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Abstract

This paper presents some convex stochastic programming models for single and multi-
period inventory control problems where the market demand is random and order quantities
need to be decided before demand is realized. Both models minimize the expected losses
subject to risk aversion constraints expressed through Value at Risk (VaR) and Conditional
Value at Risk (CVaR) as risk measures. A sample average approximation method is proposed
for solving the models and convergence analysis of optimal solutions of the sample average
approximation problem is presented. Finally, some numerical examples are given to illustrate
the convergence of the algorithm.
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Stochastic programming; Convex programming

1 Introduction

Inventory control is one of the main subjects in supply chain area. Inventory control models are
almost invariably stochastic optimization problems with objectives being either expected costs
or expected profits or risks. In practice, a retailer may want to find an optimal decision which
achieves a minimal expected cost or a maximal expected profit with low risk of deviating from the
objective. In this paper, we present an inventory model that aims to maximize expected profit
or minimize the expect cost subject to specified risk-averse constraints. Specifically, we consider
an inventory system where demand is random and decision on inventory replenishment have
to be made before the demand is realized. The objective is to minimize the expected loss and
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meanwhile restrict the risks of loss exceeding certain level to a specified level. Mathematically,
this is a stochastic optimization problem with probabilistic constraints.

Before proceeding to a detailed discussion of the proposed model, we present some literature
review on the related inventory models. Arrow, Harris and Marschak [3] and Dvoretzky, Keefer
and Walfowitz [11] first consider single period inventory control problem and propose a well
known newsvendor model. A popular generalization of this model is to consider a multi-period
supply chain problem where the selling horizon is extended from one period to multiple periods,
and a decision on order quantity in each period is made before the demand is realized. The key
difference between single-period model and multi-period model is that the multi-period model
may involve stock leftovers from previous periods, which makes the optimal choice of order
quantities more complicated. The well known (s, S) policy is consequently proposed, where an
order is placed to bring the inventory level up to S when and only when its inventory level falls
below the level s. Using a dynamic programming approach, Scarf [22] shows that (s, S) policy
is optimal for finite horizon dynamic inventory systems when order cost function is linear and
holding cost function is convex. Further along the direction, Song and Zipkin [26], Chen and
Song [8] model demand level as a state of a continuous Markov chain, and show that state-
dependent (s, S) policies are optimal for a multi-period problem under a fluctuating demand
environment.

Most models in the above literature consider policies which aim at minimizing the expected
losses. Due to the lack of the risk-aversion measure, an optimal inventory control policy resulting
from these models may incur significant losses with a positive probability. To alleviate or avoid
such risks, one may incorporate some risk measures as constraints in an inventory model, and
this is one of the main objectives of this paper.

Risk management and its measure are prevailing topics in finance and economics. These
concepts are first introduced by Markowitz [12], where the variance of random returns or losses
is used as a measure of risks. Another risk measure, which is popular in financial industry, is so
called Value at Risk (VaR). VaR can be traced back as early as 1920s and it has been extensively
used in analysis of portfolio optimization. See recent work by Jorion [14], Basak and Shapiro [7]
and the references therein. Although VaR has been widely used as a standard benchmark for
risk measure, it lacks some important mathematical properties such as subadditivity and con-
vexity, which are important to the development of numerical methods and regarded as coherent
properties by Artzner, Delbaen, Eber and Heath [5]. Consequently, a coherent risk measure,
Conditional Value at Risk (CVaR), which is defined as the expected value of of tail distribu-
tions of returns or losses, is proposed. Rockafellar and Uryasev [19], Krokhmal, Palmquist and
Uryasev [15] investigate CVaR models and reformulate them as convex optimization problems.
More recently, Alexander, Coleman and Li [2] apply the CVaR model to a portfolio optimization
problem and solve it by using a Monte Carlo method.

Risk management is not a new topic in inventory control either. Over the past few years,
a number of inventory models have been proposed to deal with highly uncertain demand and
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fluctuating factors of environment. For instance, Tapiero [27] considers a classic inventory model
which minimizes VaR. Choi, Li and Yan [9] propose a mean-variance risk measure for a supplier-
retailer chain problem; Jammernegg and Kischka [13] consider CVaR in a newsvendor problem.
More recently, Ahmed, Cakmak and Shapiro [1] investigate a coherent risk measure for both a
single period newsvendor problem and a multi-period inventory control problem. The objectives
of all these models are to minimize the risks during a whole selling horizon without considering
the expected losses.

In this paper, we present models which include both expected losses and risk-averse. We
start with a single period model and develop it into a multi-period case. The objective functions
of the models are to minimize the expected losses/costs under the constraint that the risk of
the losses/costs is controlled within a specified level. The rational behind this is that in some
practical industrial problems, warehouses and retailers often seek a strategy that minimizes the
expected losses with a small risk of excessive losses.

As far as we are concerned, the main contributions of this paper can be summarized as
follows. We propose an inventory model that addresses both expected values (losses, costs) and
risk-aversion. We show that the model can be reformulated as a convex stochastic programming
problem. We propose a sample average approximation method to solve the model and show
that, with probability 1, an accumulation point of an approximate solution converges to its true
counterpart as sample size increases.

The rest of the paper is organized as follows. In Section 2, we introduce our model for a
single-period inventory control problem. In Section 3, we discuss the model for a multi-period
problem. In Section 4, we propose sample average approximation to solve the proposed model
and analyze convergence. Finally, in Section 5, we report some preliminary numerical test
results.

2 The single period case

2.1 Introduction to a newsvendor model

We start our discussion by considering a single period inventory control problem, where a retailer
sells a seasonal/fashional product. At the beginning of a selling season, the retailer has to make
a decision on its order quantity u before market demand is observed. We assume that the order
is delivered by some external supplier without any delay.

The market demand is assumed to be a random variable denoted by ξ(ω), where ξ : Ω →
Ξ ⊂ R is defined on probability space (Ω,F , P ) with a density function p(·) and a cumulative
distribution function P (·). Because market demand does not go to infinity or negative in practice,
we assume that the support set of ξ is [0, d̄]. Note that in our model, we do not assume that p(·)
or P (·) are analytically obtainable, instead we assume that a sample of ξ(ω) can be obtained
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from time to time.

Let s denote the unit selling price in the market, c denote the unit purchase cost, and v

denote the net salvage value for each unit of leftover, which are all constant. Here, we assume
that v < c < s. Let π(u, ξ) be the total profit when the demand is ξ. Since the total purchase
cost is cu, the quantity sold is min{u, ξ} and the leftover quantity is (u−min{u, ξ}), the retailer’s
profit at demand scenario ξ is

π(u, ξ) = smin{u, ξ}+ v(u−min{u, ξ})− cu.

Our focus here is on loss, therefore we consider J(u, ξ) := −π(u, ξ). In the case when J(u, ξ) ≤ 0,
the retailer obtains a profit of −J(u, ξ). The loss function J(u, ξ) can be rewritten as

J(u, ξ) = (s− v)(u− ξ)+ − (s− c)u,

where let us use (z)+ denote the max-function max{0, z}.

The retailer’s decision problem is to choose an optimal order quantity u to minimize the
expected loss before the realization of market demand. If the retailer is risk neutral, then the
corresponding optimization problem is

min
u∈U

E[J(u, ξ)], (2.1)

where U = [0, ū] and ū is the maximum order quantity.

However, if the retailer is risk-averse, then he may be concerned that the actual realization of
J(u, ξ) in the model might significantly exceed this expected value with some positive probability
and consequently the retailer may want the probability of J(u, ξ) exceeding certain level γ to
fall below θ, that is,

P (J(u, ξ(ω)) > γ) ≤ θ, (2.2)

where θ ∈ (0, 1) is usually chosen to be small. Consequently, we may add the condition (2.2) to
(2.1) as a constraint of a risk aversion measure and we have

min
u∈U

E[J(u, ξ(ω))]

s.t. P (J(u, ξ(ω)) > γ) ≤ θ.
(2.3)

By adjusting the values of γ and θ, the retailer can balance the expected return and risk aversion.
Let β = 1− θ. The probabilistic constraint in (2.3) can be rewritten as P (J(u, ξ) ≤ γ) ≥ β and
hence (2.3) can be written as

min
u∈U

E[J(u, ξ)]

s.t. P (J(u, ξ) ≤ γ) ≥ β.
(2.4)

In this model, the retailer’s decision is to choose an optimal order quantity u which minimizes
the expected loss with a confidence of β that the loss does not exceed level γ. In what follows,
we simplify the chance constraint for the case when the cumulative distribution function P (·) of
ξ is obtainable.
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Proposition 2.1 Let P−1 be the inverse of P . Then the constraint in (2.4) can be reformulated
as

−γ
s− c

≤ u ≤ γ + (s− v)P−1(1− β)
c− v

,

and consequently (2.4) can be written as

min
u∈U

E[J(u, ξ)]

s.t. −γ
s−c ≤ u ≤

γ+(s−v)P−1(1−β)
c−v .

(2.5)

We omit a proof as it is elementary. The proposition indicates that if P−1 is computable,
then we can simplify problem (2.4) to a one stage stochastic programming problem with a
deterministic linear constraint. This reformulation can be extended to the case when ξ has a
discrete distribution and hence P (·) is a step function. To see this, let

P−1(α) := arg min
x∈R
{P (ξ(ω) < x) ≥ α} .

It is easy to verify that Proposition 2.1 still holds.

We give a simple example to illustrate Proposition 2.1.

Example 2.1 Consider the case that the demand ξ has a uniform distribution with its support
set [d, d̄]. If a retailer knows the distribution, then its order quantity will not fall below d or
exceed d̄. Therefore we may set U = [d, d̄]. With this distribution, the expected loss can be
written as

E [(s− v)(u− ξ)+ − (s− c)u] =
∫ u

d
{(s− v)(u− ξ)} 1

d̄− d
dξ − (s− c)u

=
1

2(d̄− d)
(s− v)(u− d)2 − (s− c)u.

We then obtain a deterministic optimization problem

min
u∈[d,d̄]

1
2(d̄− d)

(s− v)(u− d)2 − (s− c)u

s.t.
−γ
s− c

≤ u ≤ γ + (s− v)P−1(1− β)
c− v

.

The optimal solution to the problem is

u∗CCP = max
(
−γ
s− c

,min
(

(c− v)d+ (s− c)d̄
s− v

,
γ + (s− v)[d+ (d̄− d)(1− β)]

c− v

))
.

In what follows, we further discuss the risk aversion constraint. For a given parameter α ≤ γ
and decision variable u, the scenarios of the losses J(u, ξ) can be divided into two sets:

S1(u, α) := {ω|J(u, ξ) ≤ α}
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which is that the losses falls below level α and

S2(u, α) := {ω|J(u, ξ) > α}

which corresponds to the losses exceeding the level α. If the probability measure of S1(u, γ) is
greater than or equal to β, then the constraint in (2.4) is satisfied. Let

Γ(u, α) := P (J(u, ξ(ω)) ≤ α) =
∫
J(u,ξ)≤α

p(ξ)dξ.

Since

S1(u, α1) ⊂ S1(u, α2), for α1 ≤ α2, u ∈ U ,

we have

Γ(u, α1) ≤ Γ(u, α2), for α1 ≤ α2, u ∈ U .

Therefore, if u is a feasible solution to (2.4), then

Γ(u, α+) ≥ Γ(u, γ) ≥ β, ∀α+ ≥ γ, ∀u ∈ U .

Define

αβ(J(u, ξ)) := inf{α ∈ R : Γ(u, α) ≥ β}, (2.6)

where the parameter β is a prescribed confidence level . Then, the constraint in (2.4) is equivalent
to αβ(J(u, ξ)) ≤ γ. Furthermore, because the order quantity u is the only decision variable,
we use αβ(u) as an abbreviation of αβ(J(u, ξ)). By the monotonicity and right-continuity of
Γ(u, α) in α, (2.6) can be written as

αβ(u) := min{α ∈ R : Γ(u, α) ≥ β}.

This leads to the following optimization problem,

min
u∈U

E[J(u, ξ)]

s.t. αβ(u) ≤ γ.
(2.7)

The quantity αβ(J(u, ξ)) is known as the Value at Risk (VaR) in the literature of financial risk
management ([19, 20]).

2.2 A single-period model with CVaR constraint

Model (2.7) achieves our goals except that it is not a convex program in that αβ(u) is not
a convex function in general. This is a significant disadvantage from numerical persepective
because finding an optimal solution to a nonconvex program could be very difficult. Moreover,
for some special cumulative distribution functions of ξ(ω), the equation, Γ(u, ξ) = β, may have
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more than one solution, for some β ∈ (0, 1) and this might result in discontinuity of αβ(u):
a jump may occur with a slight increase of α. These disadvantages motivate us to introduce
a better measure of risk, that is, the conditional Value at Risk measure. In what follows, we
develop this idea from CVaR. Let β ∈ (0, 1). Define

φβ(J(u, ξ)) := [expectation of the β-tail distribution of J(u, ξ)].

Mathematically,

φβ(J(u, ξ)) =
1

1− β

∫
J(u,ξ)≥αβ(u)

J(u, ξ)p(ξ)dξ. (2.8)

In this paper, we will use φβ(u) to denote φβ(J(u, ξ)) for the simplicity of notation. From (2.8),
it can be easily verified that φβ(u) is bounded. Moreover,

φβ(u) ≥ 1
1− β

∫
J(u,ξ)≥αβ(u)

αβ(u)p(ξ)dξ = αβ(u).

Therefore, {u|φβ(u) ≤ γ} is a subset of {u|αβ(u) ≤ γ}. Based on the risk measure φβ(u), we
introduce a new inventory optimization model,

min
u∈U

E[J(u, ξ)]

s.t. φβ(u) ≤ µ, (2.9)

where µ can be chosen to balance the effect from the inequality, φβ(u) ≥ αβ(u).

Note that, the definition of risk measure φβ(u) is the same as the definition of conditional
Value at Risk in [19, 20]. The definition of CVaR is introduced for inventory management by
Jammernegg and Kischka [13]. Ahmed, Cakmak and Shapiro[1] investigate risk optimization
model with a CVaR objective function.

CVaR is defined as the expected value of J(u, ξ) when J(u, ξ) ≥ αβ(u). It has been proved
in [20] that

φβ(u) = min
α∈R

(
α+

1
1− β

E[(J(u, ξ)− α)+]
)
.

Let

Fβ(u, α) := α+
1

1− β
E[(J(u, ξ)− α)+].

It can be easily verified that Fβ(u, α) is convex and continuously differentiable with respect to
u at almost every point. Consequently, we can reformulate (2.9) as

min
u∈U

E[J(u, ξ)]

s.t. min
α∈R

Fβ(u, α) ≤ µ.
(2.10)

In what follows, we discuss the feasible value of α. Because of boundedness of both the order
quantity u and the demand ξ, the loss function J(u, ξ) is also a bounded function on [0, ū]× [0, d̄]
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and let us denote the ceiling of J(u, ξ) by J̄ . For any α1 and α2, by assuming that α1 > α2 ≥ J̄ ,
we have

Fβ(u, α1) = α1 +
1

1− β
E[(J(u, ξ)− α1)+] = α1 > Fβ(u, α2) = α2 > J̄.

Fβ(u, α) is an increasing function in α on (J̄ ,+∞).

On the other hand, because J(u, ξ) is bounded by J := −(s− c)ū, then for any α
′ ≤ J and

fixed u, we have

Fβ(u, α′) = α′ +
1

1− β
E[(J(u, ξ)− α′)+] = E[J(u, ξ)],

which is a constant. So the problem of min
α∈R

Fβ(u, α) is equivalent to min
α∈[J,J̄ ]

Fβ(u, α). Let us take

the set A := [J, J̄ ] as the feasible set of α, which is a compact and convex set.

Note that (2.10) is a two-level optimization problem. This following proposition states that
(2.10) can be reformulated as a one level optimization problem.

Proposition 2.2 (2.9) is equivalent to

min
(u,α)∈U×A

E[J(u, ξ)]

s.t. Fβ(u, α) ≤ µ.
(2.11)

in the sense that (u∗, α∗) is an optimal solution of (2.11) if and only if u∗ is an optimal solution
of (2.9) and Fβ(u∗, α∗) = φβ(u∗).

We omit a proof because this is analogous to [15, Theorem 4] in the context of portfolio opti-
mization.

3 The multi-period case

3.1 Introduction to a multi-period model

In this section, we extend our proposed model to the multi-period case. Assume that the selling
season is a t̂-period horizon. At the beginning of each period, t ∈ {1, · · · , t̂}, the retailer first
observes its inventory level left from the last period, yt−1, and then places an order to replenish
the inventory level, where ut denotes the order quantity. After the inventory is replenished to
yt−1 + ut, demand in the t-th period, ξt, is realized. As in the single period model, for each t,
the demand ξt is assumed to take its value in [0, d̄]. The inventory level in the t-th period can
be expressed in a recursive way as

yt = yt−1 + ut − ξt. (3.12)

Note that in the multi-period case, we only take the cost in each period into account as in
[23, 26], which means that we do not include the profit from the selling in each period. Our
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problem can be regarded as a cost minimization problem with risk aversion constraints. As in
[23, 26], we only consider the costs in the whole selling horizon. We use the following notations.

• {1, · · · , t̂}, the time horizon of the multi-period inventory problem,

• {t, · · · , t′}, the horizon of the inventory problem from t-th period to t′-th period,

• ut, the ordering units at period t,

• ut|t′ = {ut, ut+1, · · · , ut′}, 1 ≤ t < t′ ≤ t̂, the sequence of order quantities from t-th period to
t′-th period,

• pt(·), the probability density function (pdf) of ξt, where ξt ≤ d̄ < +∞, where d̄ is the upper
bound of possible demand,

• Pt(·), the cumulative distribution function (cdf) corresponding to pt(·),

• ξt|t′ = {ξt, ξt+1, · · · , ξt′}, 1 ≤ t < t′ ≤ t̂, the sequence of demands from the t-th period to
t′-th, with its conditional density function as pt|t′(·|ξ1|t−1) and distribution function as
Pt|t′(·|ξ1|t−1), where the ”conditional” means that the trajectory of ξ1|t−1 is realized,

• ct(ut), the cost of ordering ut units at period t,

• ft(ut, ξt; yt−1), the holding cost for the leftover and the backorder penalty cost in period t.

Assumption 3.1 For t = 1, · · · , t̂, ct(ut) is convex and continuously differentiable. ft(ut, ξt; yt−1)
is locally Liptschitz continuous and convex with respect to ut and yt−1.

Note that, in this model, we do not assume that for every t < t̂, the demand ξt+1 is indepen-
dent of the demands at preceding periods, {ξ1, ξ2, · · · , ξt}. Using the notations above, we can
formulate the overall costs incurred in the time horizon {t, · · · , t̂} as follows:

Jt(ut|t̂, ξt|t̂; yt−1) :=
t̂∑
i=t

(ci(ui) + fi(ui, ξi; yi−1)) .

Let the initial inventory level y0 be fixed. Because yt = yt−1+ut−ξt, Jt(ut|t̂, ξt|t̂; yt−1) essentially
depends on ξ1, . . . , ξt̂ and u1, . . . , ut̂, therefore we can write it as Jt(ut|t̂, ξt|t̂; u1|t−1, ξ1|t−1; y0),
where u1|t−1, ξ1|t−1 and y0 are treated as parameters. Moreover, we can derive the following
recursive formula as

Jt(ut|t̂, ξt|t̂; yt−1) = Jt+1(ut+1|t̂, ξt+1|t̂; yt−1 + ut − ξt) + ct(ut) + ft(ut, ξt; yt−1),

for t ∈ {1, 2, . . . , t̂}. Or equivalently,

Jt(ut|t̂, ξt|t̂; u1|t−1, ξ1|t−1; y0) = Jt+1(ut+1|t̂, ξt+1|t̂; u1|t, ξ1|t; y0) + ct(ut) + ft(ut, ξt; u1|t−1, ξ1|t−1; y0),

where, based on the recursive form, yt = yt−1+ut−ξt, function ft(ut, ξt; yt−1) can be reformulated
as ft(ut, ξt; u1|t−1, ξ1|t−1; y0).
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3.2 A minimal cost model with VaR constraints

We assume that, before the beginning of the first selling season, the retailer will make a decision
on order quantities of all seasons in the selling horizon, denoted by u1|t̂, and send them to the
external suppliers or manufacturers. This is the case for many retailers in practice particularly
when suppliers and or manufacturers are overseas who need to plan production schedules well
before the start of the selling horizon because of long transportation time. In this model, the
retailer’s aim is to minimize the expected cost with an acceptable risk in each selling horizon.
We denote by E[J1(u1|t̂, ξ1|t̂; y0)] the expected cost in this selling horizon {1, 2, . . . , t̂}.

Let α > 0 be a specified positive number. The probability that the overall cost over the
horizon {t, . . . , t̂} exceeds level α is

Γ(ut|t̂, α; u1|t−1, ξ1|t−1; y0) := Pt|t̂
(
Jt(ut|t̂, ξt|t̂; u1|t−1, ξ1|t−1; y0) ≤ α|ξ1|t−1

)
=

∫
Jt(ut|t̂,ξt|t̂;u1|t−1,ξ1|t−1;y0)≤α

pt|t̂(ξt|t̂|ξ1|t−1)dξt|t̂,

where the probability, Γ(ut|t̂, α; u1|t−1, ξ1|t−1; y0), depends on the realization of the random vari-
able ξ1|t−1 and the value of u1|t̂. Let β ∈ (0, 1) be a confidence level. Following the discussion
in Section 2, the VaR of Jt(ut|t̂, ξt|t̂; u1|t−1, ξ1|t−1; y0) can be defined as

αβ(ut|t̂; u1|t−1, ξ1|t−1; y0) := min{α ∈ R : Γ(ut|t̂, α; u1|t−1, ξ1|t−1; y0) ≥ β}
= min{α ∈ R+ ∪ {0} : Γ(ut|t̂, α; u1|t−1, ξ1|t−1; y0) ≥ β},

(3.13)

where the second equality is from the nonnegativity of the cost function. Note that, for each
t ∈ {1, . . . , t̂}, the VaR function, αβ(ut|t̂; u1|t−1, ξ1|t−1; y0), depends on the random variable ξ1|t−1

and the value of u1|t̂. By assumption, the decision variables, u1|t̂, are decided before the start
of the selling horizon. Let u1|t̂ be given. Then the value of the risk, αβ(ut|t̂; u1|t−1, ξ1|t−1; y0), in
each horizon {t, . . . , t̂}t>1, is dependent of the random variable ξ1|t−1.

We assume that the retailer’s aim is to control the expected VaR to some thresholds γt,
t = 1, . . . , t̂. Using the definition in (3.13), we consider the following minimal expected cost
inventory control model subject to the expected VaR as defined by (3.13):

min
u1|t̂∈U

E[J1(u1|t̂, ξ1|t̂; y0)]

s.t. E[αβ(ut|t̂; u1|t−1, ξ1|t−1; y0)] ≤ γt, for t ∈ {1, 2, . . . , t̂}.
(3.14)

To simplify the (3.14), we will show a monotonic property of E[αβ(ut|t̂; u1|t−1, ξ1|t−1; y0)] in the
following proposition.

Proposition 3.1 Let y0 be fixed. For ui ∈ U , i = 1, 2, . . . , t̂, we have

E
[
αβ(ut|t̂; u1|t−1, ξ1|t−1; y0)

]
≥ E

[
αβ(ut+1|t̂; u1|t, ξ1|t; y0)

]
. (3.15)
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Proof. From the discussion in [5], we have that for any β ∈ (0, 1) and density function
pt|t̂(·|ξ1|t−1), VaR, αβ(·), satisfies the Translation invariance (see Axiom T in [5] or A3 in [1]),
which means that for any random outcome Z and constant a, αβ(Z + a) = αβ(Z) + a. Conse-
quently, for any t = 1, 2 . . . , t̂, from Translation invariance, we have

E[αβ(ut|t̂; u1|t−1, ξ1|t−1; y0)]

= E
[
E[αβ(Jt(ut|t̂, ξt|t̂; u1|t−1, ξ1|t−1; y0)) | ξ1|t]

]
= E

[
E[αβ

(
Jt+1(ut+1|t̂, ξt+1|t̂; u1|t, ξ1|t; y0) + ct(ut) + ft(ut, ξt; u1|t−1, ξ1|t−1; y0)

)
| ξ1|t]

]
= E

[
E[αβ

(
Jt+1(ut+1|t̂, ξt+1|t̂; u1|t, ξ1|t; y0)

)
+ ct(ut) + ft(ut, ξt; u1|t−1, ξ1|t−1; y0) | ξ1|t]

]
= E

[
E[αβ

(
Jt+1(ut+1|t̂, ξt+1|t̂; u1|t, ξ1|t; y0)

)
| ξ1|t] + E[ct(ut) + ft(ut, ξt; u1|t−1, ξ1|t−1; y0) | ξ1|t]

]
≥ E

[
E[αβ(ut+1|t̂; u1|t, ξ1|t; y0) | ξ1|t]

]
= E

[
αβ(ut+1|t̂; u1|t, ξ1|t; y0)

]
,

where the third equality follows from the Translation invariance and the inequality is due to
the nonnegativity of the cost function ct(ut) + ft(ut, ξt; u1|t−1, ξ1|t−1; y0) for each ut and ξt,
t ∈ {1, . . . , t̂}.

Observe that when t = 1, the VaR of the whole horizon {1, 2, . . . , t̂}, αβ(u1|t̂; u1|0, ξ1|0; y0) is
deterministic, where ξ1|0 := 0 and u1|0 := 0. For any t and θ ≥ 0, define the feasible set for each
constraint on αβ(ut|t̂; u1|t−1, ξ1|t−1; y0) as

St(θ) := {u1|t̂ : E
[
αβ(ut|t̂; u1|t−1, ξ1|t−1; y0)

]
≤ θ}.

By Proposition 3.1 and the deterministic property of αβ(u1|0̄; u1|0, ξ1|0; y0), for any θ ≥ 0 and
t ∈ {1, 2, . . . , t̂}, we have

St(θ) ⊂ St−1(θ) ⊂ . . . ⊂ S1(θ) = {u1|t̂ : αβ(ut|t̂; u1|t−1, ξ1|t−1; y0) ≤ θ}.

Using Proposition 3.1, we can simplify the model (3.14).

Proposition 3.2 Suppose that γi, i = 1, · · · , t̂, is a constant γ. Then model (3.14) is equivalent
to the following:

min
u1|t̂∈U

E[J1(u1|t̂, ξ1|t̂; y0)]

s.t. αβ(u1|t̂; u1|0, ξ1|0; y0) ≤ γ,
(3.16)

where ξ1|0 := 0 and u1|0 := 0.

Note that VaR constraint is equivalent to a chance constraint problem. Hence, we can rewrite
the constraints in (3.16) as

P1|t̂(J1(u1|t̂, ξ1|t̂; y0) ≤ γ) ≥ β.
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Here we use the idea of efficient trajectory due to [16] to our model. Based on the distribution
of the demand in the whole selling season, we introduce a β−efficient demand trajectories DT β

for the horizon {1, . . . , t̂} by the following definition.

Definition 3.1 Let β be a confidence level in (0, 1). For any u1|t̂ ∈ U , a β−efficient demand
trajectory of u1|t̂, denoted by DT β(u1|t̂), is a sample path of the demands in the multi-period
horizon,

DT β(u1|t̂) := {ξβ1 , ξ
β
2 , . . . , ξ

β

t̂
},

which satisfies the following conditions,

(i) For joint probability distribution function P1|t̂(·),

P1|t̂
(
J1(u1|t̂, ξ1|t̂; y0) ≤ J1(u1|t̂, DT

β(u1|t̂); y0)
)
≥ β. (3.17)

(ii) There is no other trajectory DT β1 (u1|t̂) such that

J1

(
u1|t̂, DT

β
1 (u1|t̂); y0

)
< J1

(
u1|t̂, DT

β(u1|t̂); y0

)
,

and

P1|t̂
(
J1(u1|t̂, ξ1|t̂; y0) ≤ J1(u1|t̂, DT

β
1 (u1|t̂); y0)

)
≥ β.

From the two conditions, we can take the trajectory DT β(u1|t̂) as a minimum such that

J1(u1|t̂, DT
β(u1|t̂); y0) = min

γ≥0

{
P1|t̂
(
J1(u1|t̂, ξ1|t̂, ; y0) ≤ γ

)
≥ β

}
.

For any u1|t̂, let us define Uβ(u1|t̂) as the set of all β−efficient demand trajectories of the

order sequence, u1|t̂ ∈ U . If DT β1 (u1|t̂) and DT β2 (u1|t̂) are both the elements in Uβ(u1|t̂), then it
can be easily verified that

J1(u1|t̂, DT
β
1 (u1|t̂); y0) = J1(u1|t̂, DT

β
2 (u1|t̂); y0).

From the discussion above on β−efficient demand trajectories, a robust and convex optimization
problem can be introduced to replace the problem (3.16):

min
u1|t̂∈U

E[J1(u1|t̂, ξ1|t̂; y0)]

s.t. J1(u1|t̂, DT
β(u1|t̂); y0) ≤ γ,

DT β(u1|t̂) ∈ Uβ(u1|t̂).

(3.18)

Proposition 3.3 The problem (3.18) has a unique optimal solution, if the following conditions
hold:
(i) The joint distribution function P1|t̂(ξ1|t̂) of the demand is discrete.
(ii) For any γ ≥ 0, S1(γ) 6= φ.

12



The proof of Proposition 3.3 can be illustrated in the following way. First, from the discrete
distribution function P1|t̂(ξ1|t̂) and the boundedness of the demand variable ξt, for 1 ≤ t ≤
t̂, we have the cardinality of every set Uβ(u1|t̂) to be finite. On the other hand, from the
assumption of the multi-period inventory model, the cost function J1(u1|t̂, DT

β(u1|t̂); y0) is a
convex function. Summarizing, we obtain, from the convexity of the finite constraints, the
existence and uniqueness of the optimal solution.

3.3 A minimal cost model with CVaR constraints

Analogous to the discussion in Section 3.1, we may consider a CVaR model for the multi-period
inventory control problem. Let β ∈ (0, 1) be a constant. For any scenario ξ1|t−1 and decision
sequence u1|t̂, we define a risk measure on {t, · · · , t̂} as

φβ(ut|t̂; u1|t−1, ξ1|t−1; y0) :=

1
1− β

∫
Jt(ut|t̂,ξt|t̂;u1|t−1,ξ1|t−1;y0)≥αβ(ut|t̂;u1|t−1,ξ1|t−1;y0)

Jt(ut|t̂, ξt|t̂; u1|t−1, ξ1|t−1; y0)pt|t̂(ξt|t̂|ξ1|t−1)dξt|t̂,

where φβ(ut|t̂; u1|t−1, ξ1|t−1; y0) depends on u1|t̂ and ξ1|t−1. Similarly as the VaR in the multi-
period case, before the selling horizon, the retailer cannot predict the value, φβ(ut|t̂; u1|t−1, ξ1|t−1; y0).
In the retailer’s decision making problem, the constraint on the expected CVaR is used in our
model. For every t ∈ {1, 2, . . . , t̂} and the fixed thresholds sequence {µt}t≥1, by using the defined
CVaR, we can consider the following minimal expected cost inventory control model with CVaR
constraints as follows:

min
u1|t̂∈U

E[J1(u1|t̂, ξ1|t̂; y0)]

s.t. E
[
φβ(ut|t̂; u1|t−1, ξ1|t−1; y0)

]
≤ µt, for t ∈ {1, 2, · · · , t̂}.

(3.19)

The model is varied from model (3.14) by replacing the VaR constraints with CVaR constraints.
Here we set an upper bound µt for the CVaR over the selling period {t, · · · , T}. As in the
literature [23, 26], we assume that the initial inventory level y0 is a fixed nonnegative constant.
To simplify the CVaR constraints in (3.19), we set a constant bound for the CVaR, that is,
µ1 = · · · = µt̂ = µ. The following result is a corollary of Proposition 3.1.

Corollary 3.1 Let y0 ≥ 0 be fixed. For ui ∈ U , i = 1, · · · , t̂, we have

E
[
φβ(ut|t̂; u1|t−1, ξ1|t−1; y0)

]
≥ E

[
φβ(ut+1|t̂; u1|t, ξ1|t; y0)

]
. (3.20)

As a coherent risk measure, CVaR satisfies Axioms Translation invariance (see A3.[1]). Corollary
3.1 can be obtained by a similar proof as in Proposition 3.1. Here, to illustrate the monotonic
properties in Proposition 3.1 and Corollary 3.1, a simple example is given as following.

Example 3.1 Consider a multi-period inventory control model with t̂ = 10. The demand ξt

is independent of each other, and follows a truncated normal distribution, which is a normal
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distribution function, N (10, 2), truncated by the interval [0, 20]. The order cost and the leftover
and backorder cost in each period is ct(ut) := ηtut and ft(ut, ξt; yt−1) := ηt(yt−1 +ut−ξt)2, where
η is a discount factor and set 0.9. Here, we present the diagrams of αβ(ut|̂t; u1|t−1, ξ1|t−1; y0)
and φβ(ut|̂t; u1|t−1, ξ1|t−1; y0) at each period t in Figure 1 and Figure 2.

Figure 1: Estimation of VaR: E
[
αβ(ut|t̂; u1|t−1, ξ1|t−1; y0)

]
, β = 0.8, 0.9 and t̂ = 10.

Figure 2: Estimation of CVaR: E
[
φβ(ut|t̂; u1|t−1, ξ1|t−1; y0)

]
, β = 0.8, 0.9 and t̂ = 10.
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Note that, both of Figures 1 and 2 show that the estimation of the expected VaR and CVaR in
the different periods of the selling horizon, where the expected values, E

[
αβ(ut|t̂; u1|t−1, ξ1|t−1; y0)

]
and E

[
φβ(ut|t̂; u1|t−1, ξ1|t−1; y0)

]
, are estimated by the averages of VaR and CVaR samples. From

the figures, we can easily see that for different values of β, the estimated values of VaR and CVaR
are all monotonically decreasing when t increases from 1 to t̂.

By Corollary 3.1 and (2.11), we can reformulate (3.19) as:

min
(u1|t̂,α)∈U×A

E[J1(u1|t̂, ξ1|t̂; y0)]

s.t. φβ(u1|t̂; u1|0, ξ1|0; y0) ≤ µ.
(3.21)

From the definition of φβ(ut|t̂; u1|t−1, ξ1|t−1; y0), we have that

φβ(u1|t̂; u1|0, ξ1|0; y0) =
1

1− β

∫
J1(u1|t̂,ξ1|t̂;y0)≥αβ(u1|t̂;u1|0,ξ1|0;y0)

J1(u1|t̂, ξ1|t̂; y0)p1|t̂(ξ1|t̂)dξ1|t̂,

which is totally the same as the definition of the CVaR in the single period problem. Hence, the
corresponding auxiliary function is

Fβ(u1|t̂, α; y0) := α+
1

1− β
E[(J1(u1|t̂, ξ1|t̂; y0)− α)+],

where φβ(u1|t̂; u1|0, ξ1|0; y0) = minα∈A Fβ(u1|t̂, α; y0). Following Proposition 2.2, the optimiza-
tion problem (3.21) can be rewritten as following, which is the main model that we propose for
the multi-period inventory control problem,

min
(u1|t̂,α)∈U×A

E[J1(u1|t̂, ξ1|t̂; y0)]

s.t. Fβ(u1|t̂, α; y0) ≤ µ.
(3.22)

Remark 3.1 Model (3.22) has at least two advantages in comparison with (3.21). One is that
the objective and the constraint functions are both convex. This makes it easier to obtain an
optimal solution. The other is that (3.22) is one level stochastic optimization problem as opposed
to two levels in (3.21).

4 Sample average approximation method

In this section, we discuss numerical methods for solving the inventory problems. Our focus will
be on model (3.22) because of its nice feature as outlined in Remark 3.1. The numerical methods
depend essentially on the information about the demands. If the retailer has full information
on the distribution of market demands and the expected values in the problem (3.22) can be
integrated out analytically, then (3.22) is a deterministic minimization problem and we can use
any appropriate nonlinear programming code to solve it.

In this section, we consider the case that the distribution of market demand is unknown but it
can be obtained by sampling, e.g, from the historical data or computer simulation. Consequently
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we consider sample average approximation (SAA) method for solving our proposed inventory
problems. The basic idea of SAA is to approximate the expected value by its sample average. The
method is also known as Sample Path Optimization (SPO) method. There has been extensive
literature on SAA and SPO. See recent work [4, 17, 29] and the references therein. More recently,
Xu and Zhang [30] proposed a smoothing SAA method for solving a single period problem (2.11).

Throughout the section, we use the following notation. ‖ · ‖ denotes the Euclidean norm
of a vector and a compact set of vectors. When M is a compact set of vectors, ‖M‖ :=
maxM∈M ‖M‖. d(x,D) := infx′∈D ‖x− x′‖ denotes the distance from point x to set D. For two
compact sets C and D,

D(C,D) := sup
x∈C

d(x,D)

denotes the distance from set C to set D, and H(C,D) denotes the Hausdorff distance between
the two sets, that is,

H(C,D) := max (D(C,D),D(D, C)) .

We use B(x, δ) to denote the closed ball in IRm with radius δ and center x, that is B(x, δ) :=
{x′ ∈ IRm : ‖x′ − x‖ ≤ δ}. When δ is dropped, B(x) represents a neighborhood of point x.
Finally, for a set-valued mapping A : IRm → 2IRm , we use limy→xA(y) to denote the outer limit
of the mapping at point x.

4.1 The SAA model and optimality conditions

Observe that demands in the multi-period model can be represented by a random vector with
each component denoting a demand at a single period. Let ξi

1|t̂, i = 1, 2, . . . , N , be a sample of
ξ1|t̂, let the initial inventory level y0 be fixed. The SAA of (3.22) is,

min
(u1|t̂,α)∈U×A

1
N

∑N
i=1 J1(u1|t̂, ξ

i
1|t̂; y0)

s.t. 1
N

∑N
i=1 gβ(u1|t̂, α, ξ

i
1|t̂; y0) ≤ 0,

(4.23)

where
gβ(u1|t̂, α, ξ

i
1|t̂; y0) := α+

1
1− β

(
J1(u1|t̂, ξ

i
1|t̂; y0)− α

)
+
− µ.

We call (3.22) true problem and (4.23) its sample average approximation. Observe that both
the objective function and the constraint functions are piecewise smooth with respect to ut, for
t = {1, 2 . . . , t̂}.

In what follows, we investigate the convergence of (4.23) in the sense that if we obtain an
optimal solution to (4.23) for every N , whether the sequence of such optimal solutions converge
to an optimal solution of the true problem as sample size increases. There are two ways to
do so, one is to investigate the convergence of the sample average of the function both in the
objective and constraints, the other is to consider first order necessary conditions that an optimal
solution must satisfy. The first approach involves the approximation of feasible region and this
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incurs some technical difficulties from unboundedness of the feasible region due to α. The
second approach requires some nonsmooth analysis because the underlying functions are not
differentiable. It requires some results related to sample average random set-valued mappings
which have been established in the past few years [25, 30]. In what follows, we use the second
approach.

Observe first that under Assumption 3.1, both J1(u1|t̂, ξ1|t̂; y0) and gβ(u1|t̂, α, ξ1|t̂; y0) are
locally Liptschitz continuous with respect to u1|t̂ and α. However, these functions are not
necessarily differentiable and hence we need to consider subdifferential of the functions in order
to derive a first order necessary condition.

Definition 4.1 Let h : Rn×Ξ→ R be a continuous function which is convex with respect to x.
Let ξ ∈ Ξ be fixed. The convex subdifferential [18] of h at a point x0 with respect to x is

∂xh(x0, ξ) := {η ∈ Rn | h(x, ξ)− h(x0, ξ) ≥ ηT (x− x0)}

where aT b denotes the scalar product of two vectors.

Using the notion of convex subdifferentials, we can write down the generalized Karush-Kuhn-
Tucker (GKKT) condition of the SAA problem (4.23) as follows:

0 ∈ 1
N

∑N
i=1 ∂(u1|t̂,α)J1(u1|t̂, ξ

i
1|t̂; y0) + λ 1

N

∑N
i=1 ∂(u1|t̂,α)gβ(u1|t̂, α, ξ

i
1|t̂; y0)

+NU×A(u1|t̂, α),

0 ≤ λN ⊥ − 1
N

∑N
i=1 gβ(u1|t̂, α, ξ

i
1|t̂; y0) ≥ 0,

(4.24)

where the sum of sets is in the sense of Minkowski, NU×A(u1|t̂, α) denotes the normal cone of
U ×A at (u1|t̂, α), that is,

NU×A(u1|t̂, α) := {z ∈ Rt̂+1 : zT ((u′
1|t̂, α

′)− (u1|t̂, α)) ≤ 0, ∀(u′
1|t̂, α

′) ∈ U ×A}, ∀ (u1|t̂, α) ∈ U ×A.

A point (uN
1|t̂, α

N ) satisfying (4.24) is said to be a stationary point and λN is called the corre-
sponding Lagrange multiplier. Since problem (4.23) is a convex program, a feasible solution is
an optimal solution if and only if it is a stationary point. In what follows, we make a blanket
assumption that the SAA problem has an optimal solution, which means (4.24) has at least
one solution. In what follows, we study the convergence of {(uN

1|t̂, α
N )} as the sample size N

increases. We need the following assumption.

Assumption 4.1 The Lipschitz module of J1(u1|t̂, ξ1|t̂; y0) is bounded by an integrable function
κ(u1|t̂, ξ1|t̂).

Under Assumptions 3.1 and 4.1, E[J1(u1|t̂, ξ1|t̂; y0)] is well defined, convex and locally Lipts-
chitz continuous with respect to u1|t̂. Likewise, E[gβ(u1|t̂, α, ξ1|t̂; y0)] is well defined, convex and
locally Liptschitz continuous with respect to u1|t̂ and α. Therefore, the convex subdifferentials of
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E[J1(u1|t̂, ξ1|t̂; y0)] and E[gβ(u1|t̂, α, ξ1|t̂; y0)], denoted respectively by ∂(u1|t̂,α)E[J1(u1|t̂, ξ1|t̂; y0)]
and ∂(u1|t̂,α)E[gβ(u1|t̂, α, ξ1|t̂; y0)], are well-defined. Consequently, we can write down the GKKT
conditions of the true problem (3.22) in terms of convex subdifferentials: 0 ∈ ∂(u1|t̂,α)E[J1(u1|t̂, ξ1|t̂; y0)] + λ∂(u1|t̂,α)E[gβ(u1|t̂, α, ξ1|t̂; y0)] +NU×A(u1|t̂, α),

0 ≤ λ ⊥ −E[gβ(u1|t̂, α, ξ1|t̂; y0)] ≥ 0,
(4.25)

where NU×A(u1|t̂, α) denotes the normal cone of U ×A at (u1|t̂, α).

Lemma 4.1 ([28, Proposition 2.10]) Let h : Rn × Ξ → R be a random continuous function
which is convex with respect to x. Let ξ ∈ Ξ be fixed. Assume that E[h(x, ξ)] is finite in a
neighborhood of x. Then

∂E[h(x, ξ)] = E[∂xh(x, ξ)],

where E[∂xh(x, ξ)] denotes set of integral of measurable selections from ∂xh(x, ξ) [6], that is,
E[∂xh(x, ξ)] = {E[η] : η is a measurable selection from ∂xh(x, ξ)}.

Using Lemma 4.1, we can rewrite (4.25) as 0 ∈ E[∂(u1|t̂,α)J1(u1|t̂, ξ1|t̂; y0)] + λE[∂(u1|t̂,α)gβ(u1|t̂, α, ξ1|t̂; y0)] +NU×A(u1|t̂, α),

0 ≤ λ ⊥ −E[gβ(u1|t̂, α, ξ1|t̂; y0)] ≥ 0.
(4.26)

4.2 Convergence analysis

To proceed the convergence analysis of stationary points of (4.24), we need the following inter-
mediate result which is established in [25, 29].

Lemma 4.2 Let V ⊂ Rm be a compact set, and Φ(v, ξ) : V ×IRk → 2Rm be a compact set-valued
mapping which is upper semi-continuous with respect to v on V for every fixed ξ. Let (Ω,F , P )
be a probability space, ξ : Ω→ Ξ ⊂ IRk be a random vector and ξ1, · · · , ξN be an i.i.d sample of
ξ. Let

ΦN (v) :=
1
N

N∑
i=1

Φ(v, ξi).

Suppose that: (a) probability measure P of our considered space (Ω,F , P ) is nonatomic; (b)
there exists an integrable function σ(ξ) such that ‖Φ(v, ξ)‖ ≤ σ(ξ). Then for any δ > 0

lim
N→+∞

ΦN (v) ⊂ E[Φδ(v, ξ)], w.p.1

uniformly for v ∈ V , where
Φδ(v) :=

⋃
w∈B(v,δ)

Φ(w, ξ),

and E[Φδ(v, ξ)] denotes set of integral of measurable selections from Φδ(v, ξ) [6].
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Using the above lemma, we can establish the convergence of the optimal solution of SAA
optimization problem (4.23) to the true problem (3.22) as the sample size N tends to infinity.

Theorem 4.1 Let {(uN
1|t̂, α

N )} be a sequence of optimal solutions of the SAA problem (4.23)
and {(u∗

1|t̂, α
∗)} be an accumulation point. Suppose that there exists a compact subset C of U ×A

such that w.p.1 the whole sequence {(uN
1|t̂, α

N )} is contained in C and the Lagrange multiplier

{λN} which corresponds to {(uN
1|t̂, α

N )} is bounded. Suppose also that the probability space
(Ω,F , P ) is nonatomic. Then w.p.1, there exists λ∗ ≥ 0 such that 0 ∈ E[∂(u1|t̂,α)J1(u∗

1|t̂, ξ1|t̂; y0)] + λ∗E[∂(u1|t̂,α)gβ(u∗
1|t̂, α

∗, ξ1|t̂; y0)] +NU×A(u∗
1|t̂, α

∗),

0 ≤ λ∗ ⊥ −E[gβ(u∗
1|t̂, α

∗, ξ1|t̂; y0)] ≥ 0,
(4.27)

and {(u∗
1|t̂, α

∗)} is the optimal solution of the true problem (3.22).

Proof. The second part of the conclusion is trivial in that a stationary point of a convex
program is an optimal solution. It therefore suffices to show (4.27). The stationary point
(uN

1|t̂, α
N ) and corresponding Lagrange multiplier λN of (4.24) satisfies the following:
0 ∈ 1

N

∑N
i=1[∂(uN

1|t̂,α
N )J1(uN

1|t̂, ξ
i
1|t̂; y0)] + λN 1

N

∑N
i=1 ∂(uN

1|t̂,α
N )gβ(uN

1|t̂, α
N , ξi

1|t̂; y0)

+NU×A(uN
1|t̂, α

N ),

0 ≤ λN ⊥ − 1
N

∑N
i=1[gβ(uN

1|t̂, α
N , ξi

1|t̂; y0)] ≥ 0.

(4.28)

Let us define the set-valued mappings

Φ1(u1|t̂, α, ξ1|t̂) := ∂(u1|t̂,α)J1(u1|t̂, ξ1|t̂; y0)

and
Φ2(u1|t̂, α, ξ1|t̂) := ∂(u1|t̂,α)gβ(u1|t̂, α, ξ

i
1|t̂; y0).

Then we can rewrite the first equation in (4.28) as

0 ∈ 1
N

N∑
i=1

[
Φ1(uN

1|t̂, α
N , λN , ξi

1|t̂) + λNΦ2(uN
1|t̂, α

N , λN , ξi
1|t̂)
]

+NU×A(uN
1|t̂, α

N ).

Observe that Φi(u1|t̂, α, ξ1|t̂), i = 1, 2, is a random compact set-valued mapping and it is upper
semicontinuous with respect to (u1|t̂, α) on set U × A. Moreover, under Assumptions 3.1 and
4.1, Φi(u1|t̂, α, ξ1|t̂) is bounded by an integrable function, that is, for i = 1, 2,

‖Φi(u1|t̂, α, ξ1|t̂)‖ ≤ κ(ξ1|t̂),

where κ(ξ1|t̂) is an integrable function. For the simplicity of notation, let us denote (uN , αN ) by
vN and (u∗, α∗) by v∗. Let N be sufficiently large such that ‖vN − v∗‖ ≤ δ. For i = 1, 2,

D( 1
N

∑N
i=1 Φi(vN , ξi, E[(Φ1)2δ(v∗)]) ≤ D

(
1
N

N∑
i=1

Φi(vN , ξi),
1
N

N∑
i=1

(Φi)δ(v∗, ξi)
)

+D
(

1
N

N∑
i=1

(Φi)δ(v∗, ξi), E[(Φi)2δ(v∗)]
)
.
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It follows from Lemma 4.2 that the second term on the right hand side of the inequality above
tends to zero w.p.1 as N → +∞. On the other hand, since Φi(vN , ξi) ⊂ (Φi)δ(v∗, ξi), for
vN ∈ Bδ(v∗), the first term on the right is zero for N sufficiently large. This shows that

0 ∈ E[(Φ1)2δ(v∗, ξ)] + λ∗E[(Φ2)2δ(v∗, ξ)] +NU×A(v∗)

w.p.1. Driving δ to 0, we have by the Lebesgue dominated convergence theorem that

0 ∈ E[(Φ1)(v∗, ξ)] + λ∗E[(Φ2)(v∗, ξ)] +NU×A(v∗),

which corresponds to the first equation in (4.27). To complete the proof, we need to show the
second equation in (4.27) holds. Because gβ(v, ξ) is locally Lipschitz continuous with respect to v
and the Lipschitz module is integrable. By the classical strong law of large numbers [21, sections
2.6 and 6.2], 1

N

∑N
i=1 gβ(u, α, ξi), converges to E[gβ(v, ξ)] w.p.1 uniformly over a compact set.

Consequently

lim
N→+∞

1
N

N∑
i=1

gβ(uN , αN , ξi) = E[gβ(u∗, α∗, ξ)]

w.p.1. The second equation of (4.27) follows. The proof is complete.

5 Computational results

We have undertaken some numerical tests on the single period problem (2.11) and multiple
periods problem (3.22). In what follows we report some preliminary results of the tests.

The tests are carried out in Matlab 7.2 installed in a PC with Windows XP operating system.
We use the Matlab built-in optimization solver fmincon to solve sample average approximation
(4.23). Note that, to avoid the nonsmoothness of both objective function and constraint function
in our Matlab program, a smoothing technique is incorporated when we solve (4.23) with fmin-

con. Specifically, we replace max(0, z) (which is also denoted by (z)+) with following function:

f(z, ε) = z + ε ln
(

1 + exp(−z
ε

)
)
,

where ε is a smoothing parameter and set as 0.01 in our numerical test. This kind of smoothing
technique is used in [30]. Convergence of this smoothing approximation as ε→ 0 can be found
in [30].

Example 5.1 Consider an inventory model (2.11) with unit selling price s = 1, unit purchase
cost c = 0.5, unit salvage value v = 0. We assume that the market demand, ξ, satisfies a
truncated normal distribution with density function, denoted by ρ(ξ;m,σ, 0, 2m), where

ρ(ξ;m,σ, 0, 2m) =


0, ξ < 0;

φ( ξ−m
σ

)

Φ(m
σ

)−Φ(−m
σ

) , 0 ≤ ξ ≤ 2m;

0, ξ > 2m,

(5.29)
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where we use φ(·) and Φ(·), respectively, to denote the density function and distribution function
of a random variable with normal distribution, ξ̄ ∼ N (m,σ). In the numerical tests, we set
m = 1 and σ = 1/3. The optimal decision problem becomes

min
u×α∈U×A

E[J(u, ξ)] = E[0.5(u− ξ)+ − u]

s.t. Fβ(u, α)− µ = α+ 1
1−βE[(0.5(u− ξ)+ − u− α)+]− µ ≤ 0.

(5.30)

Moreover, on the basis of the distribution of demand, we can set an upper bound and a lower
bound for the order quantity, u, as −100 and 100. Similarly, based on the discussion in Section
2, we can assume

α∗ ∈ [−(s− c)ū,max
u,ξ

J(u, ξ)] ⊂ [−50, 50].

We carry out tests with β = 0.5, 0.8, 0.9, 0.95 and µ = −0.1, 0, 0.1, the test results are displayed
in Tables 1-3. Note that, when β = 0.5 and µ = −0.1, 0, 0.1, the optimal solution of the true
problem (5.30) is u∗ = 1.

For β = 0.5, the results in Tables 1-3 show that both optimal solutions and values of SAA
problems approximate their true counterparts very well as sample size increases. These results
also show that, when N is sufficiently large, the increase of the sample size does not affect the
optimal solutions and values of SAA problems very much. For example, in Tables 1-3, we test
with SAAs of sample sizes N = 300, 600, 1000, 3000 and find that the optimal values of SAA
problems with N = 3000 is almost the same as that of N = 600, 1000. Note that, for other β
values, we do not know the precise solutions of the true problems. Figures 3 and 4 demonstrate
the relationship between the SAA optimal value and the sample size. It shows that, as the
sample sizes increases from 200 to 1000, the deviations of the SAA solutions are decreasing.

β Sample Size Optimal Solution u∗ Optimal Value

β = 0.5 N = 300 1.0065 -0.377

N = 600 0.9987 -0.3634

N = 1000 0.9969 -0.3674

N = 3000 1.0031 -0.3677

β = 0.8 N = 300 1.0036 -0.3849

N = 600 0.9988 -0.3608

N = 1000 1.0044 -0.3691

N = 3000 0.9964 -0.3673

β = 0.9 N = 300 0.8711 -0.355

N = 600 0.8651 -0.3509

N = 1000 0.8406 -0.3553

N = 3000 0.8518 -0.3555

β = 0.95 N = 300 0.6170 -0.2876

N = 600 0.6432 -0.3009

N = 1000 0.6284 -0.2921

N = 3000 0.6269 -0.2920

Table 1: Single period model with µ = 0.
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β Sample Size Optimal Solution u∗ Optimal Value

β = 0.5 N = 300 1.0102 -0.3755

N = 600 1.0063 -0.3705

N = 1000 1.0013 -0.3683

N = 3000 1.0029 -0.3689

β = 0.8 N = 300 0.8573 -0.3548

N = 600 0.8980 -0.3626

N = 1000 0.8685 -0.3582

N = 3000 0.8744 -0.3584

β = 0.9 N = 300 0.6242 -0.2899

N = 600 0.6432 -0.2986

N = 1000 0.6230 -0.2898

N = 3000 0.6398 -0.2965

Table 2: Single period model with µ = −0.1.

β Sample Size Optimal Solution u∗ Optimal Value

β = 0.5 N = 300 1.0276 -0.3800

N = 600 0.9905 -0.3791

N = 1000 1.0010 -0.3734

N = 3000 1.0046 -0.3695

β = 0.9 N = 300 0.9823 -0.3688

N = 600 1.0074 -0.3709

N = 1000 1.0061 -0.3694

N = 3000 0.9997 -0.3673

β = 0.95 N = 300 0.8079 -0.3417

N = 600 0.8151 -0.3434

N = 1000 0.8187 -0.3437

N = 3000 0.8284 -0.3492

Table 3: Single period model with µ = 0.1.

Figure 3: E[J(uN , ξ)] with N = 200, 400, 600, 800, 1000 (µ = 0 and β = 0.5 ).
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Figure 4: E[J(uN , ξ)] with N = 200, 400, 600, 800, 1000 (µ = 0 and β = 0.9 ).

Example 5.2 Consider a half-a-year order scheduling problem. In this problem, the retailer
has to make its decision on its ordering at each month, denoted by u1, . . . , u6 or u1|6 before
the start of the 6 months. The initial inventory level y0 is assumed to be 0 and demand in
each month is denoted by ξt, t = 1, 2, . . . , 6. Therefore, the inventory level in each month is
yt =

∑t
i=1(ui − ξi). The ordering cost function is ct(ut) := ηtut and the holding/backordering

penalty cost function is ft(ut, ξt; yt−1) := ηt(ut− ξt+yt−1)2, where η is a discount factor and set
0.9. The market demand in each period t = 1, 2, . . . , 6, ξt, is assumed to be independent from
each other and satisfies a truncated normal distributed with its density function, ρ(ξ;m,σ, 0, 2m)
as defined in (5.29) with m = 1 and σ = 0.1. When β = 0 and µ = 3.8 and 4.0, we can obtain
the exact optimal solution of the true problem, which is u∗1|6 = (0.95, 1, 1, 1, 1, 0.55). We carry
out numerical test with β = 0, 0.5, 0.9 and µ = 3.8, 4.0. The results are displayed in Tables 4
and 5.

β Sample Size Optimal Solution u∗ Optimal Value

β = 0 N = 300 0.9449, 1.0088, 0.9988, 1.0061, 1.0122, 0.5489 4.6876

N = 600 0.9488, 1.0006, 0.9960, 1.0042, 0.9988, 0.5548 4.6760

N = 1000 0.9514, 0.9964, 0.9972, 1.0013, 1.0019, 0.5553 4.6754

β = 0.5 N = 300 1.0310, 0.9079, 1.0046, 1.0063, 1.0071, 0.5540 4.6764

N = 600 1.0316, 0.9253, 0.9949, 0.9995, 1.0095, 0.5565 4.6793

N = 1000 1.0488, 0.9024, 1.0031, 1.0024, 1.0034, 0.5506 4.6907

β = 0.9 N = 300 1.3395, 0.6306, 0.9946, 1.0276, 1.0020, 0.5616 4.8422

N = 600 1.3239, 0.6405, 1.0246, 1.0116, 1.0105, 0.5605 4.8179

N = 1000 1.3329, 0.6321, 1.0205, 1.0099, 1.0088, 0.5650 4.8298

Table 4: Multi-period model with µ = 3.8.

For β = 0, the results in Tables 4 and 5 demonstrate that both optimal solutions and values
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β Sample Size Optimal Solution u∗ Optimal Value

β = 0 N = 300 0.9506, 1.0110, 1.0001, 1.0064, 1.0011, 0.5464 4.6837

N = 600 0.9502, 1.0009, 0.9967, 0.9947, 0.9989, 0.5500 4.6719

N = 1000 0.9506, 0.9949, 1.0032, 0.9980, 0.9984, 0.5487 4.6693

β = 0.5 N = 300 0.9393, 1.0107, 1.0099, 0.9874, 0.9940, 0.5488 4.6621

N = 600 0.9477, 0.9986, 0.9999, 1.0020, 1.0036, 0.5443 4.6647

N = 1000 0.9483, 0.9934, 0.9954, 0.9948, 1.0010, 0.5541 4.6613

β = 0.9 N = 300 1.1997, 0.7689, 1.0234, 1.0103, 1.0069, 0.5635 4.7517

N = 600 1.1902, 0.7874, 1.0174, 1.0079, 1.0059, 0.5513 4.7524

N = 1000 1.1845, 0.7712, 1.0165, 1.0110, 1.0112, 0.5687 4.7368

Table 5: Multi-period model with µ = 4.0.

of SAA problems approximate their true counterparts very well as sample size increases. These
results also show that, when N is sufficiently large, the increase of the sample size does not
affect the optimal solutions and values of SAA problems very much. For instance, in Tables 4
and 5, the difference between optimal values of SAA problems with N = 1000 and N = 300, 600
is very small.

6 Conclusion

In this paper, we propose new models for optimizing single and multi-period stochastic inventory
control problems with different risk aversion constraints. Using some mathematical manipula-
tion, we show that these models can be reformulated as expected loss minimization problems
subject to CVaR constraints, which are convex stochastic programming problems. We apply
the well known sample average approximation (SAA) method to solve the convex stochastic
programming problems. One of the advantages of SAA is that it allows to use historical data as
a sample to simulate the uncertainties of market demand. Moreover, we show that the optimal
solution of the SAA problem converges to its counterpart in the true problem based on the
generalized KKT conditions for the SAA problems and the true problems.

However, with risk aversion constraints, it is still some difficulties to formulate the multi-
period models as stochastic dynamic programming, which can solve the multi-period inventory
control recursively. Hence, the SAA method may not be effective for solving the problems with
a large number of periods in the selling horizon. In future research, we would like to consider
an effective stochastic dynamic programming model for the risk aversion constrained inventory
control problems.
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