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In this article, we investigate a Stochastic Stackelberg–Nash–Cournot Equilibrium problem by
reformulating it as a Mathematical Program with Complementarity Constraints (MPCC). The
complementarity constraints are further reformulated as a system of nonsmooth equations. We
characterize the followers’ Nash–Cournot equilibria by studying the implicit solution of a
system of equations. We outline numerical methods for the solution of a stochastic
Stackelberg–Nash–Cournot Equilibrium problem with finite distribution of market demand
scenarios and propose a discretization approach based on implicit numerical integration to
deal with stochastic Stackelberg–Nash–Cournot Equilibrium problem with continuous distri-
bution of demand scenarios. Finally, we discuss the two-leader Stochastic Stackelberg–Nash–
Cournot Equilibrium problem.
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1. Introduction

Consider a supply side oligopoly market where Nþ 1 firms compete to supply a homog-
eneous product in a non-competitive manner. One of them, called leader hereafter,
knows the reaction of the others. The leader is to choose his optimal supply so
that his profit is maximized. The other firms, called followers, attempt to maximize
their profits by supplying quantities under Cournot conjecture that the remaining
firms will hold their supplies. It is well-known that such a game can be described as
the Stackelberg–Nash–Cournot game.

A Stackelberg–Nash–Cournot equilibrium is a situation where the leader chooses
an optimal supply that maximizes his profit, given his knowledge of the followers’
reaction to his choice of supply, the followers reaching a Nash–Cournot equilibrium
where each firm cannot improve his profit by unilaterally changing his supply. The
Stackelberg–Nash–Cournot equilibrium model has been studied by Sherali et al. [26].
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They used a quadratic programming approach to investigate the followers’ Nash–
Cournot equilibrium and proposed a numerical method to find the equilibrium. The
method is based on the calculation of the objective function value at a set of
points spread over the feasible region of the leader’s decision variable and the lineariza-
tion of the followers’ aggregate reactive quantity over each interval of two adjacent
points.

De Wolf and Smeers [5] considered a stochastic version of the Stackelberg–
Nash–Cournot equilibrium model. The stochastic factor comes from some uncertainty
of market demand at the time when the leader makes his decision on supply. It is
assumed that the leader knows the distribution of the uncertain factor. Since the
demand is not realized at the time when the leader makes a decision, what the leader
can do at the most is to maximize the expected profit based on his knowledge of the
distribution of demand and the followers’ reaction in each scenario. De Wolf and
Smeers used a method proposed by Sherali et al. [26] to find the stochastic
Stackelberg–Nash–Cournot equilibrium. The model was applied to the European gas
market where a particular gas producer Norway had the opportunity to develop a
new and important field and its decision on the development needed to be made in
1990 to become effective 10 years later, the producer faced competitions from other
gas producers such as the CEI, the Netherlands, Algeria and the United Kingdom as
well as uncertain demand in year 2000.

In this article, we investigate a more general stochastic Stackelberg–Nash–Cournot
equilibrium framework by considering a similar market to that discussed by De Wolf
and Smeers [5] except that the random factor in demand is allowed to have continuous
distribution. As we shall show later, De Wolf and Smeers’ model can be treated essen-
tially as a deterministic mathematical program. However, the generalized stochastic
Stackelberg–Nash–Cournot equilibrium problem seems to have no easy treatment as
such and this is one of the primary motivations of this article.

We propose a new approach, which is another main motivation, to investigate
stochastic Stackelberg–Nash–Cournot equilibria. The approach is based on the refor-
mulation of the followers’ Nash cournot equilibrium problem as a complementarity
problem and a further reformulation of the complementarity problem as a system of
nonsmooth equations. The stochastic Stackelberg–Nash–Cournot equilibrium is conse-
quently transformed into a stochastic Mathematical Program with Complementarity
Constraints (MPCC) and further into a mathematical program with nonsmooth
equality constraints.

The idea of reformulating a Stackelberg game as a Mathematical Program with
Equilibrium Constraints (MPEC) is not new [18,20], although we have not seen the
use of it to deal with stochastic Stackelberg–Nash–Cournot equilibrium. MPEC has
been increasingly investigated over the past few years and has become a relatively
new area of optimization. See monograph [18] for the recent developments of the sub-
ject. Having benefited from the recent breakthrough in the treatment of nonlinear com-
plementarity programs, MPCC, as a special type of MPEC, has received considerable
attention and more mature algorithms. See [8,9,11,12,27] and references therein. This is
one of the key reasons why we use MPCC approach to deal with stochastic
Stackelberg–Nash–Cournot equilibrium.

The rest of this article is organized as follows. In Section 2, we give a mathematical
description of the Stochastic Stackelberg–Nash–Cournot equilibrium problem. Under
some appropriate assumptions, we show the existence and uniqueness of the followers’

28 H. Xu



Nash–Cournot equilibrium. In Section 3, we reformulate the followers’ Nash–Cournot
equilibrium problem as a complementarity problem and further as a system of non-
smooth equations. Then we investigate the properties of the followers’ Nash–Cournot
equilibrium and the existence of the stochastic Stackelberg–Nash–Cournot equilibrium.
In Section 4, we propose a smoothing MPCC method for the solution of a discrete
stochastic Stackelberg–Nash–Cournot equilibrium problem. An error bound on the
difference between the optimum of the smoothed problem and that of the original
problem is given. In Section 5, we propose a discretization method for the solution
of a continuous stochastic Stackelberg–Nash–Cournot equilibrium problem. Finally,
in Section 6, we give a brief discussion of a two leaders’ stochastic Stackelberg–
Nash–Cournot equilibrium problem and show the existence of an equilibrium under
some circumstances.

2. Mathematical descriptions of the problem

We describe the market demand with the inverse demand function pðq, �ð!ÞÞ, where q is
the total quantity of supply to the market, �: � ! R is a random shock with known
distribution, and pðq, �ð!ÞÞ is the market price. As we discussed in the preceding section,
the random shock reflects the uncertainty of demand at the time when the leader makes
a decision.

Let x denote the decision variable of the leader, that is, the quantity supplied by the
leader to the market. Let qi, i ¼ 1, . . . ,N, denote the decision variable of follower i, that
is, the quantity supplied by firm i to the market.

Followers’ Decision Problems Consider a particular future demand scenario pð�, �ð!ÞÞ.
Assume that the leader’s supply is x and the aggregate supplies of followers
except i is

PN
k¼1, k 6¼i qk. If firm i’s supply is qi, then the market price in this demand

scenario is pðxþ
PN

i¼1 qi, �ð!ÞÞ. The total revenue of firm i is qipðxþ
PN

i¼1 qi, �ð!ÞÞ.

Suppose the total cost for firm i to produce qi is ci(qi). Then firm i’s profit can be
formulated as

fiðqiÞ ¼ qip xþ
XN
i¼1

qi, �ð!Þ

 !
� ciðqiÞ:

Since the market price depends on qi (in other words, firm i has market power), firm i
would like to choose an optimal qi in order to maximize his profit fi(qi). Therefore
follower i’s profit maximization problem can be written as

max
qi�0

fiðqiÞ � qip xþ qi þ
XN

k¼1, k 6¼i

qk, �ð!Þ

 !
� ciðqiÞ: ð1Þ

In choosing an optimal decision, firm i holds the other firms’ supplies as constant.
A Nash–Cournot equilibrium among followers in demand scenario pð�, �ð!ÞÞ is a situa-
tion where no firm can improve its profit by unilaterally changing its supply.
We denote such an equilibrium by ðq1ðx, �ð!ÞÞ, . . . , qNðx, �ð!ÞÞÞ where qiðx, �ð!ÞÞ is the
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global optimal solution of (1). The existence and uniqueness of such an equilibrium will
be dealt with in Proposition 2.6.

Leader’s Decision Problem We suppose that the leader knows how the followers will
choose their outputs (as described in (1)) in each demand scenario but he does not know
which demand scenario will occur in future at the time when he makes a decision on
output. What the leader can do at best is to maximize the expected profit based on
his knowledge on the market demand distribution and the followers’ reaction to his
supply. Therefore we can formulate the leader’s decision problem as follows:

max
x�0

f0ðxÞ � E! xp xþ
XN
i¼1

qiðx, �ð!ÞÞ, �ð!Þ

 !" #
� c0ðxÞ ð2Þ

where E� denotes the mathematical expectation. Note that unlike followers’ objective
functions, the leader’s objective function is not necessarily concave. Hence from here
on, the ‘maximum’ of the leader’s expected profit refers to the global maximum of (2).

Stochastic Stackelberg–Nash–Cournot Equilibrium We investigate a situation where
the leader maximizes the expected profit while the followers reach a Nash–Cournot
equilibrium in every demand scenario.

Definition 2.1 A Stackelberg–Nash–Cournot Equilibrium is an Nþ 1 dimensional
vector ðx�, q1ðx

�, �Þ, . . . , qNðx
�, �ÞÞ such that

f0ðx
�Þ ¼ max

x�0
E! xp xþ

XN
i¼1

qiðx, �ð!ÞÞ, �ð!Þ

 !" #
� c0ðxÞ ð3Þ

where

qiðx, �ð!ÞÞ 2 argmax
qi�0

qip xþ qi þ
XN

k¼1, k 6¼i

qkðx, �ð!ÞÞ, �ð!Þ

 !
� ciðqiÞ

 !
: ð4Þ

For the simplicity of notation in some cases, let

Qðx, �ð!ÞÞ �
XN
i¼1

qiðx, �ð!ÞÞ

and

Q�iðx, �ð!ÞÞ �
XN

k¼1, k 6¼i

qiðx, �ð!ÞÞ:

In this article, we are interested in two particular cases depending on the distribution of
the random shock �ð!Þ.
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Case 1 �ð!Þ has a finite discrete distribution, that is,

probð�ð!Þ ¼ tlÞ ¼ �l > 0, l ¼ 1, . . . ,L,
XL
l¼1

�l ¼ 1:

Consequently the Stackelberg–Nash–Cournot Equilibrium problem becomes

max f0ðxÞ �
XL
l¼1

�lxp xþQðx, tlÞ, tlð Þ � c0ðxÞ

(DSSNCE) s:t: x � 0,

qiðx, tlÞ 2 argmaxqi�0 qip xþ qi þQ�iðx, tlÞ, tlð Þ � ciðqiÞð Þ,

l ¼ 1, . . . ,L:

ð5Þ

De Wolf and Smeers [5] discussed this model and applied it to study the European gas
market. In this case the future demand has L scenarios, each of which has a positive
probability. The model is an extension of the Stackelberg–Nash–Cournot equilibrium
model, considered by Sherali et al. [26].

Case 2 �ð!Þ has a continuous distribution with a density function �(t). The support
set of � is [0,T ]. Consequently the Stackelberg–Nash–Cournot Equilibrium problem
becomes

max f0ðxÞ �

Z T

0

xp xþQðx, tÞ, tð Þ�ðtÞ dt� c0ðxÞ

(CSSNCE) s:t: x � 0,

qiðx, tÞ 2 argmaxqi�0 qip xþ qi þQ�iðx, tÞ, tð Þ � ciðqiÞð Þ,

t 2 ½0,T �:

ð6Þ

This is a generalization of the DSSNCE model. It is of both theoretical and practical
interests to discuss this model.

We need some assumptions for the study of both the models. Let T denote the set
[0,T ] in CSSNCE model and ft1, . . . , tLg in DSSNCE model.

Assumption 2.2 For i ¼ 0, 1, . . . ,N, ci(q) is twice continuously differentiable, c0iðqÞ � 0
and c00i ðqÞ � 0 for q� 0.

This assumption is standard, it requires that the cost function of each firm be convex
and sufficiently smooth. See [5,26].

Assumption 2.3 The inverse demand function p(q, t) satisfies the following:

(i) p(q, t) is twice continuously differentiable in q and p0qðq, tÞ < 0 for q� 0 and t 2 T ;
(ii) p0qðq, tÞ þ qp00qqðq, tÞ � 0, for q� 0 and t 2 T .

This assumption is similar to an assumption used by Sherali et al. [26] and De Wolf
and Smeers [5]. Consider a monopoly market with an extraneous supply K� 0.
If the monopoly’s output is q, then its revenue at demand scenario �ð!Þ ¼ t is
qðpðqþ K , tÞ. The marginal revenue is pðqþ K , tÞ þ qp0qðqþ K , tÞ. The rate of change
of this marginal revenue with respect to the increase in the extraneous supply K is
p0qðqþ K , tÞ þ qp00qqðqþ K , tÞ. Assumption 2.3 (ii) implies that this rate is not positive

An MPCC approach for stochastic equilibrium 31



when K¼ 0 for any t 2 T . In other words, any extraneous supply will potentially
reduce the monopoly’s marginal revenue in any demand scenario. See [26] for a similar
explanation for a deterministic leader-followers’ market.

PROPOSITION 2.4 Under Assumption 2.3,

(i) for fixed K� 0,

p0qðqþ K , tÞ þ qp00qqðqþ K , tÞ � 0, for q � 0, t 2 T ; ð7Þ

(ii) qpðqþ K , tÞ is strictly concave in q for q� 0, t 2 T .

Proof A proof in the deterministic case (without parameter t) was given in [26].
The proof with t is similar. We include it here for completeness.

Part (i) Let t 2 T . If p00qqðqþ K , tÞ � 0, then

p0qðqþ K , tÞ þ qp00qqðqþ K , tÞ � p0qðqþ K , tÞ � 0:

If p00qqðqþ K , tÞ � 0, then by Assumption 2.3 (ii),

p0qðqþ K , tÞ þ qp00qqðqþ K , tÞ � p0qðqþ K , tÞ þ ðqþ KÞp00qqðqþ K , tÞ � 0:

Part (ii) Let Rðq, tÞ ¼ qpðqþ K , tÞ. Then

R00
qqðq, tÞ ¼ 2p0qðqþ K , tÞ þ qp00qqðqþ K , tÞ:

The conclusion follows straightforwardly from Part (i). This completes the proof. g

In the subsequent discussion, we will quote Proposition 2.4 particularly in
Propositions 2.6 and 3.3. Note that the strict concavity of qpðqþ x, tÞ does not
ensure the boundedness of its maximum. In order to discuss the existence of a
Stackelberg–Nash–Cournot Equilibrium, we need an extra assumption as follows.

Assumption 2.5 There exists qu, such that

c0iðqÞ � pðq, tÞ, for q � qu, t 2 T , i ¼ 0, 1, . . . ,N:

The assumption implies that even firm i was a monopoly, its marginal cost at output
level qu or above would exceed any possible market price. Therefore, none of the
firms would wish to supply more than qu. See a similar assumption in [5,26] and a
discussion in [26].

PROPOSITION 2.6 Under Assumptions 2.2, 2.3 and 2.5,

(i) f0ðxÞ is non-negative and is bounded for x� 0;
(ii) for fixed x� 0 and t 2 T , there exists a unique Nash–Cournot equilibrium among

followers, ðq1ðx, tÞ, . . . , qNðx, tÞÞ, which solves (4); moreover, qiðx, tÞ 2 ½0, quÞ, for
i ¼ 1, . . . ,N.
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Proof
Part (i) We only prove for T ¼ ½0,T �. The discrete distribution case can be analyzed
in a similar way. Since p(q, t) is strictly decreasing in q and Qðx, tÞ � 0, then

f0ðxÞ ¼ x

Z T

0

p xþQðx, tÞ, tð Þ�ðtÞ dt� c0ðxÞ

� x

Z T

0

p x, tð Þ�ðtÞ dt� c0ðxÞ

¼ x max
t2½0,T �

pðx, tÞ � c0ðxÞ: ð8Þ

Let

~ff ðx, tÞ � xpðx, tÞ � c0ðxÞ

and

~ff ðxÞ ¼ max
t2½0,T �

~ff ðx, tÞ:

It is well-known that ~ff is Lipschitz continuous and

@ ~ff ðxÞ ¼
[

t2T ðxÞ

fx
0ðx, tÞ

where

T ðxÞ ¼ t 2 ½0,T �: ~ff ðx, tÞ ¼ ~ff ðxÞ
n o

and @ ~ff ðxÞ is the Clarke subdifferential [4]. See [4, Theorem 2.8.6]. By Assumptions 2.2
and 2.3, we can easily show that ~ff ðx, tÞ is a concave function in x. Moreover, for x � qu,
by Assumption 2.5

~ff 0
x ðx, tÞ ¼ pðx, tÞ þ xp0qðx, tÞ � c00ðxÞ � xp0qðx, tÞ < 0:

This shows that

� < 0; for � 2 @ ~ff ðxÞ:

The strict inequality is due to the compactness of @ ~ff ðxÞ. Therefore, ~ff ðxÞ achieves its
maximum on ½0, quÞ. Using (8), we have

sup
x�0

f0ðxÞ � max
x�0

~ff ðxÞ < þ1:
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Part (ii) Let t and x be fixed. For given qk, k ¼ 1, . . . ,N, k 6¼ i, it follows from
Proposition 2.4 (i) that firm i’s objective function fi(qi) is strictly concave. By
[25, Theorems 1 and 2], there exists a unique Nash–Cournot equilibrium ðq1ðx, tÞ, . . . ,
qNðx, tÞÞ which solves (4).

To prove that qiðx, tÞ 2 ½0, quÞ, we note that firm i’s objective function can be
written as

fiðqiÞ � qipðxþ qi þQ�i, tÞ � ciðqiÞ:

Since fi is a strictly concave and

f 0
i ðqiÞ ¼ pðxþ qi þQ�i, tÞ þ qip

0
qðxþ qi þQ�i, tÞ � c0iðqiÞ

� pðqi,TÞ þ qip
0
qðxþ qi þQ�i, tÞ � c0iðqiÞ

� qip
0
qðqi þQ�i, tÞ

< 0

for qi � qu, then fi achieves maximum on ½0, quÞ. g

3. A nonsmooth equation approach for the followers’ equilibrium

In this section we discuss the properties of the followers’ Nash–Cournot equilibrium
and the existence of the Stochastic Stackelberg–Nash–Cournot equilibria.

3.1 Reformulation of the followers’ Nash–Cournot equilibrium problem

Our first step is to reformulate the followers’ Nash–Cournot equilibrium as a nonlinear
complementarity problem. Consider a demand scenario where the random shock
�ð!Þ ¼ t, t 2 T and the leader supply is x. We can characterize the followers’ Nash–
Cournot equilibrium problem by considering the Karush–Kuhn–Tucker conditions
for each follower. For t 2 T and i ¼ 1, . . . ,N,

pðxþQ, tÞ þ qip
0
qðxþQ, tÞ � c0iðqiÞ þ �i ¼ 0,

�i � 0, qi � 0, �iqi ¼ 0,

where Q ¼
PN

i¼1 qi. This is a parameterized N-dimensional nonlinear complementarity
problem where both x and t become parameters. Let q ¼ ðq1, . . . , qNÞ

T , e ¼ ð1, . . . , 1ÞT ,
cðqÞ ¼ ðc1ðqÞ, . . . , cNðqÞÞ

T . Let

Gðq, x, tÞ � �pðxþ qTe, tÞe� p0qðxþ qTe, tÞqþ rcðqÞ:

Then the complementarity problem above can be rewritten as

0 � q ? Gðq, x, tÞ � 0: ð9Þ
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The reformulation of an oligopoly game as a complementarity problem is well-known.
See for example [7]. Using (9), we can rewrite the stochastic Stackelberg–Nash–Cournot
equilibrium problem as a Stochastic Mathematical Program with Complementarity
Constraints (SMPCC):

max E! xp xþ eTqðx, �ð!ÞÞ, �ð!Þ
� �� �

� c0ðxÞ

s.t. x � 0,

qðx, �ð!ÞÞ solves 0 � q ? Gðq, x, �ð!ÞÞ � 0, ! 2 �:

ð10Þ

There have been a few references in the literature related to SMPCC. Patriksson
and Wynter [22] investigated a broad class of stochastic mathematical program with
equilibrium constraints. Christiansen et al. [3] discussed a stochastic bilevel program-
ming model for a structural optimization problem where the structural equilibrium
may be subject to the random properties of materials and randomly varying conditions
such as weather and external forces [3].

Recently, Lin et al. [16] considered a wait-and-see model for a lunch vendor problem
in which a vendor buys lunches from a lunch production company and sells them
to customers. Both the company and the vendor face uncertain demands. However
the company needs to make a decision on sale price and quantity at once before the
realization of the market demand while the vendor can make a decision after the
observation on market demand. They modeled the problem as a stochastic mathe-
matical program with equilibrium constraints. Lin and Fukushima [17] also con-
sidered a here-and-now model for the same problem in which both the vendor and
the company need to make a decision before the realization of market demand and
modeled it as a stochastic mathematical program with equilibrium constraints
and recourse.

It is important to note that although program (10) is a stochastic program, it cannot
be simply included in a category of standard well-discussed stochastic programs, such
as distribution problem or a two-stage recourse problem. Note also that the distribution
of the random shock in demand is assumed known and therefore there is no need
to take samples on the uncertainty. However, it will be very interesting and practical
to consider the case of the distribution of uncertain factors are not precisely known
and consequently the sampling may be needed. See an excellent discussion in this
regard by Kleywegt and Shapiro [15].

In what follows, we discuss the followers’ Cournot-Nash equilibrium. It is well-
known that the complementarity problem (9) can be reformulated as a system of
nonsmooth equations

Fðq, x, tÞ � minðGðq, x, tÞ, qÞ ¼ 0: ð11Þ

where ‘min’ is taken componentwise. There are two ways to look at (11). One is to treat
x and t as variables and hence (11) is an underdetermined system of equations.
The other is to treat x and t as parameters and consequently (11) as a parameterized
nonsmooth system of equations. We shall not distinguish them because in both cases
we shall solve q from (11) as a function of x and t.

Our idea is to investigate the dependence of Cournot-Nash equilibrium qðx, tÞ on x
and t by looking into the implicit solution qðx, tÞ of (11). Note that Sherali et al. [26]
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used a quadratic programming approach to investigate qðx, tÞ. We shall show that our
approach, by taking advantage of the recent development of nonsmooth equations, is
better integrated into recently developed powerful numerical methods, which can be
readily used to solve the SSNCE problems.

Note that there are many elementary functions known as NCP functions which can
be used to reformulate (9) as a system of equations. See [12,28]. Regardless of the choice
of NCP functions, the solution of the reformulated system remains the same and it
is the Nash–Cournot equilibrium of the followers. However, we shall see later that
the derivative of the solution with respect to x and t depends on the reformulation
(the choice of NCP functions) and the reformulation (11) seemingly gives us the desired
estimation of these derivatives (subdifferentials).

3.2 Preliminaries in nonsmooth equations

The discussion on (11) will involve some basic elements in nonsmooth analysis particu-
larly nonsmooth equations. In this subsection, we make some preparations.

Let H:Rn
! R

m be a Lipschitz function. The Clarke generalized Jacobian [4] of H at
x 2 R

n is defined as

@HðxÞ � conv
�
lim
y2DH
y!x

rHðyÞ
�
,

where ‘conv’ denotes the convex hull of a set and DH denotes the set of points in a
neighborhood of x at which H is Frechét differentiable. When m¼ 1 or n¼ 1, @H is
also called Clarke subdifferential. When n¼m, the Clarke Jacobian @HðxÞ is said to
be non-singular if every matrix in @HðxÞ is non-singular.

Let � ¼ diagð�1, . . . , �NÞ 2 R
N�N denote the diagonal matrix with the (i, i)th entry

being �i, for i ¼ 1, . . . ,N. Let I denote the identity matrix in R
N�N . It is easy to

verify that the function F defined by (11) is Lipschitz and the Clarke generalized
Jacobian of F in ðq, x, tÞ can be expressed as

@Fðq, x, tÞ ¼ ðI ��,�Þ
I

rGðq, x, tÞ

� �
: �i 2 ½0, 1�, i ¼ 1, . . . ,N

	 

: ð12Þ

Moreover @F ¼ @F1 � � � � � FN where @Fi denote the Clarke subdifferential of the ith
component function Fi.

LEMMA 3.1 Suppose that M 2 R
N�N is a positive definite matrix. Then there exists

a constant C>0 such that

kððI ��Þ þ�MÞ
�1
k � C, for � 2 diagð½0, 1�, . . . , ½0, 1�Þ:

Here and later on k � k denotes the 2-norm of a matrix and a vector.

Proof The nonsingularity of ðI ��Þ þ�M follows from [29, Theorem 9]. The rest
follows from the compactness of the set of matrices diagð½0, 1�, . . . , ½0, 1�Þ. g

In order to discuss the solution qðx, tÞ of (11), we need the following results which
deal with the implicit function of nonsmooth equations.
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LEMMA 3.2 Consider an underdetermined system of nonsmooth equations

Hðy, zÞ ¼ 0,

where H:Rn
�R

m
! R

n is locally Lipschitz. Let ð�yy, �zzÞ 2 R
n
�R

m be such that
Hð�yy, �zzÞ ¼ 0. Suppose @yHð�yy, �zzÞ is nonsingular. Then

(i) there exist neighborhoods Z of �zz, Y of �yy and a locally Lipschitz function y:Z ! Y ,
such that yð�zzÞ ¼ �yy and, for every z 2 Z, y ¼ yðzÞ is the unique solution of the
problem Hðy, zÞ ¼ 0, y 2 Y ;

(ii) for z 2 Z,

@yðzÞ 	 f�R�1U: ðR,UÞ 2 @HðyðzÞ, zÞ,R 2 R
n�n,U 2 R

n�m
g: ð13Þ

Proof Part (i) is a restate of [4, Theorem 7.1.1] and the following corollary. Part (ii)
seems known but we are not able to find a reference and hence include a proof for
completeness.

Let ẑz 2 Z. Since yð�Þ is Lipschitz on Z, yð�Þ is Frechét differentiable almost everywhere
in Z. Let Dy denote the set of points at which yð�Þ is differentiable. Then by definition

@yðẑzÞ � conv
�
lim
z2Dy

z!ẑz

ryðzÞ
�
:

Let z 2 Dy be a point nearby ẑz. If H is differentiable at the point ðyðzÞ, zÞ, then

ryðzÞ ¼ �r�1
y HðyðzÞ, zÞrzHðyðzÞ, zÞ:

If H is not differentiable at the point, then since yð�Þ is differentiable at z and

HðyðzÞ, zÞ ¼ 0,

by [4, Theorem 2.3.10],

0 2 @HðyðzÞ, zÞ
ryðzÞ

I

� �

where I 2 R
m�m is an identity matrix. Driving z to ẑz and using the upper semicontinuity

of the Clarke generalized Jacobian, we obtain (13). g

3.3 Properties of the followers’ Nash–Cournot equilibrium

We are now ready to address one of our main results in this section.

PROPOSITION 3.3 Let Fðq, x, tÞ be defined as in (11). Under Assumptions 2.2, 2.3 and 2.5,

(i) @qFðq, x, tÞ is non-singular for any q� 0 and x� 0;
(ii) for every x� 0 and t 2 T , there exists a unique q such that Fðq, x, tÞ ¼ 0;
(iii) there exists a unique Lipschitz piecewise smooth continuous function qðx, tÞ,

such that Fðqðx, tÞ,x, tÞ ¼ 0.
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Proof
Part (i) The Jacobian of G with respect to q can be worked out explicitly

rqGðq, x, tÞ ¼ �p0qðxþQ, tÞeeT � p00qqðxþQ, tÞqeT � p0qðxþQ, tÞI þ r2cðqÞ ð14Þ

where Q ¼ qTe. Since p0qðxþQ, tÞ < 0, the eigenvalues of rqGðq, x, tÞ are lower
bounded by

�ðN þ 1Þp0qðxþQ, tÞ � p00qðxþQ, tÞQþ min
i¼1,...,N

c00i ðqiÞ:

By Assumption 2.2, c00i ðqiÞ � 0. Moreover, by Assumption 2.3 (i), p(q, t) is twice continu-
ously differentiable and pðq, tÞ < 0 for q� 0, t 2 T . Since T is compact, then there exists
a constant C>0, such that

min
t2T

�p0qðxþQ, tÞ � C, for x 2 ½0, qu�, Q 2 ½0,Nqu�:

On the other hand, it follows from Proposition 2.4 (i),

�p0qðxþQ, tÞ � p00qðxþQ, tÞQ � 0:

This shows

�ðN þ 1Þp0qðxþQ, tÞ � p00qðxþQ, tÞQþ min
i¼1,...,N

c00i ðqiÞ � NC:

and subsequently, rqGðq, x, tÞ is uniformly positive definite. Since

@qFðq, x, tÞ ¼ �þ ðI ��ÞrqGðq, x, tÞ

where � 2 diagð½0, 1�, . . . , ½0, 1�Þ, by Lemma 3.1, @qFðq, x, tÞ is uniformly nonsingular.

Part (ii) The conclusion follows straightforwardly from Proposition 2.6 (ii) and the
definition of F.

Part (iii) From part (i), @qFðq, x, tÞ is non-singular. By part (ii) and Lemma 3.2 (i),
there exists a unique function qðx, tÞ, such that

Fðqðx, tÞ, x, tÞ ¼ 0

in a neighborhood of (x, t). The implicit function can be easily extended. The piecewise
smoothness follows from [24, Lemma 4.11] which was essentially due to [18,23]. g

The proposition shows that the system of nonsmooth equations (11) has a unique
solution for every t. Since (11) is equivalent to (9), this means (9) has a unique
solution. On the other hand, a followers’ Nash–Cournot equilibrium must satisfy
the complementarity system (9), which means this solution must be the followers’
Nash–Cournot equilibrium. This shows that the unique solution of (11) is the followers’
Nash–Cournot equilibrium and vice versa.

38 H. Xu



Note that the proposition also shows the Lipschitz continuity of qðx, tÞ, hence of
Q(x, t) and of f0ðxÞ. This paves the way for the investigation of derivatives of Q(x, t)
and f0 in the next proposition.

PROPOSITION 3.4 Let Fðq, x, tÞ be defined as in (11). Suppose that Assumptions 2.2, 2.3
and 2.5, are satisfied. Suppose also that

min
i¼1,...,N

c0ið0Þ < pðxþQðx, tÞ, tÞ, t 2 T : ð15Þ

Then

(i) the Clarke subdifferential of q with respect to x and t can be estimated as follows:

@xqðx, tÞ 	 �R�1U: ðR,U,VÞ 2 @Fðqðx, tÞ, x, tÞ,R 2 R
N�N ,U 2 R

N ,V 2 R
N

� �
and

@tqðx, tÞ 	 f�R�1V : ðR,U,VÞ 2 @Fðqðx, tÞ, x, tÞ,R 2 R
N�N ,U 2 R

N ,V 2 R
N
g,

where @F is given in (12);
(ii) the Clarke subdifferential of Q(x, t) with respect to x can be estimated as

@xQðx, tÞ 	 ð�1, 0Þ;

(iii) for problem (6), if p00qtðq, tÞ ¼ 0, then qiðx, tÞ is increasing in t; moreover, if there
exists a constant C>0 such that

p0qðq, tÞ þ qp00qqðq, tÞ < �C, for q � 0, and t 2 ½0,T �, ð16Þ

then the Clarke subdifferential of Q(x, t) with respect to t can be estimated as

@tQðx, tÞ 	 0,
1

C
p0tðxþQðx, tÞ, tÞ

� �
,

where C is a constant;
(iv) f0ðxÞ is locally Lipschitz continuous and

@x f0ðxÞ 	

Z T

0

pðxþQðx, tÞ, tÞ þ xp0ðxþQðx, tÞ, tÞ@xQðx, tÞð Þ�ðtÞ dt� c00ðxÞ:

Proof
Part (i) The first inclusion follows straightforwardly from Lemma 3.2 (ii).

Part (ii) Since

@xQðx, tÞ 	 eT@xqðx, tÞ, ð17Þ
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we have from Part (i)

@xQðx, tÞ 	 eT f�R�1U: ðR,U,VÞ 2 @Fðq, x, tÞg:

Since Fi is a piecewise smooth function, by the definition of Clarke subdifferential,

@Fiðq, x, tÞ ¼ f�irGiðq, x, tÞ þ ð1� �iÞeig, for i ¼ 1, . . . ,N,

where �i 2 ½0, 1�, and ei is an Nþ 2 dimensional vector with the ith component being 1
and the rest being zero, for i ¼ 1, . . . ,N. Note that �i ¼ 0 only when Fiðq, x, tÞ ¼ qi.
Let � ¼ diagð�1, . . . , �NÞ denote the N�N diagonal matrix. We first show that,
under (15), qðx, tÞ 6¼ 0.

By (15), there exists i0 2 f1, . . . ,Ng such that

c0i0 ð0Þ < pðxþQðx, tÞ, tÞ, t 2 ½0,T �: ð18Þ

By definition, qi0 ðx, tÞ solves the following

max
qi0�0

fi0ðqi0 Þ � qi0p xþ qi0 þ
XN

k¼1, k6¼i0

qkðx, tÞ, t

 !
� ci0 ðqi0 Þ:

The first-order necessary condition gives

qi0 ðx, tÞf
0

i0
ðqi0 ðx, tÞÞ ¼ qi0 ðx, tÞ½pðxþ eTqðx, tÞ, tÞ

þ p0ðxþ eTqðx, tÞ, tÞqi0 ðx, tÞ � rci0ðqi0ðx, tÞÞ� ¼ 0,

qi0ðx, tÞ � 0,

�pðxþ eTqðx, tÞ, tÞ � p0ðxþ eTqðx, tÞ, tÞqi0 ðx, tÞ þ rci0ðqi0 ðx, tÞÞ > 0:

If qi0ðx, tÞ ¼ 0, then by (18)

f 0
i0
ð0Þ ¼ pðxþQðx, tÞ, tÞ � c0i0 ð0ÞÞ > 0,

which shows the strict complementarity condition. This shows qi0 ðx, tÞ 6¼ 0.
Subsequently

Fi0 ðqðx, tÞ, x, tÞ ¼ Gi0 ðqðx, tÞ, x, tÞ ¼ 0,

hence �i0 ¼ 1 at ðqðx, tÞ, x, tÞ. This shows � is not a zero matrix under (15).
Consider an arbitrary matrix ðR,U,VÞ of @Fðqðx, tÞ, x, tÞ. We want to prove that

eT ð�R�1UÞ 2 ð0, 1Þ: ð19Þ
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If we can do so, then the conclusion follows from (17) and (19). By definition

R ¼ �rqGðq, x, tÞ þ ðI ��Þ

¼ �ð�p0qe� p00qqqÞe
T þ�ð�p0qI þ r2cðqÞÞ þ ðI ��Þ:

where rqGðq, x, tÞ is given in (14) and

U ¼ �G0
xðq, x, tÞ ¼ �ð�p0qe� p00qqÞ

where

G0
xðq, x, tÞ ¼ �p0qðxþ qTe, tÞe� p00qqðxþ qTe, tÞq:

Note that ðR,U,VÞ is an arbitrary element of the @CFðqðx, tÞ, x, tÞ, it depends on
point ðqðx, tÞ, x, tÞ. However for the simplicity of notation, instead of writing qðx, tÞ,
we write q. Similarly we write p0q and p00qq for p0qðxþ qTeÞ and p00qqðxþ qTeÞ.

Let D ¼ �ð�p0qI þ r2cðqÞÞ þ ðI ��Þ. D is an N�N diagonal matrix. It is easy to
verify that D is non-singular. Using Sherman-Morrison formula, we obtain

R�1 ¼ D�1 �
1

�
D�1�ð�p0qe� p00qqqÞe

TD�1

where

D�1 ¼ diag
1

�1ð�p0q þ c001ðq1ÞÞ þ ð1� �1Þ
, . . . ,

1

�Nð�p0q þ c00NðqNÞÞ þ ð1� �NÞ

 !

and

� ¼ 1þ �,

and

� ¼ eTD�1�ð�p0qe� p00qqqÞ ¼
XN
i¼1

�ið�p0q � p00qqqiÞ

�ið�p0q þ c00i ðqiÞÞ þ ð1� �iÞ
:

Note that �>0. This is obvious when p00qq < 0. When p00qq � 0,

� ¼
XN
i¼1

�ið�p0q � p00qqqiÞ

�ið�p0q þ c00i ðqiÞÞ þ ð1� �iÞ
�
XN
i¼1

�ið�p0q � p00qqQÞ

�ið�p0q þ c00i ðqiÞÞ þ ð1� �iÞ
> 0:

The last inequality is due to Proposition 2.4 and the fact that � is not a zero matrix.
On the other hand, after a few calculations, we obtain

�eTR�1U ¼ �� þ
1

�
�2 ¼ �

�

1þ �
2 ð�1, 0Þ:

The conclusion follows.
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Part (iii) The proof is similar to that of Part (ii). Since p00q, t ¼ 0,

V ¼ �rtGðq, x, tÞ ¼ �ð�p0teÞ

and

�eTR�1V ¼
1

1þ �
p0te

TD�1�e:

By (16),

� ¼
XN
i¼1

�;i ð�p0q � p00qqqiÞ

�ið�p0q þ c00i ðqiÞÞ þ ð1� �iÞ

� C
XN
i¼1

�i
�ið�p0q þ c00i ðqiÞÞ þ ð1� �iÞ

¼ CeTD�1�e:

Therefore

�eTR�1U �
p0te

TD�1�e

1þ CeTD�1�e
�

p0t
C
:

The conclusion follows.

Part (vi) From Part (iii), we know that @xQðx, tÞ is uniformly bounded with respect to
x and t. Therefore Q(x, t) is uniformly Lipschitz continuous in x and f0 is locally
Lipschitz. The rest follows from [4, Theorem 2.7.2]. g

Note that Part (ii) of the proposition indicates that a unit increase of the leader’s
supply will result in a less than one unit decrease by the aggregate supply of followers’
in each demand scenario. See a similar observation in [5,26]. Note also that assumption
(16) can be replaced by

p0qðq, tÞ þ qp00qqðq, tÞ < 0, for q � 0, and t 2 ½0,T �, ð20Þ

in that p is twice continuously differentiable and xþQðx, tÞ 2 ½0, ðN þ 1Þqu� and
t 2 ½0,T �, (20) implies (16). Finally, we note that since qðx, tÞ is piecewise smooth, a
tighter estimation of the subdifferential (or derivative) can be possibly obtained with
similar analysis to [24]. In extreme case, if for t 2 ½0,T �,

max
i¼1, ���,N

c0ið0Þ < pðxþQðx, tÞ, tÞ, ð21Þ

then we can prove that (9) satisfies strict complementarity condition and subsequently
Fðq, x, tÞ, qðx, tÞ, Q(x, t) and f0ðxÞ are continuously differentiable at ðqðx, tÞ, x, tÞ.
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3.4 Existence of the stochastic Stackelberg–Nash–Cournot equilibria

With Propositions 3.3 and 3.4, we are able to show the existence of the Stochastic
Stackelberg–Nash–Cournot Equilibria.

THEOREM 3.5 A stochastic Stackelberg–Nash–Cournot equilibrium ðx�, q1ðx
�, �Þ, . . . ,

qNðx
�, �ÞÞ exists under Assumptions 2.2, 2.3 and 2.5 where x� 2 ½0, quÞ.

Proof We only consider (6). The discrete case can be dealt with similarly.
By Proposition 3.3 (iii), Q(x, t) Lipschitz and hence f0ðxÞ is also Lipschitz.
By Proposition 3.4 (vi),

@x f0ðxÞ 	

Z T

0

pðxþQðx, tÞ, tÞ þ xp0ðxþQðx, tÞÞð1þ @xQðx, tÞÞð Þ�ðtÞ dt� c00ðxÞ: ð22Þ

For x � qu,

Z T

0

pðxþQðx, tÞ, tÞ�ðtÞ dt� c00ðxÞ �

Z T

0

pðx, tÞ�ðtÞ dt� c00ðxÞ

� max
t2½0,T �

ðpðx, tÞ � c00ðxÞÞ

< 0: ð23Þ

The last inequality is due to Assumption 2.5. Note also that by Proposition 3.4 (ii),
@xQðx, tÞ 	 ð�1, 0Þ. Combining this with (22) and (23), we have

@x f0ðxÞ 	 ð�1, 0Þ

for x � qu. This shows f0ðxÞ strictly decreasing for x � qu. Thus there exists x� 2 ½0, quÞ
such that f0 achieves maximum at x*.

Given x*, it follows from Proposition 2.4 that fi(qi) is strictly concave for
i ¼ 1, . . . ,N. By [19, Theorems 1 and 2], there is a unique Cournot equilibrium
q�ðx�, tÞ among followers. g

Note that although, as we commented following Assumption 2.5, the leader would
not wish to supply more than qu under the assumption, it seems technically difficult
to prove x� < qu due to the possible concavity of f0ðxÞ. The nonconcavity problem
may also contribute to possible multiplicity of stochastic Stackelberg–Nash–Cournot
equilibria.

4. A smoothing MPCC approach for discrete SSNCE problem

In this section, we discuss the numerical methods for the solution of DSSNCE model
(5). De Wolf and Smeers [5] considered a two-stage method, originally proposed by
Sherali et al. [26] for solving (5). The basic idea is to calculate f0ðxÞ at a set of points
spread over the interval ½0, qu� and to linearize Qðx, tlÞ over each interval of two adjacent
points. The leader’s objective function is then concave over the interval and a maximizer
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is found and added to the set of grids. The approximate maximum is chosen from the
calculated values of f0 on the points. Error bounds are estimated at each step.

In this section, we propose a new approach for solving DSSNCE problem (5). Our
idea is to transform the DSSNCE problem into an MPCC and then solve the latter
with available numerical methods. Following the discussion in the preceding
section, (5) can be transformed into the following program

max
PL

l¼1 �lxp xþ eTqðx, tlÞ, tl
� �

� c0ðxÞ

s.t. x � 0,

qðx, tlÞ solves 0 � q ? Gðq, x, tlÞ � 0, l ¼ 1, . . . ,L,

where �l > 0, l ¼ 1, . . . ,L,
PL

l¼1 �l ¼ 1. It is not difficult to see that the program above
is essentially an implicit deterministic mathematical program with complementarity
constraints. The implicity is in the sense that the followers’ decision variables qðx, tlÞ
are expressed as an implicit function of the leader’s decision variable x. Unless
qðx, tlÞ can be explicitly obtained in terms of x, this form disadvantages the use of
existing numerical methods for MPCC. Therefore, for the sake of numerical solution
of the program, we reformulate it by changing variables as follows:

max
PL

l¼1 �lxp xþ eTql, tl
� �

� c0ðxÞ

s.t. x � 0,

0 � ql ? Gðql , x, tlÞ � 0, l ¼ 1, . . . ,L:

ð24Þ

In this form, the leader’s decision variable and the followers’ decision variables are
treated equally in the constraints. The problem (24) is a special MPCC and can be
solved existing numerical methods for general MPCC, such as the smoothing method
of Facchinei et al. [6] and the smooth SQP method of Jiang and Ralph [12]. In what
follows, we will use the smoothing method by Facchinei et al. [6] to deal with (24)
with a slightly different treatment of the complementarity problem. Instead of discuss-
ing algorithmic details, our focus here is to obtain a bound on the difference between
the optimum of the original problem and that of a smoothing program.

Using the ‘min’ function as we discussed in the preceding section, we can rewrite (24)
as the following nonsmooth equality constrained program

max
PL

l¼1 �lxp xþ eTql, tl
� �

� c0ðxÞ

s.t. x � 0,

minðql,Gðql , x, tlÞÞ ¼ 0, l ¼ 1, . . . ,L:

ð25Þ

To tackle the nonsmoothness in the equality constraints, we consider the following
smoothing scheme

max
PL

l¼1 �lxp xþ eTql, tl
� �

� c0ðxÞ

s.t. x � 0,

�ðql ,x, tl ,�Þ ¼ 0, l ¼ 1, . . . ,L,

ð26Þ
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where

�ðql, x, tl,�Þ �

 ðql1,G1ðql, x, tlÞ,�Þ

..

.

 ðqlN ,GNðql, x, tlÞ,�Þ

0
B@

1
CA ð27Þ

and

 ða, b, cÞ ¼ �
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða� bÞ2 þ c2

q
� ðaþ bÞ

� �
, ð28Þ

and qli denotes the ith component of vector ql. Our idea is to solve (25) by solving
the smoothed program (26). Note that the smoothing methods for solving general
MPCC problems have been well-discussed by Facchinei et al. [6] and Jiang and
Ralph [12]. The  function (strictly speaking �2 ) was first considered by Kanzow
and used in [6,12] for dealing with general MPCCs.  is a smoothing of the ‘min’
function minða, bÞ in that  2 C1 for c 6¼ 0 and

 ða, b, 0Þ ¼ minða, bÞ:

It is well-known that  is globally Lipschitz and at ða, b, 0Þ, it satisfies the strong
Jacobian consistency [2] in the sense of the following relationship between the Clarke
generalized Jacobian of  at ða, b, 0Þ and the Clarke generalized Jacobian of 	 at (a, b)

�a, b@ ða, b, 0Þ ¼ @minða, bÞ:

Therefore

�ðql, x, tl, 0Þ ¼ Fðql, x, tlÞ

and by the strong Jacobian consistency of  , it is easy to verify

�ql
@�ðql, x, tl, 0Þ ¼ @ql Fðql, x, tlÞ ð29Þ

where

�ql
@�ðql, x, tl, 0Þ ¼ R: ðR,U,VÞ 2 @Fðql , x, tÞ,R 2 R

N�N ,U 2 R
N ,V 2 R

N
� �

and

@ql Fðql, x, tlÞ ¼ I ��þ�rql
Gðqlðx, tlÞ, x, tlÞ: � 2 diagð½0, 1�, . . . , ½0, 1�Þ

� �
:

LEMMA 4.1 Under Assumptions 2.2, 2.3 and 2.5, there exists �0 > 0 and a unique
implicit function qlðx,�Þ such that qlðx, 0Þ ¼ qlðxÞ,

�ðqlðx,�Þ, x, tl,�Þ ¼ 0, for � 2 ½0,�0�,
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and qlðx,�Þ is continuously differentiable for � 6¼ 0. Moreover there exists a constant
C>0, such that

kqlðx,�Þ � qlðxÞk �
ffiffiffiffi
N

p
C�, for � 2 ½0,�0�: ð30Þ

Proof The first part of the lemma is well-known. See [6,12,13] for a similar claim.
We only prove (30). It is easy to check that

rql
�ðql, x, tl,�Þ 2 @ql Fðql ,x, tlÞ, 8� > 0:

By Proposition 3.3 (i), @ql Fðql, x, tlÞ is uniformly nonsingular, that is, there exist a
constant C>0 such that

max
V2@ql Fðql , x, tlÞ

kV�1k � C:

Therefore

krql
�ðql, x, tl,�Þ

�1
k � max

V2@ql Fðql , x, tlÞ
kV�1k � C:

For � 6¼ 0,

r��ðqlðx,�Þ, x, tl,�Þ ¼

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðql1ðx,�Þ � G1ðqðx,�Þ, x, tlÞÞ

2
þ �2

q
..
.

�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðqlNðx,�Þ � GNðqðx,�Þ, x, tlÞÞ

2
þ �2

q

0
BBBBBBBB@

1
CCCCCCCCA

2

ð0, 1Þ

..

.

0, 1ð Þ,

0
BBB@

1
CCCA:

For � ¼ 0,

@��ðqlðx, 0Þ, x, tl , 0Þ ¼

½0, 1�

..

.

0, 1½ �

0
BBB@

1
CCCA:

Since qlðx,�Þ is continuously differentiable for � > 0, then

qlðx,�Þ � qlðx, 0Þ ¼ �

Z 1

0

r�qðx,�
Þ d
:
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Therefore for � 2 ½0,�0�,

kqlðx,�Þ � qlðx, 0Þk � �

Z 1

0

kr�qðx,�
Þkd


¼ �

Z 1

0

k�rql
�ðqlðx,�
Þ, x, tl,�
Þ

�1
r��ðqlðx,�
Þ, x, tl ,�
Þkd


�
ffiffiffiffi
N

p
C�:

This completes the proof. g

Lemma 4.1 shows that for � sufficiently small and x� 0, the equality constraints
of program (26) define a unique solution ðq1ðx,�Þ, . . . , qLðx, 
ÞÞ. It also gives a bound
on the difference between qlðx,�Þ and qlðx, 0Þ, which will be used in the next theorem.
With a similar analysis to the proof of Theorem 3.5, we can show that the smoothed
program (26) is well defined in the sense that its global maximum is achievable.

Let f�kg be a sequence such that �k # 0 as k ! 1. Let fðxk, qlðxk,�kÞl¼1,...,LÞg be a
sequence of solutions of (26) corresponding to � ¼ �k. Let

f �0 ðxÞ �
XL
l¼1

�lxp xþ eTqlðx,�Þ, tl
� �

� c0ðxÞ: ð31Þ

THEOREM 4.2 Under Assumptions 2.2, 2.3 and 2.5,

(i) any accumulation point of fðxk, qlðxk,�kÞl¼1,...,LÞg is a solution of (24);
(ii) there exists a constant ĈC > 0 such that

j f �k

0 ðxkÞ � f �
0 j � ĈC�k,

where f �
0 denote the global maximum of (24).

Proof
Part (i) First, we prove that f �k

0 ðxÞ achieves its maximum on ½0, quÞ. Let x� 0,
� 2 ½0,�0� where �0 is given in Lemma 4.1. Let qlðx,�Þ be the solution of
�ðql, x, tl,�Þ ¼ 0. Then

f �0 ðxÞ ¼
XL
l¼1

�lxp xþQlðx,�Þ, tlð Þ � c0ðxÞ,

where Qlðx,�Þ ¼ eTqlðx,�Þ. Moreover

ð f �0 Þ
0
ðxÞ ¼

XL
l¼1

�lp xþQlðx,�Þ, tlð Þ � c00ðxÞ

þ
XL
l¼1

�lxp
0
q xþQlðx,�Þ, tlð Þ 1þ ðQlÞ

0
xðx,�Þ

� �
:
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By the classical implicit function theorem and the upper semicontinuity of the Clarke
generalized Jacobian, we obtain

ðQlÞ
0
xðx,�Þ ¼ �eTrql

�ðql , x, tl ,�Þ
�1
rx�ðql ,x, tl ,�Þ

2 �eTrql
�ðql, x, tl, 0Þ

�1
rx�ðql , x, tl , 0Þ þ �ð�1, 1Þ, ð32Þ

where � depends on � and it can be arbitrarily small so long as � is sufficiently small.
Combining (29) and (32), and using Part (ii) of Proposition 3.4, we obtain

ðQlÞ
0
xðx,�Þ ¼ ð�1, 0Þ þ �ð�1, 1Þ:

Note that for x � qu, by Assumption 2.5,

XL
l¼1

�lp xþQlðx,�Þ, tlð Þ � c00ðxÞ � max
l¼1,...,L

p x, tlð Þ � c00ðxÞ < 0:

This shows for �0 sufficiently small

ð f �0 Þ
0
ðxÞ < 0, for x � qu, � 2 ½0,�0�:

Therefore f �0 ðxÞ achieves its maximum on ½0, quÞ for � 2 ½0,�0�.
Since xk 2 ½0, qu�, the sequence fðxk, qlðxk,�kÞl¼1,...,LÞg is bounded. Let

ðx̂x, qlðx̂x, 0Þl¼1,...,LÞ be an accumulation point of the sequence. Let ðx�, qlðx
�, 0Þl¼1,...,LÞ

be a solution of (24). Then

f �k

0 ðx�Þ� f0ðx
�Þ¼

XL
l¼1

�lx
� p x�þQlðx

�,�kÞ,tlð Þ�p x�þQlðx
�,0Þ,tlð Þ½ �

¼
XL
l¼1

�lx
�p0q x�þ�kQlðx

�,�kÞð þð1��kÞQlðx
�,0Þ,tlÞðQlðx

�,�kÞ�Qlðx
�,0ÞÞ

where �k 2 ð0, 1Þ. By Lemma 4.1,

jQlðx
�,�kÞ �Qlðx

�, 0Þj ¼ kekkqlðx
�,�kÞ � qlðx

�, 0Þk � NC�k,

where C is the constant given in Lemma 4.1. Moreover since p0q is bounded, and
x� 2 ½0, qu�, then there exists ĈC > 0 such that

f �k

0 ðxkÞ � f �k

0 ðx�Þ � f0ðx
�Þ � ĈC�k: ð33Þ

Note that here ĈC does not depend on L. By taking a subsequence if necessary and
letting k ! 1, we have

f0ðx̂xÞ � f0ðx
�Þ

48 H. Xu



On the other hand, by definition

f0ðx̂xÞ � f0ðx
�Þ:

This shows

f0ðx̂xÞ ¼ f0ðx
�Þ:

Part (ii) follows straightforwardly from (33). g

Note that Lin et al . [16] recently discussed a smoothing method for a discrete stoch-
astic program with linear complementarity constraints and presented a similar analysis
on error bounds between a smoothing program and the original program. Despite the
differences of the original programs and smoothing functions, it seems that our results
are stronger in that the error bound given in Theorem 4.2 does not depend on L, and
this apparently has to do with the estimation method. See [16] for detail.

5. Discretization of the CSSNCE problem

In this section, we discuss the discretization of CSSNCE problem (6) where the random
shock in demand has a continuous distribution. In DSSNCE problem (5), there exists a
finite number of followers’ equilibria each of which corresponds to a particular demand
scenario. The problem is essentially a deterministic MPCC and can be dealt with using
available numerical methods for MPCC. In CSSNCE problem, there exists an uncoun-
table number of demand scenarios. For each x, the leader’s supply, the equilibrium
among followers can be written as qðx, �ð!ÞÞ at a demand scenario pðq, �ð!ÞÞ. Since
�ð!Þ takes value on [0,T], the equlibria qðx, �Þ : ½0,T � ! R

N forms a one-dimensional
manifold in R

N . It is evident that unless we discretize qðx, �Þ over [0,T ], we are not
able to deal with (6) with any available numerical method for MPCC.

Our idea of discretization is as follows: we choose a set of points ft0, t1, . . . , tLg on the
interval [0,T ] and calculate qðx, tiÞ for each tl, and then calculate the numerical integra-
tion of xp xþQðx, tÞ, tð Þ�ðtÞ based on its values on these points. The calculation of
qðx, tlÞ, i ¼ 0, . . . ,L and the numerical integration can be accomplished by the solution
of a single deterministic MPCC as we discussed in the preceding section for DSSNCE
problem (5).

Let T L ¼ ft0, t1, . . . , tLg and A be a numerical integration method which only require
the calculation of function values. The discretized CSSNCE program of (6) can be
written as

(DCSSNCE)

max f K
0 ðxÞ � A p xþ eTqðx, �Þ, �

� �
�ð�Þ, T L

� �
� c0ðxÞ

s.t. x � 0,

qðx, tlÞ solves 0 � q ? Gðq, x, tlÞ � 0, l 2 T L:

ð34Þ

Many numerical integration methods can be used. In this section we consider the
Trapezoidal method, where

T L ¼ ftl: t0 ¼ 0, tl ¼ tl�1 þ
T

L
, for i ¼ 1, . . . ,Lg
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and

f L
0 ðxÞ ¼

T

L

XL
l¼0

xpðxþQðx, tlÞ, tlÞ�ðtlÞ � c0ðxÞ:

The discretized DCSSNCE problem (34) becomes

max f L
0 ðxÞ �

T

L

XL
l¼0

xpðxþQðx, tlÞ, tlÞ�ðtlÞ � c0ðxÞ

s.t. x � 0,

qðx, tlÞ solves 0 � q ? Gðq, x, tlÞ � 0, l ¼ 1, . . . ,L:

ð35Þ

In what follows, we shall focus on discussing the approximation of CSSNCE problem
(6) with the program defined in (35). The fundamental issue is the uniform approxima-
tion of the objective function. Since Q(x, t) is implicitly defined, the numerical integra-
tion approximation requires the uniform approximation of Qðx, �Þ and Qxðx, �Þ.

Throughout this section, we consider a special class of demand function which
satisfies the following:

p0tðq, tÞ > 0 and p00q, tðq, tÞ ¼ 0: ð36Þ

This means the demand curves are parallel to each other under random shock. This type
of demand function was considered by Klemperer and Meyer [14] in the study of supply
function equilibria in an oligopoly market and it has been used by many others particu-
larly in modelling competitions in modern electricity markets [10]. Anderson and Xu [1]
observed that a demand function satisfying (36) can be reformulated as

pðq, �ð!ÞÞ ¼ pðqÞ þ �ð!Þ ð37Þ

after a change of random variable. Throughout this section, we assume that the market
demand function takes a form of (37) and the density function of �ð�Þ is �(t) with sup-
port set [0,T ]. We need to make some more specific assumptions on p(q).

Assumption 5.1 p(q) is twice continuously differentiable and qp(q) is strictly concave
for q� 0. Moreover there exists qu such that

c0iðqÞ � pðqÞ þ T , for q � qu, i ¼ 0, 1, . . . ,N:

Under Assumption 5.1, Assumptions 2.3 and 2.5 are satisfied. Also since qp(q) is twice
continuously differentiable, the strict concavity of qp(q) in assumption implies the
strong concavity of qp(q) over ½0, qu�.

THEOREM 5.2 Let f L
0 be defined as in (35). Suppose �(t) is continuously differenti-

able and

Z T

0

j�0ðtÞj dt < þ1:
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Then under Assumptions 2.2 and 5.1, there exists a constant ~CC > 0 such that

f L
0 ðxÞ � f0ðxÞ



 

 � ~CCT

L
: ð38Þ

Proof By definition

f0ðxÞ � f L
0 ðxÞ ¼

XL
l¼1

Z tl

tl�1

x½ðpðxþQðx, tÞÞ þ tÞ�ðtÞ � ðpðxþQðx, tlÞÞ þ tlÞ�ðtlÞ� dt:

Let

�ðx, tÞ ¼ ðpðxþQðx, tÞÞ þ tÞ�ðtÞ � ðpðxþQðx, tlÞÞ þ tlÞ�ðtlÞ, for t 2 ðtl�1, tlÞ:

We need to estimate �ðx, tÞ. Note first that the demand function pðq, tÞ ¼ pðqÞ þ t
satisfies Assumption 2.3. Moreover, p00q, tðq, tÞ ¼ 0, p0tðq, tÞ ¼ 1 and qpðq, tÞ is uniformly
strongly concave over ½0, qu�. By Part (iii) of Proposition 3.4, there exists a constant
C>0, such that

@tQðx, tÞ 	 0,
1

C

� �
:

Note also that both p(q) and p0ðqÞ are strictly decreasing. Thus for t 2 ½tl�1, tl�,

j�ðx, tÞj �
T

L
max

t2½tl�1, tl �, �2@tQðx, tÞ
ðp0ðxþQðx, tÞÞ� þ 1Þ�ðtÞ þ ðpðxþQðx, tÞÞ þ tÞ�0ðtÞ


 



<
T

L

1

C
ðjp0ððN þ 1ÞquÞj þ 1Þ max

t2½tl�1, tl �
�ðtÞ þ ðpðxÞ þ TÞ max

t2½tl�1, tl �
j�0ðtÞj

� �
:

Since both �(t) and �0ðtÞ are continuously differentiable and integrable over [0,T ], there
exists �>0 such that

T

L

XL
l¼1

max
t2½tl�1, tl �

j�ðtÞj < 1þ �

and

T

L

XL
l¼1

max
t2½tl�1, tl �

j�0ðtÞj <

Z T

0

j�0ðtÞj dtþ �:

Let

~CC ¼ qu
1

C
ðjp0ððN þ 1ÞquÞj þ 1Þð1þ �Þ þ ðpð0Þ þ TÞ

Z T

0

j�0ðtÞj dtþ �

� �� �
:

The conclusion follows. g
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The theorem shows that if the derivative of the density function �(t) is integrable
over its support, then we can obtain a uniform approximation to the program (6)
with (35). This together with the smoothing method for the discrete program discussed
in the previous section should be adequate to solve CSSNCE problem (6). We sum-
marize this in the following corollary.

COROLLARY 5.3 Suppose that CSSNCE problem in (6) is discretized through program
(34) and program (34) is solved through a smoothing program (26). Let � ¼ 1=L.
Suppose the assumptions in Theorem 5.2 are satisfied. Then

f 1=L
0 ðxLÞ � f �

0




 


 � 1

L
ðĈC þ ~CCTÞ

where xL solves (26) and f �
0 denotes the global maximum of (6).

A potential disadvantage of the proposed discretization approach is that the program
(35) is of high dimension when L is large. It is worthwhile to consider some numerical
integration method which requires a small set of T L. This is beyond the focus of this
article.

Note also that Theorem 5.2 can be generalized to the case when �(t) is finitely piece-
wise smooth and/or the support set is unbounded (although the unboundedness of
the support set is not sensible in this context). A more challenging case is that �ð!Þ is
a vector of random variables and consequently f0ðxÞ involves a multi-dimensional
integration. It would be interesting to discuss a discretization method for such a
case, although again there is no need in this context.

6. Multi-leader stochastic Stackelberg–Nash–Cournot equilibrium

In the preceding sections, we have discussed stochastic Stackelberg–Nash–Cournot
equilibria in an oligopoly market and numerical methods for the solution of a stochastic
Stackelberg–Nash–Cournot equilibrium. In this section, we present a brief discussion
on a related but slightly different problem. We assume that there are two leaders and
N followers in the market. The competition between the leader and followers remains
the same as described previously while competition between two leaders are assumed
to be of Nash–Cournot, that is, each choosing its supply by holding the others offer
as constant and the followers’ reaction as known. This discussion is inspired by a
recent paper of Pang and Fukushima [21] which presented a general description of
multi-leader–follower model. Their model is mathematically linked to quasi-variational
inequality problems and is practically linked to the competition in modern electricity
markets. See [21] for details.

Throughout this section, we use different notation for leaders. We use A and B
to denote the two leaders and x , y denote their decision variables, that is, the
supply to the market. Assume that leader B’s supply is y. Then leader A’s decision
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problem is

max fAðxÞ � x

Z T

0

p xþ yþ
XN
i¼1

qi, t

 !
�ðtÞ dt� cAðxÞ

s.t. x � 0,

qAi ðxþ y, tÞ 2 argmaxqi�0 qip xþ yþ qi þ
XN

k¼1, k 6¼i

qk, t

 !
� ciðqÞ

 !
,

t 2 T , i ¼ 1, . . . ,N,

ð39Þ

where cA denotes leader A’s cost function. In a similar manner, by assuming leader A’s
offer of x, leader B’s decision problem is

max fBðyÞ � y

Z T

0

p xþ yþ
XN
i¼1

qi, t

 !
�ðtÞ dt� cBðyÞ

s.t. y � 0,

qBi ðxþ y, tÞ 2 argmaxqi�0 qip xþ yþ qi þ
XN

k¼1, k 6¼i

qk, t

 !
� ciðqÞ

 !
,

t 2 T , i ¼ 1, . . . ,N,

ð40Þ

where cB denotes leader B’s cost function.
Note that ðqA1 ðxþ y, tÞ, . . . , qANðxþ y, tÞÞ is a Nash–Cournot equilibrium of the

followers which, leader A believes, will be reached if he supplies x and leader B’s
supply y is held constant. Similarly ðqB1 ðxþ y, tÞ, . . . , qBNðxþ y, tÞÞ is a Nash–Cournot
equilibrium of the followers which, leader B believes, will be reached if he supplies y
and leader A’s supply x is held constant. In general, when there are multiple followers’
equilibria, ðqA1 ðxþ y, tÞ, . . . , qANðxþ y, tÞÞ may differ from ðqB1 ðxþ y, tÞ, . . . , qBNðxþ y, tÞÞ.
See [21] for a general discussion. However, under our assumption in the previous
discussion on followers, it is obvious that ðqA1 ðxþ y, tÞ, . . . , qANðxþ y, tÞÞ equals
ðqB1 ðxþ y, tÞ, . . . , qBNðxþ y, tÞÞ and we denote it by ðq1ðxþ y, tÞ, . . . , qNðxþ y, tÞÞ.
We are interested in an equilibrium ðx�, y�, qðx� þ y�, �ÞÞ such that x* solves (39) and
y* solves (40).

Let

Qðxþ y, tÞ �
XN
i¼1

qiðxþ y, tÞ

In general, Qðxþ y, tÞ is not necessarily convex in x or y and henec fA(x) and fB(y)
may not be concave. As a result, two-leaders’ stochastic Stackelberg–Nash–Cournot
equilibrium may not exist.

We consider a particular case when market demand function is affine, that is,

pðq, tÞ ¼ a� bqþ t,

the cost function of follower i is quadratic, that is,

ciðqiÞ ¼ 
i þ �iqi þ
1

2
�iq

2
i , i ¼ 1, . . . ,N:
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The followers’ equilibrium problem can be simplified as

0 � q ? �� ðaþ t� bðxþ yÞÞeþ beeT þ bI þ �
� �

q
� �

� 0 ð41Þ

where, I 2 R
N�N is the identity matrix, � ¼ diagð�1, . . . , �NÞ and � ¼ ð�1, . . . ,�NÞ

T .
Our anticipation is to find an equilibrium in this relatively simple case.

PROPOSITION 6.1 If

max
i2f1,...,Ng

�i < aþ t� bðxþ yÞ, ð42Þ

then the followers have a unique equilibrium

qðxþ y, tÞ ¼ R�1 ðaþ t� bðxþ yÞÞe� �½ �: ð43Þ

where

R ¼ bI þ beeT þ �:

Proof The condition (42) implies the strict complementarity condition of the
followers’ Nash–Cournot equilibrium problem (41). It is easy to verify that the qðx, tÞ
given in (43) is the unique equilibrium solving (41). g

In order to discuss two leaders Stackelberg–Nash–Cournot equilibria, we also need
to consider specific forms of leaders’ cost functions.

Suppose that leader A’s cost function is

CAðxÞ ¼ 
A þ �Axþ
1

2
�Ax

2

and leader B’s cost function is

CBðyÞ ¼ 
B þ �Byþ
1

2
�By

2:

Then the leader A’s profit maximization problem is

max
x�0

fAðxÞ �x

Z T

0

aþ t� b xþ yþ ðaþ t� bxÞeTR�1e� eTR�1�
� �� �

�ðtÞ dt

	 


� 
A � �Ax�
1

2
�Ax

2

54 H. Xu



and leader B’s profit maximization problem is

max
y�0

fBðyÞ �y

Z T

0

aþ t� b yþ xþ ðaþ t� byÞeTR�1e� eTR�1�
� �� �

�ðtÞ dt

	 


� 
B � �By�
1

2
�By

2:

Note that

f 0
AðxÞ ¼ ð�� �AÞx� byþ aþ �� �A ¼ 0

and

f 0
B ðyÞ ¼ �bxþ ð�� �BÞyþ aþ �� �B ¼ 0

where

� ¼ �2bþ 2b2eTR�1e

and

� ¼ ð1þ beTR�1eÞ

Z T

0

t�ðtÞ dt:

It is easy to check that

eTR�1e <
1

b
:

Thus �<0 and

ð�� �AÞð�� �BÞ � b2 > 3b2:

PROPOSITION 6.2 Let

x̂x ¼
ð�A � a� �Þð�� �BÞ þ bð�B � a� �Þ

ð�� �AÞð�� �BÞ � b2

and

ŷy ¼
ð�B � a� �Þð�� �AÞ þ bð�A � a� �Þ

ð�� �BÞð�� �AÞ � b2
:
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There exists a unique Stackelberg–Nash–Cournot equilibrium ðx�, y�, qðx� þ y�, �ÞÞ where

ðx�, y�Þ ¼

ðx̂x, ŷyÞ if x̂x > 0, and ŷy > 0

0,
aþ �� �B
�B � �

� �
if x̂x � 0, and ŷy > 0

aþ �� �A
�A � �

, 0

� �
if x̂x > 0, and ŷy � 0

8>>>>>><
>>>>>>:

and

qðx� þ y�, �Þ ¼ R�1 ðaþ � � bðx� þ y�ÞÞe� �½ �:

Proof There exist three possibilities: x̂x > 0, ŷy > 0; x̂x � 0, ŷy > 0; x̂x > 0, ŷy � 0. It is easy
to verify that each case leads to a unique equilibrium as described. g

The equilibrium we obtained are based on assumptions that the demand function
is affine and the cost functions of firms are quadratic. These assumptions guarantee
the existence, uniqueness and linearity of the followers’ Nash–Cournot equilibrium as
well as the concavity of the leaders’ objective functions. It is unclear if there exist
such equilibria under general circumstances and further research in this regard will
be very interesting.
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