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Abstract. In this paper we present stability analysis of a stochastic optimization problem with
stochastic second order dominance constraints. We consider perturbation of the underlying
probability measure in the space of regular measures equipped with pseudometric discrepancy
distance ( [36]). By exploiting a result on error bound in semi-infinite programming due to
Gugat [14], we show under the Slater constraint qualification that the optimal value function is
Lipschitz continuous and the optimal solution set mapping is upper semicontinuous with respect
to the perturbation of the probability measure. In particular, we consider the case when the
probability measure is approximated by empirical probability measure and show the exponential
rate of convergence of optimal solution obtained from solving the approximation problem. The
analysis is extended to the stationary points.
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1 Introduction

Stochastic dominance is a fundamental concept in decision theory and economics [27]. For two
random variables ξ1(ω) and ξ2(ω) defined on probability space (Ω,F , P ) with finite expected
values, ξ1(ω) is said to dominate ξ2(ω) in the second order, denoted by ξ1(ω) º2 ξ2(ω), if

∫ η

−∞
P{ω ∈ Ω : ξ1(ω) ≤ t}dt ≤

∫ η

−∞
P{ω ∈ Ω : ξ2(ω) ≤ t}dt, ∀η ∈ IR. (1)

By changing the order of integration in (1), the second order dominance can be mathematically
reformulated as:

EP [(t− ξ1(ω))+] ≤ EP [(t− ξ2(ω))+], ∀t ∈ IR. (2)

Here and later on (·)+ denotes the plus function, that is, (x)+ := max{x, 0}.
In this paper, we consider the following stochastic programs with stochastic second order
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dominance (SSD) constraints:

min
x

EP [f(x, ξ(ω))]

s.t. G(x, ξ(ω)) º2 Y (ξ(ω)),
x ∈ X,

(3)

where X is a nonempty compact subset of IRn, ξ : Ω → Ξ is a vector of random variables defined
on probability space (Ω,F , P ) with support set Ξ ⊂ IRm, f, G : IRn × Ξ → IR are Lipschitz
continuous functions and for every ξ ∈ Ξ, G(·, ξ) : IRn → IR is concave; Y (ξ(ω)) is a random
variable, and EP [·] denotes the expected value with respect to the probability (P ) distribution of
ξ. For the simplicity of discussion, we make a blanket assumption that f and G are P -integrable.

Using the equivalent formulation of the second order dominance constraint (2), problem (3)
can be written as a stochastic semi-infinite programming (SSIP) problem:

min
x

EP [f(x, ξ(ω))]

s.t. EP [(t−G(x, ξ(ω)))+] ≤ EP [(t− Y (ξ(ω)))+], ∀t ∈ IR,

x ∈ X.

(4)

Stochastic optimization models with SSD constraints were introduced by Dentcheva and Ruszczyński
[9, 10]. Over the past few years, there has been increasing discussions on the subject ranging
from optimization theory, numerical methods and practical applications, see [8–13,18,20,23] and
references therein.

It is well-known that the SSIP problem above does not satisfy the well-known Slater’s con-
straint qualification, a condition that a stable numerical method may rely on. Subsequently, a
so-called relaxed form of the SSIP is proposed:

min
x

EP [f(x, ξ(ω))]

s.t. EP [H(x, t, ξ(ω))] ≤ 0, ∀t ∈ T,

x ∈ X,

(5)

where
H(x, t, ξ(ω)) := (t−G(x, ξ(ω)))+ − (t− Y (ξ(ω)))+

and T is a compact subset of IR. In the literature [9–11], T is a closed interval or the union of
a finite number of closed intervals in IR.

Our focus in this paper is on the stability analysis of problem (5). Specifically, we are
concerned with the impact of the changes of probability measure P in the problem on optimal
values and optimal solutions. The analysis is inspired by a recent work [8] on the stability and
sensitivity analysis of optimization problems with first order stochastic dominance constraints
and is in line with the traditional stability analysis in the literature of deterministic nonlinear
programming and stochastic programming [15,16,21,22,30,32,33,36,37].

From practical viewpoint, this kind of stability analysis is motivated by the fact that in
applications either the probability distribution of P is not known or a closed form of the expected
value of the underlying random functions w.r.t. P is difficult to obtain and consequently the
probability measure/distribution may have to be approximated. Stability analysis of problem
(5) focuses on the impact on optimal value and optimal solutions resulting from a perturbation
of P [30]. A particularly interesting case is when the probability measure is approximated by
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empirical probability measure. In such a case, expected value of the underlying functions are
approximated through sample averaging. As far as we are concerned, the contribution of this
work can be summarized as follows.

• We carry out stability analysis for problem (5). Specifically, we consider the case when
the underlying probability measure P is approximated by a set of probability measures
under pseudometric. By exploiting an error bound in semi-infinite programming due to
Gugat [14], we show under the Slater condition that the feasible solution set mapping is
Lipschitz continuous, the optimal solution set mapping is upper semicontinuous, and the
optimal value function is Lipschitz-like (calm). Moreover, when the objective function
satisfies certain growth conditions, we show upper semi-continuity of the optimal set-
valued mapping. This complements the existing research [8] which focuses on the stability
analysis of stochastic optimization problems with first order dominance constraints.

• We consider a special case when the probability measure P is approximated by empirical
probability measure (which is also known as sample average approximation (SAA)) and
present a detailed analysis on the convergence of optimal solution and stationary point
obtained from solving the sample average approximate optimization problems as sample
size increases. Specifically, we show the exponential rate of convergence of optimal solution
and almost sure convergence of stationary point as sample size increases. SAA is a popular
method in stochastic programming, but there seems to be few discussions on SAA for
stochastic programs with SSD constraints. The only exception is a recent work by Hu
et al [20] which discusses the cutting plane method for sample average approximated
optimization problems with SSD constraints.

• Our convergence analysis is carried out through exact penalization of (5) (see (11)). The
penalty formulation may provide a potential numerical framework for solving (5). During
the revision of this paper, some progresses in this regard have been made, see [25].

The rest of the paper are organized as follows. In section 2, we investigate the stability of
the set of optimal solutions and optimal value as probability measure changes. In section 3, we
consider a special case when the original probability measure is approximated by a sequence of
empirical probability measures.

Throughout this paper, we use the following notation. For vectors a, b ∈ IRn, aT b denotes
the scalar product, ‖ · ‖ denotes the Euclidean norm of a vector, ‖ · ‖∞ denotes the maximum
norm of continuous functions defined over compact set T . d(x,D) := infx′∈D ‖x − x′‖ denotes
the distance from a point x to a set D. For two compact sets C and D,

D(C,D) := sup
x∈C

d(x,D)

denotes the deviation of C from D and H(C,D) := max (D(C,D),D(D, C)) denotes the Hausdorff
distance between C and D. Moreover, C + D denotes the Minkowski addition of the two sets,
that is, {C + D : C ∈ C, D ∈ D}, B(x, γ) denotes the closed ball with center x and radius γ, B
denotes the closed unit ball in the respective space.
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2 Stability analysis

Let P(Ω) denote the set of all Borel probability measures. For Q ∈ P(Ω), let EQ[ξ] =∫
Ω ξ(ω)dQ(ω) denote the expected values of random variable ξ with respect to the distribu-

tion of Q. Assuming Q is close to P under some metric to be defined shortly, we investigate in
this section the following optimization problem:

min
x

EQ[f(x, ξ(ω))]

s.t. EQ[H(x, t, ξ(ω))] ≤ 0, ∀t ∈ T,

x ∈ X,

(6)

which is regarded as a perturbation of (5). Specifically, we study the relationship between the
perturbed problem (6) and true problem (5) in terms of optimal values and optimal solutions
when Q is close to P . Of course, we restrict our discussion to the probability measure Q such
that the expected values of the enderlying functions in (6) are well defined for all x ∈ X.

Let us start by introducing a distance function for the set P(Ω), which is appropriate for
our problem. Define the set of functions:

G := {g(·) := H(x, t, ·) : x ∈ X, t ∈ T} ∪ {g(·) := f(x, ·) : x ∈ X}.

The distance function for the elements in set P(Ω) is defined as:

D(P, Q) := sup
g∈G

∣∣EP [g]− EQ[g]
∣∣.

This type of distance is considered by Römisch [36, Section 2.2] for the stability analysis of
stochastic programming and is called pseudometric. It is well-known that D is nonnegative,
symmetric and satisfies the triangle inequality, see [36, Section 2.1] and the references therein.
Throughout this section, we use the following notation:

F(Q) :=
{
x ∈ X : EQ[H(x, t, ξ)] ≤ 0, ∀t ∈ T

}
,

ϑ(Q) := inf
{
EQ[f(x, ξ)] : x ∈ F(Q)

}
,

Sopt(Q) :=
{
x ∈ F(Q) : ϑ(Q) = EQ[f(x, ξ)]

}
,

PG (Ω) :=
{

Q ∈ P(Ω) : −∞ < inf
g(ξ)∈G

EQ[g(ξ)] and inf
g(ξ)∈G

EQ[g(ξ)] < ∞
}

.

It is easy to observe that for P, Q ∈ PG (Ω), D(P, Q) < ∞. Throughout this section, the
perturbed probability measure Q in problem (6) is taken from PG (Ω).

In what follows, we discuss the quantitative continuity of optimal solution set mapping
and optimal value function of problem (6). We do so by applying Klatte’s earlier stability
result of parametric nonlinear programming [21, 22], which was used by Dentcheva, Henrion
and Ruszczyński for the stability analysis of optimization problems with first order dominance
constraints [8]. A key condition in Klatte’s stability result is the pseudo-Lipschitz property of
the feasible set mapping. Here we derive the property by exploiting an important result on
error bound in semi-infinite programming established by Gugat in [14]. To this end, we need to
introduce some definitions and technical results most of which are translated from deterministic
semi-infinite programming in [14].
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Definition 2.1 Problem (5) is said to satisfy weak Slater condition, if there exist positive num-
bers α and M such that for any x ∈ X with max

t∈T
(EP [H(x, t, ξ)])+ ∈ (0,M) there exists a point

x∗ with EP [H(x∗, t, ξ)] < max
t∈T

(EP [H(x, t, ξ)])+ for all t ∈ T and

‖x− x∗‖ ≤ α

[
max
t∈T

(EP [H(x, t, ξ)])+ −max
t∈T

EP [H(x∗, t, ξ)]
]

.

Definition 2.2 Problem (5) is said to satisfy strong Slater condition, if there exists a positive
number γ such that for any feasible point x satisfying EP [H(x, t, ξ)] = 0 for some t ∈ T there
exists a point z(x) with EP [H(z(x), t, ξ)] < 0 for all t ∈ T and

‖x− z(x)‖ ≤ γ min
t∈T

(−EP [H(z(x), t, ξ)]) .

Definition 2.3 Problem (5) is said to satisfy Slater condition if there exist a positive number
δ̄ and a point x̄ ∈ X such that

max
t∈T

EP [H(x̄, t, ξ)] ≤ −δ̄.

Note that the strong Slater condition implies that the weak Slater condition holds for any
M > 0 and α = γ, where M is given in Definition 2.1. Since X is a compact, the Slater
condition implies the strong Slater condition and then the positive number γ in Definition 2.2
can be estimated by

γ =: sup
x∈X

‖x− x̄‖
mint∈T −EP [H(x̄, t, ξ)]

. (7)

See [14, Propositions 1 and 2] for details about the relationship.

Proposition 2.4 Assume problem (5) satisfies the Slater condition. Let δ̄ be given as in Defi-
nition 2.3. Then there exists a positive number ε (ε ≤ δ̄/2) such that for any Q ∈ B(P, ε)

max
t∈T

EQ[H(x̄, t, ξ)] ≤ −δ̄/2,

where x̄ is given as in Definition 2.3, that is, the perturbed problem (6) satisfies the Slater
condition.

Proof. By the definition of pseudometric distance D ,

sup
t∈T

|EP [H(x, t, ξ)]− EQ[H(x, t, ξ)]| ≤ D(Q,P ), ∀x ∈ X.

Let Q ∈ B(P, δ̄/2). Then

sup
t∈T

EQ[H(x̄, t, ξ)] ≤ sup
t∈T

EP [H(x̄, t, ξ)] + sup
t∈T

|EP [H(x̄, t, ξ)]− EQ[H(x̄, t, ξ)]|

≤ −δ̄ + δ̄/2

= −δ̄/2.
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The proof is complete.

By [14, Lemmas 3 and 6] and Proposition 2.4, we can obtain the following uniform error
bound, for the feasible set mapping F(Q) of problem (6).

Lemma 2.5 Assume problem (5) satisfies the Slater condition. Then there exist positive num-
bers ε and β such that for any Q ∈ B(P, ε), the following error bound holds:

d(x,F(Q)) ≤ β
∥∥(EQ[H(x, t, ξ)])+

∥∥
∞, ∀x ∈ X,

where F(Q) denotes the feasible set of problem (6).

Proof. Let ε be given as in Proposition 2.4. For any fixed Q ∈ B(P, ε), we have by [14, Lemmas
3 and 6] that

d(x,F(Q)) ≤ γ(Q)
∥∥(EP [H(x, t, ξ)])+

∥∥
∞,

where
γ(Q) =: sup

x∈X

‖x− x̄‖
mint∈T −EQ[H(x̄, t, ξ)]

,

and x̄ is given in Definition 2.3. By Proposition 2.4, for Q ∈ B(P, ε), EQ[H(x̄, t, ξ)] ≤ −δ̄/2,

where δ̄ is given in Definition 2.3. This gives

γ(Q) ≤ 2
δ̄

max
x′,x′′∈X

‖x′ − x′′‖.

The conclusion follows by setting β := 2
δ̄
maxx′,x′′∈X ‖x′ − x′′‖ and the boundedness of X.

Note that this kind of error bound in well known in convex programming, see a pioneering
work by Robinson [31]. Here we follow the recent development in [14] as our problem falls well
into the framework of semi-infinite programming.

Proposition 2.6 Assume that problem (5) satisfies the Slater condition. Then

(i) the solution set Sopt(P ) is nonempty and compact;

(ii) the graph of the feasible set mapping F(·) is closed;

(iii) there exists a positive number ε such that the feasible set mapping F(Q) is Lipschitz con-
tinuous on B(P, ε), that is,

H (F(Q1),F(Q2)) ≤ βD(Q1, Q2), ∀Q1, Q2 ∈ B(P, ε),

where β is a considered defined in Lemma 2.5.

Proof. Part (i) follows from the Slater condition, compactness of X and the continuity of f .

Part (ii). Let t ∈ T be fixed. It follows by virtue of [36, Propositions 3 and 4] that
EQ[H(x, t, ξ)] : X × (G , D) → IR is lower semicontinuous. Let QN → Q, xN ∈ F(QN ) and
xN → x∗. Then

EQ[H(x∗, t, ξ)] ≤ lim inf
N→∞

EQN
[H(xN , t, ξ)] ≤ 0, ∀t ∈ T,
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which implies that x∗ ∈ F(Q).

Part (iii). Let ε be given by Lemma 2.5 and Q1, Q2 ∈ B(P, ε). Observe that for any
x ∈ F(Q1), (EQ1 [H(x, t, ξ)])+ = 0, for all t ∈ T . By Lemma 2.5, there exists a positive constant
β such that for any x ∈ F(Q1)

d(x,F(Q2)) ≤ β
∥∥∥(EQ2 [H(x, t, ξ)])+

∥∥∥
∞

= β

(
max
t∈T

(EQ2 [H(x, t, ξ)])+ −max
t∈T

(EQ1 [H(x, t, ξ)])+

)

≤ β max
t∈T

(
(EQ2 [H(x, t, ξ)])+ − (EQ1 [H(x, t, ξ)])+

)

≤ β max
t∈T

∣∣EQ2 [H(x, t, ξ)]− EQ1 [H(x, t, ξ)]
∣∣

≤ β max
(x,t)∈X×T

∣∣EQ2 [H(x, t, ξ)]− EQ1 [H(x, t, ξ)]
∣∣

≤ βD(Q1, Q2),

which implies D(F(Q1),F(Q2)) ≤ βD(Q1, Q2). In the same manner, we can show that for any
x ∈ F(Q2),

d(x,F(Q1)) ≤ β

(
max
t∈T

(EQ1 [H(x, t, ξ)])+ −max
t∈T

(EQ2 [H(x, t, ξ)])+

)
≤ βD(Q2, Q1),

which yields D(F(Q2),F(Q1)) ≤ βD(Q1, Q2). Summarizing the discussions above, we have

H
(F(Q1),F(Q2)

)
= max

{
D

(F(Q1),F(Q2)
)
,D

(F(Q2),F(Q1)
)} ≤ βD(Q1, Q2).

The proof is complete.

Recall that a set-valued mapping Γ : IRm ⇒ IRn is said to be upper semi-continuous at y in
the sense of Berge if for any ε > 0, there exists a number δ > 0 such that

Γ(y′) ⊆ Γ(y) + εB, ∀y′ ∈ y + δB,

where B denotes the closed unit ball in the respective space. It is said to be Lipschitz continuous
near y if there exists a constant L such that

H(Γ(y′), Γ(y′′)) ≤ L‖y′ − y′′‖, ∀y′, y′′ ∈ y + δB.

See [35, page 368].

Proposition 2.6 (iii) says that the feasible set mapping of problem (6) is Lipschitz continuous
with respect to probability measure over set B(P, ε). Using this property, we are ready to
establish our main stability results.

Theorem 2.7 Assume that problem (5) satisfies the Slater condition. Assume also that the
Lipschitz modulus of f(x, ξ) w.r.t. x is bounded by an integrable function κ(ξ) > 0. Then

(i) there exists ε′ > 0 such that the optimal solution set of problem (6), denoted by Sopt(Q),
is not empty for Q ∈ B(P, ε′);

(ii) Sopt(·) is upper semi-continuous at point P in the sense of Berge;
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(iii) there exist positive numbers ε∗ and L∗ such that the optimal value function of problem
(6), denoted by ϑ(Q), is continuous at point P and satisfies the following Lipschitz-like2

estimation:
|ϑ(Q)− ϑ(P )| ≤ L∗D(Q,P ), ∀Q ∈ B(P, ε∗).

Proof. Under the Slater condition, it follows from Proposition 2.6 that there exists positive
number ε such that the feasible set mapping F(·) is Lipschitz continuous on B(P, ε). The
rest follows straightforwardly from [22, Theorem 1] ( [30, Theorem 2.3] or [8, Theorem 2.1] in
stochastic programming). The proof is complete.

Theorem 2.7 says that the optimal solution set mapping Sopt(·) is nonempty near P and
upper semi-continuous at P . In order to quantify the upper semi-continuity of Sopt(·), we need
some growth condition of the objective function of problem (5) in a neighborhood of Sopt(P ).
Instead of imposing a specific growth condition, here we consider a general growth function

Ψ(ν) := min{EP [f(x, ξ)]− s∗ : d(x, Sopt(P )) ≥ ν, x ∈ X} (8)

of problem (5), and the associated function

Ψ̃(v) := v + Ψ−1(2v),

where s∗ denotes the optimal value of problem (5) and ν, v ∈ IR+. This kind of growth function is
well known, see for instance [30,35]. The following corollary quantifies the upper semicontinuity
of Sopt(·) near P .

Corollary 2.8 Let the assumptions of Theorem 2.7 hold. Then there exist positive constants L

and ε such that
∅ 6= Sopt(Q) ⊆ Sopt(P ) + Ψ̃ (LD(Q, P ))B,

for any Q ∈ B(P, ε), where B denotes the closed unit ball.

We omit the proof as it is similar to that of [30, Theorem 2.4]. See also [35, Theorem 7.64]
for earlier discussions about functions Ψ(·) and Ψ̃(·). Discussions on a particular form of Ψ̃ can
be found in [4,40] when the growth is of second order. We will come back to this in Lemma 3.8.

3 Empirical probability measure

In this section, we consider a special case when the probability measure P is approximated by
a sequence of empirical measures PN defined as

PN :=
1
N

N∑

k=1

1ξk(ω),

where ξ1, · · · , ξN is an independent and identically distributed sampling of ξ and

1ξk(ω) :=

{
1, if ξ(ω) = ξk,

0, if ξ(ω) 6= ξk.

2The property is also known as calmness of ϑ at P , see Section F in [35, Chapter 8] for general discussions on

calmness.
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In this case

EPN
[f(x, ξ)] =

1
N

N∑

k=1

f(x, ξk)

and

EPN
[H(x, t, ξ)] =

1
N

N∑

k=1

H(x, t, ξk).

It follows from the classical law of large numbers in statistics, EPN
[f(x, ξ)] and EPN

[H(x, t, ξ)]
converge to EP [f(x, ξ)] and EP [H(x, t, ξ)] respectively as N increases. This kind of approxi-
mation is well-known in stochastic programming under various names such as sample average
approximation, Monte Carlo method, sample path optimization, stochastic counterpart etc,
see [17,34,42,45] and the references therein.

For the simplicity of notation, we use fN (x) and HN (x, t) to denote EPN
[f(x, ξ)] and

EPN
[H(x, t, ξ)]. Consequently we consider the following approximation of problem (5):

min
x

fN (x) := 1
N

∑N
k=1 f(x, ξk)

s.t. HN (x, t) := 1
N

∑N
k=1 H(x, t, ξk) ≤ 0, ∀t ∈ T,

x ∈ X.

(9)

We call (9) the SAA problem and (5) the true problem.

Assuming that we can obtain an optimal solution, denoted by xN , by solving the SAA
problem, we analyze the convergence of xN as the sample size increases. The analysis will be
very complicated if it is carried out on (9) directly because the constraints of the SAA problem
depend on the sampling. To get around the difficulty as well as the infinite number of constraints,
we consider a reformulation of both the true and the SAA problem through exact penalization of
the stochastic constraints to the objective. In doing so, the feasible set of the penalized problems
are deterministic and we only need to analyze the convergence of the the objective functions.

For the simplicity of notation, let

h(x, t) := max
{
EP [H(x, t, ξ)], 0

}
, θ(x) := max

t∈T
h(x, t). (10)

It is easy to observe that

h(x, t) = (EP [H(x, t, ξ)])+ and θ(x) = ‖(EP [H(x, t, ξ)])+‖∞.

Consider the exact penalization:

min
x

ψ(x, ρ) := EP [f(x, ξ)] + ρθ(x)

s.t. x ∈ X,
(11)

where ρ > 0 is a penalty parameter. This kind of penalization is well documented in the
literature, see for instance [29, 43]. In what follows, we establish the equivalence between (5)
and (11) in the sense of optimal solutions. We do so by exploiting the error bound established
in Lemma 2.5 and a well-known result by Clarke [6, Proposition 2.4.3]. We need the following
assumptions.

Assumption 3.1 f(x, ξ) and G(x, ξ) are locally Lipschitz continuous w.r.t. x and their Lips-
chitz modulus are bounded by an integrable function κ(ξ) > 0.
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Theorem 3.2 Assume that the true problem (5) satisfies the Slater condition. Under Assump-
tion 3.1, there exists a positive number ρ̄ such that for any ρ > ρ̄, the sets of optimal solutions
of problems (5) and (11), denoted by Sopt and Xopt respectively, coincide.

Proof. Under the Slater condition, it follows by Lemma 2.5 that there exists a constant β > 0
such that

d(x,F(P )) ≤ β
∥∥(EP [H(x, t, ξ)])+

∥∥
∞ = βθ(x), ∀x ∈ X.

Let C := EP [κ(ξ)]. Under Assumption 3.1, C < ∞ and the Lipschitz modulus of EP [f(x, ξ)] is
bounded by C. Let ρ be a positive constant such that ρ > βC. Clarke’s exact penalty function
theorem [6, Proposition 2.4.3] ensures that the two optimal solution sets, Sopt and Xopt, coincide.
This shows the existence of a positive constant ρ̄ := βC. The proof is complete.

We now move on to discuss the exact penalization of the SAA problem (9). Let

hN (x, t) := (HN (x, t))+ = max
{
HN (x, t), 0

}

and

θN (x) := max
t∈T

hN (x, t) = ‖(HN (x, t))+‖∞. (12)

Consider the SAA penalty problem

min
x

ψN (x, ρN ) := fN (x) + ρNθN (x)

s.t. x ∈ X,
(13)

where ρN > 0 is a penalty parameter.

Under Assumption 3.1, we know from [38, Section 6,Proposition 7] that HN (x, t) converges
to EP [H(x, t, ξ)] uniformly over compact set X × T w.p.1. Since the true problem (5) satisfies
the Slater condition, there exists a sufficiently large N∗ such that for any N ≥ N∗

HN (x̄, t) ≤ −δ̄/2, ∀t ∈ T, w.p.1,

where x̄ and δ̄ are given in Definition 2.3. Subsequently, by Lemma 2.5, we obtain that for any
N ≥ N∗,

d(x,FN ) ≤ β
∥∥(HN (x, t))+

∥∥
∞ = βθN (x), ∀x ∈ X, (14)

w.p.1, where FN denotes the feasible set of problem (9).

Proposition 3.3 Assume that the true problem (5) satisfies the Slater condition. Then there
exist positive numbers ρ∗ and N∗ such that for any ρ > ρ∗ and N ≥ N∗, the sets of optimal
solutions of problems (9) and (13), denoted by SN

opt and XN
opt respectively, coincide w.p.1.

Proof. Following the discussions above, there exist a positive constant β and a sufficiently large
positive integer N1 such that for any N ≥ N1, (14) holds w.p.1. Let CN denote the Lipschitz
modulus of function fN (x). By [6, Proposition 2.4.3], for any ρ > βCN , the two optimal solution
sets, SN

opt and XN
opt, coincide. Moreover, under Assumption 3.1, CN converges to the Lipschitz

modulus of E[f(x, ξ)] and is bounded by E[κ(ξ)]. This implies that there exists a positive integer
N2 ≥ N1 such that when N ≥ N2, we have CN < C + 1, that is, CN is bounded w.p.1. The
conclusion follows by taking ρ∗ = β(C + 1) and N∗ = max{N1, N2}.
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3.1 Optimal solution

Assuming for every fixed sampling, we can obtain an optimal solution, denoted by xN , from
solving the SAA problem (9), we analyze the convergence of xN as the sample size N increases.
We do so by establishing uniform convergence of the objective function of problem (13) to the
objective function of problem (11). Asymptotic convergence analysis of optimal values and
optimal solutions are well known in stochastic programming. Our analysis differs from those in
the literature in that it is carried out through exact penalization.

Proposition 3.4 Let Assumption 3.1 hold. Then

(i) ψ(x, ρ) and ψN (x, ρN ), N = 1, 2, · · · , are Lipschitz continuous;

(ii) if ρN → ρ as N →∞, then ψN (x, ρN ) converges to ψ(x, ρ) w.p.1 uniformly over X.

Proof. Part (i). Under Assumption 3.1, EP [H(x, t, ξ)] and HN (x, t) are Lipschitz continuous
with respect to (x, t). Since T is a compact set, by [28, Theorem 3.1], θ(x) and θN (x) are Lipschitz
continuous. Together with the Lipschitz continuity of EP [f(x, ξ)] and fN (x), we conclude that
ψ(x, ρ) and ψN (x, ρN ) are Lipschitz continuous.

Part (ii). By Assumption 3.1 and the compactness of X, it is not difficult to show that f(x, ξ)
and H(x, t, ξ) are dominated by an integrable function. The uniform convergence of fN (x) to
EP [f(x, ξ)] and HN (x, t) to EP [H(x, t, ξ)] follows from classical uniform law of large numbers
for random functions, see e.g. [38, Section 6, Proposition 7]. Since ρN → ρ, it suffices to show
the uniformly convergence of θN (x) to θ(x). By definition,

max
x∈X

|θN (x)− θ(x)| = max
x∈X

∣∣∣∣max
t∈T

(max{HN (x, t), 0})−max
t∈T

(max{EP [H(x, t, ξ)], 0})
∣∣∣∣

≤ max
(x,t)∈X×T

∣∣ max{HN (x, t), 0} −max{EP [H(x, t, ξ)], 0}∣∣

≤ max
(x,t)∈X×T

∣∣HN (x, t)− EP [H(x, t, ξ)]
∣∣. (15)

This along with the uniform convergence of HN (x, t) to EP [H(x, t, ξ)] over X × T gives rise to
the assertion. The proof is complete.

Assumption 3.5 Let f(x, ξ) and H(x, t, ξ) be defined as in (5). The following hold.

(a) for every x ∈ X, the moment generating function

Mx(τ) := EP

[
eτ(f(x,ξ)−EP [f(x,ξ)])

]

of random variable f(x, ξ)−EP [f(x, ξ)] is finite valued for all τ in a neighborhood of zero;

(b) for every (x, t) ∈ X × T , the moment generating function

M(x,t)(τ) := EP

[
eτ(H(x,t,ξ)−EP [H(x,t,ξ)])

]

of random variable H(x, t, ξ)−EP [H(x, t, ξ)] is finite valued for all τ in a neighborhood of
zero;
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(c) let κ(ξ) be given as in Assumption 3.1. The moment generating function Mκ(τ) of κ(ξ) is
finite valued for all τ in a neighborhood of 0

Assumption 3.5 (a) means that the random variables f(x, ξ) − EP [f(x, ξ)] and H(x, t, ξ) −
EP [H(x, t, ξ)] do not have a heavy tail distribution. In particular, it holds if the random vari-
able ξ has a bounded support set. Note that under Assumption 3.1, the Lipschitz modulus
of H(x, t, ξ) is bounded by 1 + κ(ξ). Assumption 3.5 (c) implies that the moment generating
function of 1 + κ(ξ) is finite valued for τ close to 0 because E

[
e−(1+κ(ξ)τ

]
= e−τE

[
e−κ(ξ)τ

]
=

e−τMκ(τ).

Proposition 3.6 Let Assumptions 3.1, Assumptions 3.5 hold and ρN → ρ. Then ψN (x, ρN )
converges to ψ(x, ρ) with probability approaching 1 at an exponential rate, that is, for any α > 0,
there exist positive constants C(α), K(α) and independent of N , such that

Prob
{

sup
x∈X

|ψN (x, ρN )− ψ(x, ρ)| ≥ α

}
≤ C(α)e−NK(α)

for N sufficiently large.

Proof. By definition

Prob
{

sup
x∈X

|ψN (x, ρN )− ψ(x, ρ)| ≥ α

}

= Prob
{

sup
x∈X

|fN (x) + ρNθN (x)− (EP [f(x, ξ)] + ρθ(x))| ≥ α

}

≤ Prob
{

sup
x∈X

|fN (x)− EP [f(x, ξ)]| ≥ α/2
}

+ Prob
{

sup
x∈X

|ρNθN (x)− ρθ(x)| ≥ α/2
}

.

Under Assumption 3.5, it follows from [42, Theorem 5.1] that the first term at the right hand
of the inequality above converges to zero at an exponential rate. In the same manner, we can
obtain uniform exponential convergence of HN (x, t) to EP [H(x, t, ξ)] and hence θN (x) to θ(x)
taking into account that ρN → ρ. The proof is complete.

Remark 3.7 Similar to the discussions in [42], we may estimate the sample size. To see this,
let us strengthen the conditions in Assumption 3.5 (a) and (b) to the following:

• There exists a constant % > 0 such that for every x ∈ X,

EP

[
eτ(f(x,ξ)−EP [f(x,ξ)])

]
≤ e%2τ2/2,∀τ ∈ IR (16)

and for every (x, t) ∈ X × T ,

EP

[
eτ(H(x,t,ξ)−EP [H(x,t,ξ)])

]
≤ e%2τ2/2, ∀τ ∈ IR. (17)

Note that equality in (16) and (17) holds if random variables f(x, ξ)−EP [f(x, ξ)] and H(x, t, ξ)−
EP [H(x, t, ξ)] satisfy normal distribution with variance %2, see a discussion in [42, page 410].
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Let α1 be a small positive number and β1 ∈ (0, 1). It follows from (5.14) and (5.15) in [42] that
for

N ≥ N1(α1, β1) :=
O(1)%2

α2
1

[
n log

(
O(1)D1EP [κ1(ξ)]

α1

)
+ log

(
1
β1

)]
, (18)

where O(1) is a generic constant, we have that

Prob
{

sup
x∈X

|fN (x)− EP [f(x, ξ)]| ≥ α1

}
≤ β1, (19)

where κ1(ξ) is the global Lipschitz modulus of f(·, ξ) over X, D1 := supx′,x′′∈X ‖x′ − x′′‖.
Likewise, for given positive numbers α2 and β2 ∈ (0, 1), when

N ≥ N2(α2, β2) :=
O(1)%2

α2
2

[
n log

(
O(1)D2EP [κ2(ξ)]

α2

)
+ log

(
1
β2

)]
, (20)

we have

Prob
{

max
(x,t)∈X×T

∣∣HN (x, t)− EP [H(x, t, ξ)]
∣∣ ≥ α2

}
≤ β2. (21)

where κ2(ξ) is the global Lipschitz modulus of H(·, ·, ξ) over X × T ,

D2 := sup
w′,w∈X×T

‖w′ − w‖ ≤ D1 + sup
t′,t′′∈T

‖t′ − t′′‖.

Let α > 0 be a positive number and β ∈ (0, 1). Observe that

Prob
{

max
x∈X

∣∣ψN (x, ρN )− ψ(x, ρ)
∣∣ ≥ α

}
≤ Prob

{
sup
x∈X

|fN (x)− EP [f(x, ξ)]| ≥ α/2
}

+Prob
{

sup
x∈X

|ρNθN (x)− ρθ(x)| ≥ α/2
}

. (22)

Let N3 be sufficiently large such that ρN ≤ 2ρ and

(ρN − ρ) sup
x∈X

|θ(x)| ≤ α

4
.

Then it is easy to verify that for N ≥ N3

Prob
{

sup
x∈X

|ρNθN (x)− ρθ(x)| ≥ α/2
}

≤ Prob
{

sup
x∈X

|θN (x)− θ(x)| ≥ α

8ρ

}

≤ Prob
{

max
(x,t)∈X×T

∣∣HN (x, t)− EP [H(x, t, ξ)]
∣∣ ≥ α

8ρ

}
. (23)

The last inequality is due to (15). Let

N(α, β) := max
{

N1

(α

2
, β1

)
, N2

(
α

8ρ
, β2

)
, N3

}
, (24)

where β1, β2 ∈ (0, 1) and β1 + β2 = β. Combining (19), (21), (22) and (23), we have for
N ≥ N(α, β)

Prob
{

max
x∈X

∣∣ψN (x, ρN )− ψ(x, ρ)
∣∣ ≥ α

}
≤ Prob

{
sup
x∈X

|fN (x)− EP [f(x, ξ)]| ≥ α/2
}

+Prob
{

max
(x,t)∈X×T

∣∣HN (x, t)− EP [H(x, t, ξ)]
∣∣ ≥ α

8ρ

}

≤ β1 + β2

= β.
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The discussion above shows that for given α and β, we can obtain sample size N(α, β) such that
when N ≥ N(α, β)

Prob
{

max
x∈X

∣∣ψN (x, ρN )− ψ(x, ρ)
∣∣ ≥ α

}
≤ β.

In what follows, we translate the uniform exponential convergence established in Proposi-
tion 3.6 into that of optimal solutions. We need the following intermediate stability result.

Lemma 3.8 Let φ : IRm → IR be a continuous function and X ⊆ IRm be a closed set, let
ϕ : IRm → IR be a continuous perturbation of φ. Consider the following constrained minimization
problem

min φ(x)
s.t. x ∈ X,

(25)

and its perturbation

min ϕ(x)
s.t. x ∈ X.

(26)

Let X∗
φ and X∗

ϕ denote the set of optimal solutions to (25) and (26) respectively. Then

(i) for any ε > 0, there exists a δ > 0 (depending on ε) such that

D(X∗
ϕ, X∗

φ) ≤ ε, (27)

when
sup
x∈X

|ϕ(x)− φ(x)| ≤ δ;

(ii) if, in addition, there exists a positive constant ς such that

φ(x) ≥ min
x∈X

φ(x) + ςd(x,X∗
φ)2, ∀x ∈ X, (28)

then

D(X∗
ψ, X∗

φ) ≤
√

3
ς

sup
x∈X

|ϕ(x)− φ(x)|. (29)

Proof. The results are minor extension of [7, Lemma 3.2] which deals with the case when X∗
φ is

a singleton and are also similar to [35, Theorem 7.64]. Here we provide a proof for completeness.

Part (i). Let ε be a fixed small positive number and φ∗ the optimal value of (25). Define

R(ε) := inf
{x∈X,d(x,X∗

φ)≥ε}
φ(x)− φ∗. (30)

Then R(ε) > 0. Let δ := R(ε)/3 and ϕ be such that supx∈X |ϕ(x) − φ(x)| ≤ δ. Then for any
x ∈ X with d(x,X∗

φ) ≥ ε and for any fixed x∗ ∈ X∗
φ,

ϕ(x)− ϕ(x∗) ≥ φ(x)− φ(x∗)− 2δ ≥ R(ε)/3 > 0,
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which implies that x is not an optimal solution to (26). This is equivalent to d(x,X∗
φ) < ε for

all x ∈ X∗
ϕ, that is, D(X∗

ϕ, X∗
φ) ≤ ε.

Part (ii). Under condition (28), it is easy to derive that R(ε) = ςε2. Let

ε :=

√
3
ς

sup
x∈X

|ϕ(x)− φ(x)|.

From Part (i), we immediately arrive at (29). The proof is complete.

Remark 3.9 We have a few comments on Lemma 3.8.

(i) Condition (28) is known as second order growth condition. Using this condition, Shapiro
[39] developed a variational principal which gives a bound for d(x, X∗

φ) in terms of the
maximum Lipschitz constant of ϕ − φ over X, see [39, Lemma 4.1] and [40, Proposition
2.1]. Both the second order growth condition and the variational principal have been widely
used for the stability and asymptotic analysis in stochastic programming, see [4, 39, 40].
Our claim in Lemma 3.8 (ii) strengthens the variational principal in that our bound for

d(x,X∗
φ) is

√
3
ς supx∈X |ϕ(x)− φ(x)| which tends to zero when the maximum Lipschitz

constant of ϕ(x)− φ(x) over X goes to zero and ϕ(x0)− φ(x0) = 0 at some point x0 ∈ X

but conversely this is not necessarily true.

(ii) Lemma 3.8 (ii) may be extended to a general case when R(ε) is monotonically increasing
on IR+. In such a case, we may set

ε := R−1(3 sup
x∈X

|ϕ(x)− φ(x)|)

and obtain from Lemma 3.8 (i) that

D(X∗
ϕ, X∗

φ) ≤ R−1(3 sup
x∈X

|ϕ(x)− φ(x)|).

Theorem 3.10 Assume that problem (5) satisfies the Slater condition. Let {ρN} be a sequence
of positive numbers such that ρN → ρ, where ρ is given in Theorem 3.2. Then

(i) w.p.1

lim
N→∞

D
(
XN

opt, Xopt

)
= 0, (31)

where Xopt and XN
opt denote the sets of optimal solutions of problem (11) and (13) respec-

tively. Moreover, if Assumption 3.5 holds, then the convergence rate is exponential, that
is, for any α > 0, there exist positive constants C1(α), K1(α) and independent of N , such
that

Prob
{
D

(
XN

opt, Xopt

) ≥ α
} ≤ C1(α)e−NK1(α)

for N sufficiently large.
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(ii) If the objective function of the true penalty problem (11) satisfies the second order growth
condition:

ψ(x, ρ) ≥ min
x∈X

ψ(x, ρ) + ςd(x,Xopt)2, ∀x ∈ X, (32)

where ς is a positive constant, then the C1(α) = C
(

1
3 ςα2

)
and K1(α) = K

(
1
3ςα2

)
where

C(α) and K(α) are given in Proposition 3.6.

(iii) Let N(α, β) be defined as in (24). For N ≥ N
(

1
3 ςα2, β

)
, we have

Prob
{
D

(
XN

opt, Xopt

) ≥ α
} ≤ β,

where β ∈ (0, 1).

Proof. The almost sure convergence follows straightforwardly from Proposition 3.4 that ψN (x, ρN )
converges to ψ(x, ρ) uniformly over X and Lemma 3.8. Next, we show the exponential conver-
gence. By Lemma 3.8, for any α > 0, there exists ε(α) such that if

sup
x∈X

|ψN (x, ρN )− ψ(x, ρ)| ≤ ε(α),

then D
(
XN

opt, Xopt

) ≤ α. Subsequently,

Prob
{
D

(
XN

opt, Xopt

) ≥ α
} ≤ Prob

{
sup
x∈X

|ψN (x, ρN )− ψ(x, ρ)| ≥ ε(α)
}

.

By Proposition 3.6 and the formula above there exist positive constants C1(α) and K1(α),
independent of N such that

Prob
{
D

(
XN

opt, Xopt

) ≥ α
} ≤ C1(α)e−NK1(α),

for N sufficiently large.

Part (ii). Under the second growth condition, it is easy to derive that R(ε) = ςε2, where
R(ε) is given in Lemma 3.8. By (29) in Lemma 3.8 (ii),

Prob
{
D

(
XN

opt, Xopt

) ≥ α
} ≤ Prob

{√
3
ς

sup
x∈X

|ψN (x, ρN )− ψ(x, ρ)| ≥ α

}

= Prob
{

sup
x∈X

|ψN (x, ρN )− ψ(x, ρ)| ≥ 1
3
ςα2

}
.

The rest follows from Part (i).

Part (iii) follows from (24) and Part (ii). The proof is complete.

Let us make some comments on the second order growth condition (32). Since G(·, ξ) is
assumed to be concave, it is easy to verify that θ(x) is a convex function. If f(·, ξ) is convex
for almost every ξ, then ψ(·, ρ) is convex. The second order growth condition is fulfilled if the
latter happens to be strongly convex.
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3.2 Stationary point

We now move on to investigate the case when we only obtain a stationary point rather than an
optimal solution from solving the penalized sample average approximation problem (13). This is
motivated to address the case when f(x, ξ) is not convex w.r.t. x. Convergence analysis of SAA
stationary sequence has been well documented, see [45] and the references therein. Our analysis
here differs from those in the literature on twofold: (a) We analyze the convergence of SAA
stationary point to its true counterpart rather than so-called weak stationary point of the true
problem [45], the analysis is based on approximation of Clarke subdifferential of expected value
of a random function rather that of the expected value of the Clarke subdifferential of a random
function. Note that this kind of subdifferential approximation can be traced back to the earlier
work by Birge and Qi [3] and Artstein and Wets [2]. (b) We provide an effective approach
to tackle the specific challenges and complications arising from the second order dominance
constraints.

We start by defining the stationary points of (11) and (13). Let h(x, t) = (EP [H(x, t, ξ)])+
be defined as in (10). For any fixed x ∈ X, let T ∗(x) denote the set of t̄ ∈ T such that
h(x, t̄) = maxt∈T h(x, t). Since G(·, ξ) is concave, then EP [H(x, t, ξ)] is convex in x and hence it
is Clarke regular (see [6, Proposition 2.3.6]). By [6, Proposition 2.3.12]

∂xh(x, t) =





0, EP [H(x, t, ξ)] < 0,

conv{0, ∂xEP [H(x, t, ξ)]}, EP [H(x, t, ξ)] = 0,

∂xEP [H(x, t, ξ)], EP [H(x, t, ξ)] > 0.

(33)

Here and later on “conv” denotes the convex hull of a set. Since h(·, t) is convex for each
t, T is a compact set and for every x, h(x, ·) is continuous on T , by Levin-Valadier theorem
(see [38, Section 2, Theorem 51]),

∂θ(x) = conv
{ ⋃

t∈T ∗(x)

∂xh(x, t)
}

. (34)

Let
TX(x) = lim inf

t→0, X3x′→x

1
t
(X − x′)

denote the tangent cone of X at point x, and NX(x) the Clarke normal cone to X at x, that is,
for x ∈ X,

NX(x) =
{
ζ ∈ IRn : ζT d ≤ 0,∀d ∈ TX(x)

}
,

and NX(x) = ∅ if x 6∈ X. A point x ∈ X is said to be a stationary point of the penalized
minimization problem (11) if

0 ∈ ∂EP [f(x, ξ)] + ρ∂θ(x) +NX(x).

Likewise, for any fixed x ∈ X, let TN (x) denote the set of t̄ ∈ T such that hN (x, t̄) =
maxt∈T hN (x, t). Then

∂xhN (x, t) =





0, HN (x, t) < 0,

conv{0, ∂xHN (x, t)}, HN (x, t) = 0,
∂xHN (x, t), HN (x, t) > 0

(35)
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and

∂θN (x) = conv
{ ⋃

t∈T N (x)

∂xhN (x, t)
}

. (36)

A point x ∈ X is said to be a stationary point of the penalized SAA problem (13) if

0 ∈ ∂fN (x) + ρN∂θN (x) +NX(x).

Assumption 3.11 f(x, ξ) and G(x, ξ) are locally Lipschitz continuous w.r.t. x and ξ, and their
Lipschitz modulus w.r.t. x are bounded by an integrable function κ(ξ) for every x ∈ IRn.

It is easy to observe that Assumption 3.11 is stronger than Assumption 3.1. Over the past few
years, there have been extensive discussions on the convergence of SAA stationary points to the
so-called weak stationary points of the true problem which is defined through the expected value
of the subdifferential of the underlying functions of the true problem in the first order optimality
condition, see [45] for the recent discussion. A stationary point is a weak stationary point but
not vice versa. Analysis of convergence of the SAA stationary point to a weak stationary point
of the true problem can be proved under Assumption 3.1 but convergence to a stationary point
of the true problem requires Assumption 3.11.

Consider a sequence of functions {fN (x)} defined on IRn. Recall that fN is said to epiconverge
to a function f if and only if the epigraph of fN converges to the epigraph of f . A necessary
and sufficient condition for fN to epiconverge to f is that for every x ∈ IRn,

{
lim infN fN (xN ) ≥ f(x) for every sequencexN → x;
lim supN fN (xN ) ≤ f(x) for some sequencexN → x.

See [35, Proposition 7.2] and [35, section B, Chapter 7] for details. For a set-valued mapping
ΓN ,Γ : IRm ⇒ IRn, ΓN is said to converge graphically to Γ if the graph of ΓN converges to that
of Γ. See [35, Definition 5.32].

Proposition 3.12 Let θ(x) and θN (x) be defined as in (10) and (12) respectively. Let {xN} ⊂
X be a sequence which converges to x∗ w.p.1. Under Assumption 3.11

lim
N→∞

D(∂θN (xN ), ∂θ(x∗)) = 0 (37)

w.p.1.

Proof. Since for any ξ ∈ Ξ, G(·, ξ) is concave function, then H(x, t, ξ) is a convex function with
respect to x over X and so are hN (x, t), h(x, t), θ(x) and θN (x). Under Assumption 3.11, it
follows by [38, Section 6, Proposition 7] that HN (x, t, ξ) converges to EP [H(x, t, ξ)] uniformly
over any compact subset of IRn×IR w.p.1. Subsequently, it is easy to verify that θN (x) converges
to θ(x) uniformly over any compact subset of IRn, which implies, via [35, Proposition 7.15], θN

epiconverges to θ w.p.1. By Attouch’s theorem ( [35, Theorem 12.35]), the latter convergence
implies ∂θN converges to ∂θ graphically over X and hence (37). The proof is complete.



19

Theorem 3.13 Let {xN} be a sequence of KKT points of problem (13) and x∗ be an accumu-
lation point. Suppose: (a) Assumption 3.11 holds; (b) for every ξ ∈ Ξ, f(·, ξ) is Clarke regular
on X; (c) the probability space is nonatomic. If ρN → ρ, then w.p.1 x∗ is an stationary point
of the true penalty problem (11).

Proof. By taking a subsequence if necessarily we assume for the simplicity of notation that xN

converges to x∗. Observe first that for any compact sets A,B, C, D ⊆ IRm,

D(A + C, B + D) ≤ D(A + C, B + C) + D(B + C,B + D) ≤ D(A,B) + D(C, D), (38)

where the first inequality follows from the triangle inequality and the second inequality follows
from the definition of D. Using the inequality (38), we have

D
(
∂fN (xN ) + ρN∂θ(xN ), ∂EP [f(x∗, ξ)] + ρN∂θ(x∗)

)

≤ D
(
∂fN (xN ), ∂EP [f(x∗, ξ)]

)
+ D

(
ρN∂θN (xN ), ρ∂θ(x∗)

)
.

In Proposition 3.12, we have shown that

lim
N→∞

D
(
ρN∂θN (xN ), ρ∂θ(x∗)

)
= 0.

In what follows, we show

lim
N→∞

D
(
∂fN (xN ), ∂EP [f(x∗, ξ)]

)
= 0. (39)

Under the Clarke regularity

∂EP [f(x∗, ξ)] = EP [∂xf(x∗, ξ)],

where EP [∂xf(x∗, ξ)] denotes Aumann’s [1] integral of the Clarke subdifferential. Under As-
sumption 3.11, it is well known that EP [∂xf(x∗, ξ)] is well defined, see for instance [1] and [46,
Proposition 2.2]. Moreover, the Clarke regularity implies

∂fN (xN ) =
1
N

N∑

k=1

∂xf(xN , ξk).

Therefore it suffices to show that

lim
N→∞

D

(
1
N

N∑

k=1

∂xf(xN , ξk),EP [∂xf(x∗, ξ)]

)
= 0 (40)

w.p.1. Under Assumption 3.11, we have by virtue of [41, Theorem 2],

lim
N→∞

sup
x∈X

D

(
1
N

N∑

k=1

∂xf(x, ξk),EP [∂δ
xf(x, ξ)]

)
= 0

w.p.1, where δ is a positive number which can be arbitrarily small and

∂δ
xf(x, ξ) =

⋃

x′∈B(x,δ)

∂xf(x′, ξ).



20

This implies

lim
N→∞

D

(
1
N

N∑

k=1

∂xf(xN , ξk),EP [∂δ
xf(x∗, ξ)]

)
= 0

w.p.1 and hence
0 ∈ EP [∂δ

xf(x∗, ξ)] + ρ∂θ(x∗) +NX(x∗).

By [19, Theorems 2.5] ( or [19, Theorem 2.8] and the following remark, or [26, Theorem 1.43
(iii)]),

lim
δ↓0
EP [∂δ

xf(x∗, ξ)] ⊂ EP

[
lim
δ↓0

∂δ
xf(x∗, ξ)

]
= EP [∂xf(x∗, ξ)].

The last equality is due to the fact that limδ↓0 ∂δ
xf(x∗, ξ) = ∂xf(x∗, ξ). Using (38) and the

discussions above, we can easily obtain (40) and hence

0 ∈ EP [∂xf(x∗, ξ)] + ρ∂θ(x∗) +NX(x∗) = ∂EP [f(x∗, ξ)] + ρ∂θ(x∗) +NX(x∗).

This shows x∗ is a stationary point of the true penalty problem (11). The proof is complete.

Note that the Clarke regularity condition used in the theorem may be replaced by other
conditions. For instance, if the Lipschitz modulus in Assumption 3.11 is bounded by positive
constant and for a small positive constant τ0, 1

τ (f((x + τu, ξ)− f(x, ξ)) is uniformly continuous
w.r.t. ξ for all x ∈ X, u ∈ IRn with ‖u‖ ≤ 1 and τ ∈ (0, τ0], then we may apply [24, Lemma 5.2]
to show

lim
N→∞

sup
x∈X

D(∂fN (x), ∂EP [f(x, ξ)]) → 0.

and hence (39). We omit the details.

Note also that it might be interesting to ask whether a stationary point of problem (11) is
a stationary point of problem (5). To answer this question, we need to consider the first order
optimality conditions for the latter problem. Let us assume that problem (5) satisfies the Slater
condition, X is a compact set and the Lipschitz modulus of f(x, ξ) w.r.t. x is bounded by an
integrable function κ(ξ) > 0. We consider the following optimality conditions:





0 ∈ ∂EP [f(x, ξ)] + λ∂θ(x),
λ > 0,

EP [H(x, t, ξ)] ≤ 0, ∀t ∈ T,

x ∈ X.

(41)

We say a point x∗ is a stationary point of (5) if there exists λ∗ > 0 such that (x∗, λ∗) satisfies
(41). To justify this definition, we show that every local optimal solution to problem (5) satisfies
(41) (along with some positive number λ). In the case when EP [f(x, ξ)] is a convex function, a
point satisfying optimality conditions (41) is a global optimal solution to problem (5). In what
follows, we verify this. Let x̂ be a local minimizer of (5). Let

γ(P ) =: sup
x∈X

‖x− x̄‖
mint∈T −EP [H(x̄, t, ξ)]

,

where x̄ is given in Definition 2.3. Then for ρ > γ(P )EP [κ(ξ)], x∗ is a local optimal solution
of (11). This shows (x∗, ρ) satisfies optimality condition (41). Conversely if x∗ is a stationary
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point, that is, there exists positive number λ∗ such that (x∗, λ∗) satisfies optimality conditions
(41). If EP [f(x, ξ)] is a convex function, then it is easy to see that x∗ is a global optimal solution
of (11) with ρ = λ∗. Since x∗ is a feasible point of (5), it is not difficult to verify that x∗ is a
global optimal solution of problem (5).

Note that Dentcheva and Ruszczyński [13] introduced some first order optimality condi-
tions for a class of semi-infinite programming problems arising from optimization problems with
stochastic second order constraints. Let M (T ) denote the set of regular countably additive
measures on T and M+(T ) its subset of positive measures. Consider the following Lagrange
function of (5):

L (x, µ) = EP [f(x, ξ)] +
∫

T
EP [H(x, t, ξ)]µ(dt),

where µ ∈ M+(T ). Under the so-called differential constraint qualifications, Dentcheva and
Ruszczyński showed that if a point x∗ is a local optimal solution of problem (5), then there
exists µ∗ ∈ M+(T ) such that





0 ∈ ∂xL (x, µ) = ∂EP [f(x∗, ξ)] +
∫
T ∂xEP [H(x∗, t, ξ)]µ∗(dt) +NX(x∗),

EP [H(x∗, t, ξ)] ≤ 0, ∀t ∈ T,∫
T EP [H(x∗, t, ξ)]µ∗(dt) = 0,

x ∈ X,

(42)

see [13, Theorem 4] for details and [13, Definition 2] for the definition of differential constraint
qualification. Note that optimality conditions (42) can also be alternatively characterized by
some convex functions defined over IR. This can be done by representing the integral w.r.t.
measure µ by some convex functions through Riesz representation theorem, see [9,10] for details.
It is an open question as to whether there is some relationship between (41) and (42) or the
equivalent conditions of (42) in [9, 10], and this will be the focus of our future work.
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