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1. Introduction. In this paper, we consider the following stochastic minimization program

min E[f(x, y(x, £(@)), £(@))]

s.t. xe.

M

Here f: R™ x R" x R* — R is a continuously differentiable real-valued function, &: Q — E C R¥ is a random
vector defined on probability space (), F, P), E denotes the mathematical expectation, % is the feasible set of
decision variate x, which is a nonempty subset of R™, and y(x, {(w)) is a solution of the following system of
equations

H(x,y,é(w))=0, forxe¥, weQ, (2)

where H: R™ x R" x R¥ — R" is a locally Lipschitz continuous vector-valued function. We restrict our discus-
sion to the case when H is piecewise smooth because it represents a large class of locally Lipschitz continuous
functions that cover most practical problems (Scholtes [29]). Throughout this paper, we assume that the proba-
bility measure P of our considered space (), F, P) is nonatomic and E[f(x, y(x, §(w)), é(w)] is well defined
for every x € %. To ease the notation, we will write &(w) as &, and this should be distinguished from & being
a deterministic vector of = in a context.

Problem (1) is essentially a here and now stochastic optimization model where a decision has to be made
before the realization of uncertainty, and an optimal decision is chosen to minimize the objective on stochastic
average. The key characteristic of model (1) is that y(x, §) is an implicit function defined by a system of
nonsmooth equations (2). If we can solve (2) and obtain an explicit expression for y(x, &), then (1) reduces to
an ordinary stochastic minimization problem that has been extensively investigated (Birge and Louveaux [5],
Ruszczyniski and Shapiro [27]).

In this paper, we assume that y(x, £) may not necessarily be analytically obtainable by solving (2). We also
assume that (2) has a unique solution for every (x, £) € ¥ x E. In the case when the equation has multiple solu-
tions, we may employ a regularization scheme to approximate (2) with a regularized equation that has a unique
solution. See our follow-up work (Meng and Xu [17]) for details. An interesting application of this abstract
formulation is that (2) may be reformulated from a variational inequality or a complementarity problem that
describes a system equilibrium parameterized by x and &, and consequently y(x, §) represents the equilibrium
solution of the system. This type of problem is known as stochastic mathematical programs with equilibrium
constraints (SMPEC). See Patriksson and Wynter [18], Lin et al. [15], Xu [36, 37], Shapiro [31], and Birbil
et al. [4] for recent discussions.

This paper is concerned with numerical methods for solving (1). Throughout the paper, we assume that £ has
either a continuous or a discrete distribution. We also assume that the explicit expression of the distribution of
& is not obtainable, but it can be estimated from past data. In other words, we assume that a sample of & can
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be obtained from time to time. We tackle (1) with the well-known Monte Carlo simulation-based method. The
basic idea of such a method is to generate an independent identically distributed (i.i.d.) sample &', ..., &V of &
and solve

. | X o
min L3 ()
: 3
st. H(x,y,&)=0, i=1,...,N.

We refer to (1) as the true problem and (3) as the sample average approximation (SAA) problem. SAA methods
have been extensively investigated in stochastic optimization. This type of methods are also called sample path
(SP) methods. There has been extensive literature on both SAA and SP. See the recent work of Artstein and
Wets [2], King and Wets [14], Plambeck et al. [19], Robinson [22], Shapiro [30], and Shapiro and Homem-de-
Mello [32].

The focus of this paper is on the convergence analysis of Karush-Kuhn-Tucker (KKT) points of the SAA
problem (3). We use the Clarke generalized implicit function theorem (Clarke [8]) to eliminate variable y',
i=1,...,N, in (3) and then investigate the convergence of the reduced SAA problem. Because the reduced
problem is nonsmooth, we consider a kind of generalized KKT (GKKT) condition that is defined by the sample
average of some random set-valued mappings, and we then investigate the convergence of the corresponding
stationary points. We achieve this by establishing a uniform strong law of large numbers for random compact
set-valued mappings.

We summarize the main results that are established in this paper. First, we obtain a uniform strong law of
large numbers for a random compact set-valued mapping. Then we apply the result to convergence analysis of a
sequence of GKKT points of SAA problems. We show that, under some moderate conditions, an accumulation
point of a sequence of weak GKKT points of the reduced SAA problem is a weak GKKT point of (1) with
probability 1 (w.p.1). We also show that with probability approaching one exponentially fast, a global minimizer
of the reduced SAA problem becomes an e-global minimizer of the true problem. We establish similar results
when the SAA problem is smoothed. Finally, we apply the results to a class of stochastic mathematical programs
with strong monotone complementarity constraints.

The rest of this paper is organized as follows. In §2, we investigate the existence and uniqueness of implicit
solution y(x, &) of system (2) and its smoothing. We then define the weak GKKT conditions for the true problem.
In §3, we establish a uniform strong law of large numbers for a random compact set-valued mapping and use
it to investigate the convergence of GKKT points of reduced SAA problems and exponential convergence of
global minimizers of SAA problems. In §4, we present a similar analysis for the smoothed SAA problem. In §5,
we apply the convergence results to stochastic mathematical programs with strong monotone complementarity
constraints. Finally, in §6, we present some preliminary numerical test results on an SMPEC problem.

2. Preliminaries. In this section, we present some preliminary discussions about the measurability of a ran-
dom set-valued mapping, implicit function theorem based on Clarke generalized Jacobians and GKKT conditions.

Throughout this paper, we use the following notation. We use ||-|| to denote the Euclidean norm of a vector, a
matrix, and a compact set of matrices. Specifically, if ./ is a compact set of matrices, then ||| := max,,., [|M].
We use dist(x, &) := inf . |x — x’|| to denote the distance from point x to set . Here, & may be a subset
of R¥ or a subset of R***. Given two compact sets € and &, we use D(€, @) := sup, .. dist(x, &) to denote
the distance from set € to set &, and use H(€, &) to denote the Hausdorff distance between the two sets, that
is, H(€, %) := max(D(€, &), (%, €)). We use S(x,8) to denote the closed ball in R" with radius 6 and
center x; that is, S(x, 8) := {x' € R™: ||’ — x|| < 8}. For a vector-valued function g: R" — R/, we use Vg(x) to
denote the classical Jacobian of g(x) if g(x) is Frechét differentiable at x. In the case when [ = 1, that is, g(x)
is a real-valued function, Vg(x) denotes the gradient of g(x), which is a row vector.

For a set-valued mapping s0: R" x R" — 28" 'we use r 54(y, z) to denote the set of all 7 x n matrices M
such that, for some n x m matrix N, the n x (n+ m) matrix [M N] belongs to s¢(y, z). We use lim to denote
the outer limit of a sequence of vectors and set-valued mappings.

2.1. Clarke generalized Jacobians and random sets. Let P: R/ — R/ be a locally Lipschitz continuous
vector-valued function. Recall that the Clarke generalized Jacobian (Clarke [8]) of P at x € R/ is defined as

dP(x):= conv{ lirll)’l VP(y)},
yebp

y—>Xx
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where D, denotes the set of points at which P is Frechét differentiable, VP(y) denotes the usual Jacobian of P,
which is an / x j matrix, “conv” denotes the convex hull of a set. It is well known that the Clarke generalized
Jacobian dP(x) is a convex compact set (Clarke [8]). In the case that j =1, dP(x) consists of square matrices.
We say dP(x) is nonsingular if every matrix in set dP(x) is nonsingular, and in this case we use dP(x)~! to
denote the set of inverse matrices of dP(x).

In later discussions, we will be concerned with the Clarke generalized Jacobians of the random function
H(x,y,£),such as d, H(x,y, £) and d,H(x, y, £). For fixed x and y, these Jacobians are random sets. We need
to deal with the expectation of them, which is related to the measurability of random sets. In what follows, we
make some preparations for this.

Let V C R" be a compact set of R" and let &: ) — E be a random vector (note that we use the same &
and Z as in (1), although we do not have to in this general discussion). A random (matrix) set-valued mapping
(-, €): V— 27" is said to be compact valued if for every v e V and ¢ € E (a realization of &(w)), s4(v, &)
is a compact set. Let 9 denote the space of nonempty, compact subsets of R"*" equipped with the Hausdorff
distance. Then, s¢(v, £(-)) can also be viewed as a single-valued mapping from Q to %. sf(v, &£(+)) is said to be
measurable if and only if for every B € %, si(v, £(-))"'B is measurable.

We now define the expectation of {(x, é(w)). A selection of the random set /(x, é(w)) is a random matrix
A(x, é(w)) € A(x, é(w)), which means A(x, é(w)) is measurable. Note that such selections exist; see Artstein
and Vitale [1] and references therein. The expectation of (x, £(w)), denoted by E[s4(x, é(w))], is defined as
the collection of E[A(x, é(w))] where A(x, é(w)) is a selection. We regard E[s{(x, £é(w))] as well defined if
E[s4(x, é(w))] € %B. A necessary and sufficient condition of the well definedness of the expectation is

E[l|s4(x, £(@))[[]:=E[H(0, s4(x, £(@)))] < oo,

see Artstein and Vitale [1]. For simplicity of discussion, we make a blanket assumption throughout the rest of
this paper that

E(llm 0H (x, y, )1 < oo, E[ll7,0H (x,y, )] < oo, 4)

which implies that every selection from 9, H(x, y, §) and d,H (x, y, §) has a finite expected value. Consequently,
both E[d, H(x,y, §)] and E[d,H (x, y, §)] are well defined. It is expected that (4) is satisfied by many stochastic
piecewise smooth Lipschitz functions in practice. Note that except for some pathological examples, most func-
tions in practice are piecewise smooth. See Scholtes [29] for a comprehensive discussion of piecewise smooth
functions.

For fixed & € B, (-, &) is said to be upper semicontinuous on V if for every v € V, and a neighborhood
B(st(v, §)) of (v, €), there exists a neighborhood B(v) of v such that sf(w, &) C B(s4(v, €)) for all w e
B(v). (-, €) is said to be Hausdorff continuous if lim,,_,, d(w, &) = (v, £). Note that the Clarke generalized
Jacobian of a locally Lipschitz-continuous function that involves random variables is a random compact set-
valued mapping that is upper semicontinuous with respect to its deterministic variables.

2.2. An implicit function theorem. In this subsection, we investigate the parametric nonsmooth system
of Equations (2). The existence and uniqueness of y(x, &) for (2) is essential to model (1). For simplicity of
discussion, we assume throughout that for every (x, £) € % x E, system (2) has a solution. The following results
deal with the existence and uniqueness of implicit function y(x, §), its Lipschitz continuity, and the estimate of
its Clarke generalized Jacobian.

LEMMA 2.1. Suppose that (a) H: R" x R" x R¥ — R" is piecewise smooth; (b) for every (x,&) € ¥ x B,
there exists y such that H(x, y, §) = 0; (c) m,0H (x, y, §) is uniformly nonsingular on % x R" x E; that is, there
exists a constant 8 > 0 such that ||[7,dH (x,y, £)]7'|| < 8 for all (x,y, £) € ¥ x R" x E. Then,

(i) there exists a unique globally Lipschitz continuous and piecewise smooth function y: ¥ x 2 — R" such
that y(x, £) solves (2);
(ii) for (x,§) e ¥ x E,

3 y(x, &) Cconv{—R'U: (U,R, V) e dH(x,y(x, §), &), U eR™™, ReR™", V e R™); 5)
(iii) y(x, €(-)): Q — R" is measurable.

The results follow from the Clarke generalized implicit function theorem (Clarke [8]) and the calculus of
implicit generalized Jacobians. See a proof in the appendix.

Recall that a function g(x,): % x Q) — R" is called a Carathéodory function if g(x,-) is measurable, and
for every w € Q, g(-, w) is continuous. Obviously, y(x, é(w)) is a Carathéodory function, and by Aubin and
Frankowska [3, Lemma 8.2.3], f(x, y(x, é(w)), é(w)) is also a Carathéodory function.
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2.3. GKKT conditions for the true problem. Because y(x, £) is nonsmooth, we consider GKKT conditions
for (1) as follows:

0 € E[0,(f(x, y(x, £), £))] + Ny (x)
=E[V,f(x, y(x,8), &) + V, £ (x, ¥(x, £), §)d,y(x, £)] + Nop (x) (6)

where d,y(x, &) denotes the Clarke generalized Jacobian of y(x, &) with respect to x, and V., (x) denotes the
normal cone of ¥ at x € %; that is,

Nop(x) == [T, (x)]” = {s € R™ | (s, d) <0 for all d € T,,(x)},

where T, (x) :=limsup, (% — x)/t.

We say that x € % is a GKKT point of (1) if it satisfies (6). Note that we implicitly assume that
E[V.f(x, y(x, &), &)+ V, f(x, y(x, &), £)d,y(x, )] is well defined, a sufficient condition for which is that the
gradients and subgradients under integration are bounded by an integrable function. Note also that using the
expected value of subdifferentials to characterize the optimality conditions for stochastic programs is well doc-
umented in the literature and can be traced back to the earlier work by Rockafellar and Wets [24], where
“basic Kuhn-Tucker conditions” in terms of Rockafellar’s convex subdifferential (Rockafellar [23]) are derived
for a class of stochastic programs with convex objective and convex constraints. See also Wets [35]. This type
of optimality condition is weaker than optimality condition 0 € JE[f (x, y(x, §))] + N (x), in that in general
E[0,f(x,y(x, &), &)] is larger than JE[f(x, y(x, &), €)]. However, the latter is disadvantaged by requiring the
derivative information of the expected value of f(x, y(x, §), §€), which may be difficult to obtain. Moreover,
under some regularity conditions (Clarke [8, Definition 2.3.4]) such as convexity of f(x, y(x,¢), &) in x or
continuous differentiability of the function in x, these two sets of subdifferentials may coincide. See similar
discussions in Wets [35, Proposition 2.10] and Homen-De-Mello [11, Proposition 5.1].

To ease the notation, let A(x, £) := =V, f(x, y(x, &), &) conv([7,0H (x, y(x, £), é)]"). Using the estimate of
d.y(x, &) in part (ii) of Lemma 2.1, we may consider a weak GKKT condition for (1) as follows:

0 €E[V.f(x,y(x.£). &) + Alx, )7 IH (x, y(x. §), E) ]+ Ny (x). ()
A point x € % is called a weak GKKT point of (1) if x satisfies (7). Because

9,y(x, §) C conv([m,dH (x, y(x, §), )7 mIH (x, y(x, §), §),

we have

Vi (x, y(x, §), £)9.y(x, §) C Alx, §)m dH (x, y(x, £), ), ®)

which implies that a GKKT point must be a weak GKKT point, but not vice versa. This means that the set of
weak GKKT points gives a bound or an estimate of the set of GKKT points. To see how precise the estimate is,
we need to look at the inclusion in (8). Observe that if H is strictly differentiable, then dH reduces to a singleton
(the classical Jacobian), and consequently the two sets are equal and coincide with the usual KKT points. This
is a very important case because in many practical instances, function H is piecewise smooth, which means
H is continuously differentiable everywhere except for some kinks. In SMPECs, when strict complementarity
holds, H becomes continuously differentiable. In general, the relationship between the two sets depends on the
index consistency (Ralph and Xu [21]) of the piecewise smooth function H in y at y(x, §) and the structure
of 7w .0H. See a discussion on a similar relation for the deterministic case in Ralph and Xu [21, §5]. Here we
list two main reasons for us to consider the weak GKKT condition (7): (a) This condition only utilizes the
derivative information of H(x,y, ¢) instead of that of the implicit function y(x, &), which is often difficult to
obtain; (b) under some bounded derivative conditions, GKKT points (KKT points) of SAA problems converge
to the set of weak GKKT points as sample size tends to infinity; see Theorem 3.1 and Theorem 4.1. Note that
in this paper the weak GKKT condition is used as a convenient and unified approach to effectively address the
optimality conditions of our problem at both smooth and nonsmoothness points.

2.4. Implicit smoothing and KKT conditions. The nonsmoothness of H is a hurdle of a direct application
of existing smooth optimization methods. One of the popular ways to deal with the nonsmoothness is to consider
a smoothing of H so that we obtain a smoothed system to approximate (2).

Let € € R be a parameter. We say I-Al(x, v, €, €): R" x R" x R* x R — R" is a smoothing of H if it satisfies
the following: (a) for every (x,y, &) € R™ x R" x R, H(x,y, £,0) = H(x, y, £); (b) for every x € R", H is
locally Lipschitz at (x, y, £, 0); and (c) H is continuously differentiable on R” x R" x R x R\{0}.
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This type of general smoothing was considered by Ralph and Xu [21], and it covers many practically useful
smoothing functions in complementarity problems and deterministic mathematical programs with equilibrium
constraints (MPECs). Our purpose here is to replace (2) with a smoothed system, and then we consider a smooth
approximation of (1) by

min E[f(x, J(x. £, €). £)]

)
s.t. xed,
where y(x, &, €) is a solution of the following smooth system of equations
H(x,y,é,€)=0, Vxe¥%, écE, ecR. (10)

To ensure that the smoothed program (9) is well defined, the smoothed system (10) must have a unique solution.
This requires some extra assumptions on the smoothing. The following lemma addresses this issue.

LEMMA 2.2. Let H be a smoothing of H. Suppose that the conditions in Lemma 2.1 are satisfied. Then,
for any (x,§) € % x E and any |e€| € [0, €)) where €, is a small positive scalar, there exists y € R" such that
H(x,y,&,€)=0.

The result is expected. We attach a standard proof in the appendix. Using Lemma 2.2, we can derive the
following result.

LEMMA 2.3. Let the assumptions of Lemma 2.1 hold. Suppose that there exists €, > 0 such that for |€| €
[0, €], W),ﬁﬁ(x, v, &, €) is uniformly nonsingular for any (x,y, £) € ¥ x R" x E. Then, Equation (10) defines
a unique implicit function y: X x R" x B x [—¢€,, €] = R™. Moreover, y is locally Lipschitz continuous on
X x B x [—¢€,, €] and continuously differentiable on ¥ x 5 x [—¢,, €,]\{0}.

PrOOF. Observe first that by Lemma 2.2, for any (x, £) € % x E and small |e| > 0, there exists y such that
H(x,y, &, €)=0. Because by assumption W),aﬁ(x, v, €, €) is uniformly nonsingular on % x R" x E x [—¢,, €],
then with a similar argument as that in the proof of Lemma 2.1 and by virtue of the continuous differentiability
of H on R™ x R" x R¥ x R\{0}, we can prove that the claimed results hold. We omit the details. [

From Lemma 2.3 and Aubin and Frankowska [3, Theorem 8.2.9], we know that j(x, {(w),€) is a
Carathéodory function, and so is f(x, y(x, £(w), €), €). By Lemma 2.3, the first-order necessary condition for (9)
can be written as follows

0€E[V.f(x, J(x. £, €),8) + V[ (x, I(x, &, €), E) V.3 (x, £, €)] + Ny (x),  for € £0, (11)

where V. y(x, &, €) = —Vyﬁ(x, y(x, € €), €&, e)"VXI-AI(x, y(x, €, €), &, €). We would like to investigate the lim-
iting behaviour of the KKT points based on (11) as € — 0 and compare them with the GKKT points based
on (6) in subsequent analysis.

3. Sample average approximations. In this section, we discuss SAA problem (3). In particular, we inves-
tigate the convergence of GKKT points of (3) as the sample size N tends to infinity.

3.1. GKKT conditions. Observe that (3) is a deterministic optimization problem with N x n nonsmooth
equality constraints. In convergence analysis, we will consider, at least theoretically, the case in which N tends
to co. Obviously, (3) is not well defined for N being oo because the problem has an infinite number of equality
constraints. To tackle this problem, we use Lemma 2.1 to reformulate (3) as an implicit problem

min fy(0) = 2 f (6 (6, €), €)

(12)
st. xed.
For a finite N, (3) is equivalent to (12) in the sense that if (x, y', ..., y") is a local minimizer of (3), then x is
a local minimizer of (12). Conversely, if x is a local minimizer of (12), then there exist unique y', ..., y" such
that H(x,y’, £€)=0 and (x,y',...,y") is a local minimizer of (3).

The relation is, however, not as clear about GKKT points. Ralph and Xu [21] considered a general min-
imization problem with nonsmooth equality constraints and investigated the relationship between the GKKT
conditions of the original problem and their counterpart of equivalent implicit reformulated problems (where
some variables are eliminated). It is concluded that the two GKKT conditions are “roughly equivalent” if the
underlying functions are piecewise smooth, but neither implies the other. See Ralph and Xu [21, §5] for details.
Here we consider the weak GKKT conditions of the implicitly reformulated program and show that they are
equivalent to the GKKT conditions of SAA problem (3).
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We start our discussion with the GKKT condition for (12), which can be written as
0€dfy(x)+ Ny(x).
Suppose that 7, dH (x, y(x, '), &), i=1,..., N, is nonsingular. Note that

dfy(x) C % 2V, y(x, €, €) + Alx, £)mdH (x, y(x, £, €]

We may consider the weak GKKT condition of (12) as follows

1Y o . o
O+ DAV y(x, €7, €) + Alx, €)mIH (x, y(x, €1), €]+ Ny (x). (13)
i=1
We next consider the GKKT conditions of (3). Following Hiriart-Urruty [12, Corollary 2.5], we have
1Y A o
Oe N vaf(x7 yl’ §l) + Z)\laxH(X, yl’ §z) + Nai(x)’ (14)
i=1 i=1
Vyf('x9yl?§1) AlayH(x’yl’gl)
1
0Oe — : : , 15
vl IR B . (15)
Vo f (e, vV, €Y) Ao H (x, yN, &)
O:H(x,yi,fi), i=1,...,N. (16)
Because d,H(x,y", ') C m,dH (x,y', &), i=1,..., N, is nonsingular, we can find A’ such that

. 1 o o 1 o o
Ae —ﬁVyf(x, YL EN9,H(x,y, €N C _vaf(x’ y', EYconv([mdH (x,y', )], i=1,...,N.

Replacing A" with —(1/N)V, f(x,y", &) conv([m,dH (x,y",&)]™") in (14) and y' with y(x, &), we can
obtain (13). In what follows, we will investigate the convergence of weak GKKT points that satisfy (13).

3.2. A uniform law of large numbers for a random set-valued mapping. Before proceeding to the
convergence analysis of the GKKT sequence based on (13), we need to establish some kind of uniform (strong)
law of large numbers for a random set-valued mapping in Lemma 3.2.

Let s4(-, £): V — 28" be a random compact set-valued mapping, where V C R" is a compact set of R” and
&: Q — = is a random vector (note that we use the same ¢ and = as in (1)). Let £, ..., &Y be an i.i.d. sample
of £. Obviously, for every ve V, si(v, £),i=1,..., N, are independent, identically distributed random sets of
matrices. Let

sty (v) == %Z&G(v, £. (17)

Here the addition of compact sets is in the sense of Minkowski; that is, for two compact subsets K and L,
K+L={x+y: x€K,yeL}. Obviously, fy(v) is a compact subset of R"*".

In what follows, we establish some kind of uniform strong law of large numbers for the convergence of s/, (v)
as N tends to co in Lemma 3.2. For this purpose, we need a strong law of large numbers for random compact
sets, which is essentially due to Artstein and Vitale [1].

LEmMaA 3.1. Let C;CR™" i=1,...,N be iid. random sets such that E[||C;||] < oc. Then
C,+---+C
Al/im % =[E[conv C]:={E[c]: ceconvC}, wp. 1
where C is a random set that has the same distribution as C;, i =1, ..., N. Moreover; if the probability measure

P is nonatomic, then E[conv C]=[E[C].
By Lemma 3.1, we can establish the following result, which is one of the essential results of this paper.

LEMMA 3.2. Let V CR" be a compact set, and (-, &): V — 28" be a compact, upper-semicontinuous
set-valued mapping for every & € 2. Let 1, (v) be defined as in (17) for every v € V. Suppose that there exists
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o (&) such that
Is¢(v, )| := sup Al < o (£), (18)

Aesl(v,
where E[a(§)] < oo. Then for any y > 0, there exists 6 > 0 such that
Al]i_m Ay(v) CE[As(v, €)]+yB, wp. 1 (19)
uniformly for v e V, where si5(v, &) := U, cs(. 5 4(w, &), B denotes the unit ball in R"™", and the mathematical
expectation of A(v, §) is taken entrywise on matrix A(v, §).

ProoF. Let ve V. Let W, be a series of neighborhoods of point v shrinking to {v} as k — oo. Let b, (§) :=
sup,,e, D(st(w, &), (v, §)) (see the definition of D in §2.1). Note that if D(‘€, Z) =0, then € C %, but the
equality may not hold. Under the condition (18), b,(£) is bounded by 20 (£), where by assumption E[o (£€)] < oc.
By the Lebesgue dominated convergence theorem and the upper semicontinuity of (-, £)

lim E[b,(6)] =E[ Jim b,(§) | =o0. (20)

For any w € W,, it is not difficult to verify that

D (et (), 1y (0) = D 3y et €1, ot

< D, £), (0, £).

Thus,
sup (D st (1), 5, (4) = v 3 sup (Dei(w, £, 0(0. £0)) = - L), @

By the strong law of large numbers, it follows that

lim b (E)=EB ] w1 22)

It then follows from (20)—(22) that for any y > 0, there exists a closed é-neighborhood S(v, §) of v such that

sup D(sly(w), sly(v)) <7y, wp.1
weS(v, 6)

for sufficiently large N.
Because V is compact, we may choose v;,...,v, € V and their corresponding closed neighborhoods
S(vy, 6),...,S(v,,8) such that V C U]]-=1 S(v;, 6), and for N sufficiently large,

sup D(Ay(w), sy(v;)) <7y, forj=1,...,J, wp. L

wes(v;, 8)
This implies that
]\IIL_IEO&QN(w) C 1@0%(%) +yB, YweS(v,8), j=1,....,J. (23)
By applying Lemma 3.1 to s{y(v;), we have
@wN(vj)c[E[&«(vj,g)], j=1,...,J, wp. L. (24)
Moreover, for each j,
E[s4(v;, §)] CE[s5(w, )], Yw e S(v;, d). (25)

Combining (23)—(25), we have
Jim sty (w) CE[st5(w., §)]+yB,  w.p. 1 (26)

uniformly for w € S(v;, 8). Because V is covered by the union of a finite number of neighborhoods, (26) holds
for all w € V. This completes the proof. [

Note that the existence of E[A(v, §)] for every matrix A(v, €) € (v, §) is guaranteed by our assumption (18).
Of course, not every stochastic compact set-valued mapping has this property. We are interested in those that
enjoy this property. Note also that set V, the domain of s4(-, §), is assumed to be compact. This is purely for
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the convenience of presentation. It is obvious that the lemma holds true on any compact set of a noncompact
domain of the mapping. The same comment applies to Corollary 3.1, Example 3.1, and Lemma 3.3.

COROLLARY 3.1. If the set-valued mapping s4(-, £): V — 2%"" in Lemma 3.2 is Hausdorff continuous, then
the following relation

lim oty () = E[s(0. £)]. wp.

holds uniformly for all ve V.

PrOOF. The results follow straightforwardly from Lemma 3.2 by replacing distance D with the Hausdorff
distance H(s4(w, &), $4(v, £)). We omit the details. O

To better explain both Lemma 3.2 and Corollary 3.1, we provide an example below.

ExaMPLE 3.1. Consider a vector-valued Lipschitz-continuous function A(-, £): ¥ — R", where &: Q — E C
R! is a random vector and % is a compact subset of R". For every ¢ € B, it is well known (Clarke [8]) that the
Clarke generalized Jacobian d, Aa(-, £) is an upper-semicontinuous, convex, and compact set-valued mapping. Let
&, ..., &N be an ii.d. sample of £. Then 9 h(x, ), i=1,..., N, are convex, compact i.i.d. random sets. Let

sy (x) = % Z&Xh(x, &.

Assume that there exists a function o (§) such that |9, 4(x, é(w))] < (), and E[o(£)] < 0. Then, by using
Lemma 3.2, for any y > 0, there exists 6 > 0 such that

lim sty (x) CE[(0,)5h(x, §)]+ VB, wp. 1

uniformly for x € %.
We next consider the Clarke e-generalized Jacobian of A(x, ) with respect to x for a given & € E below

Fh(x,&):= J 9, E&),

x'eF(x,€)

where € is a small positive number. The notion of the e-generalized Jacobian was that it is a generalization of
the Clarke e-subdifferential (Polak et al. [20]) of a real-valued Lipschitz function. For fixed € and £ € &, it is not
difficult to verify that 9$h(-, £) is a compact and upper-semicontinuous set-valued mapping. However, d¢i(-, &)
may not be Hausdorff continuous in general; see a counterexample in Xu et al. [38].

Let

1Y .
oA, (x) := ~ > 9h(x, &).
i=1
Then, by Lemma 3.2, we have that, for any y > 0, there exists 6 > € such that
I\y_m S, (x) CE[h(x, §)] +yB, w.p. 1

uniformly for x € %.
In the case that h(x, §) is a real-valued convex function of x, there is an alternative way to define the
e-subdifferential using Rockafellar’s subdifferential in convex analysis (Rockafellar [23]):

Oh(x, &) :={m: h(x', &) > h(x, &) + 1" (x' —x) —€, VX' eR"}.

This type of e-subdifferential was first considered by Brgnsted and Rockafellar [6], and it is Hausdorff continuous
in x. Using Corollary 3.1, we have

Aim iy (x) =E[0°h(x, )], w.p. 1
uniformly with respect to x in %. This result can be found in Shapiro and Wardi [33, Proposition 3.4].

3.3. Convergence of the GKKT point of the SAA problem. With Lemma 3.2, we are able to establish
convergence results of the weak GKKT points for SAA problem (12).

LEmMMA 3.3. Let V be a compact subset of R", and si(-, §): V. — 28" be a compact, upper-semicontinuous
set-valued mapping for every & € E. Suppose that there exists o (&) such that sup,, ||¢(x, &)|| < o(§) and
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E[o ()] < oo. If x* €V is such a point that for any vy > 0 there exists 6 > 0 such that 0 € E[ds(x*, §)] + ¥B,
then 0 € E[4(x*, §)], where sl5(x*, &) = U, cs(x+, 5) 4(x, §).

PrOOF. By assumption, s5(x*, £) is bounded by o (£). Moreover, because ${5(x*, £) is monotonic in é and
sA(-, &) is upper semicontinuous, then limy_,, ss5(x*, &) = d(x*, £). By the Lebesgue dominated convergence
theorem,

lim E[st;(x", €)] = E[lims1,(x", €) | = E[s1(x", §)]
Note also that § — 0 as y — 0. The conclusion follows. [

ASSUMPTION 3.1. Let € be a compact subset of X. There exists a function ky(&) such that for all (x, §) €
€ xE,

max{||V.f(x, y(x, §), O, |A(x, )|, 7. 0H (x, y(x, £), E)II} = ko (), (27)
where E[ky(€) + ky(£)?] < .

Note that set € in the assumption is deliberately left unspecified, and it will be specified in the
context of various convergence theorems in this and the next subsections. Note also that ||A(x, &)| <
IV, f(x, y(x, ), &)l [7,0H (x, y(x, £), )]7"|; therefore, (27) holds if 7r,dH is uniformly nonsingular and V,  f
and 7, dH are bounded by a positive integrable function. We are now ready to state one of our main convergence
results of this paper.

THEOREM 3.1. Let the assumptions of Lemma 2.1 hold. Let {xy} be a sequence of weak GKKT points that
satisfy (13) and let x* be an accumulation point. Let Assumption 3.1 hold w.p. 1 on a compact set €, which
contains a neighborhood of x*, S(x*, n) N%¥, where 1> 0 is a small number. Then, w.p. 1, x* satisfies

0 € E[6(x", &)]+ Ny (x7),

where G(x, &) =V, f(x,y(x, &), )+ A(x, E)m, 0H (x, y(x, ), §); that is, x* is a weak GKKT point of (1).

ProoF. The main idea of the proof is to apply Lemma 3.2 to set-valued mapping 6(x, ) on the compact
set @. First, observe that, under condition (27), it is easy to prove that |6 (x, £)|| is bounded by k,(€) + Kk, (£)>.
Because the latter is integrable by assumption, then E[6(x, )] is well defined for x € 6.

By Lemma 3.3, we only need to prove that w.p. 1 point x* satisfies that for any (small) y > 0, there exists a
6 > 0 such that

0 € E[%y5(x", £)] 4 Ny (x7) +27B, (28)

where G5(x*, £) 1= U,cs(r,5) G(x, §). Under the assumptions of Lemma 2.1, there exists a unique y(x, £)
such that H(x, y(x, £), £) =0 for every (x, §) € % x E. Because dH (-, y(-, §), &) is an upper-semicontinuous,
compact set-valued mapping and by assumption 7,dH (x,y, ) is uniformly nonsingular, then %(-,-) is also
an upper-semicontinuous and compact set-valued mapping on % for every ¢ € E. Moreover, for x € €, we
have from (27) that 6(x, €) is uniformly dominated by an integrable function k,(£)(1 + k,(£)). Because € is
compact, it follows from Lemma 3.2 that for any y > 0, there exists 6 > 0 such that

T 3 6(x, &) CEL%(x, )]+ 7B, wp. | (29)

i=1

uniformly for x € €. Let x* be an accumulation point of {x,}. Assume without loss of generality that {xy} —
{x*} and {x,} C €. Because x, is a GKKT point of problem (12), by definition,

N

0+ 3By, £) + 1, (xy). (30)

i=1
In what follows, we estimate term D((1/N) XN, G(xy, £), E[6,5(x*, £€)] +2yB). Note that

(5 L0 €0, EL5(07, 0]+ 298 ) = D 3y X500, €. 3y X 55", € +8)
i=1 1

i= i=1

4 D(% > Gs(x*, €) + yB, E[Gy5(x*, €)] + 273)-

i=1
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By (29), the second term at the right-hand side of the equation tends to zero w.p. 1 as N — oco. On the other
hand, let N be sufficiently large that x, € S(x*, 8). Then, by definition, G(x, &) C G5(x*, £'); hence,

(5 X6y £, Xl €)+98) =0 61

for every N sufficiently large. This shows

;%D(%%f@(xwf"),ﬂf@m(x*,§)]+2y3> =0, wp. L

i=1
Combining this with (30), we obtain (28). O

Note that if the condition (27) holds in a compact subset of % that contains all accumulation points of {x,},
then the result of Theorem 3.1 can be strengthened to that w.p. 1 any accumulation point of {x,} is a weak
GKKT point of (1).

From a computational perspective, it might be more preferable to consider an e-generalized Jacobian rather
than a Clarke generalized Jacobian because the latter is difficult to compute for general locally Lipschitz func-
tions, whereas the former may be computed by a smoothing method or an approximation method. See Ralph
and Xu [21] and references therein for a detailed discussion on this regard. Consequently, we may consider the
following weak e-GKKT condition

0 €+ SIVA (6 €), €)= T, f (505, £, € comv([m, i (x, (e, £), £)] )

- 0°H (x, y(x, &), &)] + Ny (x) (32)
where € > 0, 9°H denotes the e-generalized Jacobian of H. Because
[m,0°H (x, y(x, &), )] m 0°H (x, y(x, '), &) — [m,dH (x, y(x, £), €)' 7, IH (x, y(x, £), &)

as € — 0, the weak GKKT condition (32) reduces to (13).
We say that x€ is an e-weak GKKT point if it satisfies (32). We have the following result for the e-weak
GKKT sequence.

COROLLARY 3.2. Let the assumptions of Lemma 2.1 hold. Let {x§,} be a sequence of e-weak GKKT points
that satisfies (32), and let x* be an accumulation point. Let Assumption 3.1 hold with € := S(x*, n) N ¥ where
n > 0 is a small number. Then, w.p. 1, x* satisfies

0 € E[RE(x", §)] + Nop (x7),
where

RE(x, €)= Vo f (x, y(x, ), §) = Vy f(x, y(x, §), §) conv([m,0°H (x, y(x, €), )] ), 0°H (x, y(x, §), ).

3.4. Convergence of optimal solutions. Another useful way to investigate the convergence of the SAA
method is to look into the rate at which a local minimizer or global minimizer of the true problem (1) becomes
that of the SAA problem as the sample size N increases. Here we restrict our discussion to global minimizers.

Let v(x, &) := f(x, y(x, £), ) and ¥(x) :=F[v(x, £)] where y(x, £) is the unique solution of (2). Obviously,
U (x) is locally Lipschitz and directionally differentiable.

Let § > 0 be a constant. We say that x° € % is a 8-global minimizer of (1), if 3(x°) < 9*+ 8, where ¥*
denotes the global minimum of (1). For the convergence analysis, we need the following result, which is a
special case of the well-known Berge’s stability theorem.

LeEmMA 3.4.  Consider a general constrained minimization problem
min p(x)
s.t. xeX,
where p: R" — R is continuous and X is a subset of R", and a perturbed program
min p(x)
s.t. xeX,

where p: R" — R is continuous and |p(x) — p(x)| <8,V x € X. Suppose that x* is a global minimizer of p(x)
over X, and X* is a global minimizer of p(x) over X. Then |p(x*) — p(X*)| < 6.
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This lemma indicates that a global minimizer of p is a 6-global minimizer of p in that

|p(x*) = p(X)| < [P(x") = p(X) | + |p(x™) — p(X7)| < 2.

*

Note that, strictly speaking, x
minimizer.

is a 20-global minimizer of p. However, by convention, we call it a 6-global

THEOREM 3.2. Suppose that the set of global minimizers of (1) is bounded and contained in a compact set
‘€ on which the boundedness condition (27) of Assumption 3.1 holds. Suppose also that the assumptions of
Lemma 2.1 are satisfied. Then,

(1) v(-, &) is Lipschitz continuous on €; that is, there exists Ly(&) > 0 such that

[v(x’, &) —v(x", ) = Lo(E) 1" = x"|l, VX', x" €€,

In addition, the moment-generating function M (1) := E[e'r0©] of Ly(§) is finite valued for all t in a neigh-
borhood of zero.

(ii) With probability approaching one exponentially fast with increase of the sample size N, a global minimizer
of (1) becomes a 6-global minimizer of (12).

ProOOF. Part (i). Because € is compact, it follows from part (i) of Lemma 2.1 that the locally Lipschitz-
continuous implicit function y(-, £) is globally Lipschitz on ‘6. By part (ii) of Lemma 2.1 and (8),

d.v(x, &) C V. f(x, y(x, £), &) + Alx, §)m 0H (x, y(x, §), £).

Using condition (27), we get an estimate on the upper bound for |9, v(x, &), which is Ly(€) := k(&) (1+k,(€))
where k,(§) is defined as in Theorem 3.1. By assumption, E[L,(§)] < oo. Then, it follows from the Lebesgue
dominated convergence theorem that the moment-generating function M, (#) of Ly(§) is finite valued for all
in a neighborhood of zero, and it is infinitely differentiable at t =0 (Shapiro [30, §8]).

Part (ii). By part (i), it follows from Shapiro and Xu [34, Theorem 5.1] that for any 7 > 0, there exist positive
constant C = C(7) and B(7), independent of N, such that

Probi sup| £y (x) = 9(x)| > T} < C(r)e MO, (33)

Let x* denote a global minimizer of (1), and let x, denote a global minimizer of (12). From (33), it follows by
Lemma 3.4 that

Prob{|fy(x") — #(x")| > 7} = C(1)e 0.

This implies that with a probability of at least 1 — C(7)e ("), a global minimizer of (1) becomes a 7-global
minimizer of (12). O

Note that we may make a statement analogous to part (ii) of Theorem 3.2 for a local minimizer; that is, if x*
is a local minimizer of (1), then with probability approaching one exponentially fast with increase of the sample
size N, x* becomes a 6-local minimizer of (12). This follows straightforwardly from part (ii) considering a
closed neighborhood of a local minimizer so that it becomes a global minimizer within the neighborhood.

4. SAA of a smoothed problem. In this section, we investigate the convergence analysis of smoothed SAA
problems. Consider the following smoothed SAA problem

1 o
min ﬁl;f(x,y’,f’)

o Vi (34
st. H(x,y,&,e)=0, i=1,...,N,
where € # 0. The implicit version of (34) can be written as
A 1Y A .
minfy(x, €)= = > f(x,(x, &', €), £, (35)
xe¥ N P

where $(x, &, €) denotes the unique solution of H(x, y, &, e)=0fori=1,...,N.
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4.1. Convergence of KKT points. The KKT conditions of (34) can be written as follows

1Y o N o
0e N DV E)FY ANV H(x, Y, E €) + Ny (x), (36)
i=1 i=1
ASICRIN D) NV H(x,y', ' e)
0= : + : : (37)
V,f(x, yN, EN) ANV H (x,yV, €N, €)
0=H(x,y,&,€), i=1,...,N. (38)
Because Vyﬁ(x,yi, &, €),i=1,...,N, is nonsingular, we can solve A, i=1,..., N, from (37)

. 1 o
/\'=—NVyf(x,y’,5’)V),H(x,y’,f’,6) L, i=1,...,N.
To ease the notation, let
A(x €, €) 1= =V, £ (x, 5(x, €, €), &) conv[m, d (x, 5(x, £, €), £, )] .

Obviously, when € # 0, conv[ﬂ'yaﬁ(x, F(x, & €), & €)]7! reduces to [Vyﬁ(x, $(x, &, €), €, €)]7!, and hence
A(x, &, €) becomes a singleton! Observe also that V)ﬁ(x, y', &', €) can be written as Vyﬁ(x, y', &, €). Replacing
A in (36) with (1/N)A(x, €, €) and writing y' as $(x, £, €), we obtain

0€ + SIVS (56 €0, )+ Alx, £, T, A 5(x, £.€), £, €)] + 1, (0). (39)

Note that in numerical implementation, there are two ways to select € in (34). One is to fix €. The other is
to choose € =€) and let €, tend to zero as N — oo. In Theorem 4.1, we establish the convergence results of
KKT points in both cases. We need the following assumption.

ASSUMPTION 4.1. Let € be a compact subset of ¥. There exists a function k,(§) and a constant €, > 0 such
that for all (x,&,€) € € X R" x B X [—¢€, €],

max{[|V,f (x, $(x, &, €), E)lI, |A(x, &, ), |7, 0H (x, 5(x, £, €), & )|} < K, (£), (40)

where E[k, (&) + k,(£)?] < .

Note that set € in the assumption is deliberately left unspecified, and it will be specified in the con-
text of various convergence theorems in this and following subsections. Note also that [|A(x,&,€)| <
[V,f(x,3(x, §), &, €l ||[7'ry31-AI(x, $(x, &, €), E)]7Y, therefore, (40) holds if wyaﬁ is uniformly nonsingular and
V.,f and 7 0H are bounded by a positive integrable function. We are now ready to state one of the main
convergence results of our paper.

THEOREM 4.1. Let the conditions of Lemma 2.3 hold.

(i) Let € # 0 be fixed, let {xy(€)} be a sequence of KKT points that satisfies (39) and let x*(€) be an
accumulation point x*(€). If there exists a compact set € that contains a neighborhood of x*(€) such that
Assumption 4.1 holds, then, w.p. 1, x*(€) satisfies

0 € E[a(x"(e), &, €)] + Ny (x*(e)), (41)
where (x, £, €) 1=V, f(x,(x, &, €), &) + A(x, &, )V H(x, §(x, &, ), &, €).

(ii) Let € = €y where €y — 0 as N — oo; let x* be an accumulation point of {x(ey)}. If Assumption 4.1
holds on a compact set ‘€ that contains a neighborhood of x* w.p. 1, then, w.p. 1, x* satisfies

0 € E[£(x", §)] 4 Ny (x7), (42)

where £(x, £) := V,f(x, y(x, &), &) + A(x, &, 0)m,dH (x, y(x, §), £, 0).
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Before providing a proof, we note that from (42) we can easily see that if H satisfies Jacobian consistency
(Chen et al. [7], Ralph and Xu [21]) conditions, that is, OH (x, y(x, €),€,0) C 7w dH(x, y(x, £), €) and
. 8H(x y(x,§),€,0) Cm,dH(x, y(x, ), €), then A(x, £,0) C A(x, £). Consequently,

L(x" € V(" y (6", ), &) + A, O mIH (x", y(x", €), £),

which implies (7); that is, x* is a weak GKKT point of (1).

PrOOF OF THEOREM 4.1. Observe first that both (41) and (42) are well defined under condition (40).

Part (i). By assumption, da(-, &, €) is continuous on ¥ for every ¢ € 5. Moreover, from (40) it follows that
a(x, &, €) is bounded by k,(&)(1 + k,(£)), which has a finite expected value. Because % is compact and € is a
constant, by applying Rubinstein and Shapiro [26, Lemma Al] to a(x, &, €) componentwise, we have

lim max
N—>oo xe¥

! Za(x £, e)—b(x,¢€)

where | - ||, denotes the infinity norm of a vector and b(x, €) = [a(x, ¢, €)]. Assume without loss of generality
that x,(€) — x*(€) as N — oo. Because x,(€) is a KKT point that satisfies (39), then
N

0e %Za(x,xe), £, )+ N,y (xy (),

i=1
which can be rewritten as

0e § TaG (@ €0+ |y Xty () €0 ~bxy(e). o)

i=1 =

b0~ T (@, €0 4. 1y €)

i=1
By the strong law of large numbers, the first term on the right-hand side of the equation above tends to
E[a(x*(€), &, €)] w.p. 1, the second term tends to zero w.p. 1 due to (43), and the third term tends to zero w.p. 1
as N tends to infinity. This shows part (i).

Part (ii). To show that x* satisfies (42), it suffices, by Lemma 3.3, to prove that for any y > 0, there exists
6 > 0, such that x* satisfying

0 € E[Zy5(x, £)] + N, (x) +2vB,

where

Ls(x. &)= U Z(.9).

x'eS(x, 8)
We treat € in a(x, &, €) as a variable. Let

a(x,€é,€), €#0,
P(x, &), e=0.

d(x, &, €)=

By assumption, &4( £,)): X x [—€, €] — 2% is an upper-semlcontlnuous and compact set-valued map-
ping for every ¢ € 2. From (40), it follows that si(x, £, €) is bounded by k,(£)(1 + k,(£)) for x € € and
E[k,(&)(1+k,(£))] < oo. By Lemma 3.2, for any y > 0, there exists 6 > 0 such that

11X, A
Allim v > sl(x, & €) CE[sls(x, é,€)]+yB wp. 1 (44)

uniformly with respect to (x, €) € € x [—€,, €,], where
ss(x, &, €)= U Ax, &, €).
(x', €)eS((x, €),8)

On the other hand, because x,(€,) is a KKT point of problem (34) with € =€,

0 3 llrlen). € )+, (xy(en). s)

i=1

Assume without loss of generality that xy(€ey) — x* as N — oo and x,(€y) C €. It suffices to prove that

[D(N S sh(xy(en), £ €x), E[Los(x", €)] +27B) -0, as N— .

i=1
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Note that

Dy Lelen (e € ) Elts(x )]+ 298 )
< 1

<p(~

N i

+ID< ! Zw}(x*, £,0) + yB, E[Zy5(x*, £)] +2yB>.

M=

ey () £ 0 3 20", £,0)+ 78

1 i=1

Z|

It follows from (44) that the second term on the right-hand side of the equation above tends to zero w.p. 1 as
N — oo. On the other hand, because

A(xy(en), € €y) Coly(x", €, 0)

for (xy(€ey),€y) € S((x*,0), 8), the first term on the right is zero for N sufficiently large. The conclusion
follows by the relation above with (45). The proof is complete. O

4.2. Convergence of optimal solutions. Similar to the analysis in §3, we can present the convergence of
optimal solutions of (34) to those of the true problem (1). Let 0(x, &, €) := f(x, y(x, &, €), ).

THEOREM 4.2. Suppose that the set of global minimizers of (1) is bounded and contained in a compact set
€ on which the boundedness condition (40) of Assumption 4.1 holds. Suppose also that the assumptions of
Lemma 2.1 are satisfied. Then

(1) v(x, &, €) is uniformly calm (Rockafellar and Wets [25]) at zero; that is, there exists a constant C, >0
such that

[0(x, €, €) —v(x, &) <Cile|l, Vxe€ (46)

for € > 0 sufficiently small.
(ii) With probability approaching one exponentially fast with increase of the sample size N, a global minimizer
of (1) becomes a 6-global minimizer of (35).

PrOOF.  Part (i). Under (40) and assumptions of Lemma 2.3, there exists a unique implicit function (x, &, €)
for (x, &, €) € € x B x (0, €] such that H(x, y(x, &, €), &, €) =0. Because for € > 0,

V(x, €, €)==V, f(x,5(x, £, €), OV, H(x, 5(x, £, €), £, €)' V.H (x, §(x, £, €), £, €).
Under condition (40), |-V, f(x, 3(x, &, e),f)Vyﬁ(x,)?(x, &, €),& €)Y is bounded by k(€)% Note that by
assumption, V.H (x, y(x, &, €), &, €) is bounded, and the bound is denoted by L. Note also that

18Cx, €, €) —v(x, &) < /0 IV.8(x, &, te) e dr.

Obviously, the right-hand side is bounded by Le. The conclusion follows.

The proof of part (ii) is similar to those of Theorem 3.2. We omit the details. [

As in Theorem 3.2, we can make a statement for a local minimizer, that is, with probability approaching one
exponentially fast with increase of the sample size N, a local minimizer of (1) becomes a local minimizer (35).

5. Application in SMPECs. In this section, we apply the theory developed in the preceding sections to the
following stochastic mathematical programs with equilibrium constraints (SMPEC):

min E[f(x, y(x, &), £)]

s.t. xe&,

(47)

where & is a nonempty subset of R”, f: R” x R" x R* - R, F: R" x R* x R* — R" are continuously
differentiable, &: Q — RF is a vector of random variables defined on sample space (), 7, P), E denotes the
mathematical expectation; y(x, &) solves the following complementarity problem

0<ylF(x,y,é(w))>=0, forweQ.
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It is known that the complementarity constraint in (47) can be reformulated as a system of equations using an
elementary function ¢: R x R — R,

dO, Fi(x, 9, 6))
D(x,y,€):= =0, (48)
S, Fo(x, 5, 6))

where ¢(a, b) =0 if and only if a, b >0 and ab = 0. Such a function is known as an NCP function (where
NCP stands for nonlinear complementarity problems). There are many NCP functions available in the literature.
See, for instance, Kanzow [13], Luo et al. [16], and Facchinei and Pang [9]. Here we only consider the two
most popular NCP functions. One is the min-function, which is defined as ¢(a, b) = min(a, b). The function
is globally Lipschitz continuous, and it is continuously differentiable everywhere except at the line a = b. The
other is the Fischer-Burmeister function (Fischer [10]), which is defined as ¢(a, b) = v/ a? + b*> — (a + b). This
function is globally Lipschitz continuous, and it is continuously differentiable everywhere except at (0, 0). Using
(48), we can reformulate (47) as a stochastic minimization problem with nonsmooth equality constraints:

IxIliarel[E[f(x, y(x, €),€)] where y(x, &) solves ®(x,y, &) =0. (49)

In this section, we consider the case where F is uniformly strongly monotone with respect to y; that is, there
exists a constant « > 0 such that

(F(x, Y, €)= F(x,y", ) (V=Y =ally —=y"II?

for any y',y” € R", x € %, and ¢ € E. Under the monotone condition, it is known that V, F(x, y, £) is uni-
formly positive definite for all y € R, x € &, and £ € 5. Hence, we can easily see that the conditions of
Lemma 2.1 are satisfied. Therefore, there exists a unique locally Lipschitz function y: % x E — R" such that
D(x,y(x,&),E) =0. Let €', ..., &Y be an i.i.d. sample of £. Consider the following SAA program for (49)

. 1Y .
min 5200 €)

v xeﬁf eR" (50)
st. d(x,y,E)=0, i=1,...,N,
and its reduced implicit form
1Y L
min £y (x) 1= 37 30 £ (e €. £ -

s.t. xe¥,

where y(x, €') solves ®(x, y', &) = 0. We have the convergence results for (51).

PROPOSITION 5.1. Let F(x,y,&) be uniformly strongly monotone in y. Let V.F(x,y(x,§),§) and
V. f (x,y(x, €), &) be uniformly bounded by k,(£) for x € %, where E[k,(&)*] < . Then

() if {xy} is a sequence of weak GKKT points of (51), then any accumulation point x* of sequence {xy}
satisfies

0 € E[F(x*, &)] 4+ Noyp(x¥),

where

F(x,8) =V, f(x, y(x, £), &) + Alx, )7 0P (x, y(x, £), §)

and A(x, §) ===V, f(x, y(x, £), §) conv[m,d®(x, y(x, §), §)] s
(i) if the set of global minimizers is bounded, then with probability approaching one exponentially fast with
increase of the sample size N, a global minimizer of (47) becomes a 86-global minimizer of (51).

ProoFr. We use Theorems 3.1 and 3.2 to prove the results. Observe that both the conditions and conclusion
of part (i) of this proposition are stronger than their counterparts in Theorem 3.1 in that we can prove that
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Assumption 3.1 holds for H(x, y, §) := ®(x,y, §), with € being any compact subset of % that contains all
accumulation points of {x,}. We verify Assumption 3.1. By a simple calculation,

7 IP(x, y, §) C diag(d,¢(y;, F(x, y, §))) V. F(x, y, £)

and

m,0D(x, y, £) C diag(9,P(y;» Fi(x, y. £))) +diag(d, ¢ (y;, F(x. y. §))V, F(x,y. ),
where “diag” denotes a diagonal matrix. It is not difficult to observe that |7, dP(x,y, )| < |V, F(x,y, &)|
Moreover, by Xu [37, Proposition 2.1], there exists a constant C > 0 such that [|7,d®(x, y, §)'|| < C. Thus,

[7Cx, Ol < k2 (€) + Cry(€), Vxe¥, E€E.

Because the right-hand side of the above equation is integrable by assumption, we have verified Assumption 3.1
for any x € &, and hence ¢ can be taken as any compact subset of % that contains all accumulation points
of {xy}. The rest follows straightforwardly from Theorems 3.1 and 3.2. O

Notice that ® defined in (48) is a nonsmooth function. We investigate the smoothing NCP approach to solv-
ing (47). First, recall that a smoothing function ¢: R x R x R — R of an NCP function ¢(a, b) satisfies:
(A1) ¥(a, b,0) = ¢(a, b); (A2) ¥(a, b, ¢) is Lipschitz continuous and it is continuously differentiable every-
where except at ¢ = 0; (A3) (strong Jacobian consistency, Chen et al. [7]) for (a,b) € R?, 7, ,d(a,b,0) =
d¢(a, b). In particular, it is known that a smoothing function of min(a, b) is ¢(a, b, ¢) = —1(\/(a — b)> +c? —
(a+ b)), and a smoothing function of the Fischer-Burmeister function is ¥(a, b, ¢) =+/a*>+ b*+ 2 — (a + b).
See, for instance, Kanzow [13].

LEMMA 5.1.  Let ¥(a, b, ¢) be the smoothing function of the Fischer-Burmeister function or min-function as
defined above. Then, there exists | > 0 such that |V, ,{(a, b, €)|| > 1 for any a,b € R and any € € (0, €,] with
€, > 0.

The proof is elementary, and hence is moved to the appendix. By virtue of the smoothing function
i, we can define a smoothing mapping ¥: R”™ x R" x R* x R, — R" of ®(x,y,&) as V(x,y, &, €) =

WOy, Fi(x,y,8),€),...,40,, FE,(x,y,£),€)T. It is clear that ¥(x, y, £, 0) = ®(x, y, £). Consequently, we
can consider a smoothing approximation of (49) as follows:

min E[f(x, J(x, &, €), &)]

s.t. y(x,&,€) solves ¥(x,y, &, €)=0, (52)

xe&.
Note that for € # 0, V,W(x,y,§,€) = D, + D,V,F(x,y,§), where D, = diag(D{,...,D;) and D, =
diag(D?, ..., D!) denote the diagonal n x n matrices with the following (i, i)th entries, respectively, D¢ =

V. (v, Fi(x,y,£),€); D! =V, 4(y;, F(x,y, &), €). By Xu [37, Proposition 4.2], Lemma 5.1, and the uniform
strong monotonicity of F(x, -, §), we can see that conditions of Lemma 2.3 hold in this case. Hence, there exists
a locally Lipschitz-continuous function on % x 2 x [—¢,, €,] such that W(x, y(x, &, €), €, €) =0, where €, is a
positive scalar. We consider the following smoothed SAA program of (52):

: g i i
min - 5> f () )

y1 _____ yNE[Rn i=1 (53)
st. (x,y,&,e)=0, i=1,...,N,
and its implicit form
1Y _ _
min N;f()(:’y(x»gve)’g) (54)

st. xe¥,

where y(x, &, €) solves W(x,y', &', €) = 0. We apply the results derived in §4 to (53). The following result is
derived by virtue of Theorem 4.1.

PROPOSITION 5.2. Let F(x,y,&) be uniformly strongly monotone in y. Let V. F(x,3(x,¢&,€),&) and
Vf(x, $(x, &, €), €) be uniformly bounded by k,(£) for x € %, where E[k,(§)*] < . Then
(i) for fixed € > 0, any accumulation point x(€) of the sequence of KKT points {x(€)} of (54) satisfies the
following

0 € E[a(x(€), &, €)]+ N (x(€)),
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where A
R(x, &, €)=V f(x,9(x,€,€), )+ A(x, £, )V, W(x, J(x, €, €), €, €),

and
A(x, &, €)==V, f(x, 5(x, £, €), OV, P (x, §(x, &, €), £, €)1
(ii) for € =€y where €y — 0 as N — oo, any accumulation point x* of the sequence of KKT points {x(€y)}
of (54) satisfies
0 € E[A(x", §)] + Ny (x7),

where M(x, &) =V, f(x,y(x,£), &) + Alx, £) 7 IP(x, y(x, §), );
(iii) with probability approaching one exponentially fast with increase of the sample size N, a global mini-
mizer of (47) becomes a &-global minimizer of (54).

ProoF. It is easy to verify that (40) is satisfied by any x € %, and hence Assumption 4.1 holds for any
compact subset € of %, which contains all accumulation points of {x,}. The results follow from Theorems 4.1
and 4.2. O

6. An example. In this section, we use a simple example in SMPEC to illustrate how our proposed smooth-
ing SAA method works. Consider

min E[f(x, y(x, £), £)]

(55)
st. x>0, x,>0,

where

fy, &) =txi — 50+ x)" =154+ (x = 1>+ (x; — 1)’ + 37 +)3,

and y(x, &) solves the following complementarity problem
0<ylF(x,y,é)>0,

where F(x,y,&) =, —x,+& —&,y, —x, + &) and &, &, are independent random variables, both hav-
ing uniform distribution on [0, 1]. The example is varied from an example in Shapiro and Xu [34]. Observe
first that V,F(x,y, §) = ((1) (,’) Therefore, F is uniformly strongly monotone in y. Using the min-function, the
complementary constraints can rewritten as:

H(x,y,§) = (min(y,,y, — x; + & — &) min(y,, y, — x, + &,)) =0.

The equation has a unique solution (y,(x, £), y,(x, £)) where

xi—=§+& ifx; 2§ -&,
0 otherwise;

n(x, §) = {

0 otherwise.

X, —& ifx,>&,
yz(x,§)={2 ’ 1=
Substituting them into the objective function, we have
(x; =12+ (x, — 1)%, if1>x,>0, x,>0,
ELf (x, y(x, ). )] =
= D* 124+ (x, — D>+ (x, = 1)2, if x,>1, x,>0.

Obviously, the optimal solution is (1, 1) and the optimal value is 0. We now consider the smoothing method.
The smoothed constraints are

_ 21 2 _ _ _
ﬁ(x,y,f,e)::—%(J(XI Eit&)+e =2y —x +§ §Z)>=0,

(= &)+ € =2y, —x+ &)
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The equation has a unique solution y(x, &, €) = (3,(x, &, €), y,(x, €, €)) where

B =tm —&+E6+Vn & T &+ e,
W(x, &, €)= %(x2 =&+ (% — 52)24‘62).

We next check the boundedness assumption of Proposition 5.2. Because V f(x,y, ) = (%xf — %(1 +x,)° +
2(x; = 1), =x3 +2(x; — 1)), V,F(x,y,€) =—(}9), both of which are independent of y and £, it suffices to
verify the boundedness condition for V, f(x, $(x, &, €), £). Because V, f(x, y, £) = (2y;, 2y,), it is easy to verify
that V, f(x, y(x, &, €), §) is bounded by an integrable function 2(|x; — & + &| + |x, — & | + €). Alternatively,
we can verify the boundedness condition (40) in Assumption 4.1 directly. Note that because

—&+6 0
- —
VA, £ e =1 V=& +8) +e |
0 Xz—fz |

Jorbrie

and V},I’-f(x, v, €, €)= ((1) ?), we can easily obtain that

/A\(x7 f, 6) = _Vyf(x’ )A}(x’ g? 6)? g)Vyﬁ(X’ i)(x’ §7 E)’ 57 E)_l = —25\1()6, §’ E)'

Obviously, |A(x, £, €)|| and ||V, H(x, y, £, €)|| are bounded by some positive measurable function.

We carry out some numerical experiments for the problem (55) with the smoothing SAA method (53). We
solve the discretised problem by implementing mathematical programming codes in Matlab 6.5 installed in a
PC with Windows XP operating system. We use the Matlab built-in solver finincon for solving the smoothing
SAA problems.

Note that, in general, optimal solutions and optimal values are unknown. Therefore, we need to discuss how
to estimate the lower and upper bounds of the optimal objective value of the smoothing problem. The following
method of constructing statistical lower and upper bounds was suggested in Santoso et al. [28].

Given € > 0, let w(e) denote the optimal value of the smoothing problem and W)y (€) the optimal value of
the smoothing SAA problem. Let ﬁ(x €) = E[0(x, &, €)] where 0(x, &, n) = f(x, y(x, &, €), £). It is known
(Santoso et al. [28]) that E[wy(€)] < w(e). To estimate E[wy(€)], we generate M independent samples of £,
{f}, e ,§j’y}, j=1,...,M, each of size N. Let wy(€), j=1,...,M, denote the corresponding optimal value
of the problem. Compute

Ly (€)= 2 3 04(©)

which is an unbiased estimate of E[wy(€)]. Then, Ly ,(€) provides a statistical lower bound for w(e). An
estimate of the variance of the estimator L, ,,(€) can be computed by

LN, M €)= o M(M 2 Z(w&(e) —Ly.u(€))".

An upper bound for the optimal value w(e) can be obtained by virtue of the fact that 5(}2 €) > w(e) for any
X € Z. Hence, by choosing x to be a near-optimal solution, for example, by solving one SAA problem, and using
an unbiased estimator of ﬁ(x €), we can obtain an estimate of an upper bound for w(e). To do so, generate
an ii.d sample of &!,..., &V let Dy (X, €) := (1/N’ )lel (%, &, €). Then we have E[5,.(x, €)] = (X, €),
thereby, 7y, (X, €) is an estimate of an upper bound on w(e). Note that the generated sample is i.i.d, and then
the variance of this estimate can be estimated as

sg(4,N'; €)= ———— N/(N’ — Z(v(x &L e)—Dy(x,e)

Note also that in this part, we need to solve the following N’ independent repeated subproblems
min f(X,y, &)
s.t. ﬁ(i, v, &, €)=0.
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TABLE 1. Numerical results of the smoothing SAA method for problem (55).

€ N M N’ Ly v s, %, Dy Sy Gap Seap
1073 200 10 400 —0.0272 0.0044 (1.0011, 0.9957) 0.0015 0.0332 0.0287 0.0335
1074 200 10 500 0.0021 0.0037 (0.9992, 0.9989) 0.0246 0.0261 0.0225 0.0264
1073 200 10 400 0.0035 0.0223 (1.0007, 1.0008) 0.0050 0.0343 0.0015 0.0409
1073 300 10 500 —0.0032 0.0035 (0.9991, 0.9997) 0.0275 0.0315 0.0307 0.0316
1074 300 10 700 —0.0029 0.0026 (1.0001, 0.9996) 0.0259 0.0266 0.0288 0.0268
1073 300 10 800 0.0076 0.0427 (1.0002, 1.0001) 0.0088 0.0216 0.0012 0.0478

In practice, we may choose X to be any of the solutions of the M regularized SAA problems, by generating
independent samples {£!, . . §N },j=1,..., M.In fact, we will use X}, the best optimal solution that estimates
the smallest optimal value w(e) to compute the upper bound estimate and the optimality gap.

Using the lower bound estimate and the objective function value estimate as discussed above, we compute an
estimate of the optimality gap of the solution x and the corresponding estimated variance as follows:

Gapy_ y v (X) := Dy (X, €) — Ly 4 (€), Séap ==57(N,M; €)+s,(x,N'; €).

We conduct our test with different values of the smoothing parameter € and sample sizes N, M, and N'. We
report the lower and upper bounds, Ly ,, and Dy, of w(e); the sample variances, s, s;,; and the estimate of the
optimality gap, Gap; of the solution )E{;,, the variance of the gap estimator Sg,,. The test results are displayed in
Table 1.

The numerical results show that both optimal solutions and values of the smoothing SAA problems approx-
imate those of the true problem very well as the sample size increases and the smoothing parameter tends to
zero. More extensive tests are required to evaluate the performance of the proposed method, but this is beyond
the scope of this paper.

Appendix.

LEMMA A.1 (ScHOLTES [29, THEOREM 3.2.5]). Let G: R" — R" be a B-differentiable locally Lipschitz
homeomorphism at every point x € R". If there exists | > 0 such that

|G (x; d)|| = 1||d||, Vx,deR",

then G maps R" homeomorphically onto R".

PROOF OF LEMMA 2.1. Part (i). Let ¥ € R”, £ € E be fixed. Let ¥ be such that H(%, j, £€) = 0. Because
d,H (x,y, §) is nonsingular, by the Clarke implicit function theorem, which is a combination of Theorem 7.1.1,
and following the corollary in Clarke [8], there exists a neighborhood U for % and V for £ such that a locally
Lipschitz function y: U x V — R”" such that H(x, y(x, £), §) =0 for all (x, ) € U x V. In what follows, we
show that the implicit function y(x, &) is globally unique.

Let G(x,y, €)= (x", H(x,y, €)', €")". Because d,H(x,y, £) is uniformly nonsingular for (x, y, &) € % x
R" x B, then dG(x, y, £) is uniformly nonsingular. Moreover, because H is Lipschitz and directionally differ-
entiable, then it is B-differentiable. Hence, G is also B-differentiable. Therefore, there exists / > O such that the
directional derivative of G with respect to y satisfies

IG (x,y, & d)|| = 1)|d|l, Y (x,y,& d) eR" x R" x E x R"™+,

By Lemma A.1, G maps R" x R" x Z homeomorphically onto R"™*"** This shows that the implicit function
y(x, &) is globally unique.

Part (ii) follows from Ralph and Xu [21, Theorem 4.8].

Part (iii) follows from the inverse image theorem (Aubin and Frankowska [3, Theorem 8.2.9]). O

PrOOF OF LEMMA 2.2. Let €, be a small positive scalar. By assumption, for any (x, &) e & x B, there
exist open neighborhoods B(X, 8,) and B(&, 8,), where 8,, 8, denote radii of these two balls satisfying 0 <
max{0,, §,} < €, and y(x, &) defined on B(x, 6;) x B(£,8,) such that H(x, y(x, §), &) =0. Let é(x v, €, €)=
(xT, €7, e, H(x,y, £, €)")T. Let p= (%, €,0, O)ERMXRkXRXR" and X := B(X, 8,) x B(¢, 8,) x U(F) x
(—€p, €) where U(Y) :={y: y=y(x, ), (x, §) € B(x, 6;) x B(£,8,)}. Evidently, J is a bounded open set, G
is a continuous mapping, and equation G(x v, €, €) = p has a solution on J with deg(G, 3, p) #0.
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Now, for any (x', ') € B(x, 6,) X B(§ 8,) and € € (0, ¢)), set g = (x', &', €,0) e R™ x R¥ x R x R". Then,
it follows that ||p — g, = ||( — x', € — €', =€, 0) ||, = max{||X — x'||.. [|€ — €'||.. € }. On the other hand, we
have

dist(p, G(bd3)) = inf{||p — pll..: p € G(bd3)}
= inf{max{|[F = Tl € = €]l €. 1A (X 5. & £eo) | }: (7. €. e) €bd )
= inf{max{8,, 8,, €. | H(%.7. &, x€))||.}: (¥, £, 5. %€,) €bd 3},
where “bd” denotes the boundary of a set. Because € < €,, 0, < €, 0, < €, it then follows that

lp = gl <dist. (p, G(bdY)),

for any g as defined above. Thus, by Facchinei and Pang [9, Proposition 2.1.3], we have deg(é,ﬁ p) =
deg(G, 3, q) # 0, which implies that equation G(x v, €, €) = g has a solution on 3. So, for any € € (0, €),
H(x,y, &, €) =0 has a solution y at any given point (x',£') € B(%, 8,) x B(§ 0,). In addition, due to the
arbitrariness of ¥ and &, it is not hard to see that given any (x, &) € ¥ x E and small positive €, equation
ﬁ(x,y, &, €) =0 always has a solution y. [

PrROOF OF LEMMA 5.1. First, we consider the smoothing function of the Fischer-Burmeister function,
Y(a,b,e)=+/a>+b>+€>— (a+ D). It is evident that for any € > 0 and any a, b € R, we have

a
Vu,bl/j(a7b’€)= b
Jitrre

Let r:= (a/Va*+b>+ €, b/a* +b>+ €)" and s:= (1, 1)". Then, V, ,i)(a, b, €) =r — s. It is obvious that
7]l <1, Va,b, e, and ||s|| =~/2. Thus ||r —s||> =2+ ||7||> = 2r, — 2r,.
We now consider the following minimization problem:

min ||7]|? — 2r; — 21, +2
st <1, reR2

Notice that the above problem can be written as min{(r; — 1)+ (, — 1)? | ||7]| < 1, r € R?}, the minimum
of which is obviously equal to 3 — 2+/2. Consequently, |r — s||*> > 3 — 2+/2. Let [ = v/3 —2+/2. We have
|V, ,(a,b,€)||=|r—s|| =1 forany a,b R and € € (0, €], € > 0. This shows the conclusion for the Fischer
and Burmeister function.

Next, we consider the smoothing function of min-function

1
__ V2
W(a, b, €)= 2(,/(a b +e (a+b)).
Evidently, for any € > 0,
a—>b

1| Va—br+e
2

Vobabo=—5| V" "

J(@a—>b)>+¢e? a

Let r=((a—b)/\/(a—b)*+€2,(b—a)/\/(a—b)*+€2)7, and s = (1, 1)”. Noticing that ||| < 1, hence with
similar arguments as above, we can conclude that the proposed result is valid in this case. [
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