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In this paper we apply the well known sample average approximation (SAA) method to
solve a class of stochastic variational inequality problems (SVIPs). We investigate the
existence and convergence of a solution to the sample average approximated SVIP. Under
some moderate conditions, we show that the sample average approximated SVIP has a
solution with probability one and with probability approaching one exponentially fast
with the increase of sample size, the solution converges to its true counterpart. Finally,
we apply the existence and convergence results to SAA method for solving a class of
stochastic nonlinear complementarity problems and stochastic programs with stochastic
constraints.
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1. Introduction

In this paper, we consider the following stochastic variational inequality problem
(SVIP): find x ∈ K ⊂ R

n such that

(y − x)T
E [F (x, ξ(ω))] ≥ 0, ∀ y ∈ K, (1.1)

where F : R
n×R

k → R
n is a continuous function, ξ : Ω → Ξ ⊂ R

k is a random vec-
tor defined on probability space (Ω,F , P ), E denotes the mathematical expectation
with respect to the distribution of ξ, and K is a nonempty closed convex set. We
make a blanket assumption that for every x ∈ K, E [F (x, ξ(ω))] is well defined. To
ease notation, we will use ξ to denote either the random vector ξ(ω) or an element
of R

k, depending on the context.
SVIP model (1.1) is a natural extension of deterministic variational inequality

models. Over the past few decades, deterministic variational inequality has been
extensively studied for its extensive application in engineering, economics, game
theory and networks, see the book on the topic by Facchinei and Pang (2003). While
many practical problems only involve deterministic data, there are some important
instances where problem data contain some uncertainties and consequently SVIP
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models are proposed to reflect the uncertainties. For instances, Watling (2006) uses
an SVIP model to investigate user equilibrium problems in transportation where
uncertainty arises from road conditions and travel times. Similar models can also
be used to describe transmission of electricity in a network where generators and
retailers are located at spatially separated nodes of the network and uncertainty
arises from nodal demands, see Jiang and Xu (2008, Example 6.4). Application of
SVIP models can also be found in signal transmission in a wireless network (Ngo and
Krishnamurthy, 2007), inventory or pricing competition among several firms that
provide substitutable goods or services (Chen et al., 2004; Mahajan and Ryzin,
2001) and stochastic dynamic games (Basar and Olsder, 1999; Filar and Vrieze,
1997).

In this paper, we are concerned with numerical solution of SVIP. The key issue
is to deal with the expected value of F (x, ξ). If we are able to obtain a closed form
of E[F (x, ξ)], then SVIP (1.1) becomes a deterministic VIP and existing numerical
methods for the latter (Facchinei and Pang, 2003) can be applied directly to it.
However, in practice, obtaining a closed form of E[f(x, ξ)] or computing the value
of it numerically is often difficult either due to the unavailability of the distribution
of ξ or because it involves multiple integration. Instead, it is often possible to obtain
a sample of the random vector ξ either from past data or from computer simulation.
Consequently one may consider an approximate solution to (1.1) based on sampling.

Let ξ1, . . . , ξN be a sampling of ξ(ω). A well known approach based on the
sampling is so-called Sample Average Approximation (SAA) method, that is, using
sample average value of F (x, ξ) to approximate its expected value because the
classical law of large number for random functions ensures that F̂N (x) converges
with probability 1 to E[F (x, ξ)] (Rubinstein and Shapiro, 1993, Section 2.6) when
the sampling is independent and identically distributed (iid for short). Specifically,
we can write down the SAA of our SVIP (1.1) as follows: find x ∈ K such that

(y − x)T F̂N (x) ≥ 0, ∀ y ∈ K, (1.2)

where

F̂N (x) :=
1
N

N∑
j=1

F (x, ξj).

We call problem (1.2) the SAA problem and (1.1) the true problem. Shapiro (2003,
Section 7) first discussed the above described sample average approximation
approach for SVIP under the framework of stochastic generalized equations. He
carried out comprehensive analysis including the existence and convergence of solu-
tions to (1.2) as N increases. The topic of stochastic generalized equations and
its asymptotic approximation can be traced down to King and Rockafellar’s early
work (King and Rockafellar, 1992, 1993) which is partly motivated by the asymp-
totic analysis of statistical estimators in stochastic programming. Of course, King
and Rockafellar’s focus is slightly different from Shapiro’s in that the latter looks
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into the asymptotic behavior of the approximate solutions using the sensitivity anal-
ysis of parametric generalized equations where the sample averaged functions are
treated as a parameter (in a functional space). On a similar but slightly broader
track, Gürkan et al. (1996, 1999) proposed simulation based sample-path optimiza-
tion (SPO) approach for solving SVIP (1.1). SPO is proposed by Robinson (1996)
and essentially coincides with SAA although SPO could be slightly broader.

More recently, Jiang and Xu (2008) proposed a stochastic approximation (SA)
method for solving SVIP (1.1). The method is an iterative scheme where at each
iterate a correction is made and the correction is obtained by sampling or other
stochastic approximation. SA is well known in stochastic optimization but the appli-
cation of SA to SVIP is new. As far as sampling is concerned, the main difference
between SA and SAA is that SA usually requires a small sample size at each iterate
(typically with N = 1) and hence converges slowly, while SAA requires a larger
sample size and a new SAA problem has to be solved when sampling is updated.

In this paper, we follow Shapiro’s approach to revisit the issues concerning the
existence and convergence of solutions of the SAA problem (1.2). We complement
Shapiro’s results on the issues essentially on two-fold: (a) we use the concept of
subinvertibility of a set-valued mapping due to King and Rockafellar (1992) rather
than Robinson’s strong regularity as in Shapiro (2003) to derive weaker conditions
for the existence of a solution to SAA problem (1.2); we establish the exponential
rate of convergence, instead of almost sure convergence as in Shapiro (2003), of
solution of SAA problem (1.2) to its true counterpart as sample size increases under
general sampling rather than iid sampling. We also apply the results to analyze the
convergence of SAA method for a class of stochastic nonlinear complementarity
problems and stochastic programs with stochastic constraints.

A few words about notation. Throughout this paper, xT y denotes the scalar
products of two vectors x and y, ‖ · ‖ denotes the Euclidean norm of a vector and
a compact set of vectors. d(x, D) := infx′∈D ‖x − x′‖ denotes the distance from
point x to set D. For two sets D1 and D2, D(D1, D2) := supx∈D1

d(x, D2) denotes
the deviation from set D1 to set D2 (which is also known as excess of D1 over
D2), and H(D1, D2) denotes the Hausdorff distance between the two sets, that is,
H(D1, D2) := max(D(D1, D2), D(D1, D2)).

2. Convergence Analysis of SAA Problem

In this section, we discuss the convergence of (1.2) to (1.1) as N increases. Specifi-
cally we investigate two issues: (a) the existence of a solution to the SAA problem
(1.2), (b) the convergence of solution of (1.2) to its true counterpart as N → ∞.
Observe that both (1.1) and (1.2) can be written as generalized equations:

0 ∈ F̂ (x) + NK(x) (2.1)

and

0 ∈ F̂N(x) + NK(x) (2.2)
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where F̂ (x) = E[F (x, ξ)], F̂N (x) = 1
N

∑N
i=1 F (x, ξi), and NK(x) denotes the normal

cone (the usual one of convex analysis) to K at point x. Consequently, we may
investigate the convergence of solutions of (2.2) to the set of solutions of (2.1).

2.1. Existence of a solution

It is not unusual in asymptotic analysis of SAA method for stochastic programming
that existence of a solution to the sample average approximate problem is ignored
by simply assuming the problem has a solution. This is not because the issue of
existence is not important but because it is often difficult to derive sensible results.
Moreover, when the feasible set is compact, then the existence often becomes trivial.
In this paper, we investigate this issue as it is discussed in the literature. Let us start
with a review of Shapiro’s established results on this issue. The following concept
of strong regularity is due to Robinson (1980) and considered by Shapiro (2003,
Section 7) for the purpose of stochastic generalized equations.

Definition 2.1. Let F̂ (x) be defined as in (2.1) and F̂ (x) be continuously differ-
entiable. Let x∗ be a solution of the true problem (2.1). x∗ is said to be strongly
regular, if there exist neighborhoods U1 and U2 of 0 ∈ R

n and x∗ respectively such
that for δ ∈ U1, the following generalized equation

δ ∈ F̂ (x∗) + ∇F̂ (x∗)(x − x∗) + NK(x)

has a unique solution in U2, denoted by x(δ), and x(·) is Lipschitz continuous on U1.

Under the strong regularity condition, Shapiro established the following exis-
tence and convergence result for the solutions of (2.2).

Proposition 2.1. (Shapiro, 2003, Proposition 21) Let x∗ be a strongly regular
solution to the true problem (2.1), and suppose that both F̂ (x) and F̂N (x) are con-
tinuously differentiable in a neighborhood of x∗ and w.p.1 F̂N (x) converges to F̂ (x)
uniformly in a neighborhood of x∗. Then w.p.1 for N large enough the SAA problem
(2.2) possesses a unique solution xN in a neighborhood of x∗ and xN → x∗ w.p.1
as N → ∞.

In what follows we revisit the existence issue from a slightly different angle:
instead of using Robinson’s strong regularity, we apply King and Rockafellar’s sen-
sitivity analysis results on generalized equations to derive the existence of solu-
tion to (2.2). Two reasons underly our discussion: one is that the function F̂ (x) is
continuous but not necessarily continuously differentiable in some practical cases;
the other is that if we just want existence of a solution to (2.2) without further
requiring the uniqueness and Lipschitz continuity of the solution, then we might
establish the existence result under a slightly weaker condition than those imposed
in Proposition 2.1. The following concept of subinvertibility of is due to King and
Rockafellar (1992).
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Definition 2.2. Let Φ(x) := E[F (x, ξ)] + NK(x) and x∗ ∈ R
n. Φ is said to be

subinvertible at (x∗, 0), if one has 0 ∈ Φ(x∗) and there exist a compact convex
neighborhood U of x∗ in R

n, a positive constant ε > 0, and a nonempty convex-
valued mapping G : εB → U ⊂ R

n such that the graph of G, gphG, is closed, the
point x∗ belongs G(0), and G(y) is contained in Φ−1(y) for all y ∈ εB.

An instance of Φ being subinvertible at (x∗, 0) is that there exists a continuous
selection x(y) of Φ−1 on a compact neighborhood of 0 such that x(0) = x∗.

King and Rockafellar (1992) presented intensive discussions about the sufficient
conditions for subinvertibility of a set-valued mapping in terms of contingent deriva-
tive of the set-valued mapping. In this context, their results indicate that: (a) if Φ(x)
is maximal monotone (that is, monotone and its graph is not contained properly
by any other monotone set-valued mapping), then single valuedness of the contin-
gent derivative of Φ−1 at 0 is enough to imply subinvertibility; (b) when NK(·) is
polyhedral, B-differentiability of F̂ (x) and Robinson’s strong regularity (in terms
of B-derivative) imply the subinvertibility of Φ, see King and Rockafellar (1992,
Sections 5–6) for details. The main interest in employing the concept of subinvert-
ibility here is to extend Proposition 2.1 so that it covers the stochastic generalized
equations (2.1) where F̂ (x) is not necessarily continuously differentiable.

Proposition 2.2. Let Φ(x) := E[F (x, ξ)]+NK(x) and x∗ be a solution of 0 ∈ Φ(x).
Assume: (a) F (x, ξ) is Lipschitz continuous w.r.t. x and its Lipschitz modulus is
bounded by κ(ξ) > 0, where E[κ(ξ)] < ∞; (b) Φ(x) is subinvertible at (x∗, 0) in R

n.
Then there exist a compact convex neighborhood U ⊂ R

n of x∗ such that w.p.1 (1.2)
has at least one solution in the neighborhood U for N sufficiently large.

Proof. Under the subinvertibility condition (b), it follows from King and Rockafel-
lar’s (1992, Proposition 3.1) that there exist a compact neighborhood U of x∗ and
a small positive number ε such that when

sup
x∈U

∥∥∥∥∥E[F (x, ξ)] − 1
N

N∑
i=1

F (x, ξi)

∥∥∥∥∥ ≤ ε (2.3)

the SAA problem (2.2) has a solution xN in U . On the other hand, for the given
ε and under condition (a), the classical law of large numbers (see, e.g., Rubinstein
and Shapiro, 1993, Lemma A) ensures that (2.3) holds w.p.1 for N sufficiently large.
The conclusion follows.

2.2. Exponential rate of convergence

We now move on to discuss the convergence of SAA problem (1.2) to the true
problem (1.1) as sample increases, that is, the convergence of xN (a solution to
(1.2)) to its true counterpart as N → ∞. Shapiro (2003 , Section 7) established
almost sure convergence of xN , that is, w.p.1, xN → x∗ as N → ∞, where x∗

is a solution to the true problem (1.1). See Proposition 2.1 and Shapiro (2003,
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Theorem 22) for details. Our focus here is on the rate of convergence, that is, how
fast xN converges to x∗. From computational perspective, this is an important
issue because it concerns the efficiency of the SAA method. We use the classical
large deviation theorem (Dembo and Zeitouni, 1998) and some recently established
sensitivity results for generalized equations (Xu, 2008) to establish the exponential
convergence of xN to x∗ in hope to complement the existing results by Shapiro and
others on this topic.

For i = 1, . . . , n, let Fi(x, ξ) denote the ith component of F (x, ξ), and

M i
x(t) := E[et[Fi(x,ξ)−E[Fi(x,ξ)]]]

denote the moment generating function of the random variable Fi(x, ξ) −
E[Fi(x, ξ)], let

MN
Fi

(t) := E{et( 1
N

PN
j=1 Fi(x,ξj)−E[Fi(x,ξ)])}.

We make the following assumption.

Assumption 2.1. Let X be a compact subset of K. For i = 1, . . . , n, the limits
MFi(t) := limN→∞ MN

Fi
(t), exist for every x ∈ X and t ∈ R.

In the case when ξ1, . . . , ξN is an iid sampling, Assumption 2.1 holds so long as
MFi(t) < 0 for t close to zero, see Dembo and Zeitouni (1998, Section 2.3). In prac-
tice, sampling may not necessarily be iid, yet it satisfies Assumption 2.1 particularly
when the sampling is generated by quasi-Monte Carlo method, see detailed discus-
sions about this issue by Homem-de-Mello (2008). Under these circumstances, one
may use Gärtner-Ellis’ large deviation theorem (Dembo and Zeitouni, 1998, Theo-
rem 2.3.6) instead of Cramér’s large deviation theorem to establish the exponential
convergence of the sample averages. The following pointwise exponential conver-
gence indeed follows from Assumption 2.1.

Proposition 2.3. Let Assumption 2.1 hold and X be a compact subset of K. Then
for i = 1, . . . , n, every x ∈ X and small positive number ε > 0,

Prob




∣∣∣∣∣∣
1
N

N∑
j=1

Fi(x, ξi) − E[Fi(x, ξ)]

∣∣∣∣∣∣ ≥ ε


 ≤ e−NIi

x(−ε) + e−NIi
x(ε),

for N sufficiently large, where

Ii
x(z) := sup

t∈R

{zt− log M i
x(t)}

and both Ii
x(ε) and Ii

x(−ε) are positive.

The above pointwise convergence is inadequate for us to derive the exponential
of xN , we state it to pave the way for the uniform exponential convergence of
the components of F̂N(x) over a compact set. We need the following additional
assumptions for the latter.
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Assumption 2.2. Let X be a compact subset of K. For i = 1, . . . , n,

(a) for every x ∈ X , the moment generating function M i
x(t) of Fi(x, ξ) − F̂i(x) is

finite valued for all t in a neighborhood of zero;
(b) there exist a (measurable) function κi : Ξ → R+ and constant γi > 0 such that

|Fi(x′, ξ) − Fi(x, ξ)| ≤ κi(ξ)‖x′ − x‖γi (2.4)

for all ξ ∈ Ξ and all x′, x ∈ X ;
(c) the moment generating function Mκi(t) of κi(ξ) is finite valued for all t in a

neighborhood of zero.

Under Assumption 2.2 and Proposition 2.3, we are able to derive the uniform
exponential convergence by virtue of a recently established result (Xu, 2008, The-
orem 3.1). We omit details of proof.

Proposition 2.4. Let Assumptions 2.1 and 2.2 hold and X be a compact subset of
K. Then for any ε > 0, there exist positive constants c(ε) and β(ε), independent of
N, such that

Prob
{

sup
x∈X

‖F̂N(x) − F̂ (x)‖ ≥ ε

}
≤ c(ε)e−Nβ(ε). (2.5)

We need to translate the uniform exponential convergence of FN to F̂ into
the exponential convergence of xN to the solution set of true problem (2.1). To
this end, we need some sensitivity analysis of generalized equations discussed in
Xu (2008).

Consider the following generalized equation

0 ∈ G(x) + NC(x), (2.6)

where G : C → R
n is a vector valued function, C is a closed convex subset of R

n.
Let G̃(x) be a perturbation of G(x) and we consider the perturbed equation

0 ∈ G̃(x) + NC(x). (2.7)

The following lemma states that when supx∈C ‖G̃(x) − G(x)‖ is sufficiently small,
the solution set of (2.7) is close to the solution set of (2.6) provided that both sets
are nonempty.

Lemma 2.1. Let S∗ denote the set of solutions to (2.6) and S̃ the set of solutions
to (2.7). Assume that both S∗ and S̃ are nonempty. Then for any ε > 0 there exists
a δ > 0 such that if supx∈C ‖G̃(x) − G(x)‖ < δ, then D(S̃, S∗) < ε.

Proof. The result is a corollary of Xu (2008, Lemma 4.2). Here we include a proof
for completeness. Let

R(ε) := inf
x:d(x,S∗)≥ε

d(0, G(x) + NC(x)).
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Then R(ε) > 0. Let δ = R(ε)/2 and supx∈C ‖G̃(x)−G(x)‖ < δ. For any point x ∈ C
with d(x, S∗) > ε,

d(0, G̃(x) + NC(x)) ≥ d(0, G(x) + NC(x)) − D(G̃(x) + NC(x), G(x) + NC(x))

≥ d(0, G(x) + NC(x)) − ‖G̃(x) − G(x))‖
> d(0, G(x) + NC(x)) − δ ≥ 2δ − δ > 0.

(Here we use the following properties of the excess function D: for sets A, B, C,
D(A, B) ≤ D(A, C)+D(C, B) and D(A+C, B +C) ≤ D(A, B). This is evident from
the fact that D(A, B) = inft>0{t : A ⊂ B + tB} where B denotes the unit ball. Note
also that when A reduces to a singleton {a}, D(A, B) = d(a, B)). This shows that
x 
∈ S̃. Hence for any y∗ ∈ S̃, d(y∗, S∗) ≤ ε, which implies D(S̃, S∗) < ε.

Theorem 2.1. Let xN be a solution to the SAA problem (1.2) and X∗ the set of
solutions to the true problem (2.1). Assume: (a) w.p.1 the sequence {xN} is located
in a compact subset X of K, (b) Assumptions 2.1 and 2.2 hold. Then for every ε > 0,

there exist positive constants ĉ(ε) and β̂(ε), independent of N, such that

Prob{d(xN , X∗) ≥ ε} ≤ ĉ(ε)e−Nβ̂(ε) (2.8)

for N sufficiently large.

Proof. Let ε > 0 be any small positive number. By Lemma 2.1, there exists a
δ(ε) > 0 such that if supx∈X ‖F̂N (x) − F̂ (x)‖ < δ(ε) then d(xN , X∗) < ε. On the
other hand, under Assumptions 2.1 and 2.2, we have from Proposition 2.4 that for
the δ(ε) > 0 there exist positive constants c(δ(ε)) and β(δ(ε)) (for the simplicity of
notation we write them as ĉ(ε) and β̂(ε)) independent of N , such that

Prob
{

sup
x∈X

‖F̂N (x) − F̂ (x)‖ ≥ δ(ε)

}
≤ ĉ(ε)e−Nβ̂(ε)

for N sufficiently large. Consequently we have

Prob(d(xN , X∗) ≥ ε) ≤ Prob
{

sup
x∈X

‖F̂N(x) − F̂ (x)‖ ≥ δ(ε)

}
≤ ĉ(ε)e−Nβ̂(ε).

The proof is complete.

2.3. Metric regularity

In Theorem 2.1, the dependence of δ on ε is implicit in the sense that we don’t
have an explicit quantitative relationship between the two constants. This makes
the convergence results weak because if for a given ε, δ is very small, then we will
need a large sample size for xN to converge to a solution of (2.1). The issue has
nothing to do with the SAA method but it has to do with the sensitivity of the true
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problem at a solution point. For this purpose, we resort to the concept of metric
regularity.

Definition 2.3. Let X be a closed set of R
m, Φ : X → 2R

m

be a closed set valued
mapping. For x̄ ∈ X and ȳ ∈ Φ(x̄), Φ is said to be metrically regular at x̄ for ȳ if
there exists a constant α > 0 such that

d(x, Φ−1(y)) ≤ αd(y, Φ(x)) for all (x, y) close to(x̄, ȳ).

Here the inverse mapping Φ−1 is defined as Φ−1(y) = {x ∈ X : y ∈ Φ(x)} and the
minimal constant α < ∞ which makes the above inequality hold is called regularity
modulus.

Metric regularity is a generalization of derivative nonsingularity of a function
to that of a set-valued mapping (Robinson, 1976). The property is equivalent to
nonsingularity of the coderivative of Φ at x̄ for ȳ and to Aubin’s property of Φ−1

(Pseudo Lipschitz continuity). For a comprehensive discussion of the history and
recent development of the notion, see Dontchev et al. (2004), Rockafellar and Wets
(1998) and references therein.

Using the notion of metric regularity, we can analyze the sensitivity of general-
ized equations.

Lemma 2.2. Let Φ, Ψ : X → 2R
m

be two set valued mappings. Let x̄ ∈ X and
0 ∈ Φ(x̄). Let 0 ∈ Ψ(x) with x being close to x̄. Suppose that Φ is metrically regular
at x̄ for 0. Then

d(x, Φ−1(0)) ≤ αD(Ψ(x), Φ(x)), (2.9)

where α is the regularity modulus of Φ at x̄ for 0.

Proof. Since Φ is metrically regular at x̄ for 0, there exists a constant α > 0 such
that d(x, Φ−1(0)) ≤ αd(0, Φ(x)). Since 0 ∈ Ψ(x), then d(0, Φ(x)) ≤ D(Ψ(x), Φ(x)).
(2.9) follows. The proof is complete.

The above result can be explained as follows. Suppose we solve a generalized
equation 0 ∈ Φ(x) by solving an approximate equation 0 ∈ Ψ(x) where Ψ is an
approximation of Φ, and obtain a solution x for the approximate equation. Suppose
also that x is close to a true solution x̄ ∈ Φ−1(0) and Φ is metrically regular at x̄,
then the distance between x and Φ−1(0) is bounded by the distance of the set-valued
mapping from Ψ(x) to Φ(x). This type of error bound is numerically useful because
we are guaranteed local stability against the data perturbation of the underlying
functions.

Theorem 2.2. Assume the setting and conditions of Theorem 2.1. Let xN → x∗ ∈
X∗ w.p.1 and Φ(x) be metric regular at x∗ for 0 with regularity modulus α. Then
for any small ε > 0, there exist positive constants ĉ(ε) := c(ε/α) and β̂(ε) =
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β(ε/α), independent of N, such that (2.8) holds, where c(ε) and β(ε) are given in
Proposition 2.4.

Proof. Under the metric regularity, it follows from Lemma 2.2 that for xN close x∗,

d(xN , X∗) ≤ α‖F̂N (xN ) − F̂ (xN )‖ ≤ α sup
x∈X

‖F̂N (x) − F̂ (x)‖. (2.10)

Let B(x∗) denote a compact neighborhood of x∗ relative to K such that for xN ∈
B(x∗), (2.10) holds. Then by applying Proposition 2.4 on B(x∗), there exist positive
constants c(ε) and β(ε), independent of N , such that

Prob(d(xN , X∗) ≥ ε) ≤ Prob

{
sup

x∈B(x∗)
‖F̂N (x) − F̂ (x)‖ ≥ ε/α

}
≤ c(ε/α)e−Nβ(ε/α)

for N sufficiently large. The conclusion follows.

In the case when F (x, ξ) is strongly monotone w.r.t. x on K with modulus
σ(ξ) > 0, that is,

(F (x, ξ) − F (y, ξ))T (x − y) ≥ σ(ξ)‖x − y‖2

for all x, y ∈ K, where E[σ(ξ)] ∈ (0,∞), the subinvertibility holds trivially. Conse-
quently we have the following existence and convergence results.

Corollary 2.1. Let Assumptions 2.1 and 2.2 hold and F (·, ξ) be strongly monotone
on K for each ξ. Then the sample average VIP (1.2) has a unique solution xN and
w.p.1 approaching 1 exponentially fast with the increase of sample size N, sequence
{xN} converges to the unique solution x∗ of SVIP (1.1).

3. Stochastic Complementarity Problems

When K = R
n
+, SVIP (1.1) reduces to a stochastic nonlinear complementarity prob-

lem (SNCP):

F̂ (x) ≥ 0, x ≥ 0, F̂ (x)T x = 0. (3.1)

Likewise, the SAA problem (1.2) reduces to an NCP

F̂N(x) ≥ 0, x ≥ 0, (F̂N (x))T x = 0, (3.2)

where F̂ (x) = E[F (x, ξ)] and F̂N (x) = 1
N

∑N
j=1 F (x, ξj). It is well known that a

nonlinear complementarity problem can be reformulated as a system of nonsmooth
equations using some elementary functions (also called NCP functions) such as
the min-function min(a, b) and Fischer-Burmeister function φ : R

2 → R, which is
defined as

φ(a, b) =
√

a2 + b2 − a − b.
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Using the FB-function, the SNCP (3.1) can be reformulated as a system of stochastic
equations

H(x) ≡




φ(x1, E[F1(x, ξ)])
...

φ(xn, E[Fn(x, ξ)])


 = 0 (3.3)

in the sense that the solution set of (3.1) coincides with that of (3.3). One of the
main benefits in using the Fischer-Burmeister function is that H(x) is semismooth
everywhere and continuously differentiable of any order at any point except the
origin, and it is globally Lipschitz continuous. Similarly, the SAA problem (3.2) can
be reformulated as

ĤN(x) ≡




φ(x1, F̂
N
1 (x)])
...

φ(xn, F̂N
n (x)])


 = 0 (3.4)

where F̂N
i (x) = 1

N

∑N
j=1 Fi(x, ξj), for i = 1, . . . , n.

Theorem 3.1. Let x∗ be a solution to the true SNCP problem (3.1). Let Assump-
tions 2.1 and 2.2 hold. Then the following statements apply to (3.1) and (3.2).

(i) If H(x) = y has a unique solution in a compact neighborhood U of x∗ relative to
R

n
+ for y close to 0, and F (x, ξ) is Lipschitz continuous w.r.t. x and its Lipschitz

modulus is bounded by κ(ξ) > 0, where E[κ(ξ)] < ∞, then there exist a compact
convex neighborhood U ⊂ R

n of x∗ such that with probability approaching one
exponentially fast against the increase of N, (3.4) has a solution xN in the
neighborhood U for N sufficiently large.

(b) If, in addition, H−1 is Lipschitz continuous near x∗, then for every ε > 0, there
exist positive constants ĉ(ε) and β̂(ε), independent of N, such that

Prob{‖xN − x∗‖ ≥ ε} ≤ ĉ(ε)e−Nβ̂(ε) (3.5)

for N sufficiently large.

Proof. Part (i). The existence and uniqueness of an implicit function, denoted by
H−1(y), for y ∈ U implies the invertibility (and hence subinvertibility) of H in the
neighborhood. Therefore when

sup
x∈U

‖HN(x) − H(x)‖ ≤ ε (3.6)

for some sufficiently small positive number ε, the equation (3.4) has a solution xN in
the neighborhood U . On the other hand, under Assumptions 2.1 and 2.2, it follows
from Proposition 2.4 that supx∈U ‖F̂N(x)−F (x)‖ → 0 at an exponential rate. Since
the FB-function is Lipschitz continuous , this implies supx∈U ‖ĤN(x)−H(x)‖ → 0
at an exponential rate as N → ∞. The conclusion follows.
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Part (ii). There exists α > 0 such that

‖xN − x∗‖ ≤ α sup
x∈U

‖HN (x) − H(x)‖.

The rest follows from part (i).

Note that SNCP model (3.1) is different from the stochastic complementarity
models recently considered in Chen and Fukushima (2005). The latter finds a deter-
ministic solution to NCPs parameterized by all possible realizations of a random
variate. This results in a deterministic overdetermined system of NCPs which usu-
ally do not have a solution. Chen and Fukushima (2005) used NCP functions to
reformulate NCPs into systems of nonsmooth equations and consider least-squared
minimization of the residual of the reformulated equations. Consequently it can be
proved that solutions for such a reformulated problem exist under suitable condi-
tions, see a recent survey by Fukushima and Lin (2009) on this model and other
related models.

4. Application to Stochastic Programs with Stochastic Constraints

We now consider the following stochastic programs with stochastic constraints

min
x∈Rn

E[f0(x, ξ)]

s.t. E[fi(x, ξ)] ≤ 0, i = 1, . . . , s,

E[fi(x, ξ)] = 0, i = s + 1, . . . , m,

x ∈ X ⊂ R
n

(4.1)

where fi : R
n×R

k → R, i = 0, . . . , m, is continuously differentiable. ξ : Ω → Ξ ⊂ R
k

is a random vector defined on probability space (Ω,F , P ), and X is a closed subset
of R

n. The stochastic program model covers many interesting problems in stochastic
programming.

Let us consider sample average approximation of (4.1) as follows:

min
x∈Rn

f̂0
N

(x)

s.t. f̂i
N

(x) ≤ 0, i = 1, . . . , s,

f̂i
N

(x) = 0, i = s + 1, . . . , m,

x ∈ X,

(4.2)

where

f̂i
N

(x) :=
1
N

N∑
j=1

fi(x, ξj), i = 0, . . . , m

and ξ1, . . . , ξN is a sampling of random vector ξ.
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Shapiro (1991) proposed a general approximating scheme which includes sample
average approximation for solving (4.2). He investigated the asymptotic behavior of
the optimal values and optimal solutions obtained from solving the approximating
problems and he did so by using a parametric programming approach where the
approximating functionals are treated as parameters defined on a Banach space, and
then deriving the asymptotics of the optimal value and optimal solution estimators
by an extended delta method.

Our focus here is on the asymptotic behavior of the stationary points of the
SAA problem (4.2): assuming that SAA obtains a stationary point to problem (4.2),
denoted by xN , we investigate the convergence of xN to its true counterpart, denoted
by x∗, as sample size increases. There are three differences between our analysis and
Shapiro’s asymptotic analysis in Shapiro (1991): (a) we intend to estimate the rate
of convergence of xN to x∗ rather than the asymptotic distribution of xN − x∗;
(b) instead of using sensitivity analysis of parametric programming, we use our
established convergence results for SVIP (1.1); (c) the sampling is not necessarily
iid, that is, our analysis covers the case if the sampling is generated by Quasi-Monte
Carlo methods.

Let us start our analysis by describing the Karush-Kuhn-Tucker conditions of
the true problem and the SAA problem. The following result is well known in
deterministic optimization and it is also a corollary of Wets (1989, Proposition 5.1)
when X = R

n.

Proposition 4.1. Consider the stochastic program (4.1) and suppose that for i =
1, . . . , m, the function E[fi(x, ξ)], are continuously differentiable and X = R

n. If
x∗ is a local minimizer at which the Magsarian-Fromovitz constraint qualifications
hold, that is, µ = 0 is the only solution of the system

0 = µiE[fi(x∗, ξ)], i = 1, . . . , s, (4.3)

0 ≤ µi,−E[fi(x∗, ξ)]; i = 1, . . . , s, (4.4)

0 =
m∑

i=1

µi∇E[fi(x∗, ξ)], (4.5)

then there exists a multiplier µ∗ such that

0 ∈ ∇E[f0(x∗, ξ)] +
m∑

i=1

µ∗
i∇E[fi(x∗, ξ)] + NX(x), (4.6)

0 = µ∗
i E[fi(x∗, ξ)], i = 1, . . . , s, (4.7)

0 ≤ µ∗
i ,−E[fi(x∗, ξ)], i = 1, . . . , s, (4.8)

0 = E[fi(x∗, ξ)], i = s + 1, . . . , m. (4.9)



March 31, 2010 14:55 WSPC/S0217-5959 APJOR S0217595910002569.tex

116 H. Xu

Let

G(x, µ) :=




∇E[f0(x, ξ)] +
m∑

i=1

µi∇E[fi(x, ξ)]

min(µ1, E[f1(x, ξ)])
...

min(µs, E[fs(x, ξ)])

E[fs+1(x, ξ)]
...

E[fm(x, ξ)]




and Γ(x, µ) := NX(x)×{0}, where 0 ∈ R
m. Then we can rewrite the KKT conditions

(4.6)–(4.9) as

0 ∈ G(x, µ) + Γ(x, µ). (4.10)

Similarly, we can write down the KKT conditions of the SAA problem (4.2) as
follows:

0 ∈ ĜN (x, µ) + Γ(x, µ), (4.11)

where

ĜN (x, µ) :=




1
N

N∑
j=1

∇xf0(x, ξj) +
m∑

i=1

µi
1
N

N∑
j=1

∇xfi(x, ξj)

min(µ1,
1
N

N∑
j=1

f1(x, ξj))

...

min(µs,
1
N

N∑
j=1

fs(x, ξj))

1
N

N∑
j=1

fs+1(x, ξj)

...

1
N

N∑
j=1

fm(x, ξj)




.

Let H : R
n → R

n be a locally Lipschitz continuous function. Recall that the
Clarke generalized Jacobian (Clarke, 1983) of H at x ∈ R

n is defined as

∂H(x) := conv


 lim

y∈DH

y→x

∆H(y)


 ,
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where DH denotes the set of points at which H is Frechét differentiable, ∇H(y)
denotes the usual Jacobian of H , “conv” denotes the convex hull of a set. ∂H(x) is
said to be nonsingular if every matrix in ∂H(x) is nonsingular.

Theorem 4.1. Let x∗ ∈ X∗ be a KKT point of the true problem (4.1) and
µ∗ be the corresponding vector of Lagrange multipliers. Assume: (a) for i =
0, . . . , m,∇xfi(x, ξ) is Lipschitz w.r.t. x and its Lipschitz modulus is bounded by
an integrable function κi(ξ); (b) Assumptions 2.1 and 2.2 hold for Fi(x, ξ) =
fi(x, ξ), i = 1, . . . , m and Fi(x, ξ) = ∇xfi(x, ξ) for i = 0, . . . , m; (c) the Clarke
generalized Jacobian of G(x, µ) is nonsingular at (x∗, µ∗). Then the following state-
ments apply to (4.10) and (4.11).

(i) There exists a compact convex neighborhood U of (x∗, µ∗) such that with proba-
bility approaching one exponentially fast against the increase of sample size N,

(4.11) has a solution (xN , µN) in the neighborhood U for N sufficiently large.
(ii) For every ε > 0, there exist positive constants ĉ(ε) and β̂(ε), independent of N,

such that

Prob{‖xN − x∗‖ + ‖µN − µ∗‖ ≥ ε} ≤ ĉ(ε)e−Nβ̂(ε) (4.12)

for N sufficiently large.

Proof. Part (i). Let Φ(x, µ) = G(x, µ) + Γ(x, µ). Under condition (c), Φ(x, µ) is
subinvertible at ((x∗, µ∗), 0), where 0 ∈ R

m+n. Therefore when

sup
x∈U

‖ĜN (x, µ) − G(x, µ)‖ ≤ ε (4.13)

for some sufficiently small positive number ε, the equation (4.11) has a solution
(xN , µN ) in the neighborhood U . On the other hand, under Assumptions 2.1 and
2.2, it follows from Proposition 2.4 that

sup
x∈U

∥∥∥∥∥∥
1
N

N∑
j=1

fi(x, ξj) − E[fi(x, ξ)]

∥∥∥∥∥∥
and

sup
x∈U

∥∥∥∥∥∥
1
N

N∑
j=1

∇xfi(x, ξj) − E[∇xfi(x, ξ)]

∥∥∥∥∥∥
converge to 0 at an exponential rate, for i = 0, . . . , m. Observe that under condition
(a), E[∇xfi(x, ξ)] = ∇E[fi(x, ξ)] and the min-function is Lipschitz continuous. Then

sup
x∈U

‖ĜN (x, µ) − G(x, µ)‖ → 0

at an exponential rate as N → ∞. The conclusion follows.
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Part (ii). Under condition (c), the set-valued mapping G(x, µ)+Γ(x, µ) is metric
regular at (x∗, µ∗). By Lemma 2.2, there exists α > 0 such that

‖(xN , µN ) − (x∗, µ∗)‖ ≤ α sup
x∈U

‖ĜN (x, µ) − G(x, µ)‖.

The rest follows from part (i).
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Gürkan, G and AY Özge and SM Robinson (1996). Sample path solution of stochastic
variational inequalities, with applications to option pricing, In JM Charnes and
DM Morrice and DT Brunner and JJ Swai (eds.), Proceedings of the 1996 Winter
Simulation Conference, pp. 337–344.
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