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Abstract. We introduce a point-based set-valued approximation for a mapping fromRn to Rm. Under the
assumption of semi-smoothness of the mapping, we prove that the approximation can be obtained through the
Clarke generalized Jacobian, Ioffe-Ralph generalized Jacobian,B-subdifferential and their approximations. As
an application, we propose a generalized Newton’s method based on the point-based set-valued approximation
for solving nonsmooth equations. We show that the proposed method converges locally superlinearly without
the assumption of semi-smoothness. Finally we include some well-known generalized Newton’s methods in
our method and consolidate the convergence results of these methods.
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1. Introduction

Let F be a mapping fromRn to Rm. It is well-known that, at every pointx ∈ Rn, F(x)
can be approximated through a variety of derivatives ofF at x when they exist. In this
paper, we propose a new approximation toF(x), more precisely, we introduce a set-
valued mappingAF : Rn→ 2Rm×n

by which the set-valued termF(y)+AF(y)(y− x)
approximatesF(x) in some sense fory sufficiently close tox. Clearly, such an approxi-
mation is closely related to the Newton’s method which has been playing an essential
role in solving nonlinear equations. The classic Newton’s method has been widely used
to solve mathematical programming, nonlinear variational inequality and nonlinear
complementarity problems. The book of Ortega and Rheinbodlt [18] gives an excellent
treatment of the classic Newton’s method and references.

As it is well known, the essence of the classic Newton’s method is to replace, at the
current iterate, the mappingF whose zero is sought by an approximate linear mapping
that can be solved more easily. A zero of this linear approximation mapping is then
found to replace the current iterate and the process is restarted. All this depends on the
fact thatF is differentiable.

More recently, stimulated by its important applications in treating mathematical
and equilibrium programming, a nonsmooth version of Newton’s method has appeared
and grown rapidly. See for instance [2,3,5–7,14,15,19,20,22,23,25,27,28,30,29,31,
33–37].
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WhenF is not differentiable, Robinson [30] sought to define a point-based approxi-
mation in order to get around the difficulties resulting from the lack of the differentiability
of F. The approximation is single-valued and generally nonlinear. This work was further
extended by Kummer [14], Pang [21], Gabriel and Pang [8], Ralph [27] and Dirkse and
Ferris [5,6].

In this paper, we introduce a point-based set-valued approximation toF(x) by using
Robinson’s idea. The existence of such an approximation is proved for a mappingF
which is not necessarily locally Lipschitz. We prove that the plenary hull of a point-based
set-valued mapping is also a point-based set-valued mapping, by which we prove further
that if a mappingF is semi-smooth then not only the Clarke generalized Jacobian but
also its plenary hull, the Ioffe-Ralph generalized Jacobian, is a point-based set-valued
mapping. We also show that some approximations of the Clarke generalized Jacobian and
the Ioffe-Ralph generalized Jacobian are also point-based set-valued approximations.
As an application, a generalized Newton’s method is proposed based on the point-based
set-valued approximation. The convergence results of the proposed method are obtained
without assumption of semi-smoothness. We consolidate the convergence results of
some generalized Newton’s methods without adding more conditions. Finally, we note
that Qi [24] introduced a notion ofC-differential operator which is closely related to our
point-based set-valued approximation. We compare our results with Qi’s results in [24].
Further discussion on the development in this direction was made in [38].

The remainder of this paper are organized as follows: In Section 2, we discuss
the Clarke generalized Jacobian and its plenary hull. An approximation to the latter
is introduced. In Section 3, we introduce a point-based set-valued approximation and
discuss some important properties of such an approximation. Further, under the assump-
tion of semi-smoothness, many examples of the point-based set-valued approximation
are presented. In Section 4 we propose a generalized Newton’s method based on the
point-based set-valued approximation for solving nonsmooth equations and discuss
the convergence of the proposed method. Finally, using the theory of Section 3, we
strengthen the convergence results of some generalized Newton’s methods in Section 5.

2. Generalized Jacobian and weak approximations

2.1. Basic definition and notion

Throughout this paper we will use the following notation.Rn will denote then-dimen-
sional Euclidean space with the usual inner product〈·; ·〉, andRn×m will be the space of
n×m real matrices.‖x‖, for x ∈ Rn, will represent the 2-norm of a vectorx, and‖A‖, for
a matrixA ∈ Rn×m, will be the norm defined by‖A‖ = {max‖Au‖ : u ∈ Rn, ‖u‖ = 1}.
We will use B to denote the unit ball both inRn and in Rn×m. For a constantδ > 0,
Bδ will denoteδB. More specifically, a closed ball inRn with centerx and radiusδ will
be represented byB(x, δ). For a mappingF : Rn→ Rm, we will useDF to denote the
set of points at whichF is differentiable.

We will also use frequently the following notion.
A subset of matricesA ⊂ Rn×n is said to be nonsingular if everyA ∈ A is

nonsingular.
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A set-valued mappingA : Rn −→ 2Rn×m
is said to be

(a) closed if forxk→ x, ξk ∈ A(xk), ξk→ ξ, thenξ ∈ A(x);
(b) compact ifA(x) is compact for everyx ∈ Rn;
(c) Hausdorff upper semi-continuous if, for everyx ∈ Rn, ε > 0 there exists aδ > 0

such that for ally ∈ B(x, δ),A(y) ⊂ A(x)+ εB.

Let F : Rn → Rm be a locally Lipschitz mapping. The Rademacher theorem
guarantees thatF is differentiable almost everywhere inRn. Clarke [1] introduced the
generalized Jacobianof F at a pointx ∈ Rn by

∂F(x) = conv{ lim
xi∈DF;xi−→x

∇F(xi )},

where ‘conv’ denotes the closed convex hull. Obviously∂F(x) can be represented as the
convex hull of∂BF(x), where

∂BF(x) = { lim
xi∈DF;xi−→x

∇F(xi )}.

∂BF(x) was introduced by Qi in [23] and calledB-subdifferential.
The following is well-known.

Proposition 1. Let F : Rn → Rm be a locally Lipschitz mapping and∂F(x + Bδ) =⋃
x′∈B(x,δ) ∂F(x′). Then

lim
δ→0

∂F(x+ Bδ) =
⋂
δ>0

∂F(x+ Bδ) = ∂F(x).

An analytic expression of the support function of∂F(x) was given by Hiriart-
Urruty [11] and further discussed by Ralph [26] in Banach space.

Proposition 2. ([11, Theorem 2.1]) LetF : Rn→ Rm be a locally Lipschitz mapping,
andx ∈ Rn. Then for everya,b ∈ Rn,

max
V∈∂F(x)

〈Va,b〉 = Fo(x; a,b),

where
Fo(x; a,b) = lim

y−→x;t−→0
sup〈F(y+ ta)− F(y),b〉/t.

From the above proposition, it follows that for everyV ∈ ∂F(x), and vectora,b∈ Rn,

〈Va,b〉 ≤ Fo(x; a,b). (1)

An interesting question is: if there exists a matrixV satisfying (1) for alla,b ∈ Rn,
doesV ∈ ∂F(x) hold? To answer this question, we need the notion of ‘plenary set’
which was introduced by Sweetser [32].
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2.2. Plenary sets

A subset of matricesA ⊂ Rm×n is said to be plenary if and only if it includes every
A ∈ Rm×n such that

Ab∈ Ab, for all b ∈ Rn.

It follows immediately from the definition that the intersection of plenary sets is also
plenary. LetA ⊂ Rm×n be a subset of matrices. Define

plenA = {A ∈ Rm×n : Ab∈ Ab,∀b ∈ Rn}. (2)

From the definition, it follows that ifA is a nonempty set, thenplenA is also a nonempty
set. As expected,plenA contains in general more matrices thanA. See an example by
Sweetser in [32]. Moreover, the operatorplenhas some interesting properties.

Proposition 3. LetA,B be two subset of matrices ofRm×n, andα be a scalar. Then

(a) if A ⊂ B, thenplenA ⊂ plenB;
(b) plen(αA) = α plenA;
(c) if A is bounded, thenplenA is also bounded;
(d) if A is closed, thenplenA is also closed;
(e) if m= n andA is nonsingular, thenplenA is also nonsingular.

Proof. Some of the results are obvious or well-known, we include a proof here for
completeness.

(a) Let A ∈ plenA. By definition, for everya ∈ Rn, Aa ∈ Aa. SinceA ⊂ B, then
Aa∈ Ba, for all a ∈ Rn, which impliesA ∈ plenB.

(b) Let A ∈ plen(αA). The equality holds forα = 0.Assume nowα 6= 0. By definition,
for everya ∈ Rn, Aa ∈ αAa, or equivalently1

α
Aa ∈ Aa, hence1

α
A ∈ plenA,

which impliesA ∈ αA.
(c) LetSbe a bounded set ofRn, sinceA is bounded, thenASis bounded. By definition,

plenAS⊂ AS, which implies thatplenA is bounded. Thus,plenA is bounded.
(d) Let Ak ∈ plenAk, andAk → A. We need to show thatA ∈ plenA. By definition,

for eacha ∈ Rn, Aka ∈ Aa. SinceA is closed, thenAa is also closed. Hence
Aa∈ Aa, which implies thatA ∈ plenA.

(e) By contradiction, assume thatplenA is singular. Then there existsA0 ∈ plenA, and
a0 ∈ Rn,a0 6= 0 such thatA0a0 = 0. By definition,A0a0 ∈ Aa0, which contradicts
the factA is nonsingular.

The proof is complete. ut
Proposition 4. Let {Aε}ε>0 ⊂ Rm×n be compact and monotonic increasing. Suppose
thatAε → A asε→ 0. ThenplenAε → plenA, asε→ 0.

Proof. Let Aε → A as ε → 0. Then
⋂
ε>0Aε = A. We first prove that for every

a ∈ Rn, ⋂
ε>0

Aεa= (
⋂
ε>0

Aε)a. (3)
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Let u ∈ (⋂ε>0Aε)a. Then there existsA ∈ ⋂ε>0Aε such thatu = Aa. Note that
A ∈ Aε, for everyε > 0. Thenu = Aa ∈ Aεa, for everyε > 0. Thusu ∈ ⋂ε>0Aεa.
Conversely, letu ∈⋂ε>0Aεa. Thenu ∈ Aεa, for everyε > 0. LetAε ∈ Aε be such that
u = Aεa, for ε > 0. SinceAε is compact and monotonic decreasing asε→ 0, thenA
is nonempty, compact and every accumulation matrixA ofAε belongs toA. Obviously
u = Aa ∈ Aa = (

⋂
ε>0Aε)a. This proves (3). Now leta ∈ Rn be an arbitrary

vector. Note thatplenAεa = Aεa and
⋂
ε>0 plenAεa = ⋂

ε>0Aεa. SinceAε is
compact, from Proposition 3 (c) and (d), it follows thatplenAε is also compact. Thus (3)
holds for{plenAε}. Consequently(

⋂
ε>0 plenAε)a = (

⋂
ε>0Aε)a = Aa. Note that⋂

ε>0 plenAε is a plenary set. Then
⋂
ε>0 plenAε = plenA. Hence limε→0 plenAε =

plenA. The proof is complete.
ut

Proposition 5. Suppose thatA : Rn → 2Rm×n
is a closed set-valued mapping. Then

plenA is also closed.

Proof. Let xk → x, Ak ∈ plenA(xk), and Ak → A. It suffices to show thatA ∈
plenA(x), or equivalently,Aa ∈ A(x)a, for all a ∈ Rn. Note that for eacha, Aka ∈
A(xk)a, Aka→ Aa, sinceAa is closed, thenAa∈ A(x)a. The proof is complete.

ut
Corollary 1. Suppose thatA : Rn → 2Rm×n

is Hausdorff upper semi-continuous atx
and A(B(x, δ)) is bounded for someδ > 0. Then plenA is also Hausdorff upper
semi-continuous atx.

It is an open question whether Hausdorff continuity is retained under operationplen.

2.3. Ioffe-Ralph generalized Jacobian and weak approximations

We are now ready to discuss (1). Hiriart-Urruty [11] obtained a relation between the
matrices satisfying (1) and the Clarke generalized Jacobian.

Proposition 6. Let F : Rn → Rm be a locally Lipschitz mapping andCF(x) = {V :
〈Va,b〉 ≤ Fo(x; a,b)}. Then

(a) the following relation holds:

CF(x) = plen∂F(x); (4)

(b) CF is Hausdorff upper semi-continuous.

Proof. Part (a) was proved in [11]. Part (b) is a well-known result. See for example [9,26].
However, we note that the result also follows directly from Corollary 1. The proof is
complete.

ut



406 H. Xu

The existence and property ofCF(·)were extensively discussed in Banach space, see
for example [12,26]. We callCF(x) Ioffe-Ralph generalized Jacobianas it was indepen-
dently derived by Ioffe [12] and Ralph [26]. In what follows, we discuss approximations
to the Ioffe-Ralph generalized Jacobian.

Definition 1. Let F : Rn → Rm be a locally Lipschitz mapping andX be a compact
subset ofRn. We say that{AεF}ε>0 is a weakγ,µ-approximation to∂F(x) if, for every
γ > 0, µ > 0, there exists anε > 0 such that, for allx ∈ X,

∂F(x)a ⊂ AεF(x)a
⊂ ∂F(x+ Bγ )a+ Bµa,∀a ∈ Rn. (5)

Furthermore, we say that{AεF}ε>0 is monotonic if for two positive constantsε1, ε2,
ε1 < ε2,

Aε1 F(x) ⊂ Aε2 F(x),∀x ∈ X.

With this definition, we are able to find an approximation to the Ioffe-Ralph gene-
ralized Jacobian.

Theorem 1. Let F : Rn → Rm be a locally Lipschitz mapping andX be a compact
subset ofRn. Suppose that{AεF}ε>0 is a weakγ,µ-approximation to∂F on X. Then

(a) for everyγ > 0, µ > 0, there exists anε > 0 such that

CF(x) ⊂ plenAεF(x) ⊂ plen(∂F(x+ Bγ )+ Bµ); ∀x ∈ X; (6)

(b) if, in addition,{AεF}ε>0 is monotonic, then

lim
ε→0

plenAεF(x) = CF(x),∀x ∈ X.

Proof. Note that part (a) follows directly from (2) and (5). We prove part (b). By
Proposition 1 and Proposition 4, it follows that

lim
γ→0,µ→0

plen(∂F(x+ Bγ )+ Bµ) = plen∂F(x),∀x ∈ X.

By part (a), for eachγ > 0, µ > 0, there exists a positive constantε depending onγ
andµ such that (6) holds. Note that{AεF}ε>0 is monotonic. Then

lim
ε→0

plenAεF(x) =
⋂
ε>0

plenAεF(x)

= CF(x),∀x ∈ X.

The proof is complete.
ut

Corollary 2. Let F : Rn → Rm be a locally Lipschitz mapping andX be a compact
subset ofRn, letx ∈ X. Suppose that{AεF}ε>0 is a weak monotonicγ,µ-approximation
to ∂F on X and∂F(x) is nonsingular. Then forε sufficiently small,plenAεF(x) is also
nonsingular.
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Practically, we need to know how to find an approximation toCF(x) or equivalently
a weakγ,µ-approximation to∂F. In [37], Xu, Rubinov and Glover introduced a kind
of strong continuous approximations to∂F which will be useful here.

Let F : Rn → Rm be a locally Lipschitz mapping, andX be a compact set inRn.
{AεF}ε>0 is said to be astrong continuous approximationto ∂F on X if

(a) for givenε > 0, σ > 0, there existsτ > 0 such that

∂F(x+ Bτ ) ⊂ AεF(x)+ Bσ,∀x ∈ X;
(b) for eachx ∈ X, and all 0< ε1 < ε2,

Aε1 F(x) ⊂ Aε2 F(x);
(c) for ε > 0,AεF(x) is Hausdorff continuous with respect tox in X, that is, for every

σ > 0, there exists aτ > 0 such that forx, y ∈ X, ‖x− y‖ ≤ τ,

AεF(y) ⊂ AεF(x)+ Bσ

and
AεF(x) ⊂ AεF(y)+ Bσ ;

(d) for everyγ > 0, µ > 0, there exists anε > 0, such that, for allx ∈ X

∂F(x) ⊂ AεF(x)
⊂ ∂F(x+ Bγ )+ Bµ.

In [37], strong continuous approximations have been proposed for some important
locally Lipschitz mappings. For details, see [37].

Remark 1.A strong continuous approximation is a weak monotonicγ,µ-approximation.

Definition 2. Let F : Rn → Rm be a locally Lipschitz mapping andX be a compact
subset ofRn. We say that a weakγ,µ-approximation{AεF}ε>0 is pertinent onX if
there exists a functionp : R2+ → R+ such that for everyγ > 0, µ > 0, x ∈ X,

∂F(x)a ⊂ Ap(γ,µ)F(x)a

⊂ ∂F(x+ Bγ )a+ Bµa,∀a ∈ Rn, (7)

wherep is called pertinence function.

In what follows, we present a simple way for constructing a pertinence function.
We say that̄p : R2+ → R+ is strictly increasing if

p̄(t1,u1) < p̄(t2,u2),

when 0≤ t1 < t2,0≤ u1 < u2, and p̄(0,u)) = p̄(t,0) = 0, for t ≥ 0,u ≥ 0.
Let γ0, µ0 ∈ (0,1),N denote the set of natural numbers.

P = { p̄(γ k
0 , µ

l
0) : k, l ∈ N

⋃
{0}},

pF,A,X(γ, µ) = max{ p̄ ∈ P : ∂F(x)a ⊂ A p̄F(x)a

⊂ ∂F(x+ Bγ )a+ Bµa,∀a ∈ Rn, x ∈ X}.(8)

We have the following remark.
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Remark 2.If {AεF}ε>0 is a weak monotonicγ,µ-approximation to∂F on X, then for
everyx ∈ X, p defined by (8) is a pertinence function and{ApF} is pertinent. More
specifically, if {AεF}ε>0 is a strong continuous approximation to∂F, then for every
x ∈ X, p defined by (8) is a pertinence function which is also strictly increasing.

3. Point-based set-valued approximation

We now turn to discuss main approximation of this paper. LetV ∈ Rm×n be a matrix
andh ∈ Rn be a nonzero vector. For convenience, let

0F(x,h,V) = (F(x+ h)− F(x)− Vh)/‖h‖.

3.1. Basic definition and properties

Definition 3. Let D be an open subset ofRn. A mappingF : D ⊂ Rn→ Rm is said to
have a Point-Based Set-Valued Approximation (PBSVA for short) at a pointx∗ ∈ D, if
there exists a set-valued mappingAF : Rn → 2Rm×n

, such that for everyε > 0, there
exists aδ > 0 such that

sup
A(x)∈AF(x)

‖0F(x
∗, x− x∗, A(x))‖ ≤ ε, for all x ∈ S(x∗, δ). (9)

The collection of all set-valued mappingAF satisfying (9) is denoted byM(F, x∗).
Robinson first considered a point-based approximation in [30], his approximation is

single-valued and usually nonlinear ifF is not smooth. The originality of the definition
of point-based approximation lies in the fact thatA(x) depends onx. Kummer [14]
further considered point-based approximations which are derivative-related and set-
valued. Gabriel and Pang [8] used a compact and Hausdorff upper semicontinuous
set-valued mappingAF ∈M(F, x∗) in the study of trust region method for constrained
nonsmooth equations. Recently, Qi [24] treated such a mapping as a differential operator,
namelyC-differential operator.

A natural question is: under which conditions isM(F, x∗) nonempty?

Example 1.1 LetAN F = {A(·) : A(x) = AN F(x), x ∈ Rn}, where

AN F(x) =
{
(F(x)− F(x∗)) (x−x∗)T

‖x−x∗‖2 , if x 6= x∗;
0, if x = x∗.

ThenAN F ∈M(F, x∗).

This example shows that every mappingF (not necessarily locally Lipschitz) has
a PBSVA. Unfortunately,AN seems to be trivial in multi-dimensional case as it is of
rank one. We will discuss later on some usefulPBSVAs.

1 This example was given by an anonymous referee during an earlier submission of this paper.
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Proposition 7. LetAF ∈M(F, x∗). Then

plenAF ∈M(F, x∗),

whereplen is defined in (2).

The proof is straightforward.
Let r̄ denote{1, · · · , r }, for natural numberr .

Proposition 8. Let Fi : Rn → Rm, i ∈ r̄ , be mappings andci , i ∈ r̄ be constants. Let
F = 6i∈r̄ ci Fi , andAF = 6i∈r̄ ciAFi . If AFi ∈M(Fi , x∗), then

plenAF ∈M(F, x∗). (10)

Proof. It is obvious that ifAFi ∈M(Fi , x∗), thenciAFi (·) ∈M(ci Fi , x∗), for every
constantci . Note also thatr is finite. Then it suffices to show that the conclusion holds
for F = F1 + F2. LetAF = AF1 +AF2. Then

max
A(x)∈AF(x)

‖0F(x
∗, x− x∗, A(x))‖

≤ max
A1(x)∈AF1(x),A2(x)∈AF2(x)

‖0F1+F2(x
∗, x− x∗, A1(x)+ A2(x))‖

≤ max
A1(x)∈AF1(x)

‖0F1(x
∗, x− x∗, A1(x))‖ + max

A2(x)∈AF2(x)
‖0F2(x

∗, x− x∗, A2(x))‖
= 2ε, for all x ∈ S(x∗, δ),

whereδ is some positive number. The proof is complete.
ut

Proposition 9. Let F : Rn → Rm, Rm = Rr × Rs and F = (FT
r , FT

s )
T . If AFi ∈

M(Fi , x∗), for i = r, s, then

AFr ×AFs ∈M(F, x∗).

We omit the proof as it is straightforward.
We now consider some specific mappings.

3.2. Compositions involving locally Lipschitz mappings

First we consider the following inner smooth composite mapping:

F = G ◦ H, (11)

whereG : Rn → Rm is locally Lipschitz, andH : Rs→ Rn is continuously differen-
tiable. (11) was considered in [37] and it includes many important mappings in practical
instance such as piecewiseCr mappings considered by Ralph and Scholtes [28].

Theorem 2. Let F be defined by (11),x∗ ∈ Rs, andAG ∈ M(G, H(x∗)). If AG is
compact, thenAG(H)∇H ∈M(F, x∗).
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Proof. Let B ∈ AG(H)∇H . Then there existsAG ∈ AG(H) such thatB= AG(H)∇H .
Let δ > 0 be sufficiently small. Then, forx ∈ B(x∗, δ),

‖0F(x
∗, x−x∗,B(x))‖≤‖0G(H(x

∗),H(x)−H(x∗),AG(H(x)))‖‖H(x)−H(x∗‖/‖x−x∗‖
+‖AG(H(x))0H(x

∗, x− x∗,∇H(x))‖.
Note thatAG is a compact set-valued mapping andB(x∗, δ) is a compact set. Then
AG(H(S(X∗, δ))) is bounded. Note also thatH is continuously differentiable. Thus,

‖AG(H(x))0H(x
∗, x− x∗,∇H(x))‖ = o(‖x− x∗‖).

The rest is straightforward.
ut

We now consider an outer smooth composite mapping:

F = Q ◦ P, (12)

where Q : Rm → Rl is continuously differentiable, andP : Rn → Rm is locally
Lipschitz. (12) was also considered in [37] and it includes some important mappings
in practical instances such as the norm of normal mappings considered by Ferris and
Ralph [7].

Theorem 3. Let F be defined by (12),x∗ ∈Rn, andAP∈M(P, x∗). Then∇Q(P)AP∈
M(F, x∗).

Proof. Let D ∈ ∇Q(P)AP. Then there existsAP ∈ AP such thatD = ∇Q(P)AP.
Let δ > 0 be sufficiently small. Then, forx ∈ B(x∗, δ), we have

‖0F(x
∗, x−x∗,D(x))‖≤‖0Q(P(x

∗), P(x)−P(x∗),∇Q(P(x)))‖‖P(x)−P(x∗‖/‖x−x∗‖
+‖∇Q(P(x))0H (x

∗, x− x∗, AP(x))‖.
SinceP is continuous andQ is continuously differentiable, then∇Q(P(S(x∗, δ))) is
bounded and

‖∇Q(P(x))0P(x
∗, x− x∗, AP(x))‖ = o(‖x− x∗‖).

The rest is straightforward.
ut

Qi [24] discussed the calculus ofC-differential operators. Note that aC-differential
operator is a compact and semi-continuousPBSVA, while a PBSVAis not neces-
sarily a C-differential operator. For instance,AN F in Example 1 is generally not
semi-continuous. It is yet not clear whether a general continuous mappingF admits
a C-differential operator.

It seems that the chain rules developed here could play very limited role in Newton’s
method. Consider the composite mapping (11). Suppose we know that, at a solution
point x∗ of F(x) = 0, ∂F(x∗) is nonsingular. It is expected that aPBSVAof F at x∗
is also nonsingular in a neighborhood ofx∗. However, generally this is incorrect for
the PBSVAAG(H)∇H in Theorem 2. The reason is thatM(F, x∗) is too large. This
comment also applies toC-differential operators.

We now discuss some more specific locally Lipschitz mappings.
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3.3. Semi-smooth locally Lipschitz mappings

Let F : Rn → Rm be a locally Lipschitz mapping.F is said to be semi-smooth at
x ∈ Rn if for everyh ∈ Rn, the following limit

lim
V∈∂F(x+th′);h′−→h;t−→0

Vh′

exists. See [25].

Lemma 1. See [16, Proposition 2]. LetF : Rn→ Rm be a locally Lipschitz mapping,
andx∗ ∈ Rn. If F is semi-smooth atx∗, then

lim
x→x∗
‖0F(x

∗, x− x∗,V)‖ = 0,

for everyV ∈ ∂F(x).

Theorem 4. Let F : Rn → Rm be a locally Lipschitz mapping, andx∗ ∈ Rn. Suppose
that F is semi-smooth atx∗. Then the following hold.

(a) ∂F ∈M(F, x∗);
(b) ∂BF ∈M(F, x∗).

Proof. Part (a). SinceF is semi-smooth atx∗, by Lemma 1, we have

lim
x→x∗,V∈∂F(x)‖0F(x

∗, x− x∗,V)‖ = 0.

Thus∂F ∈M(F, x∗).
Part (b) is obvious since∂BF(x) is only a subset of∂F(x). The proof is complete.

ut

The importance of Theorem 4 lies in the fact that under the assumption of semi-
smoothness aPBSVAof a locally Lipschitz mapping can be obtained through the
Clarke generalized Jacobian or B-subdifferential of the mapping. The latter have been
intensively investigated and found useful in the solution of nonsmooth equations. With
Theorem 4 and Proposition 7, we can easily obtain the following.

Corollary 3. Let F : Rn → Rm be a locally Lipschitz mapping, andCF(x) be given
by (4), letx∗ ∈ Rn. If F is semi-smooth atx ∈ Rn, then the following hold:

(a) CF ∈M(F, x∗);
(b) plen∂BF ∈M(F, x∗).

Thus we have proved that the Ioffe-Ralph generalized Jacobian and the plenary hull
of B-subdifferential arePBSVAs.
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Example 2.See for example [37]. We consider the following mappings:

F(x) = min
j∈r̄ H j (x), (13)

where Hj : Rn → Rm, j ∈ r̄ , are continuously differentiable, and ‘min’ is taken
componentwise. Obviously (13) can be regarded as a composite mapping in the form
of (11) with

G(Y) = min
j∈r̄ yj ,

Y = (yT
1 , · · · , yT

r )
T , and H = (HT

1 , · · · , HT
r )

T . Note thatG(Y) is piecewise linear.
Then G(Y) is semi-smooth inRmr. Let Y∗ ∈ Rmr be a fixed vector. Then by Theo-
rem 4 (a), there exists aδ-neighborhood ofY∗ such that∂G ∈M(G,Y∗), where

∂G(Y) = conv{[{ei j , j ∈ Ji }, i ∈ r̄ ]},

Ji = { j ∈ r̄ , yi j = min j∈r̄ yi j }, ei j ∈ Rmr with the(( j − 1)m+ i)-th component one,
and the others zero. IfH(x∗) = Y∗, then by Theorem 2, we have

∂G(H)∇H ∈M(F, x∗).

Example 3.We now consider another mapping:

F(x) = Q(x+)+ x− x+, (14)

where Q : Rn → Rm is continuously differentiable,x+ is the Euclidean projection
of x onto Rn+. (14) defines a normal map. See [5–7,10,27–29]. Clearlyx+ is locally
Lipschitz semi-smooth inRn. Let F1(x) = Q(x+), F2 = x− x+, x∗ ∈ Rn. By virtue of
Theorem 3, we have

∇Q(x+)∂x+ ∈M(F1, x
∗),

where

∂x+ = (∂(xi )+, i ∈ m̄),

∂(xi )+ =


ei , if xi > 0;
0, if xi < 0;
conv{0,ei }, if xi = 0.

Here ei is an n-dimensional vector with thei -th component one and the rest zero.
Likewise, we can calculate∂F2 and using Proposition 8, we can easily obtain aPBSVA
of F at x∗.
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3.4. First order approximations

ThePBSVAs presented in the previous subsection are based on generalized Jacobians.
However, in many practical instances, it is more convenient to consider the approxima-
tions of the generalized Jacobians. In what follows, we will prove under mild conditions
that approximations to Ioffe-Ralph generalized Jacobian introduced in Section 2 can be
used to construct aPBSVA.

LetE be the set of real-valued functions{e : R+→R+,e(0) = 0, limt→0 e(t)/t = 0}.
Let ε > 0 be a constant. Recall that theε-generalized Jacobian ofF atx ∈ Rn is defined
as:

∂εF(x) = conv
⋃

x′∈B(x,ε)

∂F(x′), (15)

See for example [35]. The following was also proved in [35].

Lemma 2. See [35, Lemma 3.2]. LetF : Rn → Rm be a locally Lipschitz mapping
ande be a real-valued function from setE , let x∗ ∈ Rn. If F is semi-smooth atx∗, then
for every matrixU ∈ ∂e(‖x−x∗‖)F(x), there exists a matrixV ∈ ∂F(x) such that

lim
x→x∗

(U − V)(x− x∗)/‖x− x∗‖ = 0. (16)

Theorem 5. Let F : Rn → Rm be a locally Lipschitz mapping ande be a real-valued
function from setE , let x∗ ∈ Rn and

AeF = {A(·) : A(x) ∈ ∂e(‖x−x∗‖)F(x)}. (17)

If F is semi-smooth atx∗, thenAeF ∈M(F, x∗).

Proof. SinceF is semi-smooth atx∗, by Lemma 1,

lim
x→x∗

max
V∈∂F(x)

‖0F(x
∗, x− x∗,V)‖ = 0. (18)

Let U ∈ ∂e(‖x−x∗‖)F(x). It follows from Lemma 2 that there exists a matrixV ∈ ∂F(x)
such that (16) holds. Combining (16) with (18), we have

lim
x→x∗
‖0F(x

∗, x− x∗,U)‖ ≤ lim
x→x∗
‖0F(x

∗, x− x∗,V)‖
+ lim

x→x∗
‖(U − V)(x− x∗)‖/‖x− x∗‖

= 0.

This completes the proof.
ut

Theorem 6. Let F : Rn → Rm be a locally Lipschitz mapping ande be a real-valued
function from setE , let X be a compact subset ofRn andx∗ ∈ X. Suppose that

AWF = Ap(e(‖·−x∗‖),e(‖·−x∗‖))F(·) (19)

is a weak pertinent approximation to∂F on X with a pertinence functionp. If F is
semi-smooth atx∗, thenplenAWF ∈M(F, x∗).
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Proof. From Definition 2, it follows that

∂F(x)(x− x∗) ⊂ Ap(e(‖x−x∗‖),e(‖x−x∗‖))F(x)(x− x∗)
⊂ (∂F(x+ Be(‖x−x∗‖))+ Be(‖x−x∗‖))(x− x∗)
= (∂e(‖x−x∗‖)F(x)+ e(‖x− x∗‖)B)(x− x∗),∀x ∈ Rn, (20)

Therefore

CF(x) ⊂ plenAW(x)

⊂ plen(∂e(‖x−x∗‖)F(x)+ e(‖x− x∗‖)B),∀x ∈ Rn,

By Theorem 5, we know that∂e(‖·−x∗‖)F(·) ∈M(F, x∗). It can also be easily checked
thate(‖ · −x∗‖)B ∈M(F, x∗). The rest follows directly from Proposition 8.

ut

4. Newton’s methods

In this section we shall propose a generalized Newton’s method based on a point-based
set-valued approximation for solving the following nonsmooth equations:

F(x) = 0, (21)

whereF : Rn→ Rn is locally Lipschitz but it is not necessarily differentiable.
In the past few years there has been an increasing discussion on (21). Two main

factors have stimulated the increase. One is that nonsmooth equations provide a unified
framework for the study of many important problems in mathematical and equilibrium
programming, the other is that on the basis of their nonsmooth equation framework,
some new methods can be developed for solving optimization and equilibrium problems,
these methods are not only highly efficient but also resolve the lack of robustness in
many previous solution approaches. See [22] for details.

As far as numerical methods are concerned, there have been mainly two kinds of
methods proposed: Newton’s methods, see for instance [3,14,19,22,23,25,27,30,35,
36], and quasi-Newton methods, see [2,13,15].

Newton’s methods have been developed in many ways. One way based on B-deriva-
tives is to solve (21) by solving iteratively

F′(xk,dk) = 0,

at each iterate. In general,F′(xk,dk) is nonsmooth and nonlinear indk. See [19,20].
Another way based on the Clarke generalized Jacobian is to find a Newton step by

xk+1 = xk − V−1
k F(xk), (22)

where matrixVk ∈ ∂F(xk) is supposed nonsingular. Local superlinear convergence was
shown under that condition thatF is semi-smooth at solution points. See [14,25].

The third way introduced by Robinson [30] is to solve

A(xk,dk) = 0,
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whereA(·, ·) is Robinson’s point-based approximation. This work was further extended
in [8,5,6,27].

Recently, Demyanov [3] also developed a Newton’s method for nonsmooth equations
with codifferentials.

In what follows, we try to derive Newton’s method from the point-based set-valued
approximation (9). Letx∗ be a solution point of (21). Suppose that∂F(x∗) is nonsingular.
Clearly the sequence generated by (22) in a neighbourhoodofx∗ convergessuperlinearly
to x∗ if and only if

‖F(xk)− F(x∗)− Vk(xk − x∗)‖ = o(‖xk − x∗‖),
or equivalently∂F ∈M(F, x∗). Replacing∂F with a PBSVAAF ∈M(F, x∗), we can
propose a more general Newton’s method.

Theorem 7. Let x∗ be a solution point of (21). Suppose that there exists aAF ∈
M(F, x∗) such thatAF is Hausdorff upper semi-continuous atx∗ andA(x∗) is compact
and nonsingular. Then iteration

xk+1 = xk − A−1
k F(xk), Ak ∈ AF(xk) (23)

is well defined and converges superlinearly tox∗ in a neighbourhood ofx∗.

We will not present a proof for this theorem since it can be regarded as a corollary
of the following theorem.

Theorem 8. Let x∗ be a solution point of (21). Suppose that there exists aAF ∈
M(F, x∗) such thatAF is Hausdorff upper semi-continuous atx∗ and AF(x∗) is
compact and nonsingular. Then iteration

xk+1 = xk − A−1
k F(xk), Ak ∈ plen(AF(xk)) (24)

is well defined and converges superlinearly tox∗ in a neighbourhood ofx∗.

Proof. By assumption,AF(x∗) is compact and nonsingular. Then there exists anε0 > 0,
such thatAF(x∗) + ε0B is also compact and nonsingular. From Proposition 3 (c-e),
it follows that plen(AF(x∗) + ε0B) is compact and nonsingular. Hence there exists
a constantC > 0, such that

max
V∈plen(AF(x∗)+ε0B)

‖V−1‖ ≤ C. (25)

Note thatAF is Hausdorff upper semi-continuous atx∗. Then for givenε0 > 0,
there exists aδ0 > 0 such thatAF(x) ⊂ AF(x∗)+ ε0B for all x ∈ B(x∗, δ0). By virtue
of Proposition 3 (a) and (25), we have, for allx ∈ B(x∗, δ0),

max
V∈plenA(x)

‖V−1‖ ≤ max
V∈plen(A(x∗)+ε0B)

‖V−1‖
≤ C.

On the other hand, sinceAF ∈ M(F, x∗), it follows from Proposition 7 that
plenAF ∈M(F, x∗). The rest is straightforward. The proof is complete.

ut
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A similar result to Theorem 7 was obtained by Gabriel and Pang [8] in the study of
trust region method for constrained nonsmooth equations. Qi [24] also obtained a similar
result to Theorem 7 based onC-differential operators. The difference is that we assume
hereAF(x∗) is compact whileAF ∈M(F, x∗) is not necessarily compact.

Note also that in Theorem 8 we only assume thatAF(x) instead ofplenAF(x)
is nonsingular atx = x∗. In most cases, the former is strictly smaller than the latter.
Thus, theoretically Theorem 8 is stronger than Theorem 7. In computation, note that, if
plenAF(x) = plenB(x), then we can useB(x) to replaceAF(x) whenever the former
can be more easily calculated. This may lead to some convenience in computation. See
further comments in Section 5.

The following example illustrates that Theorem 7 and Theorem 8 are stronger than
[25, Theorem 3.2].

Example 4.Consider the following function:

P(x) =
{

x+ x2 sin 1
x , x 6= 0;

0, x = 0.

x∗ = 0 is a solution ofP(x) = 0. LetAP(x) = {1+ x sin 1
x , x 6= 0},AP(0) = {1}.

Clearly P′(x) 6∈ AP(x), for x 6= 0 and P(x) is not semi-smooth at 0. However all
conditions of Theorem 7 are satisfied for this problem.

5. Case studies

In this section, we will include some of generalized Newton’s methods developed in the
past few years in (23) and consolidate the convergence results of these methods with
Theorem 8.

5.1. Ioffe-Ralph generalized Jacobian based Newton’s method

Qi and Sun [25] proposed a generalized Newton iterative process (22) for finding
a solution of (21). They obtained the following results.

Theorem 9. ([25, Theorem 3.2]) Letx∗ be a solution of (21). Suppose thatF is semi-
smooth atx∗ and∂F(x∗) is nonsingular. Then iteration (22) is well-defined and super-
linearly convergent tox∗ in a neighbourhood ofx∗.

By Theorem 4, it follows that Theorem 7 subsumes Theorem 9.
By referring to Theorem 8, we can easily extend Theorem 9 to the following.

Theorem 10. Let x∗ be a solution of (21) andCF(x) be given by (4). Suppose thatF is
semi-smooth atx∗ and∂F(x∗) is nonsingular. Then iteration

xk+1 = xk −U−1
k F(xk),Uk ∈ CF(xk)

is well-defined and converges superlinearly tox∗ in a neighbourhood ofx∗.
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Proof. The conclusion follows directly from Corollary 3 (a) and Theorem 8.
ut

The significance of the above theorem is that, on one hand, it may result in some
convenience in computation as we can now take an element of the plenary hull of Clarke
generalized Jacobian in Newton’s iteration; on the other hand, it shows theoretically that
Newton’s method can be carried out with Ioffe-Ralph generalized Jacobian under the
same condition as that of [25, Theorem 3.2]. Note also that Qi [24] explicitly assumed
that the image of aC-differential operator is nonsingular at a solution pointx∗ of (21). In
this setting, this is equivalent to assuming thatCF(x∗) is nonsingular. We have already
pointed out previously that in generalCF(x) is larger than∂F(x). Thus, we show that
Theorem 8 is stronger than Theorem 7 and [24, Theorem 3.1].

5.2. B-subdifferential based Newton’s method

In [23], a revised version of (22) was suggested by Qi:

xk+1 = xk −W−1
k F(xk),Wk ∈ ∂BF(xk). (26)

(26) is intended to reduce the assumptions for convergence of generalized Newton
iteration (22) because∂BF(x) is only a strict subset of∂F(x).

Theorem 11. ([23, Theorem 2]) Letx∗ be a solution of (21). Suppose thatF is semi-
smooth atx∗ and ∂BF(x∗) is nonsingular. Then iteration (26) is well-defined and
superlinearly convergent tox∗ in a neighbourhood ofx∗

It was proved by Xu and Glover [36] that∂BF is Hausdorff upper semi-continuous.
By Theorem 4,∂BF ∈M(F, x∗). Hence, Theorem 7 subsumes Theorem 11. Further-
more, it is an easy exercise to extend Theorem 11 into the plenary case by replacing
∂BF(xk) in (26) with plen∂BF(xk).

5.3. ε-generalized Jacobian based Newton’s method

Consider generalized Newton iteration (22). When one hopes to weaken the conditions
for the convergence of (22),∂F(xk) is replaced by∂BF(xk). However, when the impor-
tance of convenience in computingVk of (22) is emphasized, a larger set than∂F(xk)

in (22) is sought so that more alternatives for updating matrices are available. This led
Xu and Chang [35] to employ another kind of Newton iteration:

xk+1 = xk − G−1
k F(xk),Gk ∈ ∂εk F(xk),

where∂εF(x) is defined by (15).
Xu and Chang [35] obtained the following results:

Theorem 12. ([35, Theorem 3.2]) Letx∗ be a solution of (21) ande∈ E . Suppose that
F is semi-smooth atx∗, and∂F(x∗) is nonsingular. Then the iteration:

xk+1 = xk − A−1
k F(xk), Ak ∈ ∂e(‖xk−x∗‖)F(xk)

is well defined and converges superlinearly tox∗ in a neighbourhood ofx∗.
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Theorem 12 is included in Theorem 7. Similarly, we can extend Theorem 12 to the
following.

Theorem 13. Let x∗ be a solution of (21) andAeF be defined by (17). Assume thatF
is semi-smooth atx∗ and∂F(x∗) is nonsingular. Then the iteration:

xk+1 = xk − A−1
k F(xk), Ak ∈ plenAeF(xk), (27)

is well defined and converges superlinearly tox∗ in a neighbourhood ofx∗.

For a proof, we only need to verify the conditions of Theorem 8 in this setting.

Lemma 3. Let F : Rn → Rm be a locally Lipschitz mapping andAeF be defined
by (17). ThenAeF is compact and Hausdorff upper semicontinuous atx∗.

Proof. ObviouslyAeF is compact. It suffices to show that for everyε > 0, there exists
δ > 0 such that

∂e(‖x−x∗‖)F(x) ⊂ ∂F(x∗)+ εB. (28)

By definition,

∂e(‖x−x∗‖)F(x) = convx′∈B(x,e(‖x−x∗‖))∂F(x′)
⊂ convx′∈B(x∗,‖x−x∗‖+e(‖x−x∗‖))∂F(x′)

By Proposition 1, forε > 0, there exists aδ > 0 such that

∂F(x) ⊂ ∂F(x∗)+ εB,
for all x ∈ B(x∗, δ). Note thate(‖x − x∗‖) → 0 as x → x∗. Letting ‖x − x∗‖+
e(‖x− x∗‖) < δ, we have

∂e(‖x−x∗‖)F(x) ⊂ conv(∂F(x∗)+ εB). (29)

(29) implies (28) as∂F(x∗)+ εB is convex. The proof is complete.
ut

With Theorem 5 and Lemma 3, the proof of Theorem 13 is straightforward.

5.4. Weak approximation based Newton’s methods

We now consider another kind of Newton’s iterations based on (19).

Theorem 14. Let x∗ be a solution of (21) andAWF is defined by (19). Suppose that
F is semi-smooth atx∗ and ∂F(x∗) is nonsingular. If{AεF}ε>0 is a family of weak
pertinent approximation to∂F on a compact setX containing a neighborhood ofx∗
with pertinence functionp, then the iteration:

xk+1 = xk − A−1
k F(xk), Ak ∈ plenAWF(xk), (30)

is well defined and converges superlinearly tox∗ in a neighbourhood ofx∗.
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Before presenting a proof, we give the following remarks.

Remark 3.We cannot prove this theorem by directly checking the conditions of Theo-
rem 8 sinceAWF is not necessarily Hausdorff upper semicontinuous atx∗. However
as we show in the proof below, Theorem 8 can be applied to the iteration (30) withG
replacingAWF, where

G(x) = ∂F(x+ Be(‖x−x∗‖))+ Be(‖x−x∗‖). (31)

Proof (Theorem 14).Let G(x) be defined by (31). Then it is easy to check thatG
is compact and Hausdorff upper semicontinuous atx∗ with G(x∗) = ∂F(x∗). Further,
similar to the proof of Theorem 5, we can show thatG ∈M(F, x∗). Thus, by Theorem 8,
iteration (30) withG replacingAWF is well defined and converges superlinearly tox∗
in a neighbourhood ofx∗. On the other hand, it follows from (7) thatplenAWF(x) ⊂
plenG(x) for all x in a neighborhood ofx∗. Thus iteration (30) is well defined and
converges superlinearly tox∗ in the neighbourhood ofx∗.

ut
Remark 4.By Remarks 1-2 and Theorem 14, one can find a range of Newton’s methods
based on the strong continuous approximations to∂F.
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