF.(x) be given by (25). Suppose that F(x*) is non-

singular. Then, there exist a constant C,>0 and & >0 such that VF.(x) is
nonsingular and

IVF(x)"'<Cy,  VYxeS(x*, 8), €>6.
Proof. By Proposition 3.1 (d), for every u >0, there exists 6 >0 such
that
O /n+1yeF(x) < OF(x*) + uB, VxeS(x*, §), e<§.

Since 5F(x:") is nonsingular, for p sufficiently small, every matrix of
OF(x*) + u B is nonsingular. Now, let

o =0F(x*)+uB.
Then,

o=min min |Ah|>0.
Aeo {hll=1

On the other hand, it follows from Lemma 3.3 that
VF(x)h€d( sn+eF(X)h, YheR".
Hence,
VFE(x)hesfh,
and

min |VF(x)A|| >min min |44 =0>0,
Jlal =1 Ae.o/ |hli=1
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which implies that VF.(x) is nonsingular. Letting C;=1/0, we have
IVFe(x)™" | =1/ min |VF(x)h| <1/0=C,,

Wl =1
VxeS(x*, §), €<§,
which completes the proof. O

Theorem 3.3. Let VF.(x) be given by (25). Then, Theorem 3.2 holds
for Uk=VFE(M.\'-.\‘*M)(xk) in (23)

Proof. Since dF(x*) is nonsingular, it follows from Lemma 3.4 that
there exists 8 >0 such that VF.(x) is nonsingular and ||VF(x)"'|| is bounded
for all xe S(x*, §), €< 8. On other hand, for all e R” with || 4| =1, it follows
from Lemma 3.3 that

VF(x)hed( sm+1eF(X)h, YheR".

Since 0 /7+1)eF(x) is closed, for every 4 there exists U,€0( /z+1)eF(x) such
that VF(x)h=U,h. By Lemma 3.2 and Remark 3.2, U, satisifes (22) for
€=E(||lx—x*|| ). Therefore, by analogy with the proof of Theorem 3.2, we
can easily get the conclusion. U

4. Norm Reducing Technique

In this section, we discuss briefly the techniques which are likely to be
combined with local convergence methods when a starting point is far from a
solution point of (1). It is well known that solving the nonlinear simultaneous
equations (1) is equivalent to finding the global minimizer of

S (x)=(1/2)F(x)"F(x).
Suppose that F(x) is locally Lipschitz continuous. Then, f(x) is also
locally Lipschitz continuous, and
of (x)=0F(x) F(x). 1)
A proof of (27) was given by Clarke; see Theorem 2.6.6, Ref. 14,
General methods for minimizing f(x) can be summarized as follows:
Xy = x¢'+ adc9

d.=—arg min ||,
vedf (x.) (28)

where x, and x. denote the current and next approximate root of (1), a is
the stepsize, and d. is the search direction.
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Substituting (27) into (28), we have
d.=—arg min |VF(x.)|. (29)
VedF(x,.)
By the Caratheodory theorem, there exist an integer m and V,e0F(x,), iem,
such that every V.edF(x,.) can be expressed as

I/('= Z aleh

with
Z a,-=1, a,~20, V,'E(‘)F(Xf)-

iem

As a consequence, (29) is equivalent to

min || Y oV F(x.)||, (30a)
st. Y a;=1, a;=0, (30b)
V.edF(x,.), iem, (30c)
and
dc= - Z &[V,-TF(X(.),
where (&,, ..., d,) is the solution of (30).

Therefore, if we already know V;€0F(x.), the search direction may be
computed through (30). However, in practice, it is unrealistic to compute
all V;edF(x.). One possible substitute is to use the former iteration matrices
computed at the previous steps. Let

VieOF(x;) and I=[i: |x.—x;|<€].
Then, we may compute an approximate search direction by solving
Y aV/F(x.)

iel

s.t. z a[=l, a[>0,

min

b

iel
ViedF(x;), iel,
instead of (30). This method is called the bundle-like method.
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An alternative suggested by Fletcher is to use the L;-norm, i.e., to
convert (1) into the following global minimization problem:

min ¢(x)=73 [ fi(x)[.

Suppose that fi(x), ien, are regular (Ref. 14). Then, for every A€ R",
¢'(x, =3 file, )= ¥ filx, b+ ¥ | filx b,

fealy) efx) rey(x)
where
a{x)=lien: f;(x)>0],
B(x)=lien: fi(x)<0],
y(x)y=[ien: fi(x)=0].
We may use a trust region method to find a descent direction by solving

min [¢(x)+ @ (x, h)+(1/2)h" Bh],
st |Al <A.

We omit further discussion, since it is not the main topic in this paper.

5. Numerical Experiments

We implemented the finite-difference approximation method, based on
(4) and (18), and the e-generalized Jacobian methods based on (23) for
some typical examples. The computations were performed in Matlab. The
results show that our methods are efficient.

Example 5.1. Consider the following nonsmooth equations:

_ |x1|+(x2—1)2—1J=
Fx) l:(xl—-l)2+|le—l 0

This problem has two solutions,

x*=(1, D7, x**=(0,0)".
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Table 1. Results for Example 5.1.

Initial point s NIT Solution [F()2

(1,07 1.LE-1 11 a,n” 6.5087¢ — 07
(1. -H7 l1.LE-5 6 0,07 7.6141e—08
-1,07 1.E-5 4 (0,0)” 1.8981e—08
(-1, -7 1.LE-5 4 0,0)" 2.3110e—09

F is differentiable at x* but nondifferentiable at x**, and it satisfies the
conditions of Lemma 3.1. We used the finite-difference approximation
method to solve this problem. The numerical results are shown in Table 1,
in which s is the parameter in (18), NIT denotes the number of iterations
needed to reach the specified precision, ‘‘solution” is the exact solution of
the equations, to which the iteration sequence converges, and F(X) is the
function evaluated at the computed solution x.

Example 5.2, Consider the function F: R"—R”",

ag,(x), if g, (x) >0,

Fi(x) ={ )
c2gi(x), if g,(x) <0,

where

gix)=i— i [cos(x;—1)+j(1—cos{x,— 1)) —sin(x;—1)].

j=1

When ¢, =c¢,, F(x) is continuously differentiable. Therefore |¢; — ¢;| may be
interpreted as the degree of nondifferentiability of F. As it is easily verified,
F(x) has the solutions (1 +2k,7, ..., 1+2k,n)”, where k, . . ., k, are arbi-
trary integers. The example was considered by Martinez and Qi in Ref. 21,

We used the €-generalized Jacobian method to compute this example.
An obvious difficulty is how to compute the elements of the e-generalized
Jacobian. Let x be the current point at which F is nondifferentiable. In the
neighborhood of x, find a point y at which F is differentiable and take
U,=VF(y). However, it is difficult to design a deterministic algorithm for
identifying y. In our implementation, we get y by giving a random small
perturbation to x. If F is still nondifferentiable at y, then repeat the above
process until finally F is differentiable at y. By the Rademacher theorem, F
is differentiable almost everywhere. Therefore, the probability that y lies in
Dr is one. Clearly, running the same program for the same problem at
differnt times results in a different numbers of iternations due to different
perturbations. In the test, we ran our program 100 times for each case. The
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Table 2. Results for Example 5.2.

i [ ANIT ANP
1 -1 8.48 4.55
20 =20 9.71 5.76
100 -100 10.60 6.63

termination criterion is
| F(x)l,< 1.0E—6.

Numerical results are displayed in Table 2 for n =20 with initial point x,=
(0,...,0)". In Table 2, ANIT denotes the average number of iterations
needed to reach the specified precision, ANP denotes the average number
of perturbations during the whole iterations.

Example 5.3. Consider the following nonlinear complementarity prob-

lem: find xe R* such that

x>0, f(x)=0, x'f(x)=0,
where f: R*>R* is given by

F1(x)=3x3+2x1%2+ 2x5 + X3+ 3x4— 6,

fo(x) =2x1 4 x, + x5+ 10x3+ 2x4— 2,

fr(x0)=3x3+ x1x+ 2X3+ 2x3+ 9x4— 9,

Sax)= x2+3x3+2x3+ 3x,— 3.
The problem can be transformed into the solution of nonsmooth equations:

F(x)=min{ f(x), x} =0,

where min refers to the componentwise minimum. The problem has two
solutions,

x*=(1,0,3,007, x**=(/6/2,0,0,0.5".

Table 3. Results for Example 5.3.

Initial point ANIT ANP Solution
(1,0,0,0)" 3 0 (1/6/2,0,0,0.5)"
(1,0,1, =57 3 0 (+/6/2,0,0,0.5)"
a2
(1,0,1,0)" 1.96 I (1,0.3,0)

(+/6/2,0,0,0.5)"
(1,0,0,1)7 3.52 1 (+/6/2,0,0,0.5)"
(0,0,0,1)" failed - =
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F(x) is differentiable at x* but nondifferentiable at x**. We used the e-
generalized Jacobian method to solve the problem. Some technique for the
implementation of the method has been presented in Example 5.2. Also, we
ran the same program 100 times for each case as we did in Example 5.1.
The termination criterion is still

| F(xi)ll.<1.0E—6.
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