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Abstract Conditional Value at Risk (CVaR) has been recently used to approximate a
chance constraint. In this paper, we study the convergence of stationary points, when
sample average approximation (SAA) method is applied to a CVaR approximated
joint chance constrained stochastic minimization problem. Specifically, we prove un-
der some moderate conditions that optimal solutions and stationary points, obtained
from solving sample average approximated problems, converge with probability one
to their true counterparts. Moreover, by exploiting the recent results on large devia-
tion of random functions and sensitivity results for generalized equations, we derive
exponential rate of convergence of stationary points. The discussion is also extended
to the case, when CVaR approximation is replaced by a difference of two convex
functions (DC-approximation). Some preliminary numerical test results are reported.

Keywords Joint chance constraints · CVaR · DC-approximation · Almost
H-calmness · Stationary point · Exponential convergence

1 Introduction

Joint chance constrained optimization models have wide applications in communi-
cation and networks, product design, system control, statistics, and finance; see [1]
for details. It is well known that joint chance constrained optimization problems are
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difficult to solve as the probabilistic function in the chance constraint is generally
nonconvex, and it is difficult to obtain a closed form or to be evaluated. Various ap-
proaches have been proposed in the literature to tackle the difficulties. For example,
a number of convex conservative approximation schemes, such as quadratic approx-
imation [2], CVaR approximation [3] and Bernstein approximation [4], have been
proposed for the chance constraint. CVaR approximation seems to be one of the most
widely used approximation schemes since it is numerically tractable and enjoys nice
features such as convexity and monotonicity. The approximation scheme was first
proposed by Nemirovski and Shapiro [4] for single chance constrained minimization
problem and has now been widely applied in stochastic programming.

In this paper, we consider a stochastic minimization problem with a joint chance
constraint, which is approximated by CVaR. We study numerical methods for the
approximated problem. The main challenge here is to handle the expected value of
the underlying functions. If we are able to obtain a closed form of the mathematical
expectation, then the problem becomes an ordinary nonlinear programming problem
(NLP). However, in practice, it is often difficult to do so, not only because there
is a max operation in the integrand, but because it requires complete information
of the distribution of the underlying random variables or multidimensional integra-
tion. A well-known method to tackle this problem is sample average approxima-
tion (SAA), which is also widely known under various names such as Monte Carlo
method, sample path optimization (SPO) [5], and stochastic counterpart; see [6] for
a comprehensive review. The basic idea of SAA is to use sample average to approxi-
mate the expected value. For a fixed sample, the sample average approximated prob-
lem is a deterministic nonlinear problem (NLP) and, therefore, any appropriate NLP
code can be applied to solve the problem.

Our focus in this paper is to analyze whether an optimal solution or a stationary
point obtained from solving the SAA problem converges to their true counterpart as
sample size increases, and if so at what rate. The latter is practically interesting as
one would like to know how large the sample size should be in order to obtain an
approximate solution within a specified precision. This kind of analysis is known
as asymptotic convergence analysis in stochastic programming, and it is technically
challenging in that CVaR is in the constraint rather than at the objective. The latter
has been well studied; see, for instance, [7, 8].

In order to carry out the convergence analysis, particularly in relation to stationary
points, we need to derive first order optimality conditions. We do so under convex and
nonconvex settings and resort to Hiriart–Urruty’s earlier results on Karush–Kuhn–
Tucker (KKT for short) conditions in nonsmooth constrained optimization [9].

In the literature of continuous stochastic optimization, asymptotic analysis of a
statistical estimator of optimal value and optimal solution is based on uniform ex-
ponential convergence of a random function which is Hölder continuous; see, for
instance, [10, 11]. Xu [12] extends the results to a class of so-called H-calm func-
tions which allow some extent of discontinuity and this is used to derive exponential
convergence of stationary points in nonsmooth stochastic optimization. In a more re-
cent development, the exponential convergence results are further extended [13] to a
class of almost H-calm functions. Here, we present a detailed discussion about the
advantage of almost H-calmness (see Remark 4.1 and Example 4.1) and strengthen
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[13, Theorem 3.1] by weakening a boundedness condition imposed on the random
function (see Theorem 8.1). We then apply the strengthened uniform convergence re-
sult to establish exponential convergence of Clarke stationary points (Theorem 4.2).
We also do so for the case when the chance constraint is approximated by a DC-
approximation. This strengthens the existing results by Hong et al. [14].

The rest of the paper is organized as follows. Section 2 describes the setup of
the original problem, its approximation schemes, and calculus of Clarke subdiffer-
entials of the underlying functions. Section 3 discusses optimality conditions of true
problem and the SAA problem for CVaR approximated problems in both convex and
nonconvex cases. Section 4 is devoted to a detailed asymptotic convergence analysis
of stationary points of the SAA problem as sample size increases, and Sect. 5 presents
similar convergence analysis to DC-approximated problem. Section 6 reports some
preliminary numerical test results, and finally Sect. 7 concludes with some remarks.

2 Preliminaries

2.1 Notation

Throughout this paper, we use the following notation. xT y denotes the scalar prod-
uct of two vectors x and y, x⊥y denotes their perpendicularity, and xT denotes its
transposition. ‖ · ‖ denotes the Euclidean norm of a vector. We write d(x,D) :=
infx′∈D ‖x − x′‖ for the distance from point x to set D. For two sets D1 and D2,

D(D1,D2) := sup
x∈D1

d(x,D2)

denotes the deviation of set D1 from set D2. For a real valued function h(x), we
use ∇h(x) to denote the gradient of h at x. If h(x) is vector valued, then the same
notation refers to the classical Jacobian of h at x. For x ∈ X, B(x;ρ) denotes a closed
ρ-neighborhood of x relative to X.

Let v : R
n → R

m be a locally Lipschitz continuous function. Recall that Clarke
generalized derivative of v at point x in direction d is defined as

vo(x, d) := lim sup
y→x,t↓0

v(y + td) − v(y)

t
.

v is said to be Clarke regular at x if the usual one sided directional derivative, denoted
by v′(x, d), exists for every d ∈ R

n and vo(x, d) = v′(x, d). The Clarke generalized
gradient (also known as Clarke subdifferential) is defined as

∂v(x) := {
ζ : ζ T d ≤ vo(x, d)

}
.

For a vector valued function v, it is said to be strictly differentiable at x, if v admits
a strict derivative at x, an element of L (Rn,R

m) denoted Dv(x), proved for each d ,
the following holds:

lim
y→x,t↓0

v(y + td) − v(y)

t
= dT Dv(y),
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and provided the convergence is uniform for d in compact sets, where L (Rn,R
m)

denote a space of continuous linear function from R
n to R

m. Note that, if v is contin-
uously differentiable, it is strictly differentiable; see [15, Chap. 2]. Note that, in this
paper, we need to consider Clarke subdifferential of a random function v(x, ξ) with
respect to x, that is, ∂xv(x, ξ). In such a case, it is meant the Clarke subdifferential
of function v(·, ξ) at point x for fixed ξ . It is well known that when v(x, ξ) is convex
w.r.t. x, the Clarke subdifferential coincides with the subdifferential in the sense of
convex analysis; see [15, Proposition 2.2.7]. Note that unless the function is strictly
differentiable, Clarke differential does not collapse to the classic one.

2.2 Problem Statement

Consider the following joint chance constrained minimization problem:

min
x∈X

f (x) s.t. Prob
{
c(x, ξ) ≤ 0

}≥ 1 − α, (1)

where X is a convex compact subset of R
n, ξ is a random vector in a prob-

ability space (Ω, F ,P) with support Ξ ⊂ R
k and α is a positive number be-

tween 0 and 1; f : R
n → R is a continuously differentiable function, c(x, ξ) :=

max{c1(x, ξ), . . . , cm(x, ξ)} and ci : R
n × R

k → R, i = 1, . . . ,m, is continuously
differentiable w.r.t. x for every fixed ξ .

In what follows, we focus on CVaR approximation method for problem (1). Recall
that Value-at-Risk (VaR) of a random function c(x, ξ) is defined as

VaR1−α

(
c(x, ξ)

) := min
η∈R

{
η : Prob

{
c(x, ξ) ≤ η

}≥ 1 − α
}

and CVaR is defined as the conditional expected value of c(x, ξ) exceeding VaR, that
is,

CVaR1−α

(
c(x, ξ)

) := 1

α

∫

c(x,ξ)≥VaR1−α(c(x,ξ))

c(x, ξ)P (dξ).

The latter can be reformulated as

min
η∈R

(
η + 1

α
E
[(

c(x, ξ) − η
)
+
]);

see [3]. It is easy to verify that CVaR1−α(c(x, ξ)) → VaR1−α(c(x, ξ)) as α ↓ 0. In the
case when c(x, ξ) is convex in x for almost every ξ , CVaR1−α(c(x, ξ)) is a convex
function; see [3, Theorem 2]. Observe that the chance constraint in problem (1) can
be written as VaR1−α(c(x, ξ)) ≤ 0 while CVaR is often regarded as an approximation
of VaR. Therefore, we may consider the following approximation scheme for (1) by
replacing the chance constraint with a CVaR constraint:

min
x∈X

f (x) s.t. CVaR1−α

(
c(x, ξ)

)≤ 0. (2)

Using the reformulation of CVaR, i.e., [3], we may present problem (2) as

min
(x,η)∈X ×R

f (x) s.t. η + 1

α
E
[(

c(x, ξ) − η
)
+
]≤ 0; (3)
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see for instance [16, Sect. 1.4]. Moreover, we apply the SAA method to deal with
the expect value. Let ξ1, . . . , ξN be an independent and identically distributed (i.i.d.)
sampling of ξ . We consider the following sample average approximation problem for
problem (3):

min
(x,η)∈X ×R

f (x) s.t. η + 1

αN

N∑

j=1

(
c
(
x, ξj

)− η
)
+ ≤ 0. (4)

We refer to (3) as the true problem and (4) as its SAA problem.
For the simplicity of notation, let

p(x) := max(0, x), g(x, η, ξ) := p
(
c(x, ξ) − η

)
,

G(x,η) := E
[
g(x, η, ξ)

]
, GN(x,η) := 1

N

N∑

j=1

g
(
x,η, ξj

)
,

H(x,η) := η + 1

α
G(x,η), and HN(x,η) := η + 1

α
GN(x,η).

Assumption 2.1 There exists a point x0 ∈ X such that E[(c(x0, ξ))+] < ∞. More-
over,

E
[∥∥∇xci(x, ξ)

∥∥]< ∞, for i = 1, . . . ,m,x ∈ X .

Proposition 2.1 Suppose that Assumption 2.1 holds. Then

(i) H(x,η) is well defined for all x ∈ X and η ∈ R, locally Lipschitz continuous
w.r.t. x, globally Lipschitz continuous w.r.t. η and

∂(x,η)H(x,η) ⊂
(

0

1

)
+ E

[
∂(x,η)g(x, η, ξ)

]
, (5)

where

∂(x,η)g(x, η, ξ) ⊂ ∂p
(
c(x, ξ) − η

)(
∂xc(x, ξ),−1

)T
, (6)

and ∂xc(x, ξ) = conv{∇xci(x, ξ), i ∈ i(x)}, i(x) := {i : c(x, ξ) = ci(x, ξ)},

∂p
(
η − c(x, ξ)

)=

⎧
⎪⎨

⎪⎩

1, if c(x, ξ) − η > 0,

[0,1], if c(x, ξ) − η = 0,

0, if c(x, ξ) − η < 0,

and the expected value of the Clarke subdifferential of the random function is in
the sense of Aumann’s integral [17], here and later on, “conv” denotes convex
hull of a set;

(ii) if c(x, ξ) is convex or strictly differentiable w.r.t. x for all ξ ∈ Ξ , then H(x,η) is
Clarke regular w.r.t. x and η and the equality in (5) and (6) holds.
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Proof Part (i). Verification of the well definedness and Lipschitzness is elementary
given the fact that p(c(x, ξ) − η) is a composition of the max function p(·) and
c(x, ξ) − η. In what follows, we show inclusions (5) and (6). By the definition of
Clarke subdifferential,

∂(x,η)

(
c(x, ξ) − η

)= (
∂xc(x, ξ),−1

)T
.

Since ci(x, ξ) is continuously differentiable, by [15, Proposition 2.3.12],

∂xc(x, ξ) = conv
{∇xci(x, ξ), i ∈ i(x)

}
,

where i(x) := {i : c(x, ξ) = ci(x, ξ)}. Through the chain rule ([15, Theorem 2.3.9]),
we obtain

∂(x,η)g(x, η, ξ) ⊂ ∂p
(
c(x, ξ) − η

)(
∂xc(x, ξ),−1

)T
.

Furthermore, it is easy to verify that the term at the right-hand side of the for-
mula above is bounded by maxm

i=1{‖∇xci(x, ξ)‖} + 1 which is integrably bounded
under Assumption 2.1. Following a discussion by Artstein and Vitale [18], both
E[∂xc(x, ξ)] and E[∂p(c(x, ξ) − η)] are well defined. Further, by [12, Theorem 2.1],

∂(x,η)G(x,η) ⊂ ∂E
[
p
(
c(x, ξ) − η

)(
∂xc(x, ξ),−1

)T ]

which implies (5).
Part (ii). In the case when c(x, ξ) is convex or strictly differentiable w.r.t. x for all

ξ ∈ Ξ , g(x, η, ξ) is Clarke regular and equality in (6) holds. Subsequently, we have

∂(x,η)G(x,η) = E
[
∂p

(
c(x, ξ) − η

)(
∂xc(x, ξ),−1

)T ]

and hence equality in (5) holds. �

3 Optimality Conditions

In this section, we discuss optimality conditions and first order necessary conditions
of the true problems (3) and its sample average approximated counterpart. This is to
pave the way for the asymptotic convergence analysis of stationary points of problem
(4) as sample size increases.

3.1 Optimality Conditions of the True Problem

Let us start with true problems. A widely used condition for deriving optimality con-
ditions of a constrained convex program is Slater’s constraint qualification.

Assumption 3.1 Problem (3) satisfies the Slater’s constraint qualification, that is,
there exists a point (x0, η0) ∈ X × R such that H(x0, η0) < 0.

Let λ ≥ 0 be a number and define the Lagrange function of problem (3):

L (x, η,λ) := f (x) + λH(x,η).

Author's personal copy



J Optim Theory Appl

Proposition 3.1 Assume that f and ci , i = 1, . . . ,m, are convex w.r.t. x. Let (x∗, η∗)
be an optimal solution of (3). Under Assumptions 2.1–3.1, there exists a number
λ∗ ∈ R+ such that

{
(x∗, η∗) ∈ arg min(x,η)∈X ×R L (x, η,λ∗),
0 ≤ −H(x∗, η∗)⊥λ∗ ≥ 0.

(7)

The set of λ∗ satisfying (7) is nonempty, convex, and bounded, and is the same for
any optimal solution of the problem.

Proof Since f and ci , i = 1, . . . ,m are convex functions, problem (3) is convex. By
Assumption 3.1 and Bonnas and Shapiro [19, Proposition 2.106], Robinson’s con-
straint qualification holds. The conclusion then follows from [19, Theorem 3.4]. �

It is possible to characterize the optimality conditions (7) in terms of the deriva-
tives of the underlying functions. In what follows, we do so for general case, by
invoking to Hiriart–Urruty’s KKT conditions for a nonsmooth problem with equal-
ity and inequality constraints [9]. Recall that the Bouligrand tangent cone to a set
X ⊂ R

n at a point x ∈ X is defined as follows:

TX(x) := {
u ∈ R

n : d(x + tu,X) = o(t), t ≥ 0
}
.

The normal cone to X at x, denoted by NX(x), is the polar of the tangent cone:

NX(x) := {
ζ ∈ R

n : ζ T u ≤ 0, ∀u ∈ TX(x)
}

and NX(x) = ∅ if x �∈ X.
Let Φ(x) be a locally Lipschitz function defined on an open subset O ⊂ R

n. Let
x0 ∈ O and let Q be a subset of R

n such that x0 ∈ Q̄ (closure of Q). We denote
by VQ(x0) the filter of neighborhoods of x0 for the topology induced on Q. The
collection (∂xΦ(x)|x ∈ O,VQ(x0)) is a filtered family [20, p. 126]. For this family,
we may consider the “lim sup,” which we will denote by ∂

Q
x Φ(x0)

∂Q
x Φ(x0) :=

⋂

V ∈VQ(x0)

⋃

x∈V

∂xΦ(x).

In other words, ∂
Q
x Φ(x0) consists of all cluster points of sequences of matrices Mi ∈

∂xΦ(xi) as xi converges to x0 in Q. Obviously, ∂
Q
x Φ(x0) ⊂ ∂xΦ(x0); see [9]. The

following constraint qualification stems from Hiriart–Urruty [9].

Definition 3.1 Problem (3) is said to satisfy the subdifferential constraint qualifi-
cation at a feasible point (x, η) iff, for all ζ ∈ ∂Sc

(x,η)H(x,η), there exists d ∈ R
n+1

such that ζ T d < −δ, where S denotes the feasible set of the problem (3) and Sc is
complementary set of S.
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In the case when δ = 0, the condition is regarded as an extended Mangasarian–
Fromovitz constraint qualification (MFCQ), see discussions at pp. 79–80 in Hiriart–
Urruty [9]. Indeed, if H(x,η) is differentiable and δ = 0, then the subdifferential
constraint qualification reduces to the classical MFCQ.

Theorem 3.1 Let (x∗, η∗) ∈ X × R be a local optimal solution to the true problem
(3). Suppose that Assumption 2.1 holds and the subdifferential constraint qualifica-
tion is satisfied at (x∗, η∗). Then there exists λ∗ ∈ R+ such that (x∗, η∗, λ∗) satisfies
the following Karush–Kuhn–Tucker (KKT for short) conditions

{
0 ∈ (∇f (x)

0

)+ λ∂(x,η)H(x,η) + NX ×R(x, η),

0 ≤ −H(x,η)⊥λ ≥ 0,
(8)

which imply
{

0 ∈ (∇f (x)
0

)+ λE
[(0

1

)+ 1
α
∂(x,η)g(x, η, ξ)

]+ NX ×R(x, η),

0 ≤ −H(x,η)⊥λ ≥ 0.
(9)

If c(x, ξ) is strictly differentiable w.r.t. x, then (8) and (9) are equivalent.

Proof The KKT conditions (8) follow from Proposition 2.1 and [9, Theorem 4.2].
The conditions in (9) follow from (5) and (8).

In the case when c(x, ξ) is strictly differentiable, one can easily use Proposition
2.1(ii) to show that KKT conditions (9) are equivalent to (8). The proof is complete. �

Remark 3.1 In the case when f (x) and c(x, ξ) are convex w.r.t. x, the subdifferen-
tiable constraint qualification in Theorem 3.1 can be weakened to Slater’s constraint
qualification, in which case, (8) and (9) are equivalent without strict differentiability.
The claim follows from Proposition 3.1.

The KKT conditions (9) are weaker than those of (8) due to (5) in general; see Xu
[12] for a detailed discussion on this.

A tuple (x, η,λ) ∈ X ×R×R+ satisfying (8) is called a KKT pair of problem (3),
(x, η) a Clarke stationary point and λ the corresponding Lagrange multiplier. Sim-
ilarly, a tuple (x, η,λ) ∈ X × R × R+ satisfying (9) is called a weak KKT pair of
problem (3), (x, η) a weak Clarke stationary point and λ the corresponding Lagrange
multiplier.

3.2 Optimality Conditions of SAA Problem

We now move on to discuss the optimality conditions of SAA problem (4). We need
the following technical results.

Proposition 3.2 Let Assumption 2.1 holds. Let Z =: X × R and Z be a compact
subset of Z. Then

(i) with probability one (w.p.1) 1
N

∑N
j=1 c(x, ξ j ) converge respectively to E[c(x, ξ)]

uniformly over any compact subset of X as N → ∞;
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(ii) w.p.1 1
N

∑N
i=1 g(x, η, ξ) converges respectively to G(x,η) uniformly on Z as

N → ∞;
(iii) if, in addition, Assumption 3.1 holds, then the SAA problem (4) satisfies the

Slater’s constraint qualification w.p.1 for N sufficiently large, that is, there exists
a point (x, η) ∈ X × R such that HN(x,η) < 0 w.p.1 for N sufficiently large.

Proof Part (i) and Part (ii) follow from [6, Proposition 7]. Part (iii) is straightforward
from parts (i)–(ii) and the definition of Slater’s constraint qualification. �

From Proposition 3.2, we know that for N sufficiently large, the SAA problem (4)
satisfies the Slater’s constraint qualification w.p.1. Consequently, we have the follow-
ing optimality conditions for problem (4).

Theorem 3.2 Assume that f and ci, i = 1, . . . ,m, are convex w.r.t. x and Assump-
tions 2.1–3.1 hold. If (xN ,ηN) is an optimal solution of the problem (4), then there
exists a number λN ∈ R+ such that w.p.1

{
(xN ,ηN) ∈ arg min(x,η)∈X ×R LN(x,η,λN),

0 ≤ −HN(xN,ηN)⊥λN ≥ 0.
(10)

Moreover, w.p.1 (xN ,ηN,λN) satisfies the KKT conditions
{

0 ∈ (∇f (x)
0

)+ λ∂(x,η)HN(x,η) + NX ×R(x, η),

0 ≤ −HN(x,η)⊥λ ≥ 0,
(11)

which imply
{

0 ∈ (∇f (x)
0

)+ λ
((0

1

)+ 1
αN

∑N
i=1∂(x,η)g(x, η, ξ)

)+ NX ×R(x, η),

0 ≤ −HN(x,η)⊥λ ≥ 0.
(12)

and the set of λN satisfying (10) is nonempty, convex, and bounded, and is the same
for any optimal solution of the problem.

Proof By Proposition 3.2, the Slater’s condition holds for problem (4). Similar to
Proposition 3.1, (10) holds, which implies (11). Since c(x, ξ) is convex, by Proposi-
tion 2.1(ii), (12) and (11) are equivalent. The proof is complete. �

In what follows, we derive the KKT conditions for nonconvex case. We need some
additional conditions.

Definition 3.2 Problem (3) is said to satisfy the strong subdifferential constraint
qualification at a feasible point (x, η) iff there exist a positive number δ and d ∈ R

n+1

such that ζ T d < −δ for all ζ ∈ ∂(x,η)H(x,η).

Note that, since ∂Sc

(x,η)H(x,η) ⊂ ∂(x,η)H(x,η), the strong subdifferential con-
straint qualification implies the subdifferential constraint qualification. The terminol-
ogy was introduced by Dentcheva and Ruszczyński in [21] for a class of semiinfinite
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optimization problems. Through the separation theorem in convex analysis, it is easy
to observe that the constraint qualification is equivalent to 0 �∈ ∂H(x,η).

Theorem 3.3 Let (xN ,ηN) ∈ X × R be a local optimal solution to the sample av-
erage approximation problem (4). Let Ẑ denote the subset of points in X × R such
that

lim
N→∞d

(
(xN ,ηN), Ẑ

)→ 0

w.p.1. Assume that Ẑ is bounded, Assumption 2.1 holds and problem (3) satisfies the
strong subdifferential constraint qualification at every point (x, η) ∈ Ẑ. Then w.p.1
there exists λN ∈ R+ such that (xN ,ηN,λN) satisfies the KKT conditions (11) which
imply (12). Moreover, if c(x, ξ) is strictly differentiable w.r.t. x for all ξ ∈ Ξ , then
KKT conditions (11) are equivalent to that of (12).

Proof Under the strong subdifferential constraint qualification at (x, η), there exist a
constant δ > 0 and a vector u �= 0 (which depends on (x, η)) such that

sup
ζ∈∂(x,η)H(x,η)

ζ T u = Ho(x,η;u) ≤ −δ.

In what follows, we show that

sup
ζ∈∂(x,η)HN (xN ,ηN )

ζ T u ≤ −δ/2 (13)

w.p.1 for N sufficiently large, i.e., problem (4) satisfies the subdifferential constraint
qualification. Let (x, η) ∈ Ẑ,

∂ε
(x,η)H(x,η) :=

⋃

(x′,η′)∈(x,η)+εB
∂(x,η)H

(
x′, η′)

and

Ho
ε (x, η;u) := sup

ζ∈∂ε
(x,η)

H(x,η)

ζ T u.

The outer semicontinuity of ∂(x,η)H(·, ·) allows us to find a sufficiently small ε

(depending on (x, η)) such that

Ho
ε

(
x′, η′;u)≤ −3

4
δ

for all (x′, η′) ∈ B(x,η;ρ). Let Z̃ denote the closed ρ neighborhood of Ẑ relative to
X × R. Applying [22, Lemma 2.1] to Z̃, we can find a positive number N̂ such that

Ho
N

(
x′, η′;u)− Ho

ε

(
x′, η′;u)≤ δ

2
, ∀(x′, η′) ∈ Z̃
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w.p.1 for N ≥ N̂ . Using this inequality, we have

sup
ζ∈∂(x,η)HN (xN ,ηN )

ζ T u = Ho
N(xN,ηN ;u) ≤ Ho

ε (xN,ηN ;u) + δ

2
≤ − δ

4

w.p.1 as long as (xN ,ηN) ∈ B(x,η;ρ). That means for all ζ ∈ ∂(x,η)HN(xN,ηN),
w.p.1 ζ T u ≤ − δ

4 . It implies that w.p.1 problem (4) satisfies the strong subdifferential
constraint qualification at zN for N sufficiently large. The rest of the proof is similar
to Theorem 3.1. �

A triad (x, η,λ) ∈ X × R × R+ satisfying (12) is called a weak KKT pair of
problem (4) and a tuple (x, η,λ) ∈ X × R × R+ satisfying (11) is called a KKT pair
of problem (4).

We make a blanket assumption that throughout the rest of the paper the conditions
of Theorems 3.2 or 3.3 hold.

4 Convergence Analysis

In this section, we discuss convergence of SAA problem (4) as sample size N in-
creases. Differing from many asymptotic analysis in the literature, our focus here is
on the convergence of stationary points/KKT pair of the SAA problem in that a local
or global optimal solution is also a stationary point. The analysis is practically useful
in that: (a) when the problem is nonconvex, it is often difficult to obtain a global or
even a local optimal solution, a stationary point might provide some information on
local optimality; (b) CVaR approximation problem (2) has potential applications in
finance and engineering. Our analysis is divided into two parts: almost sure conver-
gence and exponential convergence. The former is to examine the asymptotic consis-
tency of stationary points obtained from solving the SAA problem and the latter is to
investigate the rate of convergence through large deviation theorem. Throughout this
section, we assume that the probability space (Ω,F ,P ) is nonatomic.

4.1 Almost Sure Convergence

Consider the SAA problem (4). Assume that, for each given sampling, we solve the
problem and obtain a stationary point (xN,ηN) which satisfies (12). We investigate
the convergence of (xN ,ηN) as N increases.

Assumption 4.1 Let Z := X × R. There exists a compact subset Z × Λ ⊂ Z × R+
and a positive number N0 such that w.p.1 problem (4) has a KKT pair (xN ,ηN,λN) ∈
Z × Λ for N ≥ N0.

This assumption is standard; see, for instance, Ralph and Xu [23].
Recall that for a set D, the support function of D is defined as

σ(D,u) := sup
d∈D

dT u.
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Let D1,D2 be two convex and compact subsets of R
m. Let σ(D1, u) and σ(D2, u)

denote the support functions of D1 and D2, respectively. Then

D(D1,D2) = max
‖u‖≤1

(
σ(D1, u) − σ(D2, u)

)
. (14)

The above relationship is known as Hörmander’s formula; see [24, Theorem II-18].

Theorem 4.1 Let {(xN,ηN,λN)} be a sequence of KKT pairs satisfying (12) and
(x∗, η∗, λ∗) be a cluster point. Suppose Assumption 4.1 holds. Then w.p.1 (x∗, η∗, λ∗)
is a weak KKT pair of the true problem (3). Moreover, if c(x, ξ) is convex or strictly
differentiable w.r.t. x, then w.p.1 (x∗, η∗, λ∗) is a KKT pair.

Proof Assume without any loss of generality that (xN ,ηN,λN) converges to
(x∗, η∗, λ∗) w.p.1 as N → ∞. Since 0 ≤ −H(x,η)⊥λ ≥ 0 is equivalent to
max(λ,−H(x,η)) = 0, in view of weak KKT conditions (9) and (12), it suffices
to show that w.p.1

lim
N→∞

{(∇f (xN)

0

)
+
[(

0
1

)
+ 1

αN

N∑

i=1

∂(x,η)g
(
xN,ηN, ξ i

)
]

λN + NZ(xN,ηN)

}

⊂
(∇f (x∗)

0

)
+ E

[(
0
1

)
+ 1

α
∂(x,η)g

(
x∗, η∗, ξ

)]
λ∗ + NZ

(
x∗, η∗) (15)

and

lim
N→∞ max

(−HN(xN,ηN),λN

)= max
(−H

(
x∗, η∗), λ∗). (16)

Since ∂(x,η)g(x, η, ξ) is outer semicontinuous w.r.t. (x, η) for almost every ξ and
integrably bounded, by [25, Theorem 4],

sup
(x,η)∈Z

D

(
1

N

N∑

i=1

∂(x,η)g
(
x,η, ξ i

)
,E

[
∂(x,η)g(x, η, ξ)

]
)

→ 0

w.p.1 as N → ∞. The uniform convergence and the continuous differentiability of
f (x) imply (15).

On the other hand, under Assumption 2.1, it follows from Proposition 3.2 that
HN(x,η) converges uniformly to H(x,η) over Z , which implies (16).

When c(x, ξ) is convex or strictly differentiable, H is Clarke regular, hence the
KKT systems (8) and (9) are equivalent. �

4.2 Exponential Rate of Convergence

We now move on to investigate the rate of convergence to strengthen the results es-
tablished in Theorem 4.1 through large deviation theorems. Results presented as such
are also known as exponential convergence. While the a.s. convergence is derived
fairly easily through uniform law of large numbers for random set-valued mappings,
exponential convergence is far more challenging. The main technical difficulty is to
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estimate the rate of uniform upper semiconvergence of sample average random set-
valued mappings and we propose to deal with it by exploiting a new large derivation
result in [13].

Definition 4.1 (Almost H-calmness) Let φ : R
n × Ξ → R be a real valued function

and ξ : Ω → Ξ ⊂ R
k be a random vector defined on probability space (Ω, F ,P ).

Let X ⊂ R
n be a closed subset of R

n and x ∈ X be fixed. φ is said to be

(a) almost H-calm at x from above with modulus κx(ξ) and order γx iff, for any
ε > 0, there exist an integrable function κx : Ξ → R+, positive numbers γx ,
δx(ε), K and an open set Ξx(ε) ⊂ Ξ such that

Prob
(
ξ ∈ Ξx(ε)

)≤ Kε (17)

and

φ
(
x′, ξ

)− φ(x, ξ) ≤ κx(ξ)
∥∥x′ − x

∥∥γx (18)

for all ξ ∈ Ξ\Ξx(ε) and all x′ ∈ B(x, δx)
⋂

X ;
(b) almost H-calm at x from below with modulus κx(ξ) and order γx iff, for any

ε > 0, there exist an integrable function κx : Ξ → R+, positive numbers γx ,
δx(ε), K and an open set Ξx(ε) ⊂ Ξ such that

Prob
(
ξ ∈ Ξx(ε)

)≤ Kε (19)

and

φ
(
x′, ξ

)− φ(x, ξ) ≥ −κx(ξ)
∥∥x′ − x

∥∥γx (20)

for all ξ ∈ Ξ\Ξx(ε) and all x′ ∈ B(x, δx)
⋂

X ;
(c) almost H-calm at x with modulus κx(ξ) and order γx iff, for any ε > 0, there

exist an integrable function κx : Ξ → R+, positive numbers γx , δx(ε), K and an
open set Ξx(ε) ⊂ Ξ such that

Prob
(
ξ ∈ Ξx(ε)

)≤ Kε (21)

and
∣∣φ
(
x′, ξ

)− φ(x, ξ)
∣∣≤ κx(ξ)

∥∥x′ − x
∥∥γx (22)

for all ξ ∈ Ξ\Ξx(ε) and all x′ ∈ B(x, δx)
⋂

X .

Remark 4.1 The concept of almost H-calmness is recently proposed by Sun and Xu
[13] to derive a uniform large deviation theorem for a class of discontinuous ran-
dom functions ([13, Theorem 3.1]) where the underlying random variable satisfies
a continuous distribution. It is closely related to the following calmness condition
suggested by a referee:

• There exist an integrable function κx : Ξ → R+, positive numbers γx , δx and a
measurable subset Ξx ⊂ Ξ such that

Prob(ξ ∈ Ξx) = 0 (23)
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and
∣∣φ
(
x′, ξ

)− φ(x, ξ)
∣∣≤ κx(ξ)

∥∥x′ − x
∥∥γx (24)

for all ξ ∈ Ξ\Ξx and all x′ ∈ B(x, δx)
⋂

X .

Conditions (23)–(24) require H-calmness (24) to hold for almost every ξ ∈ Ξ

and the two conditions may be regarded as a limiting case of almost H-calmness
(ε ↓ 0+). Let us call the resulting calmness as limiting almost H-calmness. In the case
when Ξx = ∅, it reduces to the H-calmness of [12, Definition 2.3], which requires H-
calmness condition (24) to hold for every ξ ∈ Ξ .

Let μ denote the Lebesgue measure relative to Ξ . The limiting almost calmness
conditions imply μ(Ξx) = 0. Therefore, for any ε > 0, there exists any open sub-
set Ξε

x ⊂ Ξ such that μ(Ξε
x ) < ε. This means limiting almost H-calmness implies

almost H-calmness. The reverse assertion may not be true.

The example below shows that an almost H-calm random function does not nec-
essarily satisfy the limiting almost H-calmness condition and the necessity of almost
H-calmness.

Example 4.1 Consider random function

ϕ(x, ξ) :=
{

1√|x−ξ | , for x �= ξ,

∞, for x = ξ,

where ξ is a random variable satisfying uniform distribution over [0,1]. For every
fixed ξ , function ϕ(·, ξ) is calm at any point x ∈ [0,1] except at point x = ξ because it
is locally continuously differentiable. However, this function does not satisfy limiting
almost H-calmness in the sense that there does not exist positive numbers δ, γ and
positive measurable function κ(ξ) such that

∣∣ϕ
(
x′, ξ ′)− ϕ

(
x, ξ ′)∣∣≤ κ

(
ξ ′)∣∣x′ − x

∣∣γ (25)

for all ξ ′ ∈ Ξ\{x} and x′ ∈ (x − δ, x + δ) ∩ [0,1]. On the other hand, it is easy to
verify that ϕ(x, ξ) is almost H-calm at any point in [0,1]. Indeed, for every ε > 0,
Let δ := ε/2, Ξx(ε) := (x − ε

2 , x + ε
2 ) ∩ [0,1] and

κx(ξ) :=
{

M, for ξ ∈ Ξε
x ∩ [0,1],

1
2
√

|x−ξ |3 , otherwise,

where M is any positive constant. Then it is easy to verify that

∣∣ϕ
(
x′, ξ ′)− ϕ(x, ξ)

∣∣≤ κx

(
ξ ′)∣∣x′ − x

∣∣ (26)

for all ξ ′ ∈ [0,1]\Ξx(ε) and x′ ∈ (x − 1
2ε, x + 1

2ε).
Note that the exponential convergence result based on almost H-calmness, [13,

Theorem 3.1], requires ϕ(x, ξ) to be bounded. However, it is easy to observe that
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[13, Theorem 3.1] holds when ϕ(x, ξ) is integrably bounded. See Theorem 8.1 in the
Appendix.

In some cases, even the random function satisfies the limiting almost H-calmness
condition, it is still unclear whether we are able to derive the exponential conver-
gence through a generalization of Theorem 3.1 in [12]. To see this, consider function
φ(x, ξ) = max(x, ξ) defined on [0,1] × [0,1], where ξ is a random variable satis-
fying uniform distribution over [0,1]. This function is Lipschitz continuous w.r.t. x,
therefore, the Clarke generalized derivative exists. For the fixed direction d = 1, the
derivative function can be written as

φo
x(x, ξ ;d) =

{
1, for x ≥ ξ,

0, for x < ξ.

It is continuous w.r.t. (x, ξ) except at line x = ξ . In what follows, we show that it
is limiting H-calm at every point in the interval [0,1]. Let x ∈ [0,1]. There exist
positive constants γx < 1 and integrable function κx(·) := 1/

√| · −x|γx such that
∣∣φo

x

(
x′, ξ ′;1

)− φo
x

(
x, ξ ′;1

)∣∣≤ κx

(
ξ ′)∣∣x′ − x

∣∣

for every ξ ′ ∈ [0,1]\{x} and x′ ∈ [0,1]\{x}. However, the moment generating func-
tion of κx(ξ) defined as such does not seem to exist, which means we cannot apply
[12, Theorem 3.1] to derive uniform exponential convergence for sample average ap-
proximation of the derivative function φo

x(x, ξ ;1) over any compact subset of [0,1].
On the other hand, similar to the analysis for the random function in the preceding
discussions of this example, we can show that this derivative function φo

x(x, ξ ;1) is
indeed almost H-calm, and hence we can derive the uniform exponential convergence
for the sample average of the function through Theorem 8.1. We omit the details. The
discussions above effectively demonstrate the advantage of almost H-calmness over
H-calmness or limiting H-calmness.

Since the subdifferential of max function take on a key role in our exponential
convergence analysis and both H-calmness and limiting almost H-calmness seem
too strong, we will use Theorem 8.1 which bases on almost H-calmness to derive
exponential convergence of stationary points obtained from the SAA problem (4). To
this end, we need a couple of technical results.

Lemma 4.1 Let X ∈ R
n be a compact set and x ∈ X. Let K1(x, ξ) and K2(x, ξ)

be continuously differentiable w.r.t. (x, ξ) and K(x, ξ) := max{Ki(x, ξ), i = 1,2}.
Define

ΞK(x) := {
ξ : K(x, ξ) = K1(x, ξ) = K2(x, ξ), ξ ∈ Ξ

}
.

Assume that ΞK(x) is compact and

∇ξ

(
K1(x, ξ) − K2(x, ξ)

) �= 0, ∀ξ ∈ ΞK(x).

Then μ(ΞK(x)) = 0, where μ denotes the Lebesgue measure relative to Ξ . Moreover,
for any ε > 0 and any fixed x ∈ X, there exists an open set Ξε

K(x) (depending on x

and ε) such that ΞK(x) ⊂ Ξε
K(x) and μ(Ξε

K(x) ∩ Ξ) ≤ ε.
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Proof The conclusion follows in a straightforward way from [13, Lemma 4.1]. �

Let gi(x, η, ξ) := ci(x, ξ) − η, for i = 1, . . . ,m, and gm+1(x, η, ξ) := 0. Then
g(x, η, ξ) = maxm+1

i=1 {gi(x, η, ξ)}. For any i, j ∈ {1, . . . ,m + 1}, i �= j , define

Ξi,j (x, η) := {
ξ ∈ Ξ : g(x, η, ξ) = gi(x, η, ξ) = gj (x, η, ξ)

}

and

Ξ(x,η) :=
⋃

i,j∈{1,...,m+1}
Ξi,j (x, η).

Obviously, Ξ(x,η) consists of the set of ξ ∈ Ξ such that g(·, ·, ξ) is not differentiable
at (x, η).

Proposition 4.1 Let Z ⊂ X × R be a compact set and (x, η) ∈ Z and ξ be a contin-
uous random variable. Assume: (a) ci(x, ξ) is continuously differentiable w.r.t. (x, ξ)

and twice continuously differentiable w.r.t. x for almost every ξ ∈ Ξ ; (b) there exists
an integrable function κ : Ξ → R such that ∇xci(·, ξ) is Lipschitz continuous with
modulus κ(ξ) for every ξ ∈ Ξ and E[κ(ξ)] < ∞; (c) Ξ(x,η) and Ξi,j (x, η) are
compact and

∇ξ

(
gi(x, η, ξ) − gj (x, η, ξ)

) �= 0, ∀ξ ∈ Ξi,j (x, η),

holds for all i, j ∈ {1, . . . ,m + 1}, i �= j . Then

(i) E[go
(x,η)(x, η, ξ ;u)] is a continuous function w.r.t. (x, η,u);

(ii) if, in addition, Ξ is compact, then go
(x,η)(x, η, ξ ;u) is almost H-calm w.r.t.

(x, η,u) with modulus κ(ξ) and order 1 on Z .

Proof Part (i). This is a well-known result. Note that condition (a) implies the twice
continuous differentiability of gi(x, η, ξ) w.r.t. x and η and condition (b) implies
locally Lipschitz continuity of ∇(x,η)gi(·, ·, ξ) with modulus κ(ξ) for every ξ ∈ Ξ .
Indeed, in this case E[g(x, η, ξ)] is continuously differentiable; see, for instance, [26,
Theorem 1].

Part (ii). Let ε > 0 and (x̄, η̄) ∈ Z be fixed. Under condition (c), it fol-
lows by Lemma 4.1 that there exists an open subset Ξε

i,j (x̄, η̄) such that Ξ ∩
Ξi,j (x̄, η̄) ⊂ Ξε

i,j (x̄, η̄) and μ(Ξε
i,j (x̄, η̄)) ≤ ε for all i, j ∈ {1, . . . ,m + 1}, i �= j .

Let Ξε(x̄, η̄) := ⋃
i,j Ξε

i,j (x̄, η̄). Since Ξ(x̄, η̄) =⋃
i,j Ξi,j (x̄, η̄), we have

Ξ(x̄, η̄) ⊂ Ξε(x̄, η̄) and μ
(
Ξε(x̄, η̄)

)≤
(

m

2

)
ε.

Let ξ̄ /∈ Ξε(x̄, η̄). Then there exists only a single i ∈ {1, . . . ,m + 1} such that
g(x̄, η̄, ξ̄ ) = gi(x̄, η̄, ξ̄ ). We can find a δ-neighborhood of (x̄, η̄, ξ̄ ) (depending on
x̄, η̄ and ξ̄ ), denoted by B((x̄, η̄, ξ̄ ), δx̄,η̄,ξ̄ ) relative to Z × Ξ , such that for all

(x, η, ξ) ∈ B((x̄, η̄, ξ̄ ), δx̄,η̄,ξ̄ ), g(x, η, ξ) = gi(x, η, ξ). Let ū be any direction such
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that ‖ū‖ ≤ 1, since gi(x, η, ξ) is continuously w.r.t. (x, η) differentiable in a neigh-
borhood of (x̄, η̄, ξ̄ ),

go
(x,η)(x, η, ξ ;u) = ∇(x,η)gi(x, η, ξ)T u.

Under condition (b) and the compactness of Ξ , ∇(x,η)gi(x̄, η̄, ξ) is bounded and there
exists integrable function κ̄ such that

∣∣go
(x,η)(x, η, ξ ;u) − go

(x,η)(x̄, η̄, ξ ; ū)
∣∣

= ∣∣∇(x,η)gi(x, η, ξ)T u − ∇(x,η)gi(x̄, η̄, ξ)T ū
∣∣

≤ ∣∣∇(x,η)gi(x, η, ξ)T u − ∇(x,η)gi(x, η, ξ)T ū
∣∣

+ ∣∣∇(x,η)gi(x̄, η̄, ξ)T ū − ∇(x,η)gi(x̄, η̄, ξ)T ū
∣∣

≤ max
(x,η)

∥∥∇(x,η)gi(x̄, η̄, ξ)
∥∥‖u − ū‖ + κ(ξ)‖ū‖∥∥(x, η) − (x̄, η̄)

∥∥

≤ κ̄(ξ)
(∥∥(x, η) − (x̄, η̄)

∥∥+ ‖u − ū‖), (27)

where κ̄(ξ) := max{κ(ξ),max(x,η) ‖∇(x,η)gi(x̄, η̄, ξ)‖}. Due to the compactness of
Ξ\Ξε(x̄, η̄), we claim through the finite covering theorem that there exists a uni-
fied δ(x̄,η̄) > 0 such that (27) holds for all (x, η,u) ∈ B((x̄, η̄, ū), δ((x̄,η̄))) and all
ξ ∈ Ξ\Ξε((x̄, η̄)). �

Following Remark 4.1, Proposition 4.1(ii) implies that go(x, η, ξ ;u) is limiting
almost H-calm. Indeed condition (c) of Proposition 4.1 guarantees that set Ξx con-
sists a finite number of points. This is the weakest verifiable sufficient condition that
we could find to ensure μ(Ξx) = 0 and existence of a positive constant δx : without
this condition we are unable to show almost H-calmness of go(x, η, ξ ;u) or limiting
almost H-calmness.

Theorem 4.2 Let Z × Λ be a nonempty compact subset of Z × R+ and HN(x,η)

be defined as in (4). Suppose, in addition to conditions of Proposition 4.1, that:
(a) ci(x, ξ) is locally Lipschitz continuous w.r.t. x for every ξ with modulus κ(ξ),
where E[κ(ξ)] < ∞, and (b) the support set of ξ is bounded. Let

RN
1 (x, η,λ) := D

((∇f (xN)

0

)
+
(

0
λ

)
+ λ

αN

N∑

i=1

∂(x,η)g
(
x,η, ξ i

)
,

(∇f (xN)

0

)
+ E

[(
0
1

)
+ 1

α
∂(x,η)g(x, η, ξ)

]
λ

)

and

RN
2 (x, η,λ) := ∥∥max

(−HN(x,η), λ
)− max

(−H(x,η), λ
)∥∥.

Then, with probability approaching one exponentially fast with the increase of sample
size N , sup(x,η,λ)∈Z ×ΛRN

1 (x, η,λ) and sup(x,η,λ)∈Z ×ΛRN
2 (x, η,λ) tend to 0.
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Proof It is well known that for any compact sets A,B , D(A,B) := inft>0{t : A ⊂
B + t B}. Using this equivalence definition, one can easily derive that, for any set C,
D(A,B) ≤ D(A,C)+ D(C,B) and D(A+C,B +C) ≤ D(A,B). Consequently, we
have

RN
1 (x, η,λ) ≤ D

(
1

αN

N∑

i=1

∂(x,η)g
(
x,η, ξ i

)
λ,

1

α
E
[
∂(x,η)g(x, η, ξ)

]
λ

)

.

Since the Clarke subdifferential is convex and compact set-valued, we can use the
Hörmander’s formula (14) to reformulate the right-hand side of the inequality above
as

max
‖u‖≤1

[

σ

(
1

αN

N∑

i=1

∂(x,η)g
(
x,η, ξ i

)
λ,u

)

− σ

(
1

α
E
[
∂(x,η)g(x, η, ξ)

]
λ,u

)]

and, by virtue of the property of support function (see [27]) and [28, Proposition 3.4],
further as

1

α
max
‖u‖≤1

[
1

N

N∑

i=1

go
(x,η)

(
x,η, ξ i;u)− E

[
go

(x,η)(x, η, ξ ;u)
]
]

λ. (28)

Let �N(x,η,u) := 1
N

∑N
i=1 go

(x,η)(x, η, ξ i;u) − E[go
(x,η)(x, η, ξ ;u)]. Since Λ is a

compact set, there exists a positive number M such that supλ∈Λ λ ≤ M . Consequently,

Prob
{

sup
λ∈Λ,(x,η)∈Z,‖u‖≤1

�N(x,η,u)λ ≥ ε
}

≤ Prob
{
M sup

(x,η)∈Z ,‖u‖≤1
�N(x,η,u) ≥ ε

}
. (29)

By Proposition 4.1, go
(x,η)(x, η, ξ ;u) is almost H-calm with modulus κ(ξ) and order 1

and E[go
(x,η)(x, η, ξ ;u)] is a continuous function. Under condition (b), the moment

generating function

Mg(x,η) := E
[
e
(go

(x,η)
(x,η,ξ ;u)−E[go

(x,η)
(x,η,ξ ;u)])t ]

and

Mκ(t) := E
{
e[κ(ξ)−E[κ(ξ)]]t}

are finite valued for t close to 0. By Theorem 8.1, for any ε > 0, there exist constants
c1(ε) > 0 and β1(ε) > 0 (independent of N ) such that

Prob

{

sup
(x,η)∈Z ,‖u‖≤1

1

N

N∑

i=1

go
(x,η)

(
x,η, ξ i;u)− E

[
go

(x,η)(x, η, ξ ;u)
]≥ εα

M

}

≤ c1(ε)e
−Nβ1(ε).
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Combining the inequality above with (28) and (29), we have

Prob
{

sup
(x,η,λ)∈Z ×Λ

RN
1 (x, η,λ) ≥ ε

}

≤ Prob

{

sup
(x,η)∈Z ,‖u‖≤1

1

N

N∑

i=1

g
(
x,η, ξ i, u

)− E
[
g(x, η, ξ, u)

]≥ εα

M

}

≤ c1(ε)e
−β1(ε)N . (30)

On the other hand, since RN
2 (x, η,λ) ≤ ‖H(x,η) − HN(x,η)‖, under conditions (a)

and (b), it follows by [12, Theorem 3.1] that, for any small positive number ε > 0,
there exist positive constants c2(ε) and β2(ε) (independent of N ) such that

Prob
{

sup
(x,η,λ)∈Z ×Λ

RN
2 (x, η,λ) ≥ ε

}
≤ Prob

{
sup

(x,η)∈Z

∥∥H(x,η) − HN(x,η)
∥∥≥ ε

}

≤ c2(ε)e
−β2(ε)N . (31)

The proof is complete. �

Let

Γ (x,η,λ) :=
((∇f (x)

0

)+ E
[(0

1

)+ 1
α
∂(x,η)g(x, η, ξ)

]
λ

max(−H(x,η), λ)

)

and

G(x, η) :=
(

NX ×R(x, η)

0

)
.

We can rewrite (9) as a stochastic generalized equation

0 ∈ Γ (x,η,λ) + G(x, η).

Likewise, we can rewrite the KKT conditions (12) of the SAA problem as follows:

0 ∈ ΓN(x,η,λ) + G(x, η),

where

ΓN(x,η,λ) :=
((∇f (x)

0

)+ ((0
1

)+ 1
αN

∑N
i=1∂(x,η)g(x, η, ξ)

)
λ

max(−HN(x,η), λ)

)

.

It is easy to see that Theorem 4.2 implies

sup
(x,η,λ)∈Z ×Λ

D
(
ΓN(x,η,λ),Γ (x, η,λ)

)→ 0 (32)

a.s. N → ∞.
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Theorem 4.3 Assume the settings and conditions of Theorem 4.2. Under Assump-
tion 4.1, for any ε > 0, there exist positive constants c(ε) and β(ε) independent of N

such that

Prob
{
d
(
(xN ,ηN),Z∗)≥ ε

}≤ c(ε)e−Nβ(ε),

where (xN ,ηN) denotes the KKT point satisfying (12) and Z∗ denotes the set of weak
Clarke stationary points characterized by (9).

Proof The thrust of the proof is to use (32) and [12, Lemma 4.2]. To this end, we need
to verify the outer semicontinuity of Γ (x,η,λ). Observe that Γ (x,η,λ) consists of
two parts:

(∇f (x)

0

)
+ E

[(
0
1

)
+ 1

α
∂(x,η)g(x, η, ξ)

]
λ

and max(H(x,η), λ). Since f is continuously differentiable and ∂(x,η)g(x, η, ξ) is
outer semicontinuous w.r.t. x,η for almost every ξ and integrably bounded, it follows
by Aumann [17, Corollary 5.2],

(∇f (x)

0

)
+ E

[(
0
1

)
+ 1

α
∂(x,η)g(x, η, ξ)

]
λ

is outer semicontinuous. Moreover, since H(x,η) is a continuous function,
max(−H(x,η), λ) is continuous w.r.t. (x, η), and λ. Therefore, Γ (x,η,λ) is outer
semicontinuous. The rest follows from (32) and [12, Lemma 4.2]. �

It is important to note that the constants c(ε) and β(ε) in Theorem 4.3 may be
significantly different from their counterparts in Theorem 4.2. To establish a precise
relationship of these constants, we will need more information about the sensitivity
of the true problem at the stationary points. One possibility is to look into the metric
regularity type condition for set-valued mapping Γ (x,η,λ) + G(x, η). If there exists
positive constants C and γ such that

d
(
x,η,Z∗)≤ Cd

(
0,Γ (x, η,λ) + G(x, η)

)γ

for x,η close to Z∗, then we can establish

d
(
x,η,Z∗)≤ C

(∥∥RN
1 (x, η,λ)

∥∥+ ∥∥RN
2 (x, η,λ)

∥∥)γ .

We refer interested readers to [29] for recent discussions on metric regularity. Under
this circumstance, the constants c(ε) and β(ε) can be easily expressed in terms of
c(ε) := c1(ε) + c2(ε) and β(ε) := min(β1(ε), β2(ε)) in Theorem 4.2. Moreover, fol-
lowing [13, Remark 3.1], under some additional conditions on the moment functions,
we can obtain an estimation of sample size through (30) and (31), that is there exists
a constant σ > 0 such that for any ε > 0, Prob{d((xN,ηN),Z∗) ≥ ε} ≤ β holds when

N ≥ O(1)σ 2

ε2

[
n ln

(
O(1)D

(
4E[κ(ξ)]

ε

)) 1
γ + ln

(
1

β

)]
,
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where D := sup(x′,η′),(x,η)∈Z ‖(x′, η′) − (x, η)‖ is the diameter of Z and O(1) is a
generic constant. We leave this to interested readers as it involves complex technical
details.

5 DC-Approximation

Although CVaR approximation is known to be the “best” convex approximation
method of chance constraints, as commented in [4], it is a convex conservative ap-
proximation, which means that there exists a gap between the CVaR approximation
and the true constraint. In [14, 30], Hong et al. proposed a DC-approximation method
for a joint chance constraint. The numerical tests show that the DC-approximation
scheme displays better results than CVaR approximation scheme. Hong et al. also
showed almost sure convergence of optimal solution of subproblems in their algo-
rithm called sequential convex approximations (SCA). It is easy to extended their
discussion to convergence of stationary points. In this section, we only list the similar
convergence results as above section under the DC-approximation scheme but omit
the proofs for the limitation of the length of the paper. We refer interested readers to
[31, Sect. 4] for details.

The formulation of the DC-approximation problem is defined as follows:

min
x∈X

f (x) s.t. inf
t>0

1

t

(
E
[
p
(
c(x, ξ) + t

)]− E
[
p
(
c(x, ξ)

)])≤ α, (33)

where t is a positive number. In [14], Hong et al use ε-approximation of problem (33)
by setting t = ε. The formulation of ε-approximation problem is

min
x∈X

f (x) s.t. HDC
ε (x) := E

[
p
(
c(x, ξ) + ε

)]− E
[
p
(
c(x, ξ)

)]− εα ≤ 0, (34)

and its SAA problem as

min
x∈X

f (x) s.t. HDC
N (x) := 1

N

N∑

j=1

(
p
(
c
(
x, ξj

)+ε
)−p

(
c
(
x, ξj

)))−εα ≤ 0. (35)

Hong et al. also prove that when ε ↓ 0, the KKT point of problem (34) converges to
that of problem (1).

Let λ ≥ 0 and define the Lagrange function of problem (33):

L DC(x,λ) := f (x) + λHDC
ε (x).

In order to derive the KKT conditions of problem (33), we need some assumptions:

Assumption 5.1 ci(x, ξ), i = 1, . . . ,m, is locally Lipschitz continuous w.r.t. x with
modulus κi(ξ) where E[κi(ξ)] < ∞.

Assumption 5.2 c(·, ξ) is differentiable on X for a.e. ξ .
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Assumption 5.3 Let F(t, x) := Prob{c(x, ξ) ≤ t}. There exists a constant � > 0 such
that F(t, x) is continuously differentiable on (−�,�) × X .

Assumptions 5.1–5.3 are used and discussed in [14].

Definition 5.1 Problem (34) is said to satisfy the differential constraint qualification
at a feasible point x iff there exists d ∈ R

n such that ∇xH
DC
ε (x)T d < −δ, where

δ > 0 is a positive constant.

Proposition 5.1 Let x∗ ∈ X be a local optimal solution to the true problem (34). Let
Assumptions 2.1, 5.1–5.3 hold and the differential constraint qualification be satisfied
at x∗. Then there exists a λ∗ ∈ R+ such that

{
0 ∈ ∇f (x∗) + λ∗∇xH

DC
ε (x∗) + NX (x∗),

0 ≤ −HDC
ε (x∗)⊥λ∗ ≥ 0.

(36)

Proposition 5.2 Let xN ∈ X be a local optimal solution to the sample average ap-
proximation problem (35). Let X̂ denote a subset of X such that

lim
N→∞d(xN, X̂) → 0, w.p.1.

Suppose that Assumptions 2.1, 5.1–5.3 hold, X̂ is bounded and the differential con-
straint qualification holds at every point x ∈ X̂. Then w.p.1 problem (35) satisfies the
differential constraint qualification for N sufficiently large, and there exists λN ∈ R+
such that

{
0 ∈ ∇f (xN) + ΦN(xN)λN + NX (xN),

0 ≤ −HDC
N (xN)⊥λN ≥ 0,

(37)

where ΦN(x) := 1
N

∑N
j=1(∇xci(x)(x, ξ j ) · 1(−ε,+∞)(c(x, ξ j )) − ∇xci(x)(x, ξ j ) ·

1(0,+∞)(c(x, ξ j ))).

We call a tuple (x∗, λ∗) satisfying (36) a KKT pair of problem (34), x∗ a stationary
point and λ∗ the corresponding Lagrange multiplier and a tuple (xN ,λN) satisfying
(37) a KKT pair of problem (35). We also note that such a (x∗, λ∗) can be thought as
an ε-KKT pair of problem (33).

We make a blanket assumption that throughout the rest of this section the condi-
tions of Proposition 5.2 hold.

Assumption 5.4 There exists a compact subset X × Λ ⊂ X × R+ and a positive
number N0 such that w.p.1 problem (35) has a KKT pair (xN,λN) ∈ X × Λ for
N ≥ N0.

Theorem 5.1 Let {(xN ,λN)} be a sequence of KKT pairs of problem (35) and
(x∗, λ∗) be a cluster point. Suppose that Assumptions 5.1–5.4 hold. Then w.p.1
(x∗, λ∗) is a KKT pair of the true problem (34), which satisfies the KKT system (36).
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Theorem 5.2 Let X × Λ be a nonempty compact subset of X × R+. Let HDC
N (x,η)

be defined as in (35) and ΦN(x) be defined as in (37). Assume: (a) Assumptions 5.1,
5.3, and 5.4 hold; (b) the support set of ξ is bounded; (c) ci(x, ξ), i = 1, . . . ,m, is
continuously differentiable w.r.t. (x, ξ) and twice continuously differentiable w.r.t. x

for almost every ξ ∈ Ξ ; (d) there exists an integrable function κ : Ξ → R such that
∇xci(·, ξ) is locally Lipschitz continuous with modulus κ(ξ) for every ξ ∈ Ξ where
E[κ(ξ)] < ∞; (e) Ξ̂(x), Ξ̂i,j , Ξ̃(x) and Ξ̃i,j (x) are compact,

∇ξ

(
ĉi (x, ξ) − ĉj (x, ξ)

) �= 0, ∀ξ ∈ Ξ̂i,j (x),

and

∇ξ

(
ci(x, ξ) − cj (x, ξ)

) �= 0, ∀ξ ∈ Ξ̃i,j (x)

hold for all i, j ∈ {1, . . . ,m + 1}, i �= j . Then, for any ε > 0, there exist positive
constants C(ε) and β(ε) independent of N such that

Prob
{
d
(
xN,X∗)≥ ε

}≤ C(ε)e−Nβ(ε),

where xN denotes the Clarke stationary points characterized by (37) and X∗ denotes
the set of Clarke stationary points characterized by (36).

6 Numerical Tests

We have carried out a number of numerical experiments on the approximation scheme
for (1) in Matlab 7.9.0 installed in a PC with Windows XP operating system. To
deal with joint chance constraint, we apply CVaR method to approximate it and then
reformulate the latter as (3). In the tests, we apply SAA method to problem (3) and
employ the random number generator rand in Matlab 7.9.0 to generate the samples
and solver fmincon to solve the SAA problem (4). Since our focus in this paper is on
convergence analysis, then our numerical test is to show the convergence behave with
the sample size increase.

Let x = (x1, . . . , xd)T denote a d-dimensional vector in R
d and ξ ∈ R

d×m be a
matrix of random variables. We consider the following norm optimization problem:

min −
d∑

j=1

x1

s.t. Prob

{
d∑

j=1

ξ2
ij x

2
j ≤ 100, i = 1, . . . ,m

}

≥ 1 − α, (38)

xj ≥ 0, j = 1, . . . , d.

Note that (38) is a joint chance constraint problem; see [14, Sect. 5.1] for details.
Let ci(x, ξ) := ∑d

j=1 ξ2
ij x

2
j − 100, for i = 1, . . . ,m. For any x �= 0, ci(x, ξ) is a

continuous random variable and ci(x, ξ) = cj (x, ξ) with probability 0.
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We consider the case when ξij , i = 1, . . . ,m, j = 1, . . . , d , are independent and
identically distributed random variables with stand normal distribution. Via a sim-
ilar argument to that in [14], we can work out the optimal solution of (38) x∗ =
{x∗

1 , . . . , x∗
d }, where

x∗
i = 10

F−1
χ2

d

((1 − α)1/m)
, i = 1, . . . , d,

and F−1
χ2

d

denotes the inverse distribution function of a chi-square distribution with d

degrees of freedom. We use x∗ as a benchmark in the CVaR schemes.
For d = 2 and m = 2, the true optimal solution of problem (38) is x∗ =

(4.10,4.10) with optimal value f ∗ = −8.20. We set α = 0.1 and ε = 0.052 and per-
form comparative analysis with respect to the sample size from 100 to 2800 with
increment 300. For every fixed sample size, 50 independent tests are carried out each
of which solves the SAA problem and yields an approximation solution. We solve
the problem (38) under the two approximation schemes, CVaR and DC, and use the
numerical solution of CVaR problem, xCVaR, as a start point of DC problem. We
carry out those numerical experiments on this problem with gradient-based Monte
Carlo method and Algorithm SCA; see [14], in Matlab 7.9.0 installed in a PC with
windows XP where CVaR problem and every convex subproblem generated by Al-
gorithm SCA are solved by fmincon.

We use a vertical interval to indicate the range of the 50 approximate optimal
values and optimal solutions based on the CVaR and DC-approximation schemes.
As sample size increases, we observe a trend of convergence of the range of the
optimal values and solutions. Figure 1 depicts the convergence of optimal values
due to CVaR and DC. Figure 2 displays the convergence of two components of the
approximate optimal solution based on CVaR approximation while Fig. 3 shows the
similar convergence of two components of the approximate optimal solution based
on DC approximation. All of those figures show that when sample size increases
from 100 to 2800, both optimal values and optimal solutions converge quickly and
when sample size reaches 1300 there is not substantial changes of these quantities.
Although the numerical tests show that the DC approximation methods approach the
joint chance constrained problem better, the CPU time of solving DC approximation
scheme via Algorithm SCA is much more than its CVaR counterpart.

Fig. 1 The convergence of the optimal values of CVaR and DC-approximation
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Fig. 2 The convergence of the optimal solutions of CVaR approximation

Fig. 3 The convergence of the optimal solutions of DC-approximation

7 Concluding Remarks

In this paper, we present a detailed asymptotic analysis of stationary points of a
stochastic program with a specific CVaR constraint which approximates a joint
chance constraint. CVaR has been widely used as a risk measure in finance, engi-
neering, and management sciences [32–34] and it is of immense interest to investi-
gate optimization problem with CVaR as a constraint rather than an objective as in
the literature [3, 7, 8]. Our analysis has addressed the needed asymptotic consistency
and numerical efficiency/tractbility of estimators of optimal solutions and stationary
points under some moderate conditions when the well- known Monte Carlo method is
applied to solve the CVaR constrained problem. The analysis is extended to the case
when the joint chance constraint is approximated via DC-programming although the
details are left in an earlier version [31] due to the limitation of length of the paper.

Note that the established convergence results are problem specific, that is, the
CVaR or DC functions are constructed from the underlying functions of the joint
chance constraints. However, we envisage that this kind of convergence may be es-
tablished when SAA is applied to a stochastic problem with a general CVaR or DC
constraint. For instance, in the analysis of exponential convergence, we employ the
concept of almost H-calmness which is satisfied by a broad class of piecewise smooth
random functions. We leave this to interested readers.
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Note also that joint chance constrained problem is intrinsically nonconvex, there-
fore, as a convex approximation, CVaR does not necessarily give rise to the best
approximation to the true problem; indeed, it has already been shown that DC-
approximation delivers a better approximation [14] although the former is much eas-
ier to solve due to the convex constraint.
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Appendix

In this Appendix, we strengthen [13, Theorem 3.1] by weakening a boundedness
condition imposed on the random function.

Theorem 8.1 Let φ : R
n × Ξ → R be a real valued lower semicontinuous func-

tion, ξ : Ω → Ξ ⊂ R
k a random vector defined on probability space (Ω, F ,P ) and

ψ(x) := E[φ(x, ξ)]. Let X ⊂ R
n be a compact subset of R

n. Assume: (a) for ev-
ery x ∈ X the moment generating function Mx(t) := E{et[φ(x,ξ)−ψ(x)]} is finite val-
ued for all t in a neighborhood of zero. (b) ψ(x) is continuous on X , (c) φ(x, ξ)

is bounded by an integrable function L(ξ) and the moment generating function
E[e(L(ξ)−E[L(ξ)])t ] is finite valued for t close to 0. Then the following statements
hold.

(i) If φ(·, ξ) is almost H-clam from above at every point x ∈ X with modulus κx(ξ)

and order γx , and the moment generating function E[eκx(ξ)t ] is finite valued for
t close to 0, then for every ε > 0, there exist positive constants c(ε) and β(ε),
independent of N , such that

Prob
{

sup
x∈X

(
ψN(x) − ψ(x)

)≥ ε
}

≤ c(ε)e−Nβ(ε). (39)

(ii) If φ(·, ξ) is almost H-clam from below at every point x ∈ X with modulus κx(ξ)

and order γx , and the moment generating function E[eκx(ξ)t ] is finite valued for
t close to 0, then for every ε > 0, there exist positive constants c(ε) and β(ε),
independent of N , such that

Prob
{

sup
x∈X

(
ψN(x) − ψ(x)

)≤ −ε
}

≤ c(ε)e−Nβ(ε). (40)

(iii) If φ(·, ξ) is almost H-clam at every point x ∈ X with modulus κx(ξ) and order
γx , and the moment generating function E[eκx(ξ)t ] is finite valued for t close to
0, then for every ε > 0, there exist positive constants c(ε) and β(ε), independent
of N , such that

Prob
{

sup
x∈X

∣∣ψN(x) − ψ(x)
∣∣≥ ε

}
≤ c(ε)e−Nβ(ε). (41)
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Due to the limitation of the length of the paper, we omit the proof which can be
found in [31].

Note that the exponential convergence is derived for the case when ξ satisfies a
continuous distribution. In the case when ξ satisfies a discrete distribution, the con-
cept of almost H-calmness is no longer applicable. However, the uniform exponential
convergence may be established in an entirely different way for a class of random
function which is uniformly bounded over a considered compact set. We leave this to
interested readers.
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