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Abstract. We introduce a point-based set-valued approximation for a mapping Rbto R™. Under the
assumption of semi-smoothness of the mapping, we prove that the approximation can be obtained through the
Clarke generalized Jacobian, loffe-Ralph generalized Jacd®ianbdifferential and their approximations. As

an application, we propose a generalized Newton’s method based on the point-based set-valued approximation
for solving nonsmooth equations. We show that the proposed method converges locally superlinearly without
the assumption of semi-smoothness. Finally we include some well-known generalized Newton’s methods in
our method and consolidate the convergence results of these methods.
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1. Introduction

Let F be a mapping fronR" to R™. It is well-known that, at every point € R", F(x)

can be approximated through a variety of derivativeE @it x when they exist. In this
paper, we propose a hew approximationRix), more precisely, we introduce a set-
valued mappingtF : R" — 2R™" by which the set-valued terff(y) + AF(y)(y — X)
approximate$-(x) in some sense for sufficiently close toc. Clearly, such an approxi-
mation is closely related to the Newton’s method which has been playing an essential
role in solving nonlinear equations. The classic Newton’s method has been widely used
to solve mathematical programming, nonlinear variational inequality and nonlinear
complementarity problems. The book of Ortega and Rheinbodlt [18] gives an excellent
treatment of the classic Newton’s method and references.

As it is well known, the essence of the classic Newton’s method is to replace, at the
current iterate, the mappirigwhose zero is sought by an approximate linear mapping
that can be solved more easily. A zero of this linear approximation mapping is then
found to replace the current iterate and the process is restarted. All this depends on the
fact thatF is differentiable.

More recently, stimulated by its important applications in treating mathematical
and equilibrium programming, a nonsmooth version of Newton’s method has appeared
and grown rapidly. See for instance [2,3,5-7,14,15,19,20,22,23,25,27,28,30,29, 31,
33-37].
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WhenF is not differentiable, Robinson [30] sought to define a point-based approxi-
mation in order to get around the difficulties resulting from the lack of the differentiability
of F. The approximation is single-valued and generally nonlinear. This work was further
extended by Kummer [14], Pang [21], Gabriel and Pang [8], Ralph [27] and Dirkse and
Ferris [5, 6].

In this paper, we introduce a point-based set-valued approximatiixidy using
Robinson’s idea. The existence of such an approximation is proved for a mapping
whichis not necessarily locally Lipschitz. We prove that the plenary hull of a point-based
set-valued mapping is also a point-based set-valued mapping, by which we prove further
that if a mappingF is semi-smooth then not only the Clarke generalized Jacobian but
also its plenary hull, the loffe-Ralph generalized Jacobian, is a point-based set-valued
mapping. We also show that some approximations of the Clarke generalized Jacobian and
the loffe-Ralph generalized Jacobian are also point-based set-valued approximations.
As an application, a generalized Newton’s method is proposed based on the point-based
set-valued approximation. The convergence results of the proposed method are obtained
without assumption of semi-smoothness. We consolidate the convergence results of
some generalized Newton’s methods without adding more conditions. Finally, we note
that Qi [24] introduced a notion @-differential operator which is closely related to our
point-based set-valued approximation. We compare our results with Qi’s results in [24].
Further discussion on the developmentin this direction was made in [38].

The remainder of this paper are organized as follows: In Section 2, we discuss
the Clarke generalized Jacobian and its plenary hull. An approximation to the latter
is introduced. In Section 3, we introduce a point-based set-valued approximation and
discuss some important properties of such an approximation. Further, under the assump-
tion of semi-smoothness, many examples of the point-based set-valued approximation
are presented. In Section 4 we propose a generalized Newton’s method based on the
point-based set-valued approximation for solving nonsmooth equations and discuss
the convergence of the proposed method. Finally, using the theory of Section 3, we
strengthen the convergence results of some generalized Newton’s methods in Section 5.

2. Generalized Jacobian and weak approximations
2.1. Basic definition and notion

Throughout this paper we will use the following notati®. will denote then-dimen-
sional Euclidean space with the usual inner product, andR™ ™M will be the space of
nx mreal matrices)x||, forx € R", will representthe 2-norm of a vectorand|| A||, for
amatrixA € R™™M will be the norm defined byA| = {max| Au| : u € R", |lu| = 1J.
We will use B to denote the unit ball both iR" and inR"™™M. For a constant > 0,
B; will denotesB. More specifically, a closed ball iR" with centerx and radius will
be represented bB(x, 8). For a mapping- : R" — R™, we will use Df to denote the
set of points at whicli is differentiable.

We will also use frequently the following notion.

A subset of matricesd ¢ R™" is said to be nonsingular if everh € A is
nonsingular.
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A set-valued mappingt : R® — 2R"" is said to be

(a) closed if forxk — X, & € A(Xk), &k — &, theng € A(X);

(b) compact ifA(x) is compact for everx € R";

(c) Hausdorff upper semi-continuous if, for everye R", ¢ > 0 there exists & > 0
such that for ally € B(x, §), A(y) C A(X) + €B.

Let F : R" — R™ be a locally Lipschitz mapping. The Rademacher theorem
guarantees that is differentiable almost everywhere R'. Clarke [1] introduced the
generalized Jacobiaaf F at a pointx € R" by

dF(x) = con( lim VE(Xxi)},

Xi€DE;Xj—>X

where ‘conv’ denotes the closed convex hull. Obviowstyx) can be represented as the
convex hull ofdg F(x), where

BFX) ={ lim  VFx)).

ieDEiXj—>

dg F(x) was introduced by Qi in [23] and calldg8subdifferential.
The following is well-known.

Proposition 1. LetF : R" — R™ be a locally Lipschitz mapping artF(x + Bs) =
Ux’eB(x,a) dF(x). Then

lim oF Bs) = |oF Bs) = dF(X).
lim OF(x + By) Q (X + By) = OF(X)

An analytic expression of the support function @f(x) was given by Hiriart-
Urruty [11] and further discussed by Ralph [26] in Banach space.

Proposition 2. ([11, Theorem 2.1]) LeF : R" — R™ be a locally Lipschitz mapping,
andx € R". Then for everg, b € R",

max (Va, b) = F°(x; a, b),
VEIF(x)

where

Fo(x;a, b) = Iirrt1 0sup(F(y+ta)—F(y),b)/t.
y—X;t—>

Fromthe above proposition, it follows that for evéfy= 9F(x), and vector, b € R",
(Va,b) < F°(x; &, b). 1)

An interesting question is: if there exists a mawixsatisfying (1) for alla, b € R",
doesV € dF(x) hold? To answer this question, we need the notion of ‘plenary set’
which was introduced by Sweetser [32].
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2.2. Plenary sets

A subset of matricest ¢ R™" is said to be plenary if and only if it includes every
A € R™" such that
Abe Ab, forallbe R".

It follows immediately from the definition that the intersection of plenary sets is also
plenary. LetA ¢ R™" be a subset of matrices. Define

plend = {A e R™": Abe Ab,Vb € R"}. 2

From the definition, it follows that if4 is a nonempty set, thepienA is also a nonempty
set. As expectedhlenA contains in general more matrices thdanSee an example by
Sweetser in [32]. Moreover, the operapdenhas some interesting properties.

Proposition 3. Let A, B be two subset of matrices B™*", anda be a scalar. Then

(@) if A C B, thenplend C plens;

(b) plen(eA) = o plenA,;

(c) if Ais bounded, themplenA is also bounded;

(d) if Ais closed, therplenA is also closed;

(e) ifm = nandA is nonsingular, therplenA is also nonsingular.

Proof. Some of the results are obvious or well-known, we include a proof here for
completeness.

(a) LetA € plenA. By definition, for everya € R", Aa € Aa. SinceA C B, then
Aa € Ba, for alla € R", which impliesA € plenB.

(b) LetA e plen(a.A). The equality holds fox = 0. Assume nove ## 0. By definition,
for everya € R", Aa € aAa, or equivalently: Aa € Aa, hence A e plen4,
which impliesA € aA.

(c) LetSbe aboundedset&¥", sinced is bounded, ther Sis bounded. By definition,
plenAS c AS, which implies thatplenA is bounded. ThusplenA is bounded.

(d) Let Ax € plenAdy, andAx — A. We need to show thak € plenA. By definition,
for eacha € R", Axa € Aa. SinceA is closed, thenda is also closed. Hence
Aa e Aa, which implies thatA € plenA.

(e) By contradiction, assume thalenA is singular. Then there existg € plen4, and
ap € R", ag # 0 such thatdpag = 0. By definition,Apag € Aag, which contradicts
the factA is nonsingular.

The proof is complete.
O

Proposition 4. Let {A¢}c~0 C R™" be compact and monotonic increasing. Suppose
thatA. — Aase — 0. Thenplend. — plenA4, ase — 0.

Proof. Let Ac — A ase — 0. Then()..yAc = A. We first prove that for every
aeR",

[ Aa=()Aoa (3)

e>0 e>0
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Letu € (..oAoa. Then there exist&\ € (.. g.Ae such thatu = Aa Note that
A e A, for everye > 0. Thenu = Aa e A.a, for everye > 0. Thusu € () __gAca.
Conversely, leti € (.. Aca. Thenu € Aca, foreverye > 0. LetA, € Ac be suchthat
u = Acq, fore > 0. SinceA, is compact and monotonic decreasing as 0, thenA
is nonempty, compact and every accumulation mairof A, belongs tad. Obviously
u= Aac Aa = (().gAeca. This proves (3). Now lea € R" be an arbitrary
vector. Note thatplend.a = Aca and () ..o plend.a = (.. gAeca. Since Ac is
compact, from Proposition 3 (c) and (d), it follows thaénAc is also compact. Thus (3)
holds for{plenAc}. Consequently().. plende)a = (()..gAe)a = Aa. Note that
MNe-o PlenA. is a plenary set. Thef), . plendc = plenAd. Hence lim_.o plend. =
plenAd. The proof is complete.

o

Proposition 5. Suppose thatl : R" — 2R™" is a closed set-valued mapping. Then
plenA is also closed.

Proof. Let xx — X, Ax € plend(xx), and Ax — A. It suffices to show thaA <
plenA(x), or equivalently,Aa € A(x)a, for all a € R". Note that for eacla, Axa €
A(xk)a, Aka — Aag, sinceAdais closed, therAa € A(x)a. The proof is complete.

O

Corollary 1. Suppose thatl : R" — 2R™" is Hausdorff upper semi-continuousat
and A(B(x, §)) is bounded for somé > 0. Then plenA is also Hausdorff upper
semi-continuous at.

Itis an open question whether Hausdorff continuity is retained under opeaé&on

2.3. loffe-Ralph generalized Jacobian and weak approximations

We are now ready to discuss (1). Hiriart-Urruty [11] obtained a relation between the
matrices satisfying (1) and the Clarke generalized Jacobian.

Proposition 6. Let F : R" — R™ be a locally Lipschitz mapping ar@F(x) = {V :
(Va, b) < F°(x; a, b)}. Then

(a) the following relation holds:
CF(X) = plendF(x); 4)

(b) CF is Hausdorff upper semi-continuous.

Proof. Part (a) was provedin[11]. Part (b) is awell-known result. See for example [9, 26].
However, we note that the result also follows directly from Corollary 1. The proof is
complete.

O
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The existence and property®F(-) were extensively discussed in Banach space, see
for example [12,26]. We call F(x) loffe-Ralph generalized Jacobias it was indepen-
dently derived by loffe [12] and Ralph [26]. In what follows, we discuss approximations
to the loffe-Ralph generalized Jacobian.

Definition 1. LetF : R" — R™ be a locally Lipschitz mapping and be a compact
subset oR". We say thaf A, F}¢-0 is a weaky, u-approximation tayF(x) if, for every
y > 0, u > 0, there exists am > 0 such that, for allx € X,
dF(x)a Cc A F(x)a
C 0F(x+ B,)a+ B,a Yae R". (5)
Furthermore, we say thatd. F}.-o is monotonic if for two positive constants, >,

€1 < €2,
Ae F(X) € A, F(x), ¥x € X.

With this definition, we are able to find an approximation to the loffe-Ralph gene-
ralized Jacobian.

Theorem 1. Let F : R" — R™ be a locally Lipschitz mapping and be a compact
subset oR". Suppose thgtd. F}c-0 is a weaky, u-approximation todF on X. Then

(a) for everyy > 0, u > 0, there exists am > 0 such that
CF(x) C plendA.F(x) C plen(dF(x+ B,) 4+ B,); Vx € X; (6)
(b) if, in addition,{A¢ F}- 0 is monotonic, then

Iim0 plend. F(x) = CF(x), ¥x € X.

Proof. Note that part (a) follows directly from (2) and (5). We prove part (b). By
Proposition 1 and Proposition 4, it follows that
I(i)m 0 plen(dF(x + B,) + B,) = plendF(x), Yx € X.
y—>0,u—
By part (a), for eachy > 0, u > 0, there exists a positive constantepending ory
andu such that (6) holds. Note thatl F}.-0 is monotonic. Then

€Iin0 plend, F(x) = Q, plend, F(x)

= CF(x),Vx € X.

The proof is complete.
O

Corollary 2. LetF : R" — R™ be a locally Lipschitz mapping and be a compact
subsetoR", letx € X. Suppose thdtd, F}.-ois a weak monotonig, .-approximation
to oF on X andaF(x) is nonsingular. Then fo¢ sufficiently smallplend. F(x) is also

nonsingular.
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Practically, we need to know how to find an approximatio@ Egx) or equivalently
a weaky, u-approximation tadF. In [37], Xu, Rubinov and Glover introduced a kind
of strong continuous approximationsa& which will be useful here.

Let F : R" — R™ be a locally Lipschitz mapping, arnd be a compact set iR".
{AcF}c-0 Is said to be @trong continuous approximatida oF on X if

(a) for givene > 0, o > 0, there existg > 0 such that
IF(X + B;) € AcF(X) + By, VX € X;
(b) foreachx € X, and all 0< €1 < e,
Ae F(X) C Ae, F(X);

(c) fore > 0, AcF(x) is Hausdorff continuous with respectxan X, that is, for every
o > 0, there exists a > 0 such thatfox, y € X, [x — y|| <,

AcF(y) € AcF(X) + By
and
AF(X) € AcF(Y) + By,
(d) for everyy > 0, u > 0, there exists aa > 0, such that, for alk € X
IF(X) C AcF(x)
C dF(x+ By) + By.

In [37], strong continuous approximations have been proposed for some important
locally Lipschitz mappings. For details, see [37].

Remark 1.A strong continuous approximation is a weak monotenjz-approximation.

Definition 2. Let F : R" — R™ be a locally Lipschitz mapping and be a compact
subset ofR". We say that a weak, p-approximation{A.F}-o is pertinent onX if
there exists a functiop : Ri — Ry such that for every > 0, u > 0, x € X,

IF(X)a C Apq, FXa
C dF(x+ By)a+ B,a, vae R", (7
wherepis called pertinence function.

In what follows, we present a simple way for constructing a pertinence function.
We say thap : Ri — Ry is strictly increasingif

P(t1, u1) < p(tz, uz),

when 0<t; < t2,0 < u1 < uz, andp(0, u)) = p(t,0) =0, fort > 0,u > 0.
Let yo, o € (0, 1), NV denote the set of natural numbers.

P ={plyg, o) : k.1 € N0},
Pr.Ax(v, w) = maxpe P : dF(x)a C ApF(x)a
C dF(x+ B,)a+ B,a, Vae R, x € X}.(8)

We have the following remark.
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Remark 2.1f {A.F}¢-0 is a weak monotonig, u-approximation tdF on X, then for
everyx e X, p defined by (8) is a pertinence function afyd,F} is pertinent. More
specifically, if {A.F}c~0 is a strong continuous approximationaé, then for every
x € X, p defined by (8) is a pertinence function which is also strictly increasing.

3. Point-based set-valued approximation

We now turn to discuss main approximation of this paper\Let R™" be a matrix
andh € R" be a nonzero vector. For convenience, let

Tr(x, h, V) = (F(x+ h) = F(x) = Vh)/[h]l.

3.1. Basic definition and properties

Definition 3. Let D be an open subset &". A mappingF : D ¢ R" — RMis said to
have a Point-Based Set-Valued Approximation (PBSVA for short) at a ybiatD, if
there exists a set-valued mappidd- : R" — 2R™" "such that for every > 0, there
exists a8 > 0 such that

sup  |ITE(X*, x — x*, AX)|| < e, forall x € S(x*, §). 9)
AX) e AF(X)

The collection of all set-valued mappiodfF satisfying (9) is denoted byt (F, x*).

Robinson first considered a point-based approximation in [30], his approximationis
single-valued and usually nonlinearfifis not smooth. The originality of the definition
of point-based approximation lies in the fact thatx) depends orx. Kummer [14]
further considered point-based approximations which are derivative-related and set-
valued. Gabriel and Pang [8] used a compact and Hausdorff upper semicontinuous
set-valued mappingd F € M(F, x*) in the study of trust region method for constrained
nonsmooth equations. Recently, Qi[24] treated such a mapping as a differential operator,
namelyC-differential operator

A natural question is: under which conditionsA4(F, x*) nonempty?

Example 1.1 Let ANF = {A() : A(X) = ANF(X), X € R"}, where

_ oy (X=xHT .
AnFx) = | (FOO = FOO) e 1 7 X
0 if x = x*.

ThenAnF € M(F, x*¥).

This example shows that every mappiRgnot necessarily locally Lipschitz) has
a PBSVA Unfortunately,. AN seems to be trivial in multi-dimensional case as it is of
rank one. We will discuss later on some uséfBISVA.

1 This example was given by an anonymous referee during an earlier submission of this paper.



Set-valued approximations and Newton’s methods 409

Proposition 7. Let AF € M(F, x*). Then
plendF € M(F, x*),
whereplenis defined in (2).

The proof is straightforward.
Letr denote{l, - - - , r}, for natural number.

Proposition 8. LetF : R" — R™,i €, be mappings and;, i € F be constants. Let
F = 3G F, and AF = Sicr G AF. If AF € M(F;, x*), then

plendF € M(F, x*). (10)
Proof. It is obvious that ifAF € M(F, x*), thenc AF (-) € M(ci F, x*), for every

constant;. Note also that is finite. Then it suffices to show that the conclusion holds
for F = F1 + F». Let AF = AF1 + AF>. Then

max [[Tr (X", X — X*, A(X))||
AX)e AF(X)

IA

max ITF R (X, X — X*, AL(X) + A2(X) |l
ALOEAFI(). Ao AFa(x) T2

max [[Tr (X5, x = X", Aa(x) [l +  max TR (X", x — X, Ao(X) |l
AL eAF1(X) A2 (x)eAF2(%)

= 2¢, forall x € S(x*, §),

IA

wheres is some positive number. The proof is complete.
o

Proposition 9. LetF : R" - R", R" = R x RPandF = (FT, F)'. If AF ¢
M(F;, x*), fori =r, s, then

AFr X AFS € M(F, X*)

We omit the proof as it is straightforward.
We now consider some specific mappings.

3.2. Compositions involving locally Lipschitz mappings

First we consider the following inner smooth composite mapping:
F=GoH, (12)

whereG : R" — R"Mis locally Lipschitz, andH : R — R" is continuously differen-
tiable. (11) was considered in [37] and it includes many important mappings in practical
instance such as piecewi€& mappings considered by Ralph and Scholtes [28].

Theorem 2. Let F be defined by (11x* € RS, and AG € M(G, H(x*)). If AG is
compact, thetdG(H)VH € M(F, x*).
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Proof. LetB € AG(H)VH. Thenthere existdg € AG(H) suchthaB = Ag(H)VH.
Let§ > 0 be sufficiently small. Then, for € B(x*, §),

ITF (X x=XTBOO)I < 1T (H(X"), HE) —H(X™), Ag (HEON IHTHEO) — HXEN /X =X
+ I1AG (HO)TH(X*, X = X*, VHX)) .

Note that AG is a compact set-valued mapping aBdk*, §) is a compact set. Then
AG(H(S(X*, 8))) is bounded. Note also thét is continuously differentiable. Thus,

| A (HO))TH(X™, x — X*, VHX)|l = o(||x — X*|)).

The rest is straightforward.

We now consider an outer smooth composite mapping:
F=QoP, (12)

whereQ : R™ — R is continuously differentiable, an® : R" — R™ is locally
Lipschitz. (12) was also considered in [37] and it includes some important mappings
in practical instances such as the norm of normal mappings considered by Ferris and
Ralph [7].

Theorem 3. LetF be defined by (12x* € R", and AP € M (P, x*). ThenvVQ(P) AP ¢
M(F, X¥).

Proof. Let D € VQ(P)AP. Then there exist®\p € AP such thatD = VQ(P)Ap.
Let§ > 0 be sufficiently small. Then, for € B(x*, §), we have

ITF (X", X=X D)) | = [T (P(X), P(X) —P(X™), V QP I P(X) — PCX* || /X — x|
+IVQ(PC)TH (X*, X — X*, Ap(X)).

Since P is continuous and is continuously differentiable, theWi Q(P(S(x*, §))) is
bounded and

[VQ(POX))Tp(X*, x — x*, Ap(X)) || = o(||x — X*|).

The rest is straightforward.
i

Qi [24] discussed the calculus Gtdifferential operators. Note that@differential
operator is a compact and semi-continudBSVA while a PBSVAIs not neces-
sarily a C-differential operator. For instancelyF in Example 1 is generally not
semi-continuous. It is yet not clear whether a general continuous magpaumits
a C-differential operator.

It seems that the chain rules developed here could play very limited role in Newton’s
method. Consider the composite mapping (11). Suppose we know that, at a solution
point x* of F(x) = 0, dF(x*) is nonsingular. It is expected thatRBSVAof F at x*
is also nonsingular in a neighborhood>f. However, generally this is incorrect for
the PBSVAAG(H)VH in Theorem 2. The reason is th&t (F, x*) is too large. This
comment also applies ©-differential operators.

We now discuss some more specific locally Lipschitz mappings.
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3.3. Semi-smooth locally Lipschitz mappings

Let F : R" — R™ be a locally Lipschitz mappingr is said to be semi-smooth at
x € R"if for everyh € R", the following limit

lim v
VedF(x+th’);h'—h;t—0

exists. See [25].

Lemma 1. See [16, Proposition 2]. LeE : R" — R™ be a locally Lipschitz mapping,
andx* € R If F is semi-smooth at*, then

lim TE(X*, x = x*, V)| =0,
X—> X*

for everyV € dF(x).

Theorem 4. LetF : R" — R™ be a locally Lipschitz mapping, and € R". Suppose
that F is semi-smooth at*. Then the following hold.

(8) OF € M(F, x*);
(b) agF € M(F, x*).

Proof. Part (a). Sincd- is semi-smooth at*, by Lemma 1, we have

)IIFF(X*, X=X V| =0.

lim
X—X*,VedF(x

ThusoF € M(F, x*).
Part (b) is obvious sincég F(x) is only a subset ofF(x). The proofis complete.
O

The importance of Theorem 4 lies in the fact that under the assumption of semi-
smoothness &#BSVAof a locally Lipschitz mapping can be obtained through the
Clarke generalized Jacobian or B-subdifferential of the mapping. The latter have been
intensively investigated and found useful in the solution of nonsmooth equations. With
Theorem 4 and Proposition 7, we can easily obtain the following.

Corollary 3. LetF : R" — R™ be a locally Lipschitz mapping, ar@F(x) be given
by (4), letx* € R". If F is semi-smooth at € R", then the following hold:

(@) CF € M(F, x*);
(b) plenogF € M(F, x*).

Thus we have proved that the loffe-Ralph generalized Jacobian and the plenary hull
of B-subdifferential are®BSVA.
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Example 2.See for example [37]. We consider the following mappings:

F(x) = mip H;j(x), (13)
je

whereH; : R" — R™ j e F, are continuously differentiable, and ‘min’ is taken
componentwise. Obviously (13) can be regarded as a composite mapping in the form
of (11) with

G(Y) = minyj,

jer

Y=, ,yHT, andH = (H{,---, H"T. Note thatG(Y) is piecewise linear.
ThenG(Y) is semi-smooth irR™. Let Y* € R™ be a fixed vector. Then by Theo-
rem 4 (a), there exists&neighborhood off* such thabG € M(G, Y*), where

aG(Y) = con[{aj, ] € J},i €]},

J ={] €T,vyij = minjer Vij}, & € R with the ((j — 1)m+ i)-th component one,
and the others zero. H(x*) = Y*, then by Theorem 2, we have

IG(H)VH € M(F, x").

Example 3.We now consider another mapping:
F(X) = Q(X4) + X — X4, (14)

whereQ : R" — R™ is continuously differentiables. is the Euclidean projection
of x onto RY.. (14) defines a normal map. See [5-7,10,27-29]. Clearlys locally
Lipschitz semi-smooth iR". Let F1(x) = Q(x4), F2 = x — x4, X* € R". By virtue of
Theorem 3, we have

VQ(X4)dx4 € M(Fg, X¥),
where

Xy = (3(Xj)4,1 €M),

g, if xi > 0;

X))+ =10, if xi <O;
con0, g}, if x; =0.

Here g is ann-dimensional vector with thé-th component one and the rest zero.
Likewise, we can calculatéF and using Proposition 8, we can easily obtaPBESVA
of F atx*.
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3.4. First order approximations

The PBSVA presented in the previous subsection are based on generalized Jacobians.
However, in many practical instances, it is more convenient to consider the approxima-
tions of the generalized Jacobians. In what follows, we will prove under mild conditions
that approximations to loffe-Ralph generalized Jacobian introduced in Section 2 can be
used to construct BBSVA

Let& bethe setof real-valued functiofes: R — Ry, e(0) = 0, lim{_,pe(t)/t = 0}.
Lete > 0 be a constant. Recall that thgeneralized Jacobian &fatx € R" is defined
as:

3 Fx) =conv | ] 9F(X), (15)

X' €B(X,€)
See for example [35]. The following was also proved in [35].

Lemma 2. See [35, Lemma 3.2]. Lét : R" — R™ be a locally Lipschitz mapping
andebe a real-valued function from sé&t let x* € R". If F is semi-smooth at*, then
for every matrix € dex—x+|) F(X), there exists a matri¥ e 9F(x) such that

Jim (U = V)(x - x*)/Ix = x*|| = 0. (16)

Theorem 5. LetF : R" — R™ be a locally Lipschitz mapping arebe a real-valued
function from set, letx* € R" and

.AeF = {A() : A(X) € ae(fox*H)F(X)} (17)
If Fis semi-smooth at*, thenAgF € M(F, x*).
Proof. SinceF is semi-smooth at*, by Lemma 1,

lim max |[Fe(X*, x—x* V)| =0. (18)
X—X* VedF(x)

LetU € dg(x—x+) F(X). It follows from Lemma 2 that there exists a matkixe 9F(x)
such that (16) holds. Combining (16) with (18), we have

lim [TE(X*, x =x*, U)|| < lim Te(X*,x = x*, V)|
X—> X* X—>X*
+ lim_[[(U =W)X = xH)[I/lx — x|
X—>X
=0.

This completes the proof.
o

Theorem 6. LetF : R" — R™ be a locally Lipschitz mapping arebe a real-valued
function from set, let X be a compact subset &' andx* € X. Suppose that

AwF = Ap(e(j-—x-I.e(l-—x*) F(-) (19)

is a weak pertinent approximation @F on X with a pertinence functiom. If F is
semi-smooth at*, thenplendwF € M(F, x*).
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Proof. From Definition 2, it follows that

IFO) (X = X*) C Ape(ix—x+I),e(x—x*) FX) (X = X*)
C (AF(X + Be(jx—x*[)) + Beqx—x+y) (X — X*)
= (3e(\|x—x*|\) F(X) +e(||x — X*||)B)(X — X*), VX € Rn, (20)

Therefore

CF(x) C plendw(x)
C p|en(8e(“)(,x*”) F(x) + e(]]x — x*|)B), ¥x € R,

By Theorem 5, we know thaky . x|y F(-) € M(F, x*). It can also be easily checked
thate(]| - —x*||) B € M(F, x*). The rest follows directly from Proposition 8.
]

4. Newton’s methods

In this section we shall propose a generalized Newton’s method based on a point-based
set-valued approximation for solving the following nonsmooth equations:

F(x) = 0, (21)

whereF : R" — R"is locally Lipschitz but it is not necessarily differentiable.

In the past few years there has been an increasing discussion on (21). Two main
factors have stimulated the increase. One is that nonsmooth equations provide a unified
framework for the study of many important problems in mathematical and equilibrium
programming, the other is that on the basis of their nonsmooth equation framework,
some new methods can be developed for solving optimization and equilibrium problems,
these methods are not only highly efficient but also resolve the lack of robustness in
many previous solution approaches. See [22] for details.

As far as numerical methods are concerned, there have been mainly two kinds of
methods proposed: Newton’s methods, see for instance [3,14,19,22,23,25,27,30, 35,
36], and quasi-Newton methods, see [2,13,15].

Newton’s methods have been developed in many ways. One way based on B-deriva-
tives is to solve (21) by solving iteratively

F' (. dk) =0,

at each iterate. In generdd, (xk, dk) is nonsmooth and nonlinear d. See [19, 20].
Another way based on the Clarke generalized Jacobian is to find a Newton step by

X1 = Xk — Vie TR0, (22)

where matrixVi € 9F(xk) is supposed nonsingular. Local superlinear convergence was
shown under that condition th&tis semi-smooth at solution points. See [14, 25].
The third way introduced by Robinson [30] is to solve

A(Xk, dk) =0,
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whereA(-, -) is Robinson’s point-based approximation. This work was further extended
in[8,5,6,27].

Recently, Demyanov [3] also developed a Newton’s method for nonsmooth equations
with codifferentials.

In what follows, we try to derive Newton’s method from the point-based set-valued
approximation (9). Lex* be a solution point of (21). Suppose th&{(x*) is nonsingular.
Clearly the sequence generated by (22) in a neighbourhodadohverges superlinearly
to x* if and only if

IF(a) — F(X) = Vil — X [ = o(lIxi — x*[1),

or equivalentlyoF € M(F, x*). ReplacingF with aPBSVAAF € M (F, x*), we can
propose a more general Newton’s method.

Theorem 7. Let x* be a solution point of (21). Suppose that there existdR €
M(F, x*) such thatd F is Hausdorff upper semi-continuousdtand.A(x*) is compact
and nonsingular. Then iteration

X1 = Xk — ATFOw), Ak € AF(X0) (23)
is well defined and converges superlinearlytan a neighbourhood of*.

We will not present a proof for this theorem since it can be regarded as a corollary
of the following theorem.

Theorem 8. Let x* be a solution point of (21). Suppose that there existdR €
M(F, x*) such thatAF is Hausdorff upper semi-continuous &t and AF(x*) is
compact and nonsingular. Then iteration

Xir1 = Xk — ACTFOw), Ak € plen(AF(x) (24)
is well defined and converges superlinearlytan a neighbourhood of*.

Proof. By assumptionAF(x*) is compact and nonsingular. Then there existsan 0,
such that4AF(x*) + €gB is also compact and nonsingular. From Proposition 3 (c-e),
it follows that plen(AF(x*) + ¢oB) is compact and nonsingular. Hence there exists
a constan€ > 0, such that
max vt <c (25)
Ve plen(AF(x*)+€0B)

Note thatAF is Hausdorff upper semi-continuoust. Then for giveneg > 0,
there exists dp > 0 such thatdF(x) ¢ AF(x*) + ¢oB for all x € B(x*, 8p). By virtue
of Proposition 3 (a) and (25), we have, foralE B(x*, 8o),

max V7| < max V7
Veplend(x) Veplen(A(x*)+€pB)
<C.

On the other hand, sincdF € M(F, x*), it follows from Proposition 7 that
plenAF € M(F, x*). The rest is straightforward. The proof is complete.
o
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A similar result to Theorem 7 was obtained by Gabriel and Pang [8] in the study of
trust region method for constrained nonsmooth equations. Qi [24] also obtained a similar
result to Theorem 7 based @adifferential operators. The difference is that we assume
here AF(x*) is compact whiledF € M(F, x*) is not necessarily compact.

Note also that in Theorem 8 we only assume tH#i(x) instead ofplendF(x)
is nonsingular ak = x*. In most cases, the former is strictly smaller than the latter.
Thus, theoretically Theorem 8 is stronger than Theorem 7. In computation, note that, if
plenAF(x) = plen(x), then we can usB(x) to replacedF(x) whenever the former
can be more easily calculated. This may lead to some convenience in computation. See
further comments in Section 5.

The following example illustrates that Theorem 7 and Theorem 8 are stronger than
[25, Theorem 3.2].

Example 4.Consider the following function:

2ainld .
X+ Xxesing, x # 0;

Pe) = {o, x = 0.

x* = 0 is a solution ofP(x) = 0. Let AP(x) = {1+ xsin%, x # 0}, AP(0) = {1}.
Clearly P'(x) ¢ AP(x), for x # 0 and P(x) is not semi-smooth at 0. However all
conditions of Theorem 7 are satisfied for this problem.

5. Case studies

In this section, we will include some of generalized Newton’s methods developed in the
past few years in (23) and consolidate the convergence results of these methods with
Theorem 8.

5.1. loffe-Ralph generalized Jacobian based Newton’s method

Qi and Sun [25] proposed a generalized Newton iterative process (22) for finding
a solution of (21). They obtained the following results.

Theorem 9. ([25, Theorem 3.2]) Lex* be a solution of (21). Suppose tHatis semi-
smooth at* and 9F(x*) is nonsingular. Then iteration (22) is well-defined and super-
linearly convergent toc* in a neighbourhood of*.

By Theorem 4, it follows that Theorem 7 subsumes Theorem 9.
By referring to Theorem 8, we can easily extend Theorem 9 to the following.

Theorem 10. Letx* be a solution of (21) andF(x) be given by (4). Suppose thats
semi-smooth at* anddF(x*) is nonsingular. Then iteration

Xir1 = Xk — Uy TF(x), Uk € CF(x)

is well-defined and converges superlinearlyktan a neighbourhood ok*.
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Proof. The conclusion follows directly from Corollary 3 (a) and Theorem 8.
O

The significance of the above theorem is that, on one hand, it may result in some
convenience in computation as we can now take an element of the plenary hull of Clarke
generalized Jacobian in Newton's iteration; on the other hand, it shows theoretically that
Newton’s method can be carried out with loffe-Ralph generalized Jacobian under the
same condition as that of [25, Theorem 3.2]. Note also that Qi [24] explicitly assumed
that the image of &-differential operator is nonsingular at a solution poihiof (21). In
this setting, this is equivalent to assuming tB&(x*) is nonsingular. We have already
pointed out previously that in genei@F(x) is larger thardF(x). Thus, we show that
Theorem 8 is stronger than Theorem 7 and [24, Theorem 3.1].

5.2. B-subdifferential based Newton’s method

In [23], a revised version of (22) was suggested by Qi:

Xir1 = Xk — Wi TF(X0), Wk € 98 F(X). (26)
(26) is intended to reduce the assumptions for convergence of generalized Newton
iteration (22) becausgs F(x) is only a strict subset afF(x).

Theorem 11. ([23, Theorem 2]) Lek™ be a solution of (21). Suppose thatis semi-
smooth atx* and dgF(x*) is nonsingular. Then iteration (26) is well-defined and
superlinearly convergent to* in a neighbourhood of*

It was proved by Xu and Glover [36] thag F is Hausdorff upper semi-continuous.
By Theorem 4pgF € M(F, x*). Hence, Theorem 7 subsumes Theorem 11. Further-
more, it is an easy exercise to extend Theorem 11 into the plenary case by replacing
dg F(xk) in (26) with plendg F(xk).

5.3. e-generalized Jacobian based Newton’s method

Consider generalized Newton iteration (22). When one hopes to weaken the conditions
for the convergence of (22)F(xk) is replaced byg F(xx). However, when the impor-
tance of convenience in computiMy of (22) is emphasized, a larger set thf(xk)

in (22) is sought so that more alternatives for updating matrices are available. This led
Xu and Chang [35] to employ another kind of Newton iteration:

Xir1 = Xk — G TF(XK), Gk € e F(Xw),

whered. F(x) is defined by (15).
Xu and Chang [35] obtained the following results:

Theorem 12. ([35, Theorem 3.2]) Lex* be a solution of (21) and € £. Suppose that
F is semi-smooth at*, anddF(x*) is nonsingular. Then the iteration:

X1 = Xk — ATFOK), Ak € de(xe—sr ) FOK)

is well defined and converges superlinearlytan a neighbourhood of*.
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Theorem 12 is included in Theorem 7. Similarly, we can extend Theorem 12 to the
following.

Theorem 13. Letx* be a solution of (21) andleF be defined by (17). Assume that
is semi-smooth at* anddF(x*) is nonsingular. Then the iteration:

Xir1 = Xk — A TFOw), A € plendeF(xw), (27)
is well defined and converges superlinearlytan a neighbourhood of*.
For a proof, we only need to verify the conditions of Theorem 8 in this setting.

Lemma3. Let F : R" — R™ be a locally Lipschitz mapping andeF be defined
by (17). ThendeF is compact and Hausdorff upper semicontinuous*at

Proof. ObviouslyAcF is compact. It suffices to show that for every- 0, there exists
8 > 0 such that

de(x—x+) F(X) C dF(X*) 4 €B. (28)
By definition,
Dex—x+)) F(X) = CONV B e x—x ) IF(X)
C CONKreBx, x—x+(x—x*])) IF (X))
By Proposition 1, foe > 0, there exists & > 0 such that
IF(X) C OF(x*) + €B,

for all x € B(x*, §). Note thate(]]x — x*||) — 0 asx — x*. Letting ||x — x*||+
e(|lx — x*|) < &8, we have

de(x—x+)) F(X) € cONMIF(X*) + €B). (29)

(29) implies (28) a®F(x*) + B is convex. The proof is complete.
O

With Theorem 5 and Lemma 3, the proof of Theorem 13 is straightforward.

5.4. Weak approximation based Newton’s methods

We now consider another kind of Newton'’s iterations based on (19).

Theorem 14. Let x* be a solution of (21) andlwF is defined by (19). Suppose that
F is semi-smooth at* and aF(x*) is nonsingular. If{AcF}e-0 is a family of weak
pertinent approximation t@F on a compact seX containing a neighborhood of*
with pertinence functiom, then the iteration:

X1 = Xk — ACTFOw), Ak € plendwF(xk), (30)

is well defined and converges superlinearlytan a neighbourhood of*.
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Before presenting a proof, we give the following remarks.

Remark 3.We cannot prove this theorem by directly checking the conditions of Theo-
rem 8 sincedwF is not necessarily Hausdorff upper semicontinuous‘atHowever

as we show in the proof below, Theorem 8 can be applied to the iteration (30§with
replacingAwF, where

G(X) = IF(X 4+ Be(x—x*|))) + Be(x—x*|))- (31)

Proof (Theorem 14)Let G(x) be defined by (31). Then it is easy to check that
is compact and Hausdorff upper semicontinuous*atvith G(x*) = aF(x*). Further,
similar to the proof of Theorem 5, we can show tdat M (F, x*). Thus, by Theorem 8,
iteration (30) withG replacingAwF is well defined and converges superlinearlyto
in a neighbourhood of*. On the other hand, it follows from (7) thatenAwF(x) C
pleng(x) for all x in a neighborhood ok*. Thus iteration (30) is well defined and
converges superlinearly t0° in the neighbourhood of*.

O

Remark 4.By Remarks 1-2 and Theorem 14, one can find a range of Newton’s methods
based on the strong continuous approximatiortsio
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