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Abstract

Sample average approximation (SAA) method which is also known under various names

such as Monte Carlo method, sample path optimization and stochastic counterpart has re-

cently been applied to solve stochastic programs with second order stochastic dominance

(SSD) constraints. In particular, Hu et al [19] presented a detailed convergence analysis of

ϵ-optimal values and optimal solutions of sample average approximated stochastic programs

with polyhedral SSD constraints. In this paper, we complement the existing research by pre-

senting convergence analysis of stationary points when SAA is applied to a class of stochastic

minimization problems with SSD constraints. Specifically, under some moderate conditions

we prove that optimal solutions and stationary points obtained from solving sample average

approximated problems converge with probability one (w.p.1) to their true counterparts.

Moreover, by exploiting some recent results on large deviation of random functions and

sensitivity analysis of generalized equations, we derive exponential rate of convergence of

stationary points.
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1 Introduction

In this paper, we consider a stochastic optimization problem with second order dominance

constraints
min
z

E[H(z, ξ(ω))]

s.t. G(z, ξ(ω)) ≽2 Y (ξ(ω)),

z ∈ Z0,

(1.1)
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where Z0 is a closed convex subset of IRn, G,H : IRn+q → IR are continuously differentiable

functions, ξ : Ω → Ξ is a vector of random variables defined on a nonatomic probability space

(Ω,F , P ) with support set Ξ ⊂ IRq and E[·] denotes the expected value with respect to probability

measure P . To ease notation, we will use ξ to denote the random vector ξ(ω) and a deterministic

vector, depending on the context.

The second order dominance constraint is defined in the following sense: for every η ∈ IR,∫ η

−∞
P (G; τ)dτ ≤

∫ η

−∞
P (Y ; τ)dτ,

where P (G; τ) = Prob{G(z, ξ) ≤ τ} and P (Y ; τ) = Prob{Y ≤ τ}. The model has wide economic

interpretations, for instance, H(z, ξ) is a cost function, G(z, ξ) is a profit function and Y (ξ) is

benchmark profit at a scenario ξ. In particular, we may set G = −H and Y = G(y, ξ) where

y is a fixed decision vector. In this paper, our focus is on numerical methods for solving the

problem rather than practical application of the model.

It is well-known that the second order dominance constraint in (1.1) is mathematically

equivalent to

E[(η −G(z, ξ))+] ≤ E[(η − Y (ξ))+], ∀η ∈ IR,

see [11] and the references therein. Consequently problem (1.1) can be reformulated as:

min
z

E[H(z, ξ)]

s.t. E[(η −G(z, ξ))+] ≤ E[(η − Y (ξ))+], ∀η ∈ IR,

z ∈ Z0.

(1.2)

From numerical optimization perspective, (1.2) is not helpful in that it does not satisfy a key

constraint qualification (Slater’s type), a condition relating to numerical stability. Consequently

one often considers a relaxed form of the problem:

min
z

E[H(z, ξ)]

s.t. E[p(η −G(z, ξ))] ≤ E[p(η − Y (ξ))], ∀η ∈ [a, b],

z ∈ Z0,

(1.3)

where [a, b] is a bounded closed interval in IR and p(x) := max(0, x). For the simplicity of

notation, let

F (z, η, ξ) := p(η −G(z, ξ))− p(η − Y (ξ)) (1.4)

and f(z, η) := E[F (z, η, ξ)].

Stochastic programs with dominance constraints have been proposed by Dentcheva and

Ruszczyński [10, 11] and have found substantial applications in many areas including finance and

energy [14, 9]. Over the past decade, there have been extensive discussions on the optimization

theory of the mathematical models particularly concerning optimality and duality of both (1.1)

and (1.2), see recent work by Dentcheva and Ruszczyński [10, 11, 12] and the references therein.

In this paper, we consider sample average approximation of (1.3) which is fundamentally

a stochastic semi-infinite programming problem. The basic idea of SAA can be described as
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follows. Let ξ1, · · · , ξN be an independent and identically distributed (i.i.d.) sampling of ξ. We

consider the following sample average approximation problem for (1.3):

min
z

hN (z) := 1
N

∑N
i=1H(z, ξi)

s.t. fN (z, η) :=
1

N

N∑
i=1

[
(η −G(z, ξi))+ − (η − Y (ξi))+

]
≤ 0, ∀η ∈ [a, b],

z ∈ Z0.

(1.5)

We refer to (1.3) as the true problem and (1.5) as the sample average approximation (SAA)

problem. SAA is a very popular method in stochastic optimization and it is known under

various names such as sample path optimization (SPO) method [28], stochastic counterpart

and more broadly Monte Carlo method, see [30] for a comprehensive review of the subject by

Shapiro. The main benefit of SAA is that one does not have to calculate the expected values.

Hu, Homem-de-Mello and Mehrotra [19] seem to be the first to apply SAA to a class of

stochastic programs with polyhedral SSD constraints. They presented a detailed convergence

analysis of the SAA scheme in terms of ϵ-optimal values and optimal solutions, proposed a

cut-generation algorithm for solving the subsequent sample average approximated problem and

derived lower and upper bounds for the true optimal values.

In a more recent development, Liu and Xu [23] studied stability of (1.3) where the true

probability measure P is approximated by a class of general probability measures including

empirical probability measure (which is equivalent to SAA). The stability analysis is carried

out for a penalized problem where the second order dominance constraint of (1.3) is moved

to the objective through exact penalization (so that the penalized program has deterministic

constraint). Convergence analysis of optimal solution and Clarke stationary points of the sample

average approximated penalized program has been investigated. While the penalization scheme

simplifies the convergence analysis, it also leaves one with an undesired gap: a stationary point

of the penalized program is not necessarily a stationary point of the true program unless some

strong conditions are satisfied.

In this paper, we focus on convergence analysis of stationary points of the SAA program

(1.3) but through a completely different avenue: we carry out the convergence analysis directly

through the Karush-Kuhn-Tucker (KKT) conditions of (1.3) and (1.5) without a penalization

formulation. While the analysis is technically more challenging, a clear benefit is that the

convergence results are stronger and broader in the sense that they cover the convergence of the

stationary points of (1.5) regardless of how the SAA problem is solved, e.g., through penalization

or other NLP formulation.

The rest of the paper is organized as follows. In section 2, we discuss the first order optimality

conditions of the true problem (1.3) and the SAA problem (1.5). In section 3, we investigate

almost sure convergence of stationary points of the SAA problem as sample size increases and

extend the discussion in section 4 to the exponential rate of convergence.
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2 Optimality conditions

In this section, we review/discuss optimality conditions of the relaxed true problem (1.3) and

its sample average approximation (1.5). The former has been well established in a number of

papers by Dentcheva and Ruszczyński, see for instances [13].

2.1 Notation and preliminaries

Throughout this paper, we use the following notation. xT y denotes the scalar product of two

vectors x and y, ∥ · ∥ denotes the Euclidean norm of a vector and a compact set of vectors. We

write d(x,D) := infx′∈D ∥x − x′∥ for the distance from point x to set D. For two sets D1 and

D2, D(D1, D2) := supx∈D1
d(x,D2) represents the deviation from set D1 to set D2. Note that

D(D1, D2) = 0 if and only if D1 ⊂ D2. For a real valued function h(x), we use ∇h(x) to denote

the gradient of h at x. If h(x) is vector valued, then the same notation refers to the classical

Jacobian of h at x. Finally, for a sequence of sets {Ak}, we use limAk to denote its lower limit

and limAk the upper limit. We refer readers to monograph [1] for the definition of these limits

and upper semicontinuity of a set-valued mapping.

Let v : IRn → IR be a locally Lipschitz continuous function. Recall that Clarke generalized

derivative of v at point x in direction d is defined as

vo(x, d) := lim sup
y→x,t↓0

v(y + td)− v(y)

t
.

v is said to be Clarke regular at x if the usual one sided directional derivative, denoted by

v′(x, d), exists for every d ∈ IRn and vo(x, d) = v′(x, d). The Clarke generalized gradient (also

known as Clarke subdifferential) is defined as

∂v(x) := {ζ : ζTd ≤ vo(x, d)},

see [8, Chapter 2].

Some basics about measure theory that we need in this paper are in order. Let C ([a, b])

denote the space of continuous functions defined on [a, b] with maximum norm. By the Riesz

representation theorem, the space dual to C ([a, b]), denoted by C ∗([a, b]), is the space of regular

countably additive measures on [a, b] having finite variation, see [4, Example 2.63], [10] and the

references therein. Let C ∗
+([a, b]) denote the subset of C ∗([a, b]) of positive measures and ∥µ∥

the induced norm of map
∫ b
a ·µ(dη) : C ([a, b]) → IR. Then for µ ∈ C ∗([a, b]), ∥µ∥ =

∫ b
a µ(dη) =

µ([a, b]), which is the total variation measure of µ on [a, b], see [16, section 3] and [4, Example

2.63].

Before proceeding to detailed discussions of optimality conditions, we list two main assump-

tions which are needed throughout this section.

Assumption 2.1 There exist a point z0 ∈ Z0 and η0 ∈ [a, b] such that E[|H(z0, ξ)|] < ∞ and

E[(η0 − G(z0, ξ))+] < ∞. Moreover, E[∥∇zH(z, ξ)∥] < ∞ and E[∥∇zG(z, ξ)∥] < ∞ for all

z ∈ Z0.
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Assumption 2.2 Problem (1.3) satisfies the uniform dominance condition, that is, there exists

a point z0 ∈ Z0 such that

sup
η∈[a,b]

f(z0, η) < 0.

This condition is also known as Slater’s constraint qualification and it has been widely used

to derive the optimality conditions of the relaxed problem (1.3).

Definition 2.1 Problem (1.3) is said to satisfy the differential constraint qualification at a

feasible point z if there exists another feasible point z′ and a positive number δ such that

sup
ζ∈∂zf(z,η)

ζT (z′ − z) ≤ −δ, ∀η ∈ [a, b], (2.6)

where ∂zf(z, η) denotes Clarke generalized gradient of f(z, η) at point z for a given η ∈ [a, b].

The concept of differential constraint qualification was introduced by Dentcheva and Ruszczyński

[13]. When

sup
ζ∈∂zf(z,η)

ζT (z′ − z) < 0, ∀η ∈ [a, b],

and f is continuously differentiable, the constraint qualification (2.6) is known as extended

Mangasarian-Fromowitz Constraint Qualification (MFCQ), see [4, page 510] in the context of

semi-infinite programming.

It is not difficult to show (through Clarke’s mean-value theorem [8, Theorem 2.3.7] and upper

semicontinuity of the Clarke subdifferential) that the differential constraint qualification implies

the Slater constraint qualification when Z0 is a convex set.

Proposition 2.1 Under Assumption 2.1

(i) E[H(z, ξ)] and f(z, η) are well defined for all z ∈ Z0 and η ∈ [a, b] and f(z, η) is locally

Lipschitz continuous w.r.t. z, globally Lipschitz continuous w.r.t. η,

∂zf(z, η) = −E
[
∇zG(z, ξ)T∂p(η −G(z, ξ)

]
, (2.7)

where

∂p(η −G(z, ξ)) =


1, if η −G(z, ξ) > 0,

[0, 1] , if η −G(z, ξ) = 0,

0, if η −G(z, ξ) < 0,

and the expected value of the Clarke subdifferential of the random function is Aumann’s

integral [2];

(ii) f(z, η) is Clarke regular w.r.t. z for every fixed η ∈ [a, b].
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Proof. Part (i). Verification of the well definedness and Lipschitzness is elementary given the

fact that p(η−G(z, ξ)) is a composition of the max function p(·) and η−G(z, ξ). In what follows,

we show the calculus of the Clarke subdifferentials. Observe that function p(·) is piecewise linear
convex in IR, by [8, Proposition 2.3.6], it is Clarke regular at any point in IR. Through the chain

rule ([8, Theorem 2.3.10]), we obtain

∂z(p(η −G(z, ξ))) = ∇zG(z, ξ)T∂p(η −G(z, ξ)).

It is easy to verify that the term at the right hand side of the equality above is bounded

by ∥∇zG(z, ξ)∥ which is integrably bounded under Assumption 2.1. By [8, Proposition 2.2],

E[∇zG(z, ξ)T∂p(η−G(z, ξ)] is well defined. Finally, the exchange of subdifferential operator ∂z
with mathematical expectation operator E[·] is well-known when the integrand is Clarke regular,

see for instance [35, Section 4] and references therein.

Part (ii). The Clarke regularity of f(z, η) follows from that of p(η − G(z, ξ)). The proof is

complete.

2.2 True problem

Let µ ∈ C ∗
+([a, b]) and define the Lagrange function of problem (1.3):

L (x, µ) := E[H(z, ξ)] +

∫ b

a
f(z, η)µ(dη).

The following optimality condition follows from a discussion at page 499 in [4] by Bonnans and

Shapiro and [4, Theorem 5.107], and it is also established by Dentcheva and Ruszczyński, see

e.g. [10, Theorem 4.2].

Theorem 2.1 (Optimality condition) Consider the relaxed problem (1.3). Assume H(z, ξ)

is convex and G(z, ξ) is concave w.r.t. z for almost every ξ ∈ Ξ. Let z∗ be an optimal solution

of the problem. Under Assumptions 2.1-2.2, there exists a measure µ∗ ∈ C ∗
+([a, b]) such that

z∗ ∈ argminz∈Z0 L (z, µ∗),

f(z∗, η) ≤ 0, ∀η ∈ [a, b],∫ b
a f(z∗, η)µ(dη) = 0.

(2.8)

The set of measures µ∗ satisfying (2.8) is nonempty, convex and bounded, and is the same for

any optimal solution of the problem.

It is possible to characterize the optimality conditions (2.8) in terms of derivatives of the

underlying functions. Indeed, Dentcheva and Ruszczyński derived this kind of first order opti-

mality conditions in both convex and nonconvex case, see [13]. Here we review some of them

that are relevant to this paper.

Recall that the Bouligand tangent cone to a set X ⊂ IRn at a point x ∈ X is defined as

follows. Let

TX(x) := {u ∈ IRn : d(x+ tu,X) = o(t), t ≥ 0}
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denote the tangent cone of X at x. The normal cone to X at x, denoted by NX(x), is defined

as the polar of the tangent cone:

NX(x) := {ζ ∈ IRn : ζTu ≤ 0, ∀u ∈ TX(x)}

and NX(x) = ∅ if x ̸∈ X.

Theorem 2.2 (First order necessary conditions) Let Assumption 2.1 hold. Let z∗ ∈ Z0

be a local optimal solution to the true problem (1.3). Assume that the differential constraint

qualification is satisfied at z∗. Then the following assertions hold.

(i) There exists µ∗ ∈ C ∗
+([a, b]) such that
0 ∈ ∇E[H(z∗, ξ)] +

∫ b
a ∂zf(z

∗, η)µ∗(dη) +NZ0(z
∗),

f(z∗, η) ≤ 0, ∀η ∈ [a, b],∫ b
a f(z∗, η)µ∗(dη) = 0,

(2.9)

where∫ b

a
∂zf(z, η)µ(dη) =

{∫ b

a
ϕ(η)µ(dη) : ϕ(η) ∈ ∂zf(z, η) and ϕ(η) is integrable

}
.

(ii) Assume in addition that: (a) for every η ∈ [a, b], f(·, η) is Clarke regular on Z0, (b) for

every fixed (z, η) ∈ Z0 × [a, b] and sequence {(zk, ηk)} → (z, η),

conv lim(zk,ηk)→(z,η)∂zf(zk, ηk) ⊂ ∂zf(z, η).

Then there exist multipliers λ∗
i ≥ 0, i = 1, · · · ,m not all of them being zero, and points

ηi ∈ [a, b], i = 1, · · · ,m with m ≤ n+ 1 such that

0 ∈ ∇E[H(z∗, ξ)] +
m∑
i=1

λ∗
i ∂zf(z

∗, ηi) +NZ0(z
∗), ηi ∈ ∆(z∗), (2.10)

where ∆(z∗) := {η ∈ [a, b] : f(z∗, η) = 0}.

Proof. Part (i) is [13, Theorem 5].

Part (ii). Borwein and Zhu [6, Theorem 3.17] derived the first order optimality conditions

similar to (2.10) for a general class of nonsmooth semi-infinite programming problems in terms of

Fréchet subdifferentials where the underlying functions are lower semicontinuous. It seems that

their results imply (2.10) in that Clarke subdifferential of a locally Lipschitz function coincides

with the convex hull of the Fréchet subdifferential of the function. Here we include a proof, which

is relatively easy to derive based on [26, Theorem 3.2] in that f is locally Lipschitz continuous.

Let

ϕ(z) := max {f(z, η), η ∈ [a, b]}

and

ϕ̂(z) := max{E[H(z, ξ)]− E[H(z∗, ξ)], ϕ(z)}.
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Then z∗ is a local optimal solution of problem (1.3) if and only if it is a local minimizer of ϕ̂(z)

and z∗ is feasible. Applying the first order optimality condition to ϕ̂(·) at point z∗, we have

0 ∈ ∂ϕ̂(z∗) +NZ0(z
∗). (2.11)

Under the conditions of part (ii), it follows by virtue of [26, Theorem 3.2],

∂ϕ(z∗) = conv

 ∪
η∈∆(z∗)

∂zf(z
∗, η)


and through [8, Proposition 2.3.12],

∂ϕ̂(z∗) ⊂ cl {conv {∇E[H(z∗, ξ)], ∂ϕ(z∗)}}

= cl

conv

∇E[H(z∗, ξ)],
∪

η∈∆(z∗)

∂zf(z
∗, η)


 ,

where “cl” denotes the closure of a set. The closure can be dropped as the convex hull of the

subdifferential is closed in finite dimensional space. Consequently, optimality condition (2.11)

implies that

0 ∈ conv

∇E[H(z∗, ξ)],
∪

η∈∆(z∗)

∂zf(z
∗, η)

+NZ0(z
∗),

that is, there exists

ζ∗ ∈ conv

∇E[H(z∗, ξ)],
∪

η∈∆(z∗)

∂zf(z
∗, η)


such that

0 ∈ ζ∗ +NZ0(z
∗). (2.12)

Since conv
{
∇E[H(z∗, ξ)],

∪
η∈∆(z∗) ∂zf(z

∗, η)
}

is a convex and compact set in IRn, by the

Carathéodory’s theorem (convex hull), there exists m vectors ζ∗1 , . . . , ζ
∗
m (m ≤ n+ 1) with

ζ∗i ∈

∇E[H(z∗, ξ)],
∪

η∈∆(z∗)

∂zf(z
∗, η)

 , for i = 1, · · · ,m (2.13)

and nonnegative numbers λ0, λ1, · · · , λm such that
∑m

i=0 λi = 1 and

ζ∗ = λ0∇E[H(z∗, ξ)] +

m∑
i=1

λiζ
∗
i .

Inclusion (2.13) implies that there exist at most m points η1, . . . , ηm ∈ ∆(z∗) such that

{ζ∗1 , . . . , ζ∗m} ⊂

{
∇E[H(z∗, ξ)],

m∪
i=1

∂zf(z
∗, ηi)

}
.

Based on the discussions above and the first order optimality condition (2.12), we conclude that

0 ∈ conv

{
∇E[H(z∗, ξ)],

m∪
i=1

∂zf(z
∗, ηi)

}
+NZ0(z

∗), (2.14)
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i.e., there exists constants λ∗
i ≥ 0, i = 0, 1, · · · ,m with

∑m
i=0 λ

∗
i = 1 such that

0 ∈ λ∗
0∇E[H(z∗, ξ)] +

m∑
i=1

λ∗
i ∂zf(z

∗, ηi) +NZ0(z
∗).

Under the differential constraint qualification at z∗, it is easy to verify that λ∗
0 ̸= 0. Therefore

the inclusion above implies (2.10).

Note that if H(z, ξ) is convex and G(z, ξ) is concave w.r.t. z for almost every ξ ∈ Ξ,

then problem (1.3) is convex and the differential constraint qualification in Theorem 2.2 can be

weakened to Slater constraint qualification (uniform dominance condition). This is because in

such a case the first order necessary condition (2.9) follows straightforwardly from (2.8).

We call a tuple (z∗, µ∗) satisfying (2.9) a KKT pair of problem (1.3), z∗ a Clarke stationary

point and µ∗ the corresponding Lagrange multiplier.

2.3 SAA problem

We now move on to discuss the optimality conditions for the SAA problem (1.5). We need the

following technical results.

Proposition 2.2 Let Assumption 2.1 hold. Then

(i) w.p.1 hN (z) and 1
N

∑N
i=1G(z, ξi) converge respectively to E[H(z, ξ)] and E[G(z, ξ)] uni-

formly over any compact subset of Z0 as N → ∞;

(ii) w.p.1 1
N

∑N
i=1 p(η − G(z, ξi)) and 1

N

∑N
i=1 p(η − Y (ξi))] converge respectively to E[p(η −

G(z, ξ))] and E[p(η − Y (ξ))] uniformly on Z0 × [a, b] and [a, b] as N → ∞;

(iii) if, in addition, Assumption 2.2 holds, then the SAA problem (1.5) satisfies uniform dom-

inance condition w.p.1 for N sufficiently large, that is, there exists a point z0 ∈ Z0 such

that

sup
η∈[a,b]

fN (z0, η) < 0

w.p.1 for N sufficiently large.

Proof. Part (i) follows straightforwardly from classical uniform law of large numbers under

Assumption 2.1, see [29, Lemma A1]. Part (ii) follows from the same argument in that p(η −
G(z, ξ)) is Lipschitz continuous in (η, z) with integrable modulus maxz∈Z0(1 + ∥∇zG(z, ξ)∥)
while p(η − Y (ξ)) is Lipschitz continuous in η with modulus 1. Part (iii) follows from Part (ii)

and Assumption 2.2.

Let µ ∈ C ∗
+([a, b]). Define the Lagrange function of sample average approximation problem

(1.5):

LN (z, µ) := hN (z) +

∫ b

a
fN (z, η)µ(dη),

where hN (z) and fN (z, η) are defined as in (1.5).
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From Proposition 2.2, we know that for N sufficiently large, the SAA problem (1.5) satisfies

the Slater’s constraint qualification w.p.1. By invoking [4, Theorem 5.107], we have the following

optimality conditions for problem (1.5).

Theorem 2.3 Consider the sample average approximation problem (1.5). Suppose that H(z, ξ)

is convex and G(z, ξ) is concave w.r.t. z for almost every ξ ∈ Ξ, and (1.3) satisfies Assumptions

2.1 and 2.2. If zN is an optimal solution of the problem, then w.p.1 there exists µN ∈ C ∗
+([a, b])

such that 
zN ∈ argminz∈Z0 LN (z, µN ),

fN (zN , η) ≤ 0, ∀η ∈ [a, b],∫ b
a fN (zN , η)µN (dη) = 0.

(2.15)

The set of measures µN satisfying (2.8) is nonempty, convex and bounded, and is the same for

any optimal solution of the problem.

In what follows, we derive first order optimality condition for the SAA problem (1.5). We

need the following technical result.

Recall that for a set D, the support function of D is defined as

σ(D,u) = sup
d∈D

dTu.

Let D1, D2 be two convex and compact subsets of IRm. Let σ(D1, u) and σ(D2, u) denote the

support functions of D1 and D2 respectively. Then

D(D1, D2) = max
∥u∥≤1

(σ(D1, u)− σ(D2, u)). (2.16)

The above relationship is known as Hörmander’s formula, see [7, Theorem II-18].

Lemma 2.1 Let v(x, ξ) be a continuous function defined on IRn × IRk and ξ : Ω → IRk be

a random vector. Let ξ1, · · · , ξN be an iid sampling of ξ. Suppose that v(x, ξ) is Lipschitz

continuous in x for almost every ξ and its Lipschitz modulus is integrably bounded by κ(ξ).

Then

lim
N→∞

sup
x∈X ,∥u∥≤1

[
1

N

N∑
i=1

vo(x, ξi;u)− E[voϵ (x, ξ;u)]

]
≤ 0, (2.17)

where X is a compact set in IRn, u is a fixed nonzero vector of IRn, and voϵ (x, ξ;u) is ϵ-Clarke

generalized derivative, that is,

voϵ (x, ξ;u) = sup
ζ∈∂ϵ

xv(x,ξ)
ζTu,

where

∂ϵ
xv(x, ξ) =

∪
x′∈x+ϵB

∂xv(x
′, ξ)

and B is the unit ball in IRn.

10



Proof. For fixed positive number ϵ, it follows by [31, Theorem 2],

lim
N→∞

sup
x∈X

D

(
1

N

N∑
i=1

∂xv(x, ξ
i),E[∂ϵ

xv(x, ξ)]

)
= 0 (2.18)

w.p.1. Using Hörmander’s formula, we have

D

(
1

N

N∑
i=1

∂xv(x, ξ
i),E[∂ϵ

xv(x, ξ)]

)

= sup
∥u∥≤1

[
σ

(
1

N

N∑
i=1

∂xv(x, ξ
i);u

)
− σ(E[∂ϵ

xv(x, ξ)];u)

]
. (2.19)

Using the property of the support function (see e.g. [17]) and the definition of the Clarke

generalized gradient, we have

σ

(
1

N

N∑
i=1

∂xv(x, ξ
i);u

)
=

1

N

N∑
i=1

σ(∂xv(x, ξ
i);u) =

1

N

N∑
i=1

vo(x, ξi;u). (2.20)

On the other hand, by [25, Proposition 3.4],

σ(E[∂ϵ
xv(x, ξ)];u) = E[σ(∂ϵ

xv(x, ξ);u)]. (2.21)

Combining (2.19)–(2.21) , we have

sup
x∈X

D

(
1

N

N∑
i=1

∂xv(x, ξ
i),E[∂ϵ

xv(x, ξ)]

)
= sup

x∈X
sup
∥u∥≤1

[
1

N

N∑
i=1

vo(x, ξi;u)− E[σ(∂ϵ
xv(x, ξ);u)]

]

= sup
x∈X ,∥u∥≤1

[
1

N

N∑
i=1

vo(x, ξi;u)− E[σ(∂ϵ
xv(x, ξ);u)]

]
,

which immediately yields (2.17) through (2.18).

We are now ready to state the first order optimality conditions (Karush-Kuhn-Tucker con-

ditions) of the SAA problem (1.5) in terms of Clarke subdifferentials.

Theorem 2.4 (First order necessary conditions) Let zN ∈ Z0 be a local optimal solution

to the sample average approximation problem (1.5). Let Ẑ denote a compact set which contains

all cluster points of {zN}. Suppose: (a) Assumption 2.1 holds, (b) problem (1.3) satisfies the

differential constraint qualification at every point z ∈ Ẑ; (c) ∂zf(·, η) is upper semicontinuous

uniformly w.r.t. η. Then w.p.1 problem (1.5) satisfies the differential constraint qualification at

zN for N sufficiently large and there exists µN ∈ C ∗
+([a, b]) such that

0 ∈ ∇hN (zN ) +
∫ b
a ∂zfN (zN , η)µN (dη) +NZ0(zN ),

fN (zN , η) ≤ 0, ∀η ∈ [a, b],∫ b
a fN (zN , η)µN (dη) = 0.

(2.22)

Proof. Under the differential constraint qualification at z, there exist a constant δ > 0 and a

vector u ̸= 0 (which depends on z) such that

sup
ζ∈∂zf(z,η)

ζTu = fo(z, η;u) ≤ −δ.

11



In what follows, we show that

sup
η∈[a,b]

sup
ζ∈∂zfN (zN ,η)

ζTu ≤ −δ/2 (2.23)

w.p.1 for N sufficiently large, i.e., problem (1.5) satisfies the differential constraint qualification.

Let z ∈ Ẑ,

∂ϵ
zf(z, η) :=

∪
z′∈z+ϵB

∂zf(z
′, η)

and

fo
ϵ (z, η;u) := sup

ζ∈∂ϵ
zf(z,η)

ζTu.

The uniform upper semicontinuity of ∂zf(·, η) allows us to find a sufficiently small ϵ (de-

pending on z) such that

fo
ϵ (z

′, η;u) ≤ −3

4
δ,∀η ∈ [a, b]

for all z′ ∈ B(z, ρ), where B(z, ρ) denotes a closed neighborhood of z relative to Z0 and ρ

depends on z. Let Z̃ denote the closed ρ neighborhood of Ẑ relative to Z0. Applying Lemma 2.1

to Z̃, we can find an N0 such that

fo
N (z′, η;u)− fo

ϵ (z
′, η;u) ≤ δ

2
, ∀z′ ∈ Z̃ w.p.1

for N ≥ N0. Using this inequality, we have

sup
η∈[a,b]

sup
ζ∈∂zfN (zN ,η)

ζTu = sup
η∈[a,b]

fo
N (zN , η;u) ≤ sup

η∈[a,b]
fo
ϵ (zN , η;u) +

δ

2
≤ −δ

4

w.p.1 as long as zN ∈ B(z, ρ).

The discussions above show that for N sufficiently large, problem (1.5) satisfies the differen-

tial constraint qualification. By [13, Theorem 4], we obtain the first order optimality conditions

(2.22).

Note that in the case when H(z, ξ) is convex and G(z, ξ) is concave w.r.t. z for almost

every ξ ∈ Ξ, problems (1.3) and (1.5) become convex. Subsequently the differential constraint

qualification can be weakened to Slater constraint qualification. This is because Proposition 2.1

(iii) ensures the SAA problems satisfying Slater constraint qualification w.p.1 for N sufficiently

large and the first order necessary condition (2.22) follows straightforwardly from (2.15).

We call a tuple (zN , µN (·)) satisfying (2.22) a KKT pair of problem (1.5), zN a Clarke

stationary point and µN (·) the corresponding Lagrange multiplier.

We make a blanket assumption that throughout the rest of the paper the conditions of

Theorems 2.2 and 2.4 hold.

3 Almost sure convergence

Consider the sample average approximation problem (1.5). Assume that for each given sampling,

we solve the problem and obtain a stationary point zN which satisfies (2.22), we investigate

12



the convergence of zN as N increases. Note that there is a significant difference between the

convergence analysis here and that in [23] in that the latter was based on a penalized formulation

of problem (1.3). Generally speaking, there is a gap between stationarity of (1.3) and that of its

penalized problem, see a discussion at the end of [23, Theorem 3.13].

Assumption 3.1 There exists a compact subset Z × Ĉ ∗
+([a, b]) ⊂ Z0 ×C ∗

+([a, b]) and a positive

number N0 such that w.p.1 problem (1.5) has a KKT pair (zN , µN (·)) ∈ Z0 × Ĉ ∗
+([a, b]) for

N ≥ N0.

Assumption 3.1 is crucial in our main convergence result, Theorem 3.1. Therefore it would

be helpful to discuss how strong the assumption is.

First, let us consider the boundedness of zN . In many practical applications particularly in

portfolio optimization, Z0 is a compact set and hence zN is bounded. In the case when Z0 is

unbounded, sufficient conditions for the existence and boundedness of zN may be derived from

the property of the underlying functions, e.g., uniform coercivity. We will not discuss this as it

is not our main focus here. In the case when {zN} has a bounded subsequence w.p.1, we may

carry out our convergence analysis by focusing on the subsequence. We omit this for simplicity

of notation and clarity of presentation.

Next, we discuss the boundedness of µN . To simplify the discussion, we assume Z0 is com-

pact. We say problem (1.2) satisfies the no nonzero abnormal multipliers constraint qualification

(NNAMCQ) at point z ∈ Z0 if there is no multiplier µ ∈ C ∗
+([a, b]) such that ∥µ∥ ̸= 0 and

0 ∈
∫ b
a ∂zf(z, η)µ(dη) +NZ0(z),

0 ≥ f(z, η), ∀η ∈ [a, b],

0 =
∫ b
a f(z, η)µ(dη).

(3.24)

NNAMCQ is well known, see for instance Borwein [5]. In particular, Ye extensively exploited

the constraint qualification for studying the first order optimality conditions of mathematical

programs with equilibrium constraints (MPEC), see [37].

Here, we claim that the NNAMCQ is implied by the well-known extended MFCQ. To see

this, let z ∈ Z0 be a feasible point such that problem (1.2) satisfies the extended MFCQ at z.

Assume for the sake of a contradiction that there exists µ ∈ C ∗
+([a, b]) such that ∥µ∥ ≠ 0 and

(3.24) holds. Then there exists w(η) ∈ ∂zf(z, η) and u ∈ NZ0(z) such that

0 =

∫ b

a
w(η)µ(dη) + u.

Existence of w(η) follows from the definition of Aumann’s integral [2]. By the definition of

extended MFCQ, there exists d ∈ TZ0(z) such that dTw(η) < 0 for all η ∈ [a, b]. Since dTu ≤ 0,

we have from above equation that

dT 0 =

∫ b

a
dTw(η)µ(dη) + dTu < 0,

a contradiction.

The proposition below says that NNAMCQ guarantees the boundedness of µN .
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Proposition 3.1 Consider the SAA problem (1.5). Assume: (a) Z0 is compact, (b) prob-

lem (1.3) satisfies NNAMCQ at any cluster point of {zN} and f(z, η) is continuously differen-

tiable w.r.t. z at the cluster points for every η ∈ [a, b]. Then the sequence of the Langrange

multipliers {µN} is bounded w.p.1.

Proof. Since {(zN , µN )} is a sequence of KKT pairs of problem (1.5), then

0 ∈ ∇hN (zN ) +

∫ b

a
∂zfN (zN , η)µN (dη) +NZ0(zN ), (3.25)

fN (zN , η) ≤ 0 for all η ∈ [a, b] and
∫ b
a fN (zN , η)µN (dη) = 0, where µN ∈ C ∗

+([a, b]). Assume for

the sake of a contradiction that {µN} is unbounded, i.e., {∥µN∥} is unbounded. Then {∥µN∥}
has a subsequence which goes to infinity. Let µ̂N = µN/∥µN∥. Then ∥µ̂N∥ = 1. Since µ̂N is a

Borel measure defined on compact set [a, b], by Helly-Bray’s theorem (see Theorems 9.2.1-9.2.3

and Remark 9.2.1 in [3]), it has a weakly convergent subsequence. Moreover, since Z0 is a

compact set, zN has a subsequence converging to some point z∗ ∈ Z0. By taking a subsequence

if necessary, we may assume for the simplicity of notation that zN → z∗ and ∥µN∥ → ∞ and

µ̂N converges weakly to µ∗. Dividing both sides of (3.25) by ∥µN∥, we have

0 ∈ ∇hN (zN )/∥µN∥+
∫ b

a
∂zfN (zN , η)µ̂N (dη) +NZ0(zN ). (3.26)

By the definition of Aumann’s integral [2], there exists an integral selection ζN (η) ∈ ∂zfN (zN , η)

such that

0 ∈ ∇hN (zN )/∥µN∥+
∫ b

a
ζN (η)µ̂N (dη) +NZ0(zN ). (3.27)

Under Assumption 2.1 (a generic assumption we made at the end of Section 2), it follows from

Proposition 2.2 that ∇hN (zN ) → ∇E[H(z∗, ξ)] and hence

lim
N→∞

∇hN (zN )/∥µN∥ = 0.

Moreover, since Z0 is convex and closed, the normal cone operator NZ0(·) is upper semicontin-

uous, i.e.,

lim
N→∞

NZ0(zN ) ⊂ NZ0(z
∗).

In what follows, we show

δN := D
(∫ b

a
∂zfN (zN , η)µ̃N (dη),

∫ b

a
∂zf(z

∗, η)µ∗(dη)

)
→ 0. (3.28)

as N → ∞. In doing so, we will arrive at

0 ∈ 0 +

∫ b

a
∂zf(z

∗, η)µ∗(dη) +NZ0(z
∗),

a desired contradiction to our assumption that the true problem satisfies NNAMCQ at z∗.

Observe first that under condition (b), ∂zf(z
∗, η) is a singleton and coincides with {∇zf(z

∗, η)}.
The latter is continuous w.r.t. η. By [8, Proposition 2.1.2] and the definition of Aumann’s inte-

gral [2],
∫ b
a ∂zfN (zN , η)µ̂N (dη) is convex and compact set-valued. By Hörmander’s formula, we

can reformulate δN as:

δN = max
∥u∥≤1

[
σ

(∫ b

a
∂zfN (zN , η)µ̂N (dη), u

)
− σ

(∫ b

a
∇zf(z

∗, η)µ∗(dη), u

)]
14



where

σ

(∫ b

a
∇zf(z

∗, η)µ∗(dη), u

)
=

∫ b

a
uT∇zf(z

∗, η)µ∗(dη).

Moreover, it follows by [25, Proposition 3.4] that operation σ(·, u) and integration are exchange-

able which means

δN = max
∥u∥≤1

[∫ b

a
σ (∂zfN (zN , η), u) µ̂N (dη)−

∫ b

a
σ (∇zf(z

∗, η), u)µ∗(dη)

]
.

Through a simple rearrangement, we have

δN ≤
∫ b

a
max
∥u∥≤1

[(σ (∂zfN (zN , η), u)− σ (∇zf(z
∗, η), u)]µ̃N (dη)

+

∣∣∣∣max
∥u∥≤1

∫ b

a
σ (∇zf(z

∗, η), u) (µ̂N − µ∗)(dη)

∣∣∣∣ . (3.29)

Observe that σ (∇zf(z
∗, η), u) = ∇zf(z

∗, η)Tu is bounded and continuous in η uniformly w.r.t.

u for ∥u∥ ≤ 1. Therefore the weak convergence of µ̂N (·) to µ∗(·) implies

lim
N→∞

max
∥u∥≤1

∫ b

a
σ (∇zf(z

∗, η), u) (µ̂N − µ∗)(dη) = 0. (3.30)

In what follows, we show that

lim
N→∞

∫ b

a
max
∥u∥≤1

[σ (∂zfN (zN , η), u)− σ (∂zf(z
∗, η), u)] µ̂N (dη) ≤ 0, (3.31)

which is adequate to complete our proof in that (3.28) follows from a combination of (3.29)-

(3.31). From (2.7), we obtain through [25, Proposition 3.4]

σ(∇zf(z
∗, η), u) = E

[
σ(−∇zG(z∗, ξ)T∂p(η −G(z∗, ξ)), u)

]
.

On the other hand, since p(η −G(z, ξ))− p(η − Y (ξ)) is Clarke regular in z for any ξ,

∂zfN (zN , η) =
1

N

N∑
i=1

−∇zG(zN , ξi)T∂p(η −G(zN , ξi)).

Using the property of the support function (see e.g. [17]), we have

σ (∂zfN (zN , η), u) =
1

N

N∑
i=1

σ(−∇zG(zN , ξi)T∂p(η −G(zN , ξi)), u).

By virtue of [34, Theorem 4],

lim
N→∞

sup
(z,η)∈Z×[a,b]

D(∂zfN (z, η),E[−∇zG(z, ξ)T∂p(η −G(z, ξ))]) = 0,

which implies

lim
N→∞

σ (∂zfN (zN , η), u)− E
[
σ(−∇zG(z∗, ξ)T∂p(η −G(z∗, ξ)), u)

]
= 0

and hence (3.31). The proof is complete.

Proposition 3.1 gives a sufficient condition for Assumption 3.1. Xu and Zhang considered a

similar conditions in [36, Propossion 2.2] in the case when the number of constraints is finite.

We are now ready to state the main result in this section.
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Theorem 3.1 Let {(zN , µN (·))} be a sequence of KKT pairs of problem (1.5) and (z∗, µ∗(·)) be
a cluster point w.p.1. Suppose: (a) Assumptions 2.1 and 3.1 hold, (b) ∇2H(z, ξ) is integrably

bounded, (c) the support set Ξ of random vector ξ is bounded, (d) f(z, η) is continuously differ-

entiable w.r.t. z for every η ∈ [a, b]. Then w.p.1 (z∗, µ∗(·)) is a KKT pair of the true problem

(1.3), which satisfies the KKT system (2.9).

Proof. Assumption 3.1 guarantees the boundedness of sequence {(zN , µN (·))}. Assume without

loss of generality that (zN , µN (·)) converges to (z∗, µ∗(·)) as N → ∞. In view of the KKT

conditions (2.22) and (2.9), it suffices to show that w.p.1

lim
N→∞

[
∇hN (zN ) +

∫ b

a
∂zfN (zN , η)µN (dη) +NZ0(zN )

]
⊂ E[∇H(z, ξ)] +

∫ b

a
∂zf(z

∗, η)µ∗(dη) +NZ0(z
∗), (3.32)

lim
N→∞

fN (zN , η) = f(z∗, η) (3.33)

and

lim
N→∞

∫ b

a
fN (zN , η)µN (dη) =

∫ b

a
f(z∗, η)µ∗(dη). (3.34)

Under Assumption 2.1, it follows from Proposition 2.2 that fN (z, η) converges uniformly to

f(z, η) over Z0 × [a, b], which implies (3.33). Moreover, since µN (·) is bounded and f(z∗, η) is

continuous, it is easy to observe that (3.33) implies (3.34).

Let us look at (3.32). Under condition (a), the classical uniform law of large numbers ensures

that ∇hN (z) converges uniformly to E[∇zH(z, ξ)] over any compact subset of Z0, which implies

lim
N→∞

∇hN (zN ) = ∇E[H(z∗, ξ)], w.p.1.

On the other hand, upper semicontinuity of the normal cone implies

NZ0(zN ) ⊂ NZ0(z
∗).

Therefore we are left to show

lim
N→∞

∫ b

a
∂zfN (zN , η)µN (dη) ⊂

∫ b

a
∂zf(z

∗, η)µ∗(dη) (3.35)

w.p.1. This is similar to the proof of (3.28) in the proof of Proposition 3.1. We omit the details.

Note that if Assumption 3.1 in Theorem 3.1 is dropped, then sequence of the KKT pair of

the SAA problem may not have a cluster pair. However, if it does have a cluster pair, then we

can show that it is a KKT pair of the true problem w.p.1. This can be achieved by taking a

subsequence in the proof. We leave these to interested readers.
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4 Exponential rate of convergence

In this section, we take one step further from the analysis in preceding section to look into the

exponential rate of convergence of KKT pairs defined by (2.22). To this end, we investigate

uniform exponential rate of convergence of the set-valued mapping in the sample average ap-

proximated KKT system (2.22). One of the main technical difficulties that we need to tackle

with is the exponential rate of convergence of ∂zfN (z, η). We need some intermediate concepts

and results.

Definition 4.1 (Almost H-calmness) Let ϕ : IRn × Ξ → IR be a real valued function and

ξ : Ω → Ξ ⊂ IRk be a random vector defined on probability space (Ω,F , P ). Let X ⊂ IRn be

a closed subset of IRn and x ∈ X be a fixed point. ϕ is said to be almost H-calm at x with

modulus κx(ξ) and order γx if for any ϵ > 0, there exist a (measurable) function κx : Ξ → IR+,

positive numbers γx, δx(ϵ), C and an open set ∆x(ϵ) ⊂ Ξ such that

Prob(ξ ∈ ∆x(ϵ)) ≤ Cϵ (4.36)

and

|ϕ(x′, ξ)− ϕ(x, ξ)| ≤ κx(ξ)||x′ − x||γx

for all ξ ∈ Ξ\∆x(ϵ) and all x′ ∈ B(x, δx(ϵ))
∩

X . Here and later on, B(x, δ) denotes the δ-

neighborhood of x.

Let z ∈ IRn and G be defined as in (1.1). Define set

Ξ(z, η) := {ξ : G(z, ξ) = η, ξ ∈ Ξ}.

Let F be defined by (1.4). Obviously, Ξ(z, η) consists of the set of ξ such that F (·, η, ξ) is not

differentiable at z.

Lemma 4.1 Let Z ⊂ IRn be a compact subset of IRn, ξ be a continuous random variable and ν

be the Lebesgue measure relative to Ξ. Assume that Ξ(z, η) is compact and

∇ξG(z, ξ) ̸= 0 (4.37)

for ξ ∈ Ξ(z, η). Then ν(Ξ(z, η)) = 0. Moreover, for any ϵ > 0 and any fixed (z, η) ∈ Z × [a, b],

there exists an open set Ξϵ(z, η) (depending on all z, η and ϵ) such that Ξ(z, η) ⊂ Ξϵ(z, η) and

ν(Ξϵ(z, η) ∩ Ξ) ≤ ϵ.

Proof. Let (ẑ, η̂) be any fixed point in Z × [a, b] and ξ̂ ∈ Ξ(ẑ, η̂). Then η̂ − G(ẑ, ξ̂) = 0 and

by assumption, ∇ξG(ẑ, ξ̂) ̸= 0. Note that ξ is a q-dimensional vector in IRq. Let us write

ξ = (ξ1, · · · , ξq)T . Assume without loss of generality that ∂G(ẑ,ξ̂)
∂ξ1

̸= 0. By the classical implicit

function theorem, there exists a neighborhood of point (ẑ, η̂, ξ̂), denoted by B((ẑ, η̂, ξ̂), δẑ,η̂,ξ̂) and

a unique implicit function ξ1(z, η, ξ−1), where ξ−1 = (ξ2, · · · , ξq)T , such that ξ1(ẑ, η̂, ξ̂−1) = ξ̂1
and

η′ −G(z′, ξ1(z
′, η′, ξ′−1), ξ

′
−1) = 0
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for (z′, η′, ξ′−1) in the neighborhood of (ẑ, η̂, ξ̂−1).

We consider the implicit function r(ξ−1) := ξ1(ẑ, η̂, ξ−1) defined on Ξ. The graph of the func-

tion is a (q−1)-dimensional manifold on IRq relative to Ξ. We claim that under condition (4.37),

there exists a finite number of such manifolds in Ξ. Assume for a contradiction that there exists

an infinite number of such manifolds, denoted by {ξk1 (ẑ, η̂, ·)}. Let ξk := (ξk1 (ẑ, η̂, ξ
k
−1), ξ

k
−1) be

a point at the k-th manifold. Since Ξ is compact, by taking a subsequence if necessary, we may

assume for simplicity of notation that {ξk1 (ẑ, η̂, ξk−1)} → ξ∗1(ẑ, η̂, ξ
∗
−1), and ξ∗ ∈ Ξ(ẑ, η̂), which

means that in a neighborhood of ξ∗ = (ξ∗1 , ξ
∗
−1), there exists an infinite number of manifolds.

This is impossible under condition (4.37) as by the implicit function theorem there exists only

a unique such manifold in the neighborhood.

The discussion above shows that the Lebesgue measure of Ξ(ẑ, η̂) relative to Ξ is zero as

the Lebesgue measure of each manifold is 0 relative to Ξ. Moreover, there exists an open set

Ξϵ(ẑ, η̂) such that Ξ(ẑ, η̂) ⊂ Ξϵ(ẑ, η̂) and ν(Ξϵ(ẑ, η̂)) → 0 as ϵ ↓ 0. Since (ẑ, η̂) can be any point

in Z × [a, b], we complete the proof.

Proposition 4.1 Let Z ⊂ IRn be a compact subset of IRn, ξ be a continuous random variable

and F be defined by (1.4). Assume: (a) G(z, ξ) is twice continuously differentiable w.r.t. z for

almost every ξ ∈ Ξ; (b) there exists an integrable function κ : Ξ → R such that ∇zG(·, ξ) is

locally Lipschitz continuous with modulus κ(ξ) for every ξ ∈ Ξ; (c) Ξ(z, η) is compact and (4.37)

holds for ξ ∈ Ξ(z, η). Then

(i) E[F o
z (z, η, ξ;u)] is continuous w.r.t. (z, η, u) and it is uniformly continuous w.r.t. ξ if

G(x, ξ) is uniformly continuous w.r.t. ξ and Y (ξ) is continuous w.r.t. ξ;

(ii) if Ξ is compact, F o
z (z, η, ξ;u) is almost H-calm w.r.t. (z, η, u) with modulus κ(ξ) and order

1 on Z.

Proof. Part (i). The continuity argument is a well-known result. Indeed, in this case E[F (z, η, ξ)]

is continuously differentiable, see for instance [27, Theorem 1]. The uniform continuity w.r.t ξ

following from the fact that the max-function p(·) and the expectation E[·] preserve the uniform
continuity.

Part (ii). Let ϵ > 0 and (z̄, η̄) ∈ Z × [a, b] be fixed. Under condition (c), it follows

by Lemma 4.1 that there exists an open subset Ξϵ(z̄, η̄) such that Ξ(z̄, η̄) ⊂ Ξϵ(z̄, η̄) and

ν(Ξϵ(z̄, η̄)) ≤ ϵ. Let ξ̄ /∈ Ξϵ(z̄, η̄). Then two cases may occur: (a) η̄ − G(z̄, ξ̄) > 0, (b)

η̄ − G(z̄, ξ̄) < 0. We only consider the case that η̄ − G(z̄, ξ̄) > 0 as the other cases can be

dealt with in a similar way.

Under condition (b), we can find a δ-neighborhood of (z̄, η̄, ξ̄) (depending on z̄, η̄ and ξ̄),

denoted by B((z̄, η̄, ξ̄), δz̄,η̄,ξ̄), such that for all (z, η, ξ) ∈ B((z̄, η̄, ξ̄), δz̄,η̄,ξ̄) ∩ Z × [a, b] × Ξ,

η −G(z, ξ) > 0 and

|F o
z (z, η, ξ;u)− F o

z (z̄, η̄, ξ;u)| = |∇zG(z, ξ)Tu−∇zG(z, ξ)Tu| ≤ κ(ξ)||z − z̄||. (4.38)

Since Ξ\Ξϵ(z̄, η̄) is compact, we claim through the finite covering theorem that there exists a

unified δz̄,η̄ > 0 such that (4.38) holds for all (z, η) ∈ B(z̄, η̄, δx̄,η̄) and all ξ ∈ Ξ\Ξϵ(z̄, η̄). This

shows that F o
z (z, η, ξ;u) is almost H-calm with modulus κ(ξ) and order 1 over Z.
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Proposition 4.1 provides sufficient conditions for almost H-calmness. The key condition is

(c). Note that condition ∇ξG(z, ξ) ̸= 0 is easy to verify. The compactness of Ξ(z, η) is satisfied

in the following two obvious cases: 1. G(z, ξ) is polynomial in ξ; 2. G(z, ξ) is locally monotonic

in ξ for each fixed z. A simple example is portfolio optimization problem with second order

dominance constraints, where ξ is a continuous random variable, G(z, ξ) := zT ξ is a profit

function, Y (ξ) := z̄T ξ is benchmark profit function and H(z, ξ) := −G(z, ξ). It is easy to see

that all conditions of Proposition 4.1 are satisfied.

Theorem 4.1 (Uniform exponential convergence) Let Z be a nonempty compact subset

of Z0, F (z, η, ξ) be defined by (1.4) and f(z, η) = E[F (z, η, ξ)]. Let fN (z, η) be defined as in

(1.5). Suppose, in addition to conditions of Proposition 4.1, that: (a) ∇zH(z, ξ) and ∇zG(z, ξ)

are locally Lipschitz continuous for every ξ with modulus κ(ξ), where E[κ(ξ)] < ∞, and (b) the

support set of ξ is bounded. Let

ϑN (z, µ) := D
(
∇hN (z) +

∫ b

a
∂zfN (z, η)µ(dη),∇E[H(z, ξ)] +

∫ b

a
∂zf(z, η)µ(dη)

)
.

Then with probability approaching one exponentially fast with the increase of sample size N,

sup(z,µ)∈Z×Ĉ ∗
+([a,b]) ϑ

N (z, µ) tends to 0, where Ĉ ∗
+([a, b]) be a compact subset of C ∗

+([a, b]) and

µ ∈ Ĉ ∗
+([a, b]).

Proof. It is well-known that for sets A,B, D(A,B) = inft>0{t : A ⊂ B + tB}. Using this

equivalence definition, one can easily derive that D(A,B) ≤ D(A,C) + D(C,B) and D(A +

C,B + C) ≤ D(A,B) for any set C. Consequently, we have

ϑN (z, µ) ≤ D (∇hN (z),∇E[H(z, ξ)]) + D
(∫ b

a
∂zfN (z, η)µ(dη),

∫ b

a
∂zf(z, η)µ(dη)

)
.

Let

ϑN
f (z, µ) := D

(∫ b

a
∂zfN (z, η)µ(dη),

∫ b

a
∂zf(z, η)µ(dη)

)
.

Since both
∫ b
a ∂zfN (z, η)µ(dη) and

∫ b
a ∂zf(z, η)µ(dη) are convex and compact set-valued, we can

use the Hörmander’s formula (2.16) to reformulate ϑN
f as:

ϑN
f (z, µ) = max

∥u∥≤1

[
σ

(∫ b

a
∂zfN (z, η)µ(dη), u

)
− σ

(∫ b

a
∂zf(z, η)µ(dη), u

)]
.

Moreover, it follows by [25, Proposition 3.4], operation σ(·, u) and integration are exchangeable

which means

ϑN
f (z, µ) = max

∥u∥≤1

[∫ b

a
σ (∂zfN (z, η), u)µ(dη)−

∫ b

a
σ (∂zf(z, η), u)µ(dη)

]
≤

∫ b

a
sup
∥u∥≤1

[
1

N

N∑
i=1

F o
z (z, η, ξ

i;u)− E[F o
z (z, η, ξ;u)]

]
µ(dη), (4.39)

where F o
z (z, η, ξ;u) is Clarke generalized directional derivative of F (z, η, ξ) at point z in direction

u for a given η ∈ [a, b]. Let ∆N (z, u, η) := 1
N

∑N
i=1 F

o
z (z, ξ

i, η;u) − E[F o
z (z, ξ, η;u)]. Since
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Ĉ ∗
+([a, b]) is a compact set, there exists a positive number M such that supµ∈Ĉ ∗

+([a,b])

∫ b
a µ(dη) ≤

M . Consequently

Prob

 sup
µ∈Ĉ ∗

+([a,b])

sup
z∈Z

∫ b

a
sup
∥u∥≤1

∆N (z, u, η)µ(dη) ≥ α


≤ Prob

 sup
z∈Z,∥u∥≤1,η∈[a,b]

∆N (z, u, η) sup
µ∈Ĉ ∗

+([a,b])

∫ b

a
µ(dη) ≥ α


≤ Prob

{
M sup

z∈Z,∥u∥≤1,η∈[a,b]
∆N (z, u, η) ≥ α

}
. (4.40)

From Proposition 4.1 we know that F o
z (·, η, ξ;u) is almost H-calm with the same modulus

κ(ξ) as −∇zG(z, ξ) and order 1, and E[F o
z (z, η, ξ;u)] is a continuous function for every u ∈ IRn.

Under condition (b), the moment generating function

Mt(z) := E
[
e(F

o
z (z,η,ξ;u)−E[F o

z (z,η,ξ;u)])t
]

and

Mκ(t) := E
{
e[κ(ξ)−E[κ(ξ)]]t

}
are finite valued for t close to 0. By [33, Theorem 3.1], for any α > 0, there exists c1(α) > 0 and

β1(α) > 0 (independent of N) such that

Prob

{
sup

z∈Z,∥u∥≤1,η∈[a,b]

[
1

N

N∑
i=1

F o
z (z, η, ξ

i;u)− E[F o
z (z, η, ξ;u)]

]
≥ α

M

}
≤ c1(α)e

−Nβ1(α).

Combining the inequality above with (4.39) and (4.40), we have

Prob

 sup
(z,µ)∈Z×Ĉ ∗

+([a,b])

ϑN
f (z, µ) ≥ α


≤ Prob

{
sup

z∈Z,∥u∥≤1,η∈[a,b]

[
1

N

N∑
i=1

F o
z (z, ξ

i, η;u)− E[F o
z (z, ξ, η;u)]

]
≥ α

M

}
≤ c1(α)e

−β1(α)N . (4.41)

Let

ϑN
H(z) := ||∇E[H(z, ξ)]−∇hN (z)||.

By [32, Theorem 5.1] and conditions (a) and (b), we have, for any small positive number α > 0,

there exist positive constants c2(α) and β2(α) (independent of N) such that

Prob

{
sup
z∈Z

ϑN
H(z) ≥ α

}
= Prob

{
sup
z∈Z

∥∇E[H(z, ξ)]−∇hN (z)∥ ≥ α

}
≤ c2(α)e

−β2(α)N . (4.42)
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Combining (4.41) with (4.42), we can claim that for any small positive number α > 0, there

exists c(α) > 0 and β(α) > 0 (independent of N) such that

Prob

 sup
(z,µ)∈Z×Ĉ ∗

+([a,b])

ϑN (z, µ) ≥ 2α

 ≤ Prob

 sup
(z,µ)∈Z×Ĉ ∗

+([a,b])

ϑN
f (z, µ) ≥ α


+Prob

{
sup
z∈Z

ϑN
H(z) ≥ α

}
≤ c(α)e−β(α)N ,

where c(α) := c1(α) + c2(α) and β(α) := min(β1(α), β2(α)). The proof is complete.

Similar to the discussions in [32, 35], it is possible to estimate the constants c(α) and β(α),

and hence a more precise estimate of sample size under some additional conditions on the

moment functions. We leave this to interested readers as it involves complex technical details.

In the case when ξ is a discrete random variable, almost H-calmness is equivalent to H-

calmness over X ; see [35] for the definition of H-calmness. Unfortunately, here F o
z (z, η, ξ;u) is

not H-calm over X and Theorem 4.1 may not be applicable to the discrete case. However the

uniform exponential convergence may be established in an entirely different way for a class of

random function which is uniformly bounded over a considered compact set. We leave this to

interested readers.

In what follows, we translate the uniform exponential convergence established in Theorem 4.1

into exponential convergence of KKT pairs of the SAA problem (1.5). We do so by exploiting

a recent result on perturbation analysis of generalized equations [35, Lemma 4.2]. To this end,

we reformulate the KKT conditions of both true problem and the SAA problem as a system of

generalized equations.

Let

Γ(z, µ) :=

 ∇zE[H(z, ξ)] +
∫ b
a ∂zf(z, η)µ(dη)

f(z, ·)∫ b
a f(z, η)µ(dη)

 (4.43)

and

G(z, µ) :=

 NZ0(z)

C ∗
+([a, b])

0

 . (4.44)

Then we can rewrite (2.9) as

0 ∈ Γ(z, µ) + G(z, µ). (4.45)

Likewise, we can rewrite the KKT conditions of the SAA problem (2.22) as follows:

0 ∈ Γ̂N (z, µ) + G(z, µ), (4.46)

where

ΓN (z, µ) :=

 ∇zhN (z) +
∫ b
a ∂zfN (z, η)µ(dη)

fN (z, ·)∫ b
a fN (z, η)µ(dη)

 . (4.47)
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Theorem 4.2 Assume the settings and conditions of Theorem 4.1. Under Assumption 3.1, for

any α > 0, there exist positive constants C(α) and β(α) independent of N such that

Prob{d(zN , Z∗) ≥ α} ≤ C(α)e−Nβ(α),

where Z∗ denotes the set of weak Clarke stationary points characterized by (2.8).

Proof. The thrust of the proof is to apply Theorem 4.1 and [35, Lemma 4.2 (i)] (note that [35,

Lemma 4.2 (i)] was presented in finite dimensional space but the conclusion holds in Banach

space). To this end, we need to verify the upper semicontinuity of Γ(z, µ). This has been done

in [20], here we include proof for completeness.

Observe that Γ(z, µ) consists of three parts: ∇zE[H(z, ξ)] +
∫ b
a ∂zf(z, η)µ(dη), f(z, ·) and∫ b

a f(z, η)µ(dη). It suffices to verify upper semicontinuity of each part.

Let us start with the first part. Since H(·, ξ) is continuously differentiable for every ξ and

it is integrably bounded, then E[∇zH(z, ξ)] is continuous. In what follows, we show upper

semicontinuity of
∫ b
a ∂zf(z, η)µ(dη).

Let (z′, µ′), (z, µ) ∈ Z × C+([a, b]) and (z, µ) be fixed. Then

D
(∫ b

a
∂zf(z

′, η)µ′(dη),

∫ b

a
∂zf(z, η)µ(dη)

)
≤ D

(∫ b

a
∂zf(z

′, η)µ′(dη),

∫ b

a
∂zf(z, η)µ

′(dη)

)
+D

(∫ b

a
∂zf(z, η)µ

′(dη),

∫ b

a
∂zf(z, η)µ(dη)

)
.

By Hörmander’s formula (2.16) and [25, Proposition 3.4]

D
(∫ b

a
∂zf(z

′, η)µ′(dη),

∫ b

a
∂zf(z, η)µ

′(dη)

)
= sup

||u||≤1

(∫ b

a
[σ(∂zf(z

′, η), u)− σ(∂zf(z, η), u)]µ
′(dη)

)
≤ sup

||u||≤1,η∈[a,b]
[σ(∂zf(z

′, η), u)− σ(∂zf(z, η), u)]µ
′([a, b])

= sup
||u||≤1,η∈[a,b]

(
E[F o

z (z
′, η, u)]− E[F o

z (z, η, u)]
)
µ′([a, b])

By Proposition 4.1 (i), E[F o
z (z, η, u)] is a continuous function w.r.t. (z, η, u). Therefore

sup
||u||≤1,η∈[a,b]

[σ(∂zf(z
′, η), u)− σ(∂zf(z, η), u)] → 0

as z′ → z. Moreover, ∂zf(z, η) is single valued (indeed we could have written it as ∇zf(z, η)and

continuous w.r.t. (z, η), therefore ∂zf(z, η) is bounded by a constant over Z × [a, b]. Further, it

is easy to verify that ∂zf(z, η) is uniformly continuous w.r.t. η. By [22, Lemma 5.2],

D
(∫ b

a
∂zf(z, η)µ

′(dη),

∫ b

a
∂zf(z, η)µ(dη)

)
→ 0

as µ′ → µ. The discussions above show that
∫ b
a ∂zf(z, η)µ(dη) is upper semicontinuous w.r.t.

(z, µ). Finally, by the definition of f(z, ·), we have

||f(z, ·)− f(z′, ·)||∞ := sup
η∈[a,b]

||E[(η −G(z, ξ))+ − (η −G(z′, ξ))+]||

≤ E[|G(z, ξ)−G(z′, ξ)|]
≤ E[κ(ξ)]||z − z′||
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which implies continuity of f(z, ·) w.r.t. z.

5 Concluding remarks

In this paper, we present a detailed convergence analysis of sample average approximation of

stochastic programs with second order dominance constraints. SAA is relevant in a number of

cases, e.g., the distribution of random variable is unknown or it is difficult to obtained a closed

form of the expected value of random functions in the true problem, or the random variable

satisfies a continuous distribution.

Our analysis essentially consists of two parts: almost sure convergence and exponential

convergence. Our focus is on stationary points which include optimal solutions. The almost sure

convergence results show asymptotic consistency of the statistical estimators of the stationary

points. The exponential convergence demonstrates rate of convergence of the sample average

approximation. The latter is often used to estimate the sample size in order for the SAA solution

to satisfy a specified precision. In other words, the convergence results in this paper give rise

to the justification of SAA and demonstrate the efficiency of the approximation method. From

numerical perspective, SAA is just a discretization approach. Over the past few years, a number

of powerful numerical methods such as cutting plane methods, level function methods have

been proposed to solve stochastic programs with second order dominance constraints where the

underlying random variable satisfies finite discrete distribution, see for instance [18, 15, 24, 21]. It

is unclear whether these numerical methods can be directly applied to the continuous distribution

case and this work effectively addresses the gap, that is, these methods can be applied to solve

the SAA problem.

Our analysis complements the recent work by Hu, Homem-de-Mello and Mehrotra [19] which

showed almost sure convergence of optimal solutions of the SAA problem. In the case when

the problem is convex, stationary points coincide with optimal solutions, therefore under the

Slater condition, our almost sure convergence result, namely Theorem 3.1, may be recovered

by [19, Theorem 3.1]. Note that Hu, Homem-de-Mello and Mehrotra [19] derived exponential

convergence of ϵ-feasible set. Our understanding is that under some appropriate conditions (e.g.

metric regularity of the constraints), this implies exponential convergence of optimal solution

of the SAA problem to the set of ϵ-optimal solutions of the true problem. The exponential

convergence result in this paper, namely Theorem 4.1, is derived for stationary points including

optimal solutions and we show that the cluster point of the SAA stationary points is precisely a

stationary point of the true problem, not just a ϵ-stationary point. The set of ϵ-stationary points

(optimal solutions) contains the set of stationary points (optimal solutions) but the former might

be much larger than the latter in stationary case even when ϵ is small.
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[21] G. Rudolf and A. Ruszczyński, Optimization problems with second order stochastic dom-

inance constraints: duality, compact formulations, and cut generation methods, SIAM J.

Optim., Vol. 19, pp. 1326-1343, 2008.

[22] Y. Liu, H. Xu and G.H. Lin, Stability analysis of two stage stochastic mathematical pro-

grams with complementarity constraints via NLP-Regularization, SIAM J. Optim., Vol. 21,

pp. 669-705, 2011.

[23] Y. Liu and H. Xu, Stability and sensitivity analysis of stochastic programs with second

order dominance constraints, Stochastic Programming E-pirnt, 2010.

[24] R. Meskarian, H. Xu and J. Fliege, Numerical methods for stochastic programs with second

order dominance constraints with applications to portfolio optimization, European J. Oper.

Res., Vol. 216, pp. 376-385, 2011.

[25] N.S. Papageorgiou, On the theory of banach space valued multifunctions. I: Integration and

conditional expectation, J. Multivariate Anal., Vol. 17, pp. 185-206, 1985.

[26] E. Polak, On the mathematical foundations of nondifferentiable optimization in engineering

design, SIAM Rev., Vol. 29, pp. 21-91, 1987.

[27] L. Qi, A. Shapiro and C. Ling, Differentiability and semismoothness properties of integral

functions and their applications, Math. Program., Vol. 102, pp. 223-248, 2005.

[28] S. M. Robinson, Analysis of sample-path optimization, Math. Oper. Res., Vol. 21, pp. 513-

528, 1996.
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