SIAM J. OPTIM. (© 2006 Society for Industrial and Applied Mathematics
Vol. 16, No. 3, pp. 670-696

AN IMPLICIT PROGRAMMING APPROACH FOR A CLASS OF
STOCHASTIC MATHEMATICAL PROGRAMS WITH
COMPLEMENTARITY CONSTRAINTS*

HUIFU XUf

Abstract. In this paper, we consider a class of stochastic mathematical programs in which the
complementarity constraints are subject to random factors and the objective function is the mathe-
matical expectation of a smooth function which depends on both upper and lower level variables and
random factors. We investigate the existence, uniqueness, and differentiability of the lower level equi-
librium defined by the complementarity constraints using a nonsmooth version of implicit function
theorem. We also study the differentiability and convexity of the objective function which implicitly
depends upon the lower level equilibrium. We propose numerical methods to deal with difficulties due
to the continuous distribution of the random variables and intrinsic nonsmoothness of lower level
equilibrium solutions due to the complementarity constraints in order that the treated programs
can be readily solved by available numerical methods for deterministic mathematical programs with
complementarity constraints.
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1. Introduction. Mathematical programs with equilibrium constraints (MPEC)
are a class of optimization problems with two sets of variables: upper level variables
and lower level variables and an equilibrium constraint defined by a parametric vari-
ational inequality or a complementarity system with lower variables being its prime
variables and upper level variables being its parameters.

Over the past few years, MPEC has developed as a new area in optimization; see
[23, 25] for an overview. Omne of the driving forces of the rapid development is that
MPEC has found useful applications in many areas such as economics, management,
and engineering. A particularly interesting example for MPEC is a Stackelberg—Nash
leader-follower model for competition in an oligopoly market where a number of firms
compete to supply homogeneous goods into a market in a noncooperative manner
[24, 32]. Suppose that a distinct strategic firm (called leader), may anticipate the
reaction of the remaining nonstrategic firms (called followers) to his decision and
use this knowledge to select his optimal supply by minimizing the objective function.
The followers’ reaction to the leader’s decision can be described by a Nash equilibrium
which can be mathematically formulated as a variational inequality (VI). In structural
optimization, the objective is often to optimize the performance of a structure, or
its construction cost or weight by selecting design parameters, such as the shape
of structure, or the choice of material under the constraints of the behavior of the
structure, where the values of the state variables such as displacements, stresses, and
contact forces are described by an equilibrium of minimal energy. The problem can
be modeled as MPEC similarly [23, 25].
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In MPEC models, the underlying data are deterministic. However, in some im-
portant practical instances, there may be some stochastic (uncertain) factors involved
in MPEC models. For instance, in a Stackelberg leader-follower equilibrium model,
the leader’s decision may be subject to some uncertainty in market demand. This is
particularly so when the decision is made now for future output. Ignoring such an
uncertainty may result in a decision being made on the basis of a particular market
realization which occurs at a very low probability. De Wolf and Smeers [4] first con-
sidered this kind of stochastic leader-follower problem and applied it to model the
European gas market. Xu [36] considered a more general model and investigated it
with an MPEC approach.

In mechanical optimization, a structural equilibrium may be subject to the ran-
dom properties of materials and randomly varying conditions such as weather and
external forces [2]. The distribution of these random factors may be obtained from
experience or through observation. It might be undesirable to base the optimal choice
of design parameters on the expected values of the random data.

Patriksson and Wynter [26] first considered a general class of stochastic mathe-
matical programs with equilibrium constraints (SMPEC) as follows:

where ¢ : © — R! denotes a vector of random variables defined on a sample space €,
y(x,&(w)) denotes a measurable selection from S(x,&(w)), the set of solutions for the
lower level VI problem parameterized by the upper level variable x and random vector
&(w); E denotes the expected value. They investigated the existence of an optimal
solution and the directional differentiability of the objective function.

In this paper we consider a less complicated SMPEC model as follows:

min - E[f(z,y,{(w))]
(1) SMPCC st. ze X,
0<yl F(z,y,{(w)) >0,

where, by a slight abuse of notation, f : R™ x R” x R! — R denotes a continuously
differentiable function, F': R™ x R? x R! — R™ denotes a continuously differentiable
vector valued function, ¢ :  — R! denotes a vector of random variables defined on
sample space €2, [E denotes the expected value, and X denotes a closed subset of R™.

In this model, we implicitly assume that the lower level vector of variables y
uniquely solves a stochastic complementarity problem for every x and the realization
of {(w). The uniqueness can be guaranteed by the uniform strong monotonicity of
F in y. Therefore in this model y is essentially a function of z and {(w), not an
independent decision vector. This is significantly different from an SMPEC model
recently considered by Shapiro [31] where y is regarded as a second decision vector.
The optimal upper level variable x is chosen to minimize the expected value of the
objective function since the random factors are not realized at the time a decision
is made. Model (1) is first investigated by Lin, Chen, and Fukushima [20] with a
focus on the case when &(w) is a random variable with a finite discrete distribution.
It is shown that such a program can be transformed into a standard deterministic
MPCC. Subsequently, a smoothing method is proposed for solving the transferred
program. Lin, Chen, and Fukushima [20] also considered a variation of the model
where the complementarity constraint may not necessarily have a solution for every
realization of £(w) and, consequently, a recourse is considered. In a revised version of
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the paper [21] (with a different title), Lin, Chen, and Fukushima proposed a Monte
Carlo method for solving this type of recourse SMPEC model. The work is extended
by Lin and Fukushima [22].

In this paper, we focus on the case when &(w) is a vector of random variables with
a known continuous distribution. We find that the case is more challenging in that
the resulting SMPCC is no longer equivalent to a standard deterministic MPCC. To
be more specific, let p(t) denote the joint density function of £(w) and 7 denote the
support set of p(t). Then (1) can be rewritten as

min  E(x) = [, f(z,y,t)p(t)dt
(2) st. xEeX,
0<yl F(z,y,t)>0,teT.

Note that here ¢ is a vector when [ > 1 and hence the integration is multiple in general.
As a result of this reformulation, we have transformed the stochastic program (1) into
a deterministic program. Of course, there is a fundamental difference between a
standard deterministic mathematical program with complementarity constraints and
(2) since here the complementarity constraint contains a vector of parameters ¢ and
the objective function involves an integration with respect to ¢.

We need to investigate the properties of lower level equilibrium solution y(z, t)
defined by the complementarity problem in the constraint of (2) before proposing nu-
merical methods to solve the problem. By using a nonlinear complementarity problem
(NCP) function, we reformulate the complementarity constraint as an underdeter-
mined system of nonsmooth equations and then investigate the dependence of the
lower level prime variable y on the upper level vector of variables x and parametric
vector t using a nonsmooth version of the implicit function theorem. We discuss Lip-
schitz continuity, and piecewise smoothness of y(z,¢) on space X x 7. The discussion
is extended to upper level expected value function E(x).

With the nice properties of lower level equilibrium solution and upper level objec-
tive function, we propose some numerical methods for solving (2). The methods are
focused on addressing two fundamental issues in the problem. One is that since 7 is
a set of positive Lebesgue measures, y(z,t) is an infinite dimensional variable. This is
significantly different from the case when 7 is a finite set and (2) can be easily refor-
mulated as a standard deterministic mathematical program with a complementarity
constraint. We deal with this issue by discretizing the support set 7 and replacing
the integration in the objective function with a numerical integration. This kind of
deterministic discretization approach is not necessarily efficient when [ > 1 and/or T
is large, but it is rather stable and suitable for [ = 1 and/or a small 7. The other
issue is the nonsmoothness in the constraint caused by the complementarity structure.
This is similar to the deterministic MPCC case. We deal with this problem with a
popular implicit NCP smoothing method as in the deterministic MPEC case.

During the revision of this paper, a new work on SMPEC by Shaprio has come up.
In [31], Shapiro considered a slightly different model from (1) by choosing y(x,&(w))
in such a way that f(z,y,&(w)) is minimized for given x and £(w), and in doing so
he described his model as a two stage stochastic decision making problem. Moreover,
he proposed a sample average approximation method to solve the problem and pre-
sented a probabilistic estimate of sample size for an e-global optimizer of the original
SMPEC to be a é-optimizer of a sample average approximation program. The sample
average approximation approach provides an effective alternative to the deterministic
discretization approach that we will discuss in this paper in either case when: (a)
I > 2, (b) the support set 7 is large, (c) the distribution of {(w) is unknown.
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The rest of this paper is organized as follows. In section 2, we investigate proper-
ties of lower level equilibrium solution using a nonsmooth version of implicit function
theorem under the assumption that F(z,y,t) is uniformly strongly monotone with
respect to y. We show global Lipschitzness and piecewise smoothness for the lower
level equilibrium solution y(x,t). We then move on to discuss properties of upper
level expected value function F(z) and show that E(z) is differentiable under some
moderate conditions. We also use a stochastic Stackelberg—Nash—Cournot equilib-
rium problem as an example to discuss the differentiability and convexity of E(x).
In section 3, we propose a deterministic discretization approach to approximating (2)
and obtain an error bound for an approximate global minimum. Note that our dis-
cussion is based on the case when £(w) is a random variable (I = 1), but the results
can be easily extended to [ > 1 case. In section 4, we discuss an implicit smoothing
approach for solving (2) and obtain error bounds for a global optimal solution of the
smoothed program. Finally, in section 5, we investigate the limiting behavior of the
Clarke stationary points of both discretized and smoothed programs.

2. Reformulation and characterization. It is well known that a complemen-
tarity problem can be transformed into a system of nonsmooth equations and conse-
quently a deterministic mathematical program with complementarity constraint can
be transformed into a program with nonsmooth equality constraints. In this section,
we will use the same idea to deal with the complementarity constraints in SMPCC.

2.1. Reformulation of the complementarity constraints. Let ¢ : R2 — R
be an NCP function [35], that is, it satisfies at least the following two properties:

#(a,b) =0<=0a,b>0 and ab=0.
Then the complementarity constraints in (2) can be reformulated as

¢(y17F1(‘Ta y7t))

(3) D(x,y,t) = =0.

¢(yn7Fn(xa yvt))

The reformulation is well known; see for instance [18, 16]. There are many NCP
functions available in literature; see [35] for a review. Here we only consider the most
popular two NCP functions.

One is the “min” function which is defined as

¢(a,b) = min(a, b).

The function is globally Lipschitz continuous and is continuously differentiable every-
where except at the line a = b.
The other is the Fischer—Burmeister function [9] which is defined as

o(a,b) =a+b—+/a?+ b2

The function is also globally Lipschitz continuous and is continuously differentiable
everywhere except at (0,0).
With an NCP function, program (2) can be reformulated as

min [ f(x,y.t)p(t)dt
(4) st. xeX,
®(x,y,t) = 0.
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Unfortunately, due to the presence of the integral with respect to ¢ in the objective
function, there is no available algorithm that can be directly applied to solve program
(4). Our purpose here is to properly treat (4) so that it can be solved by existing
algorithms for deterministic MPCC. From here on, we will focus on (4) rather than
(2).

2.2. Properties of lower level equilibrium. For given x and ¢, the lower
level equilibrium y is defined as a solution of (3). We are interested in the existence,
uniqueness of such a solution and its dependence on x and ¢. For this purpose, we
need to make some basic preparations.

Let F': R™ xR} x R! — R™. F(z,y,t) is said to be uniformly strongly monotone
with respect to y if there exists a constant a > 0 such that

(5)  (F(z,y,t) = F,y" )"/ —y") > ally ="’V .y €R}, s € X, teT.

Here and later‘ the superscript T denotes the transpose of a vector and matrix.
Let H : R7 — R! be a locally Lipschitz continuous function. The Clarke general-
ized Jacobian [3] of H at z € R/ is defined as

0H(z) := COHV{ lim VH(y)} ,
yeED
where Dy denotes the set of points near = at which H is Frechét differentiable, VH (y)
denotes the usual Jacobian of H which is a [ x j matrix, “conv” denotes the convex
hull of a set. When [ =1 or j =1, 9H reduces to the Clarke subdifferential.

Let D, = diag(d§, ... ,d%) € R™™ denote the diagonal matrix with the (4,4)th
entry being d?, for i = 1,...,n. Let D, = diag(d},...,d%) € R™ ™ denote the
diagonal matrix with the (i,4)th entry being d?, for i = 1,... ,n. Let I denote the
identity matrix in R™*™. The function ® defined by (3) is locally Lipschitz continuous
and the Clarke generalized Jacobian of ® with respect to y can be expressed as

Oy®(z,y,t) = {(Da,Db) (vaé’%t)) S (de,d%) € 8¢ (yi, Fi(z,y,t)),i=1,... m} .
(6)
Moreover,
0y ®(z,y,t) C OyP1(x,y,t) X - X OyPp(x,y,1),
where
0, ®(x,y,t) = {d%; + d°V, F(z,y,t) : (d%,d?) € ¢ (yi, Fi(z,y, 1))}, i=1,... ,m.

The following proposition shows that under some proper conditions, the Clarke
generalized Jacobian 9,®(x,y,t) is uniformly nonsingular.

PROPOSITION 2.1. Suppose that F(x,y,t) is uniformly strongly monotone with
respect toy, and ¢(a,b) is either the min-function or the Fischer—Burmeister function.
Then there exists a constant C > 0 such that for allz € X, y >0 andt € T

1(Da + DyVy F(z,y,6)) "' < C¥(d}, d7) € O (s, Filw,y. 1)), i =1,... ,n.

Here and later on || - || denotes the 2-norm of a matriz and a vector.
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We will not provide a proof since the result follows straightforwardly from [17,
Proposition 3.2] where a similar conclusion is proved with ¢ being the Fischer—
Burmeister function and F' a P-function (of y). The case when ¢ is a min-function
can be dealt with similarly.

Since y is implicitly dependent of z and ¢ through the nonsmooth system of
equations (3), the classical implicit function theorem cannot be used to study (3). We
need the following generalized implicit function theorem which is established in [36]
and is essentially due to Theorem 7.1.1 and the subsequent corollary of [3].

LEMMA 2.2 [36, Lemma 3.2]. Consider an underdetermined system of nonsmooth
equations

H(y,z) =0,

where H : R™ x R™ — R™ 4s locally Lipschitz. Let (g,z) € R™ x R™ be such that
H(y,z) = 0. Suppose that 0,H (g, z) is nonsingular. Then
(i) there exist neighborhoods Z of z, Y of §, and a locally Lipschitz function
y:Z —Y such that y(Z) = § and, for every z € Z, y = y(z) is the unique
solution of the problem H(y,z) =0,y €Y;
(i) forz € Z,

(1) Oy(z) C {—-R™'U : (R,U) € 9H(y(2), 2), R € R™ ™ [ € R™*"},

With Proposition 2.1 and Lemma 2.2, we are ready to give our main results on
the lower level equilibrium solution.

THEOREM 2.3. Let ®(z,y,t) be defined as in (3). Suppose that F is uniformly
strongly monotone in y and uniformly locally Lipschitz continuous in x. Then

(i) there exists a unique locally Lipschitz continuous function y(x,t) such that

(8) CIJ(:c,y(x,t),t) =0

foreveryx e X andteT;

(ii) for every t € T, y(-,t) is piecewise smooth in X; moreover, if T is a set of
positive Lebesque measure, then y(-,-) is piecewise smooth in X x T, and for
fized x, y(x,-) is piecewise smooth in T ;

(iii) the Clarke generalized Jacobian of y(x,t) with respect to x can be estimated

as follows:
py(z,t) C{=R7W : (U,R,V) € 0®(x,y(x,t),t),U € R"™*™ R c R"*"
V e R}
C{-R'U:(UR,V) € 0c®(x,y(x,t),t),U € R"™*™ R c R"™"
Ve R4,

where 0g® = 0P X -+ - X OD,,; moreover, if F is uniformly globally Lipschitz
continuous in x, then y(x,t) is also uniformly globally Lipschitz continuous

mx;
(iv) the Clarke generalized Jacobian of y(x,t) with respect to t can be estimated
as follows:
dwy(x,t) C {—R™W : (U,R,V) € 0®(x,y(z,t),t),U € R"™*™ R c R"*",

Ve Rnxl}
C{-R 'V :(UR,V)€0c®(x,y(x,t),t),U € R™™™ R c R"™"
Ve R
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if F is uniformly globally Lipschitz continuous in t, then y(x,t) is also uni-
formly globally Lipschitz continuous in t.

The results are expected. In particular, similar results to parts (i) and (ii) are
established by Facchinei and Pang in the context of sensitivity and stability analysis
in [7]. For completeness, we attach a proof which utilizes the nonsmooth implicit
function theorem in the appendix.

In practice, y(x,t) represents an equilibrium at scenario ¢ of the uncertainty. The
piecewise smoothness of a component y;(x,t) at a point (z,t) implies that the value
of ith lower level decision variable at the equilibrium may change at different rates
at the point. In what follows, we investigate the piecewise structure of y(x,t) and its
differentiability.

Let

D={(z,t):x € X, t € T,y;(z,t) + Fi(z,y(x,t),t) >0,i=1,... ,n}.
Obviously y(x,t) is continuously differentiable on D, and
Vey(z,t) = =V, ®(z,y(z,t),t) "'V, 0(z,y(z,1),1)
and
Viy(z,t) = =V, ®(x,y(z,t),t) 'V, @(z, y(z,t),t) Vo € D.
In general the structure of set D is complex even when x is a single variable.

2.3. Properties of the objective function. Let y(x,t) be the solution of (3).
We consider the objective function of the SMPCC

B@) = [ J(eytat).Dplt)dr

For simplicity of discussion, we make a blanket assumption that E(-) takes finite
value on X. We also assume throughout this subsection that 7 is a set of positive
Lebesgue measure. We are interested in the properties of E(z) such as Lipschitz
continuity, differentiability, and convexity which are related to the development of
numerical methods and the uniqueness of optimal solution. Note that in the general
context of SMPEC, Patriksson and Wynter [26] investigated Lipschitz continuity and
directional differentiability of the objective function. Our approach and results here
are more specifically utilizing Clarke subdifferential.

THEOREM 2.4. Let ®(z,y,t) be defined as in (3). Suppose that F is uniformly
strongly monotone in y and uniformly globally Lipschitz continuous in x. Suppose
also that f is globally Lipschitz continuous with respect to (x,y), that is, for every
t € T, there exists L(t) > 0 such that

@y ) — F@ sy 0] < L@’ — 2"l + Iy — o) Valsa” € X, andy,y" € R
Suppose also that
9) /TL(t)p(t)dt < 0.

Then E(x) is globally Lipschitz continuous and piecewise smooth. Moreover,

(1)  0E@)cC [[ V(2 (e ), 8) + Y f(y( £), 1)y, D] p(t)dl.
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Proof. Let 2’2" € X. Then
B() - E(a")| < [[ Py 0),8) — f(a" y(a” 1), D) ()dt
< / L)l — 2| + lly(a’ ) — y(a, 8) )p(t)dt.
T

By Part (iii) of Theorem 2.3, y(x,t) is uniformly Lipschitz in z. Thus, there exists a
constant C' > 0 such that

ly(a’. 1) - y(a", )] < Clla’ — a”].

Consequently,

B(') - B(@")| < [(1 wor [ L(t)p(t)dt} )

The global Lipschitz continuity of E(z) follows from this and (9). Given the Lipschitz
continuity, we can obtain (10) by applying [3, Theorem 2.7.2] to E(x). The piecewise
smoothness of E(x) is obvious given the piecewise smoothness of y(x,t) and the
smoothness of f(x,y,t). d

The above theorem shows the global Lipschitzness and subdifferentiability of
E(x). In what follows we investigate its differentiability. Let y(z,t) be the solution
of (3). For z € X, let

Ti(x) :={t €T :yi(z,t) 2 0, Fi(z,y(z,1), 1) = 0,yi(x, t) + Fi(z,y(z,1), 1) = 0}
(11)

fori=1,...,n. Thisis a set of points in 7 where the ith complementarity constraint
degenerates for fixed z.

LEMMA 2.5. T;(x) is Lebesgue measurable.

Proof. By Theorem 2.3, for each fixed z, y;(z,-) is continuous. Thus 7;(z) is
Lebesgue measurable. 1]

In general, the Lebesgue measure of 7;(x) in space 7 may not be zero.

ASSUMPTION 2.6. For i = 1,...,n, the Lebesgue measure of T;(x) relative to
that of T is zero.

In subsection 2.4, we will show that Assumption 2.6 holds in a practical instance.

PROPOSITION 2.7. Suppose that for any x,t at which y(-,t) is continuously dif-
ferentiable at x, the following holds:

(12) y(',t) = y(z,t) = Vay(z, t) (2" — z) = o(||lz — 2'[]).
Under Assumption 2.6,
(i) E(x) is differentiable and

(8) VB = [ [9fr 00w 0, + Va0, OVt Ol

where
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(i) 4f, in addition, V f is uniformly Lipschitz continuous in x and y, then E(-) is
continuously differentiable on X.

See a proof in the appendix.

The proposition above shows that the only possibility that E(-) is not differen-
tiable at x is when the Lebesgue measure of 7 (x) is not zero.

Finally, we discuss the convexity of E(x). We assume that for every t € T,
f(x,y,t) is convex in z,y. Since the density function p(t¢) is nonnegative, the integral
of f with respect t gives a convex function of x,y. Unfortunately, these conditions are
not adequate to ensure the convexity of E(z) because E(x) involves the integration
of the y(x,t). It is obvious that if each component function y;(x,t) is convex in z for
every t € 7, then E(z) is convex. So a sufficient condition to ensure the convexity of
E(x) is when y;(x,t) becomes convex in z.

In general, y;(-,t) is not necessarily convex. However, under some particular
circumstances, we may obtain the convexity of y;(-,¢). We will discuss all these
through an example in the next subsection.

2.4. An example. Consider a stochastic Stackelberg—Nash—Cournot equilib-
rium problem in an oligopoly market where n + 1 firms compete to supply homo-
geneous goods into a market in a noncooperative manner. A strategic firm, called the
leader, needs to make a decision for its future output now. Assume that the leader
has perfect knowledge of how other firms, called followers, react to his output and the
future market distribution. Then the leader’s decision problem can be formulated as

(14) maxE [xp(a:JrZyz z,£(w)), (W ))] — co(x),

where

yi(z,&(w)) € arg max <y1p<x+yl + Z yr(z,&(W)), f(w)) —ci(yi)>,i =1,...,n.

k=1,k#i
(15)

Here x denotes the leader’s decision variable, y; denotes the ith follower’s decision
variable, and p(q,&(w)) denotes the inverse market demand function which is subject
to a random shock £(w), that is, if the total supply to the market by all firms is ¢, then
market price at scenario &(w) is p(q, £(w)); co(g) denotes the leader’s cost function and
¢i(q), i = 1,...,n, denotes follower i’s cost function. We assume that both demand
function p(+,-) and cost functions ¢;(q), i =0, ... ,n, are sufficiently smooth.

In this problem, the followers are assumed to play a Nash—Cournot game after
the leader’s output is known and the market demand is realized and the leader needs
to make a decision to maximize its expected profit before the realization of market
demand. The problem was initially considered by De Wolf and Smeers [4] in the study
of competition in the European gas market where the random variable {(w) has only
a finite discrete distribution. Recently Xu [36] extended the model to the case when
the random variable £(w) has a continuous distribution and reformulated (16) as a
stochastic mathematical program with complementarity constraints. Assuming the
leader knows the distribution of {(w), Xu further reformulated the program as follows:

max E(z):= [} [zp (v + eTy(x,t),t)] p(t)dt — co(x)
(16) st.  x 2 0
y(x,t) solves 0 <y L F(x,y,t) >0, t € [0,u],
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where
Fz(x7y7t) = —p(.’l? + yT67t) _pjr(x + yTe7t)yi + C;(yz)a i=1,...,n,

e = (1,...,1)T, and p is the density function of the random variable &(w) with an
interval support set [0, u]. Note that here and later on we use o’ (x) rather than Va(z)
to denote the derivative of a real-valued function a(z) with a single variable.

Obviously program (16) is an example of program (2). In what follows, we will
investigate the differentiability and convexity of E(z). For simplicity of discussion,
we assume that the demand function is linear, that is,

p(q,t) = a— Bg+~t, fort € [0,u],

where «, 3,7 > 0.
PROPOSITION 2.8. E(x) is differentiable for x > 0.
Proof. We use Proposition 2.7 to prove the result. Since p(q,t) = a — 8q + t,

Fz(x7y7t) = - +6(I + yTe) - ’Yt +ﬂyl + C/i(yi)v

and

dF;i(z,y,1) :{ 20+ (yi), J=1i,
dyj ﬂa J?é 1.

Since > 0 and ¢/(g) > 0, it is easy to verify that V,F(z,y,t) is uniformly positive
definite. Therefore by Theorem 2.3, the complementarity problem

0<y Ll F(z,y,t) >0

has a unique solution y(z,t) for every x > 0 and ¢ € [0, u]. Note that y(z,t) is follow-
ers’ Nash—Cournot equilibrium at demand scenario p(-,t). At the Nash equilibrium,
the aggregate supply by followers is y(z,t)”e. By Theorem 2.3, y(z,t)”e is a piecewise
smooth function of z and t. Moreover, by [36, Proposition 3.4]

(17) Ory(z,t)e € (=1,0) Vt € [0, u].

In what follows, we investigate the monotonicity of y;(-,t), ¢ = 1,... ,n, for fixed
t € [0,u]. By the complementarity condition, we have

min (y;(z,1), —a + 8 (z + y(x, 1) e) — vt + Byi(z, ) + ¢ (yi(x, 1)) = 0, fori =1,... ,n.
If y;(x,t) > 0, then
(18) —a+ B+ y(z, ) e) — vt + Byi(x,t) + ¢ (ys (2, 1)) = 0.
Consequently, we have
Ouyi(w,t) C —(8+ ¢ (yi(w,1))) " B(1 + Bpy(w, t)e).

Since 8 > 0, ¢/ (yi(x,t)) > 0, by (17), the relation above implies that every element
of 0,y;(x,t) is negative. This shows y;(-,t) is strictly decreasing at a point x where
yi(z,t) > 0. Furthermore, from this and the continuity of y;(-,t), we can easily show
that if there exists x;(¢) at which y;(x;(¢),t) = 0, then y;(z,¢) = 0 for all z > z;(¢).
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Let x;(t) denote the smallest x at which y;(x,t) = 0 (being +oo if it does not
exist). Then y;(-,t) is strictly decreasing on [0, z;(t)] and y;(z,t) = 0 for = > x,(t).
The economic interpretation of x;(t) is that in certain demand scenarios, when the
leader’s supply reaches z;(t), follower ¢ drops out of the market since it is no longer
making a profit.

We now verify (12) for y(z,t). We consider y;(x,t). Obviously, (12) is satisfied
for ¢ > x;(t). Let z € (0,2;(t)) and suppose that y(-,t) is differentiable at x. Then
by differentiating both sides of (18) with respect to x, we obtain

() (@, t) = = (28 + ¢ (i, 1) "B | 1+ D (w5)se
e
Since ¢;(+) is assumed to be sufficiently smooth, we can show from the relation above
that y;(x,t) is also twice continuously differentiable. This shows that y(-,t) is twice
continuously differentiable at the considered point; consequently, (12) holds.
Now we prove that Assumption 2.6 holds. First let ¢ € [0,u] be fixed. For
x > x;(t), we have y;(x,t) = 0. Thus

O Fi(z,y(x,1),t) = B (1 + Opy(x, t)e).
By (17), every element of 0, F;(x, y(z, ), t) is positive. This shows that F;(x, y(x,t),t) >
0 for « > x;(t). Therefore x;(t) is the only point satisfying the following:
(19) yi(xﬂt)+Fi(xay(xat)vt) =0.

This shows that for each ¢ there exist at most n degenerate points.
In what follows, we investigate the behavior of x;(t) as t varies. For this purpose,
we need to consider (y;);(z,t). Consider

(20) yi(w,t) — a+ Bz +y(z, ) e) =yt + By, 1) + ¢ (yi(x, ) = 0.
By differentiating both sides with respect to ¢, we obtain that
(21) Owyi (@, t)(1 + ¢ (yi(x, 1)) + B) = —BOwy(x, t)e + 7.

Since by part (iii) of [36, Proposition 3.4],

aty(‘rvt)e C <07 ;:| ’

and ¢/ (y;(z,t)) > 0, we know from (21) that y;(x,-) is strictly increasing at a consid-
ered t where y;(x,t) = x;(t). This shows that x;(t) is strictly increasing as ¢ increases,
which means for any x, there exists at most one ¢t € [0,u] such that z;(¢t) = x. This
show that 7;(z) defined by (11) contains at most n points. Hence Assumption 2.6
holds. By Proposition 2.7, E(x) is differentiable. d

Note that this result significantly strengthens the previous result on lower level
equilibrium y(x,t) in [36].

We now investigate the concavity of E(x). For this purpose, we look at the
convexity of y;(-,t). Suppose that y;(-,t), ¢ = 1,...,n, is differentiable at = where
yi(x,t) > 0. Differentiating (20) with respect to x (ignoring the first term y;(x,t)),
we obtain

(22) (B + ¢ (i (=, 1) () (2, 1) = =B(L + yye).
Since y; (-, t) is strictly decreasing on (0, z;(t)), for each ¢ and fixed ¢, there exists
at most one point at which (19) is satisfied. Let x;(¢) denote such a point (being 400
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if it does not exist). We are interested in the details of the structure of y;(-,¢). For
simplicity of discussion, we further assume that the marginal cost of follower i, ¢;, is
affine. Then F;(z,y,t) is affine in  and y, and y;(z, ) is piecewise affine.

Let

X(t) = {zi(t),i=1,... ,n}.

For x € X\X(¢), the strict complementarity is satisfied for each i, i = 1,... ,n, which
means y;(-,t), ¢ = 1,...,n, is continuously differentiable at x. Therefore the only
possibility that y;(-,t) becomes nonsmooth (where it switches from one smooth piece
to another) is at x;(t) € X (t), where z;(t) < x;(t). From (22) we see that

23 lim (y;),(x,t) > lim (y;).(z,t),
23) Jim k) > im0

which shows that y;(-,t) is not differentiable at x;(¢t). Moreover, (23) indicates a
decrease of the derivative of y;(-,t) at the point x;(t). The market interpretation
is that at the point where follower j drops out of the market, the unit increase on
the leader’s supply will more significantly reduce the remaining follower’s optimal
supply. Obviously, (23) indicates the local concavity of y;(-,t) at point z;(t). We can
summarize the main properties of y;(x,t) as follows:
e y;(x,t) is continuous and piecewise affine;
o for x < x;(t), y;(-, ) is concave, and at x;(t), y;(-,t) is locally convex;
e if the followers are identical, then y;(-,t) is convex;
o if X(t) = {+o0}, that is, no follower drops out as the leader increases supply
up to its capacity, then y;(-,t) is convex;
e y;(z,t) is not differentiable at x;(t) < z;(t), j =1,... ,n and z;(¢), but it is
differentiable elsewhere.

Note that, at this stage we are not ready to assert whether or not E(z) is concave.
Observe first that E(xz) is a function of Q(x,t), where Q(z,t) = > i | yi(x,t). If we
can show that Q(xz,t) is convex, then it is not difficult to see that E(z) is concave
under usual assumptions [36]. For this purpose we look at the convexity of Q(-,t).
Let Z(x,t) = {i: y;(x,t) > 0}. Since ¢/ = 0, we have from (22) that

| Z(x, 1)

Ql(x,t) = T T o)

where |Z(z,t)| denotes the cardinality of set |Z(z,t)|. Obviously, as the value of z
changes from z;(t) — 6 to x;(t) + 6, where 6 is sufficiently small, |Z(x,t)| decreases and
Q!.(-,t) increases. This shows the convexity of Q(-,t). Note that Sherali [33] obtained
a similar conclusion in a deterministic Stackelberg model. Based on the discussion
above, we have the following.

PROPOSITION 2.9. If p(q,t) is affine and ¢;(q), i =1,... ,n, is also affine, then
E(z) is concave for x > 0.

3. Discretization methods. In this section, we discuss numerical methods for
solving programs (2) through (4). The main obstacle that prevents direct application
of many recently developed numerical methods for deterministic MPEC to (2) is the
presence of an integral in the objective function which requires lower level variables to
be solved from constraint before the objective function can be evaluated. In general, it
is difficult to obtain an explicit expression of y(z, t) even when F' is an affine function.
Our idea here is to discretize the integral and replace it with a numerical integration.
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The resulting discretized program can then be solved by available numerical methods
for deterministic MPECs.

To simplify the discussion, we focus on the case when £(w) is a random variable.
It is not difficult to see that the methods and results established in this section can
be easily extended to the case when &(w) consists of several random variables.

First, we deal with possible unboundedness of the support set 7. The following
result is a special case of Berge’s well-known stability theorem and is needed in several
places in later discussion.

LEMMA 3.1. Consider a general constrained minimization problem

min p(x)
s.t. x€C,

where p : R™ — R is continuous and C is a subset of R™, and a perturbed program
min p(z)
st. xeC,

where p : R™ — R is continuous and

|p(z) — p(z)| < 6 Vo € C.

Suppose that =* is a global minimizer of p(x) over C, and T* is a global minimizer of
p(z) over C. Then

lp(z™) — p(z7)| < 6.
PROPOSITION 3.2. Suppose that the support set T is unbounded. Let
In ={teT:|t|oo <N},

where N is a positive number and || - ||oo denotes the infinity norm. Let xn be a global
minimizer of the following program:

min - Ey(z) = [ f(z,y,t)p(t)dt
(24) st. wEAX,
O(x,y,t) =0.

Then for every 6 > 0, there exists Ny > 0 such that for all N > Ny,
|E(z) — En(z)| <6 Vo € X,
and
|E(z") — En(zn)] <6,

where x* denotes a global minimizer of program (4).

Proof. The first inequality is obvious. The second inequality follows from the first
one and Lemma 3.1. 0

The proposition shows that we can approximate program (4) with (24). To sim-
plify the discussion, we assume, from here on, that the support set 7 is bounded.
Since £(w) is a random variable, 7 is a bounded interval. We normalize it to [0, u].
Let 7k denote a set of grid points of 7 where

TK:{tttOZO,tl:tl_1+%, fOI‘lzl,...,K}.
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Note that we can discretize the program (2) directly by considering

min  Ex(z Z x,y(x, ), t)p(t)
(25) =1
st. xzedk,
y(x,tl) solves 0 <y L F(x,y,t;) >0,1=1,... K.

PROPOSITION 3.3. Let Ex(x) be defined as in (25). Suppose that f(x,y(z,t),t)
is uniformly locally Lipschitz with respect to t, that is, for every t € T, there exists a
constant A(t) > 0 such that

(26) £yl ), 1) = Fo gl #),6)] < AW |

fort' t" neart, where A: T — RT is continuous and

(27) /0 AW p(t)dt < .
Suppose also that the density function p(t) is differentiable on T and
(28) [ 1yt 00 e < .
Then R

(i) there exists a constant C' such that

(20 Br(o) - B < S v e 2
(i)
Bx(ex) - B < S

where x denotes a global minimizer of Ex(-) and x* denotes a global mini-
mizer of E(-).
Proof. Part (i). Let

Al(xvt) = f(xvy(x’tl)’tl)p(tl) - f(a:,y(at),t)p(t), for ¢ € (tlflﬂtl)'

By definition,

U [
Since
U
|A(x,t)] < o (p(tl) sup  A(t) + |f(z,y(x,t),t)] sup |p’(t)|> , fort € (t—1,t),
tefti—1,t] te[ti—1,t)

by (27) and (28), there exists a constant § > 0 such that for K sufficiently large

K t
|EK(ZE)E(I)|§;§;/ (p(tz) sup  A(t) + [f(x,y(z,t),t)| sup ]Ip'(t)|>dt

te[t;—1,t1] te[ti—1,t

IN

([ awpwa+ [ ir ot 0.0l +6)
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The conclusion follows by letting C' = ([;" A(t)p(t)dt + [y | f(z,y(z, 1), t)||p (t)|dt + 6).
Part (ii) follows from Part (i) and Lemma 3.1. O
Remark 1. We make a few comments on the assumptions made in Proposition
3.3. First, the condition on the continuous differentiability of p(t) can be relaxed to
piecewise smoothness. Second, (26) and (27) holds under the following conditions:

(a) f(x,y,t) is globally Lipschitz continuous in z and y and (9) holds,

(b) f(x,y,t) is uniformly locally Lipschitz continuous in t with rank A;(¢) where
Jo Ar(®)p(t) < oo,

(¢) F is uniformly monotone in y and it is uniformly globally Lipschitz continuous
in t.

Note that both (a) and (c) are assumed in Theorem 2.4.
The advantage of (25) is that we can rewrite it as

K
. U
min =% Z x,y1, t)p(ty)
(30) I=1
st. xeX,
Ogyl J_F(l',yl,tl) 207 = 1,... ,K,
where we can treat z and yi,...,yx equally in the sense that there is no need

to solve y; from constraints in advance. Note that (30) may be viewed as a dis-
crete stochastic mathematical program with complementarity constraints if we re-
gard p(t;),l = 1,..., K as probability distribution. See [26, 20] for some research on
discrete stochastic mathematical program with complementarity constraints.

It is easy to see that (30) is a deterministic mathematical program with comple-
mentarity constraint, therefore a number of numerical methods proposed in [10, 11,
6, 12, 13, 15, 16, 19, 34] can be applied to this program.

The disadvantage is that to obtain a better approximation, K may be large and,
consequently, a large number of variables are introduced in (30). The discretized
scheme is useful only when the support set of the density function is small and/or the
random variable is relatively evenly distributed over the support set.

An alternative approach to solving (2) is the sample average approximation (SAA)
method. SAA is well known in stochastic programming and is effective when a problem
involves several random variables. The basic idea is to generate a sample &1, ... , &N
with independent identical distribution as £ and to solve the following SAA program:

. 1 N i ¢
o) Wy e /s O]
st. 0<y'l F(x,y",¢)>0,i=1,...,N,

to obtain an approximate solution of the original problem (1). In comparison with
(30), the SAA scheme generates less evenly spread grid points which usually concen-
trate in areas where the density function take relatively larger values; see [31] for
details.

4. An implicit smoothing method. In this section, we deal with the non-
smoothness of lower equilibrium solution y(z,t). It is well known that such non-
smoothness arises from the nature of complementarity. The issue has been extensively
discussed in deterministic MPCC and many methods have been proposed to deal with
it. It is beyond the scope of this paper to give a comprehensive review on this topic.
Here we just mention two types of methods.
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One is called the smoothing NCP function method. The idea of this kind of
method is to find a smooth approximation of an NCP function and replace the NCP
reformulation with such a smoothed approximate NCP reformulation; see recent work
in [6, 16] and references therein.

The other kind of method is called the regularization method which reformulates
complementarity constraints as a system of inequalities. Such a system is often ill-
posed because some constraint qualifications may not hold at any feasible point. A
small perturbation at the right-hand side of the system may effectively overcome this
problem; see [34] for details.

Both methods will generate a smooth approximation of the solution of a comple-
mentarity problem. Here we will use the smoothing NCP function methods.

Recall that the smoothing of an NCP function ¢(a,d) is a function (a,b, c)
satisfying the following:

(Al) 1/)((1, b, O) = (;5(&, b)v

(A2) ¥(a,b,c) is Lipschitz continuous and is continuously differentiable everywhere
except at ¢ = 0;

(A3) (Strong Jacobian Consistency [1]) for (a,b) € R?,

8a,b¢(a7 b7 0) = a¢(a7 b)

A smoothing function of min(a, b) is

1
b(a,b,0) = =5 (V@=bP+& = (a+1))
and a smoothing function of the Fischer—-Burmeister function is

Y(a,b,c) =a+b—va?+b%+

see, for instance, [18].
Let H : R® — R™ be a locally Lipschitz function. The e-generalized Jacobian is
defined as

0°H (z) = conv U OH (y),

yeB(z,€)

where B(z, €) denotes the unit ball in R™ centered at x with radius e. The notion was
introduced in [37] as a generalization of e-subdifferential [30] for the purpose of the
approximation of the Clarke generalized Jacobian in solving nonsmooth equations.
LEMMA 4.1. Let 9(a,b,c) be a smoothing of an NCP function ¢(a,b) satisfying
properties A1-A3. Then there exists continuous function € : Ry — Ry such that a

(32) Vasth(a,b,c) € 09 ¢(a,b)
for ¢ close to 0, where

lim e(c) = 0.

c—0

Proof. The conclusion follows from the upper semicontinuity of the Clarke gen-
eralized Jacobian and the strong Jacobian consistency of . 1]
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Let 1 be either the smoothing of the min-function or the smoothing of the Fischer—
Burmeister function. Let

¢<y1;Fl(x7yat)vu)

(33) U(z,y,t, 1) = :
V(Yn, Fulz,y,1), 1)
Then
Y(y1, Fi(2,y,t),0) o(y1, F1(z,y,t))
U(z,y,t,0) = : = :
Y(Yn, Fu(z,9,1),0) O(Yn, Fu(z,y,1))

We consider the following program which is a smoothing of (4):

min [ f(z,y,t)p(t)dt
(34) st. T€eX,

\I’(J?, %tvﬂ) =0.

We regard the approach as implicit smoothing in the sense that by replacing ® with
U, we achieve the smoothing of the implicit function y(z,t). Note that Lin, Chen,
and Fukushima [20] considered a similar approach for a class of discrete stochastic
mathematical programs with complementarity constraint. Here we rely more heavily
on the implicit function approach in dealing with (34).

Recall that a vector-valued function g : R™ — R™ is called calm at point T if
there exists a £ > 0 such that

lg(x) = g(@)| < slle — 2|

for all = near Z; see page 351 in [28].

PROPOSITION 4.2. Suppose that T is a set of positive Lebesque measures. Suppose
also that F' is uniformly strongly monotone with respect to y and it is uniformly locally
Lipschitz continuous with respect to x. Suppose that ¢ is either min-function or the
Fischer—Burmeister function. Then

(i) 0y¥(x,y,t,p) is uniformly nonsingular and there exists po > 0 such that the

system of equations

\II(.’L’,y,t,,LL) = O
defines a unique implicit function §(x,t, u) which satisfies
Uz, g(z,t,pm),t,u) =0, forx € X, t €T, |u| € (0, uol;

(ii) g(x,t,p) is continuously differentiable with respect to (z,t,u) on X x T X
[— o, o] \{0}; it is locally Lipschitz continuous with respect to x and t if F

8 S0;
(iii) g(zx,t, p) is uniformly calm in p at 0, that is, there exists C' > 0 such that
(35) 15z, t, 1) = G(z,t,0)[| < Clul, for |u| € [0, pol;

(iv) there exists a real valued function € : Ry — Ry such that
(36) Vag(@,t 1) € 5y w, 1), | € [0, po),

where lim,, o e(p) = 0.
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From part (iv), we see that any accumulation matrix of V,g(z,t, 1) as u — 0 is
contained in the Clarke generalized Jacobian dy(x,t).

Proof of Proposition 4.2. Part (i). The uniform nonsigularity of 0, ¥ (z,y, t, )
follows essentially from [17, Proposition 3.2]. The existence and uniqueness of g(x, t, ;1)
for some 9 > 0 follows from part (i) of Theorem 2.3.

Part (ii). The continuous differentiability of g(z,t, u) follows from Part (i) and
the classical implicit function theorem. We can prove the local Lipschitz continuity
by applying Lemma 2.2.

Since 0, ¥(x,y,t, p) is uniformly nonsingular, 9, .. ¥ (x,y,t, 1) is bounded in a
closed neighborhood of (x,t, 1) € X X T x [—po, o] \{0}. It is evident by part (ii)
Lemma 2.2 that 9g(x,t, u) is bounded, hence §(z,t, 1) is locally Lipschitz continuous.

Part (iii). Since V§(z,t, p) is continuous for p # 0,

1
ﬂ(x,t,u)—ﬂ(x,t,o)z/ Uy (0, t, pv) pdv.
0

Thus
1

(e, t, 1) — 32,1, 0)]] < Jul / 1, )|
0

1
= |1l /0 IV G 1), ) (2, G £ ) 1, )
< Clul,

where C is a constant.
Part (iv). By definition,

U(z, gz, t,pm), t, pu) = 0.
By the classical implicit function theorem,
vﬁfg(l‘v ta ,U) = _vy\p(xv zj(x, tv ,LL), tv ,u)ilvﬂﬂ\l/(x? g(l‘v ta :u)v t7 ,U)

Consider VU (x, g(x,t, 1), t, u). Since g(x,t,-) is uniformly calm at u = 0 as we proved
in part (iii), by Lemma 4.1, we know that there exists €1 (1) > 0 such that

VU (z, Gz, t, 1), t, 1) € 0 U(2,y,t).

By the definition of e-generalized Jacobian and part (ii) of Lemma 2.2, there exists
e:R— Ry, e(p) — 0as p— 0, such that (36) holds. This completes the proof. d

COROLLARY 4.3. Suppose that T is a set of positive Lebesque measure. Suppose
also that F' is uniformly strongly monotone with respect to y and is uniformly Lipschitz
continuous with respect to x. Let

(37) Bz, p) = /T F 3.t 1), Dp(t)dt.

Then there exists po > 0 such that R
(i) E(z,p) is uniformly calm with respect to p at 0, that is, there exists C' > 0
such that

(38) |E(z, 1n) — E(x)|| < Clul, for || € [0, uol;
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(i) there exists a real valued function € : R — Ry such that
(39) VIE(LL',,U,) € 35(H)E(1-)7 ‘:u| € [O,NOL

where lim,,_,q €(p) = 0.
Proof. Part (i). By the assumption on f and part (iii) of Proposition 4.2,

|f(x,gj(:c,t,u),t) - f(x,g(x,t70),t)| < I:(t)||g(m>taﬂ) - g(l‘,t,O)H
< OL(t)|pl-

Hence
B.) ~ B@) < Cll [ L))t

Part (ii) follows from Part (iv) of Proposition 4.2. O

Corollary 4.3 shows that E(z, ) approximates E(z) uniformly. It also implies
that any accumulation vector of V, E(x, i) as ¢ — 0 is an element of 9E(z). Therefore
V. E(z, 1) can be used to calculate an element of the Clarke subdifferential of E(z).

THEOREM 4.4. Let {uy} be a strictly decreasing sequence such that py | 0 as k —
0o. Let {(xk, §(xk, -, pr))} be a sequence of solutions of (34). Under the conditions of
Proposition 4.2,

(i) any accumulation point of {(zk, §(xk, -, ux))} is a solution of (4);

(i) there exists a constant C > 0 such that

|E 2k, i) — E¥| < O,

where E* denotes the minimum of (2);
(iii) if x is an accumulation point of {xr} and M is an accumulation matriz
of {Vaii(xr, t, ux)} and € is an accumulation vector of {V,E(zy,uz)}, then
M € 9,y(z,t) and § € OE(x).
Proof. Parts (i) and (ii) follow from part (i) of Corollary 4.3 and Lemma 3.1.
Part (iii) follows from part (iv) of Proposition 4.2 and part (ii) of Corollary 4.3. o
Theorem 4.4 ensures a smooth approximation of (2) by (34). There exist at least
two ways to solve the latter. One is to consider

min  E(z,p)
(40) st. zedX
and solve it with a smooth nonlinear programming method which depends only on
the function and gradient values of E(x, 1). In this way, we only treat z as a variable.
The other is to discretize the smoothed program (34). In what follows, we consider
the latter.
We consider the discretized smoothed program

K
min EK(x, W) = % Z fx, g, ty, 1), 1) p(t)
1=0

st. xelk,
g(x,t;, 1) solves U(x,y,t;,u) =0,1=1,... K.

(41)

PROPOSITION 4.5. Let EK(.%‘, w) be defined as in (41). Suppose that f(x, §(z,t, 1), t)
is uniformly locally Lipschitz with respect to t, that is, for every t € T, there exists a
positive constant A(t) (depends on t) such that

(42) f (g, " ), ") = f Gt ), )] < A" —¢|
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for all t',¢" near t, where A: T — R is continuous. Moreover, there exists j1g > 0,
such that for p € [0, po],

(43) /O " Ap(t)dt < .

Suppose also that the density function p(t) is differentiable on T and

(44) / | F @it ). )9 (D]t < oo,

where p'(t) denotes the derivative of p(t). Then
(i) there exists a constant C such that

(45) Bxc(a ) — Bl )| < 52 v e
(i)
. N Cu
(46) Brc(le, ) — B )] < S,

where x%. denotes a global minimizer of EK(x,u) and x,, denotes a global
minimizer of E(x, j1).

We omit the proof as it is similar to that of Proposition 3.3.

It might be helpful to make a few comments about conditions (42)—(44). It is
not difficult to verify that (42)—(44) hold under the conditions (a)-(c) in Remark
1 and (28). Indeed, under the condition (c), both ||V, ¥(z,§(z,t,p),t, 1)~ || and
IV ¥ (2, §(x,t, 1), t, 1)|| are uniformly bounded for y sufficiently small. Since

vt?j(l.vta /1’) = —Vy\I/(x, Q(x,t,u),t,u)_lvt\ﬂ(m,ﬂ(x,t,,u)ﬁ,,u%

then V;y(z,t, i) is uniformly bounded which implies that g(x, -, p) is uniformly glob-
ally Lipschitz continuous in set 7. Combining this with conditions (a) and (c) in the
remark, we can prove (42) and (43). Finally, (44) follows the uniform calmness of
y(x,t,-) at p =0 and (28).

Based on Proposition 4.5, we can solve the smoothed program (34) by solving
the discretized program (41). Since the latter is a typical deterministic smooth math-
ematical program with complementarity constraint, it can be solved by a number
of existing algorithms such as those proposed by Jiang and Ralph [16]. Note that
if we choose p to be a proportion of T/K, we can easily obtain an estimation of
|Ex (2%, ) — E*| using Theorem 4.4 and Proposition 4.5.

Note also that in order to reduce the error bound in (46), we need to increase the
number of grid points K, which means increasing the number of lower level variables
and equality constraints in (41). This may increase problem size and reduce the
computational efficiency. In contrast, the first way may avoid the increase of problem
size although it also requires discretization of 7 to compute numerically the function
and gradient values of E(x, ).

5. Optimality conditions. In the preceding sections, we outlined three ways
to solve (2): (a) solving discretized program (25) and increase K if necessary; (b)
solving smoothed program (40); (c) solving smoothed discretized program (41). The
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error bounds obtained in Proposition 3.3, Theorem 4.4, and Proposition 4.5 are based
on global minimizers of the relevant programs although these results would also apply
to local minimizers after localizing the set C in Lemma 3.1. In practice, finding a
global minimizer might be difficult and in some cases we might just find a stationary
point. Consequently, we want to know whether or not an accumulation point of the
sequence of stationary points is a stationary point of program (4). For this purpose, we
need to investigate the optimality conditions of program (4), the discretized program
(25), the smoothed program (40), and smoothed discretized program (41) and their
relationship.

Program (4). The generalized Karush-Kuhn-Tucker (KKT) condition [14] of
the program (4) is

(47) 06/[me(w,y(m,t),t)T+8my(x7t) V(@ y(@,6),t)" |p(t)dt + N (),
T
where Ny (z) denotes the normal cone of X at x, that is,

Nx(z)={d:d"(z' —z) <0V2' € X}.

A point x* satisfying the KKT condition is known as a Clarke stationary point. Using
the estimation of d,y(z,t) in Part (iii) of Theorem 2.3, we obtain

(18) 0e /T [V, £ 9, £),8)7 + S, 1)V (e £), )T |p(E)dt + N ()
where
Se(z,t) = {—R7'U : (U,R,V) € 08 (x,y(x,t),t),U € R"™™ Rec R™™" V ¢ R"*}.

Discretized program. Consider the discretized program (30) which is equiva-
lent to

min EK(£C) = f(xaylvtl>p(tl)

=) =
NE

(49)

~

1
st. zeX,

Oz, y,t) =0, 1=1,... K.
Note that (49) can be viewed as a discretized program of (4). The generalized KKT
condition of (49) is

K

K
u
0€ & ; Vo f (@, t0) " p(t) + ;%@(Lyl,tl)T)V + N (),
u - =
< Evyzf(x,yutl)Tp(tz) + 0y, @,y 1) Nyl =1,... K,

which can be equivalently written as

K
Z (Vaf(@,y, )" — 0u®(x, yi, 1) 0y, ®(@, 31, t1) "V, f 2,y t) 7] p(tt) + N ().

=1

N\@
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Solving y;,1 =1,... , K, from ®(z, y;, t;) = 0 and writing 0, ®(z, y;, t;) and V, f(x, yi, t;)
as 0y ®(z,y(z,t;),t;) and V, f(x,y(x, 1), ), we can rewrite the KKT condition as

K

0e % Z[vzf(xvy(x’tl)vtl),r
=1

_awq)(x7 y(.’l?, tl)7 tl)Tay(I)(x> y(am tl)a tl)_Tvyf($7 y(m, tl)7 tl)T]p(tl) + NX(J:)
(50)

Naturally, we would like to link (50) to the following condition:

0c / Ve (gl )07
(B1) 0, ®(x, (. £), )T 0,0 (x, y(x, 1), 1) TV, a, y(x, 1), ) p(t)dt + N (x)

and view (51) as a limit of (50). It is not difficult to prove that when 7 (z) is a finite
set and

/0 A, B,y 0,07V By, ). )TV, F e, y(a, 0), ) o(t) /de| dt < o,

any accumulation point of sequence {z g }, where x i satisfies (50), is a KKT point sat-
isfying (51). It seems, however, difficult to extend the conclusion to the general case.
Observe also that the KKT condition (48) is sharper than that of (51), which means
even if an accumulation point of sequence {zx} satisfies (51), it is not necessarily a
KKT point of (48).

Smoothed program. Consider the smoothed program (40). Let z,, be a KKT
point of the program. We are interested in the convergence of sequence {x, } as p — 0.

PROPOSITION 5.1. Suppose that x,, is a KKT point of (34) and x* is an accu-
mulation point of sequence {x,} as p — 0. Then z* is a KKT point of (4).

Proof. By definition

0€ VaE (2, 1)" + Nx(z,).
By upper semicontinuity of the normal cone,

lim N (z,) C Na(z"),
n—

where lim denotes the outer limit.

Note that if we treat p as a variable, then £ (+,+) is continuously differentiable at
any point (x, ), where > 0 and is locally Lipschitz continuous near point (z,0).
For a set valued mapping A : R x R — QRWH)XW, we use II,A(x,€) to denote the
set of all m x m matrices U such that, for some vector V€ R™, the (m + 1) x m
matrix [UT, V]T belongs to A(z,€). Using this notation, we have

VoE(w, 1) = MoV E (2, p).
By the definition of the Clarke generalized Jacobian

lim VE(x,,u) C 0E(z*,0).
,J,—¥



692 HUIFU XU

Hence

Tmo V. E(z,,p1) = Tmo I, VE(z,, 1) C I,0E(z*,0) = dE(z*).
p— [

The last equality is due to the Jacobian consistency. This shows
0 € OE(x*)T + Nx(z*).

The proof is complete. 0
Discretized smoothed program. Finally, we consider the discretized smoothed
program (41) with X C R™

u

K
min  FEg(z,pn) EZ x,y, t)p(t)
(52) 1=0

st. zedX,
\I/(x’yhtlv,u’) :07 l:17 ,K.

The KKT condition of this program is

K K

U

(53) 0 € Ve E Vo f (g, t) p(ty) + E Vo @@,y t, 1) N+ N (2),
=1 =1

u
0 = Kvy;f(%yl»tl)TP(tl) + Vqu)(%yl,tl?N)T)\hl = 17 cee 7K7

equivalently,

K

u
0e ? Z [vzf(xvyhtl)’r - qu’(%yl,tl, N)Tvyzq)(xvyl7tlv,U/)_Tvylf(waylvtlvﬂ)T]
=1

p(tl) + Ny (37)
Since y; can be solved from ®(z,y;,t;, 1) = 0, we can express y; as y(z, ¢, ). Thus
we have
K

0e % Z[me(x,g(l'7tl,ﬂ)ytl)T

=1
— Vo ®(, G, t1, 1)ty 1) TV @ (2, G, b, )ty 1)~V f (2, (st 1), 1, ) o)
+Nx(x).

Driving K to oo, we obtain
e [1Vef@itwtm.0"
0

— Vo ® (@, §(w,t, 1), t, )"V @, §la,t p), b, pw) =TV f (2, G, t )t ) T p(t)dt
+ Ny (z).

Driving ¢ to 0 and considering the strong Jacobian consistency of 1, we obtain
0€ / [Vaf (@, y(e,t), )" + Sa(z,y(z, 1), )TV, fz,y(z,1),0)T] p(t)dt + N (2).
0

From the discussion above, we can conclude that, from a KKT perspective, nu-
merical methods based on the smoothed program (40) and the discretized smoothed
program (41) may be more preferable.
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Appendix.

Proof of Theorem 2.3. Part (i). Since F' is uniformly strongly monotone in y,
it is well known that the complementarity problem in (2) has a unique solution for all
t € 7 and x € X; see, for instance, [8, Corollary 3.2]. Thus, (3) has a unique solution
for each x € X and ¢ € [0,T]. Here we use Lemma 2.2. Under the assumption on
F, the Clarke generalized Jacobian 0, ®(z,y,t) is uniformly nonsingular. By Lemma
2.2, for (z,y,u) € X x R x T, there exists a Lipschitz continuous function y(x,t)
such that y(Z,t) = g, and (8) holds for (x,t) in a neighborhood of (z,#). The uniform
monotonicity of F with respect to y allows the implicit function to be extended to
the whole area X' x 7.

Part (ii). Since ® is piecewise smooth, by [29, Lemma 4.11], the implicit function
y(z,t) which is defined in part (ii) is piecewise smooth with respect to either x for
fixed t or t for fixed = or both.

Part (iii). By part (ii) of Lemma 2.2,

Opy(x,t) C {—=R7U : (U,R,V) € 8®(z,y(x,t),t),U € R™™ R e R"™" V € R"*!},

This shows the first differential inclusion. The second inclusion is well known; see,
for example, [3]. To show the uniform boundedness of d,y(x,t), we use the first
differential inclusion. Thus it suffices to show the uniform boundedness of R~! and
U. Since F is uniformly strongly monotone, by Proposition 2.1, R~! is uniformly
bounded, and since F' is uniformly Lipschitz continuous in x, U is uniformly bounded.
The uniform global Lipschitz continuity of y(x,t) in x follows subsequently.

Part (iv). We can show the differential inclusions as in Part (iii) by using Part (ii)
of Lemma 2.2 with respect to y and ¢. To show the uniform boundedness of d;y(z, t),
it suffices to show the uniform boundedness of R~ and V. Since F is uniformly
strongly monotone, by Proposition 2.1, R~! is uniformly bounded, and since F is
uniformly Lipschitz continuous in ¢, V' is uniformly bounded. The uniform global
Lipschitz continuity of y(z,t) in ¢ follows subsequently. d

Proof of Proposition 2.7. By Lemma 2.5, 7 (z) is Lebesgue measurable, and
by Assumption 2.6, the Lebesgue measure of 7 () is zero.

Let 2’ € X be any point close to z, let

¢ = / Vo f (e y(e ),8) + Y, f (2 y(, £), ) Vo, )] p(t) .
T\T (z)

Let
R(a',z) = (E(z') — B(x) — €"(a/ — ) /|2’ — =].
Then
R(z',x) = Ri(2',2) + Ro(2', ) + Ra(a, ),
where
Ry(a',x)
— / [f(x’,y(:z:’,t),t) B f(l’,y(ﬂj/,t),t) B fo(x,y(x,t),t)(x’ B QZ):| p(t)dt
T\T () 2" — ]
and
Ry (2!, x)

_ / [f(a:,y(a:’, t)vt) B f(x,y(x,t),t) B vyf(x’ y('ra t)vt)vxy(xvt)(x/ — .I)
T\T (z)

- [l — =]

] p(t)dt
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and

R3($/,l‘) — /T( ) |:f('rlvy(x/7t)7t) — f('r7y(x7t)’t) p(t)dt.

" — =]

Since f is continuously differentiable in z, it is obvious that Ry (z',2) — 0 as 2’ — z.
We now estimate Rs.

D R P
. / Lt)(|J2’ — x|||+/||€(:c|'|, t) — y(x,t)\l)p(t)dt
T(2) x x

<(1+0) / L(t)p(t)dt

T (z)
=0.

The last equality is due to the fact that the Lebseque measure of 7 () is zero.
Finally, we estimate Ro(2’,2). By (12) and twice continuous differentiability of
f, we have

flay(@'1),t) — f@,y(@,1),t) = Vy f (2, y(2, 1), ) Vay (@, 1) (2" — 2) = o([|2" — =])
which implies
Ry(z',xz) — 0, as 2’ — =
This shows
R(z',z) — 0, as 2’ — z,
and hence (13).
Now we show the continuity of VE(-),

V.E@) ~V.B@) = [ oy [T 000,00+ w0 OV Do)

- / (Vo f @, y(@, 1), 1) + Ty i,y £), 0V ay ()] p()dt
T\T (z)

/ (Vaf (@ y(a ),8) + Ty f (o y(a, 1), DV (e 1)
T\T (z")UT (x)

Vo f(z,y(z,1),t) + Vy [z, y(2,), 1) Vay (e, )] p(t)dt

+f V. (' (e 1), 1)
T (2)\T (z')NT (z)

+V, f @y’ 1), ) Vay(a', )] p(t)dt

-/ V. (42, 8),)
T (z")\T (z’)NT (x)
+Vyf (@, y(a,t),t)Vay(a, t)]p(t)dt

We show that the three terms at the right-hand side of the last equality tends to zero as
a2’ — x. Since T (¢') — T (x) as ' — x, the Lebesgue measure of 7\7 (¢')UT (x) tends
to that of 7. Moreover, V[ is uniformly continuous in z,y by assumption, y(z’,t)
uniformly approximates y(x,t) by part (iv) of Theorem 2.3, and Vy(z',t) uniformly
approximates Vy(z,t) by (12). This shows the first term tends to zero. The proofs
for the second and third terms are similar. This completes the proof. 1]



STOCHASTIC MPECs 695

Acknowledgments. I would like to thank Daniel Ralph for helpful comments

and suggestions particularly regarding the optimality conditions. I would also like to
thank Houyuan Jiang, Gui-Hua Lin, and two anonymous referees for careful reading
of the paper and helpful comments which lead to a significant improvement of the
paper.

22]

23]

X.

wn

> O™

M.

M.

REFERENCES

CHEN, L. QI, AND D. SUN, Global and superlinear convergence of the smoothing New-
ton’s method and its application to general box constrained variational inequalities, Math.
Comp., 67 (1998), pp. 519-540.

. CHRISTIANSEN, M. PATRIKSSON, AND L. WYNTER, Stochastic Bilevel Programming in Struc-

tral Optimization, preprint, PRISM, Université de Versailles, Versailles, France, 1999.

. H. CLARKE, Optimization and Nonsmooth Analysis, Wiley, New York, 1983.
. DE WOLF AND Y. SMEERS, A Stochastic version of a Stackelberg—Nash—Cournot equilibrium

model, Management Sciences, 43 (1997), pp. 190-197.

. EVGRAFOV AND M. PATRIKSSON, On the existence of solutions to stochastic mathematical

programs with equilibrium constraints, J. Optim. Theory Appl., 121 (2004), pp. 65-76.

. FaccHINEI, H. JIANG, AND L. QI1, A smoothing method for mathematical programs with

equilibrium constraints, Math. Program., 85 (1999), pp. 81-106.

. FACCHINEI AND J. S. PANG, Finite-Dimensional Variational Inequalities and Complemen-

tarity Problems, Springer-Verlag, New York, 2003.

. FERRIS AND J. S. PANG, Engineering and economic applications of complementarity prob-

lems, SIAM Rev., 39 (1997), pp. 669-713.

. FISCHER, A special Newton-type optimization method, Optimization, 24 (1992), pp. 269-284.
.. FLETCHER AND S. LEYFFER, Numerical experience with solving MPECs as NLPs, University

of Dundee Report NA210, Dundee, UK, 2002.

. FLETCHER, S. LEYFFER, D. RALPH, AND S. SCHOLTES, Local Convergence of SQP Methods

for Mathematical Programs with Equilibrium Constraints, University of Dundee Report
NA209, Dundee, UK, 2002.

FUKUSHIMA AND J.-S. PANG, Convergence of a smoothing continuation method for math-
ematical programs with complementarity constraints, Ill-posed Variational Problems and
Regularization Techniques (Trier 1998), Lecture Notes in Econom. Math. Systems, 477,
Springer-Verlag, Berlin, 1999, pp. 99-110.

FUKUSHIMA AND P. TSENG, An implementable active-set algorithm for computing a B-
stationary point of a mathematical program with linear complementarity constraints, STAM
J. Optim., 12 (2002), pp. 724-739.

J.-B. HIRIART-URRUTY, Refinements of necessary optimality conditions in nondifferentiable

X.

H.

H.

C.

S.

G.

G.

G.

Z.

programmang, I, Appl. Math. Optim., 5 (1979), pp. 63-82.

Hu AND D. RALPH, A note on sensitivity of value functions of mathematical programs with
complementarity constraints, Math. Program., 93 (2002), pp. 265-279.

JIANG AND D. RALPH, Smooth SQP methods for mathematical programs with nonlinear
complementarity constraints, STAM J. Optim., 10 (2000), pp. 779-808.

JIANG AND L. QI, A new nonsmooth equations approach to monlinear complementarity
problems, SIAM J. Control Optim., 35 (1997), pp. 178-193.

Kanzow, Some noninterior continuation methods for linear complementarity problems,
SIAM J. Matrix Anal. Appl., 17 (1996), pp. 851-868.

LEYFFER, Mathematical Programs with Complementarity Constraints, SIAG/OPT Views-
and-News, 14 (2003), pp. 15-18.

-H. LiN, X. CHEN, AND M. FUKUSHIMA, Smoothing Implicit Programming Approaches

for Stochastic Mathematical Programs with Linear Complementarity Constraints,
http://www.amp.i.kyoto-u.ac.jp/tecrep/index-e.html, 2003.

-H. LiN, X. CHEN, AND M. FUkUSHIMA, Combined smoothing implicit programming and

penalty method for stochastic method for stochastic mathematical programs with equilib-
rium constraints, Kyoto University, Japan, 2004, preprint.

-H LiNn AND M. FUKUSHIMA, A class of stochastic mathematical programs with complemen-

tarity constraints: reformulations and algorithms, J. Ind. Manag. Optim., 1 (2005), pp. 99—
122.

Q. Luo, J.-S. PANG, AND D. RALPH, Mathematical Programs with Equilibrium Constraints,
Cambridge University Press, Cambridge, UK, 1996.



696

24]

(25]

F.

J.

M.
M.

R.
. RALPH AND H. Xu, Implicit smoothing and its application to optimization with piecewise

T ZU

HUIFU XU

H. MurpHY, H. D. SHERALI, AND A. L. SOYSTER, A mathematical programming approach
for determining oligopolistic market equilibruium, Math. Program., 24 (1982), pp. 92-106.
OUTRATA, M. KOGVARA, AND J. ZOWE, Nonsmooth Approach to Optimization Problems
with Equilibrium Constraints, Theory, Applications, and Numerical Constraints, Kluwer
Academic Publishers, Dordrecht, The Netherlands, 1998.

PATRIKSSON AND L. WYNTER, Stochastic mathematical programs with equilibrium con-
straints, Oper. Res. Letters, 25 (1999), pp. 159-167.

PATRIKSSON AND L. WYNTER, Stochastic mathematical programs with equilibrium con-
straints, Oper. Res. Lett., 25(1999), pp. 159-167.

T. ROCKAFELLAR AND R. J.-B. WETS, Variational Analysis, Springer-Verlag, Berlin, 1998.

smooth equality constraints, J. Optim. Theory Appl., 124 (2005), pp. 673-699.

. PoLak, D. Q. MAYNE, AND Y. WARDI, On the extension of constrained optimization al-

gorithms from differentiable to nondifferentiable problems, SIAM J. Control Optim., 21
(1983), pp. 179-203.

. SHAPIRO, Stochastic mathematical programs with equilibrium constraints, , School of In-

dustrial and Systems Engineering, Georgia Institute of Technology, Atlanta, GA, 2004,
preprint. To appear in J. Optim. Theory Appl.

. D. SHERALI, A. L. SOYSTER, AND F. H. MURPHY, Stackelberg—Nash—Cournot equilibria:

Characterizations and computations, Oper. Res., 31 (1983), pp. 253-276.
D. SHERALI, A multiple leader Stackelberg model and analysis, Oper. Res., 32 (1984),
pp. 390-404.

. SCHOLTES, Convergence properties of a regularization scheme for mathematical programs

with complementarity constraints, STAM J. Optim., 11 (2001), pp. 918-936.

. SUN AND L. Q1, On NCP functions, Comput. Optim. Appl., 13 (1999), pp. 201-220.
. Xu, An MPCC approach for stochastic Stackelberg—Nash—Cournot equilibrium, Optimiza-

tion, 54 (2005), pp. 27-57.

. Xu AND X. W. CHANG, Approzimate Newton methods for nonsmooth equations, J. Optim.

Theory Appl., 93 (1997), pp. 373-394.



