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Abstract. In this paper, we discuss the smoothing of an implicit
function defined by a nonsmooth underdetermined system of equa-
tions F(y, z)=0. We apply a class of parametrized smoothing meth-
ods to smooth F and investigate the limiting behavior of the implicit
function solving the smoothed equations. In particular, we discuss
the approximation of the Clarke generalized Jacobian of the implicit
function when F is piecewise smooth. As an application, we pres-
ent an analysis of the generalized Karush-Kuhn-Tucker conditions of
different forms for a piecewise-smooth equality-constrained minimiza-
tion problem.
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1. Introduction

In nonsmooth optimization, we may encounter an underdetermined
system of nonsmooth equations in the constraints of the problem

F(y, z)=0, where F : Rn ×Rm →Rn is locally Lipschitz. (1)
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For instance, in a mathematical program with equilibrium constraints
(MPEC, Refs. 1–2), a variational inequality constraint can be rewritten
as a nonsmooth system of the form (1). Similarly, in bilevel program-
ming (BP), the upper level variables are related often to the lower vari-
ables through a nonsmooth underdetermined system; see Ref. 3 and the
references therein. In MPEC, some smoothing nonlinear complementar-
ity program (NCP) functions are used to deal with the nonsmooth under-
determined constraints; see Ref. 4 and the references therein, which show
the potential of smoothing techniques in dealing with nonsmooth equality
constraints in MPEC.

In this paper, we discuss the smooth approximations up to first order
of the implicit function defined as in (1) by implicitly smoothing F . Our
purpose is twofold:

(a) We smooth the implicit solution function defined by solving (1)
in y for fixed z by smoothing F . It turns out that, under mild condi-
tions, a smoothing function which approximates the implicit solution can
be obtained by solving the smoothed system of equations corresponding
to (1) with F replaced by its smoothing. Moreover, we can establish a
relationship between the generalized Jacobians (including the Clarke gen-
eralized Jacobian, B-subdifferential) of the implicit solution function, the
smoothing implicit function, and the smoothing of F , and consequently
give some inclusions that bound the Clarke generalized Jacobian of the
implicit solution function of (1). The results are strengthened in the cir-
cumstance of the piecewise smoothness of F .

(b) Using the established results, we discuss the generalized Karush-
Kuhn-Tucker (GKKT) conditions associated with different forms of an
optimization problem,

min f (y, z), s.t. F(y, z)=0, (2)

where f is smooth and F is piecewise smooth, which include a smoothing
form, a perturbed form, and implicit variants of these. The implicit pro-
gramming form is of particular interest. To make use of this formulation,
we assume that the constraint F(y, z) = 0 is equivalent, for (y, z) near a
give feasible point (ȳ, z̄), to y = y(z) for some Lipschitz function y(·) of
z near z̄. Then, the optimization problem is equivalent, at least for (y, z)

near (ȳ, z̄), to minz f (y(z), z).
We note in brief our conclusions regarding optimality conditions

based on the Clarke calculus for the different reformulations of the
problem (2). On the one hand, the implicit programming formulation
minz f (y(z), z) apparently has the tightest optimality condition, whereas
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the other formulations, including (2), have somewhat looser optimality
conditions that are roughly equivalent. On the other hand, the optimal-
ity condition of the implicit programming approach relies on finding an
appropriate element of the Clarke generalized Jacobian of the implicit
function y(·) at the given point z, which seems difficult to do in practice;
see Ref. 3 for investigation of this question in the context of the paramet-
ric nonlinear programming. The optimality condition for (2) uses the gen-
eralized Jacobian of F at a given point (y(z̄), z̄), which is somewhat easier
to calculate than ∂y(z̄), though still difficult in general.

Throughout this paper, we use the following notation. DF denotes
the set of points where the function F is Fréchet differentiable and ∇F

denotes the usual Jacobian. For sequences, we denote by lim the outer
limit of a sequence, that is, the set of all the accumulation points of the
sequence. In particular,

∂BF (x)= lim
y∈DF
y→x

∇F(y)

defines the B-subdifferential (Ref. 5) of F at x; the convex hull of ∂BF ,
denoted by ∂F (x), defines the Clarke generalized Jacobian (Ref. 6) of F

at x. For a set-valued mapping A : Rn × Rm → 2Rn×(n+m)
, we use πyA(y, z)

to denote the set of all n×n matrices M such that, for some n×m matrix
N , the n× (n+m) matrix [MN ] belongs to A(y, z). Note that occasionally
a matrix [MN ]∈Rn×(n+m), where M ∈Rn×n and N ∈Rn×m, will be written
as [M,N ] to ensure clearity. The 2-norms of a vector and a matrix will be
denoted by ‖ · ‖. The notation ε ↓0 means that the positive scalar ε tends
0. Finally, we need some notation for sets: we denote by int �, cl �, and
conv � respectively the interior, closure, and convex hull of a set �. Also,
B(x, δ) denotes the closed ball of center x and radius δ >0; N (x) denotes
a more general neighborhood of a point x.

2. Preliminaries

Let F :Rn → Rm be a locally Lipschitz function. The basic idea of
smoothing F is to find a continuously parametrized differentiable function
F(·, ε) which approximates F as the parameter ε tends to zero. A variety
of smoothing methods (functions) have appeared in the past few years; see
Ref. 7 for a list of references. Instead of focusing on a particular smooth-
ing function, here we consider a class of smoothing functions with prop-
erties enjoyed by the most known smoothing functions.
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Definition 2.1. Let F : Rn → Rm be a locally Lipschitz function. A
smoothing of F is any function F̂ :Rn ×R→Rm that satisfies the following
conditions:

(a) for every x ∈Rn, F̂ (x,0)=F(x);
(b) for every x ∈Rn, F̂ is locally Lipschitz at (x,0);
(c) F̂ is continuously differentiable on Rn × (R\ {0}).

We call F̂ a strict smoothing if, in addition,

(d) for every x ∈ Rn, if F is strictly differentiable at x, that is,
∂F (x)={∇F(x)}, then

πx∂BF̂ (x,0)={∇F(x)}.

Note that a continuously differentiable function is strictly differentia-
ble; in the general case when F is Lipschitz near x but not strictly differ-
entiable at x,πx∂BF̂ (x,0) is not a singleton. Consequently, we may relate
πx∂BF̂ (x,0) to ∂F (x) or ∂BF (x). Moreover, it is easy to observe that

lim
|ε|↓0
x′→x

∇xF̂ (x′, ε)⊂πx∂BF̂ (x,0),

which implies that πx∂BF̂ (x,0) contains all the information regarding the
limiting behavior of ∇xF̂ (x′, ε) as x →x and |ε|↓0. Before further discus-
sion in this regard, we present some important smoothing instances.

Example 2.1. Let F : Rn → Rm be a locally Lipschitz function. For
every x ∈Rn and ε ∈R, let

F̂ (x, ε)=
∫

Rn
F (x − εu)�(u)du, (3)

where � : Rn → R is a kernel or probability density function; that is,
�(u)≥0 for all u∈Rn and

∫
Rn

�(u)du=1.

There are many discussions on F̂ (x, ε) with ε ≥0; see for instance Ref. 8.
Here, we allow ε to take a negative value only for convenience. In partic-
ular, if

�(u)=
{

1, if ‖u‖∞ ≤1,

0, otherwise,
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where ‖ · ‖∞ denotes the infinity norm, then

F̂ (x, ε)=
{

[1/(2ε)n]
∫ x1+ε

x1−ε
· · · ∫ xn+ε

xn−ε
F (u)du, if ε �=0

F(x), if ε =0.
(4)

The following is straightforward from Ref. 9, Theorem 3.1.

Remark 2.1. Let F : Rn →Rm be a locally Lipschitz function and let
F̂ (x, ε) be defined either by (4) or by (3), where � is continuously differ-
entiable and the support set {u∈ Rn : �(u)> 0} is bounded. Then, F̂ (x, ε)

is a smoothing of F .
Throughout this paper, we consider only the case that � is continu-

ously differentiable and the support set {u∈Rn :�(u)>0} is bounded. We
call such an integral smoothing method (3) a bounded integral smoothing.
In particular, (4) is known as adaptive smoothing (Refs. 10, 11).

Let A be a subset of Rn×m. The plenary hull of A is defined as

plen A={A∈Rn×m :Aa ∈Aa,∀a ∈Rm},

where

Aa ={Aa :A∈A}.

The notion of plenary hull was introduced by Sweetser (Ref. 12) and was
discussed further in Refs. 13, 14, etc. Obviously, if A is convex, then
plen A is also convex.

Let F : Rn → Rm be a locally Lipschitz function and let F̂ (x, ε) be a
bounded integral smoothing function (3) or the adaptive smoothing (4).
Based on the above motivations and Ref. 9, Theorem 3.1, we can estab-
lish a direct relationship between ∂F̂ (x,0) and ∂F (x),

πx∂BF̂ (x,0)⊂plen ∂F (x). (5)

Due to the convexity of set plen ∂F (x), (5) implies

πx∂F̂ (x,0)⊂plen ∂F (x).

A slightly stronger statement than (5), but one which is not generally
valid, is that

πx∂BF̂ (x,0)⊂ ∂F (x). (6)
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We shall see in Remark 4.2 that, if F is a piecewise smooth function and
F̂ is an adaptive integral smoothing of F , then (6) holds. It can also be
easily checked that all smoothing functions in Jiang and Ralph (Ref. 4,
Section 7) satisfy (6).

We say a smoothing F̂ (x, ε) satisfies the strong Jacobian consistency
if (6) holds. The word “strong” is used to distinguish it from a similar
notion, called the Jacobian consistency, introduced by Chen, Qi, and Sun
(Ref. 15). A smoothing function F̂ (x, ε) of F(x) is said to satisfy the
Jacobian consistency if, for every x ∈Rn,

lim
|ε|↓0

min
V ∈∂CF(x)

‖∇xF̂ (x, ε)−V ‖=0,

or equivalently,

lim
|ε|↓0

∇xF̂ (x, ε)⊂ ∂CF(x),

where

∂CF(x)= ∂F1(x)×· · ·× ∂Fm(x).

Actually in Ref. 15, ε is restricted to take nonnegative values, but this is
only a matter of notation.

We introduce another Jacobian consistency notion. We say that a
smoothing F̂ (x, ε) of F satisfies the strong B-subdifferential consistency at
x if

πx∂BF̂ (x,0)= ∂BF (x). (7)

Obviously, the strong B-subdifferential consistency implies the strong
Jacobian consistency.

Since

lim
|ε|↓0

∇xF̂ (x, ε)⊂ lim
|ε|↓0
y→x

∇xF̂ (y, ε)⊂πx∂BF̂ (x,0),

and since ∂F (x) ⊂ ∂CF(x), the strong Jacobian consistency implies the
Jacobian consistency. When F is strictly differentiable at x, both ∂CF(x)

and ∂F (x) become singletons and strong Jacobian consistency is equiva-
lent to Jacobian consistency at x. Note that the bounded integral smooth-
ing does not generally satisfy (7).
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3. Implicit Smoothing of a Locally Lipschitz Function

In this section, we discuss the smoothing of the implicit function
defined as in (1) under the condition that F is locally Lipschitz.

Consider the underdetermined system of equations (1). Clarke (Ref. 6)
obtained the following (we combine Theorem 7.1.1 and the subsequent
corollary of Ref. 6).

Theorem 3.1. Let F be given as in (1) and let (ȳ, z̄) ∈ Rn × Rm be
such that F(ȳ, z̄)=0. Suppose that πy∂F (ȳ, z̄) is nonsingular. Then, there
exist neighborhoods Z of z̄, Y of ȳ, and a locally Lipschitz function y :
Z →Y such that y(z̄)= ȳ and, for every z∈Z,y =y(z) is the unique solu-
tion of the problem F(y, z)=0, y ∈Y.

In the situation of the previous theorem, up to choice of the neigh-
borhoods Y and Z,y(·) :Z →Y is the unique function satisfying

F(z, y(z))=0, for z∈Z.

The function y(·) can be assumed to be (globally) Lipschitz by choosing
Z to be closed and bounded, because locally Lipschitz functions are (glob-
ally) Lipschitz on compact sets.

In the sequel, where we refer to (ȳ, z̄), we assume tacitly that (ȳ, z̄)∈
Rn ×Rm satisfies F(ȳ, z̄)=0. Here, we shall apply a smoothing method of
F defined as in (1) and investigate the limiting behavior of the implicit
function determined by the smoothed systems of equations

F̂ (y, z, ε)=0. (8)

We discuss first the existence of a smoothing of the implicit solution func-
tion of (1).

Theorem 3.2. Let F(y, z) be defined as in (1), let F̂ (y, z, ε) be a
smoothing of F(y, z). Assume that πy∂F̂ (ȳ, z̄,0) in nonsingular. Then:

(a) there exist neighborhoods Z of z̄ and E of 0(∈R) and a unique
Lipschitz function ŷ : Z × E → Rn such that, for every z ∈
Z, ε ∈ E, F̂ (ŷ(z, ε), z, ε)=0;

(b) for every z ∈ Z, ŷ(z,0) = y(z), where y : Z → Rn is the unique
Lipschitz function satisfying y(z̄)= ȳ and F(y(z), z)=0;

(c) ŷ is continuously differentiable on Z × (E\{0}).
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Proof. Part (a). Since πy∂F̂ (ȳ, z̄,0) is nonsingular, by applying The-
orem 3.1 to F̂ (y, x, ε) at (ȳ, z̄,0), we know that there exist neighborhoods
Z of z̄ and E of 0(∈ R) and a unique Lipschitz function ŷ : Z × E → Rn

such that, for every z∈Z, ε ∈E, ŷ(z, ε) satisfies (8).
Part (b). Since ∂yF (ȳ, z̄) is clearly contained in πy∂F̂ (y, x,0), we have

the Lipschitz implicit function y(·) as given by Theorem 3.1. By Defini-
tion 2.1 (a) and the uniqueness of y(·), we obtain the equation ŷ(z,0)=
y(z).

Part (c). By Definition 2.1 (c), F̂ is continuously differentiable on
Rn ×Rm × (R\{0}). The conclusion follows from Part (a) and the classical
implicit function theorem.

Theorem 3.2 shows that a smooth approximation of the implicit func-
tion defined as in (1) can be obtained by smoothing F and solving the
smoothed system of equations (8). Referring to Definition 2.1, we see that
ŷ(·, ·) is indeed a smoothing of y(·) in a neighborhood of z̄. We call ŷ(·, ·)
an implicit smoothing function.

We now investigate the Clarke generalized Jacobian of ŷ(·, ·) at (z,0).
We intend to establish relationships between such a Jacobian, ∂y(z), and
∂F (y(z), z). For this purpose, we investigate first the Clarke generalized
Jacobian of a Lipschitz function where some variables are fixed. The fol-
lowing results establish a relationship between such a Jacobian and the
Clarke generalized Jacobian of the function through plenary hulls.

Proposition 3.1. Let G : Rn ×Rm →Rn be a locally Lipschitz function
and let g(·)=G(·,0). Then, g : Rn → Rn is locally Lipschitz such that, for
every x ∈Rn, ∂g(x)⊂ plen πx∂G(x,0).

Proof. Obviously, g is locally Lipschitz. Let x′ be a point in a neigh-
borhood of x at which g is differentiable. It is easy to check that, for every
fixed d and v in Rn,

vT ∇g(x′)d ≤ (vT G)◦((x′,0); (d,0)),

where (vT G)◦ is the Clarke generalized derivative (Ref. 6). Thus,

∇g(x′)d ∈ ∂G(x′,0)(dT ,0)T = [πx∂G(x′,0)]d.

Since d is arbitrary, by the definition of plenary hull, we have

∇g(x′)∈ plenπx∂G(x′,0).
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By definition, ∂g(x) is the convex hull of all the accumulation matrices of
∇g(x′), where x′ ∈ Dg (the set of points at which g is differentiable) and
x′ →x. By the upper semicontinuity of plen πx∂G(·,0) at x, we obtain the
proof.

As an example, we can apply the above proposition to a smoothing
function.

Remark 3.1. Suppose that F̂ (x, ε) is a bounded integral smoothing
defined by (3) or the adaptive smoothing defined by (4). From (5) and
Proposition 3.1, we have

plenπx∂F̂ (x,0)=plen ∂F (x). (9)

In general, if F̂ (x, ε) is a smoothing of F and satisfies the strong B-sub-
differential consistency or the strong Jacobian consistency, then (9) holds.

We say that a function F : Rn → Rn is a Lipschitz homeomorphism
near x if there exist neighborhoods N (x) and N (F (x)) of x and F(x)

respectively such that F establishes a Lipschitz homeomorphism between
the two sets; that is, F |N (x) :N (x)→N (F (x)) is Lipschitz, invertible, and
its inverse is also Lipschitz.

Proposition 3.2. Let F :Rn →Rn be a Lipschitz homeomorphism near
x. Then, ∂BF (x) is invertible and

∂BG(F(x))= (∂BF (x))−1, (10)

where G is the inverse function of F near x.

Proof. The details are fairly standard; see Ref. 7.

Let F(y, z) be defined as in (1) and let F̂ (y, z, ε) be a smooth-
ing of F(y, z). In subsequent discussions, we use the following nota-
tion: an element [MNb] of the generalized Jacobian ∂F̂ (y, z,0) or the
B-subdifferential ∂BF̂ (y, z,0) and an element [MN ] of the B-subdifferential
∂BF (y, z) or the Clarke generalized Jacobian ∂F (y, z) or its plenary hull
plen ∂F (y, z), have M ∈Rn×n,N ∈Rn×m, and b∈Rn.

Theorem 3.3. Let F(y, z) be defined as in (1) and let F̂ (y, z, ε) be a
smoothing of F(y, z). Suppose that the conditions of Theorem 3.2 are sat-
isfied. Let ŷ :Z ×E →Rn be the unique implicit smoothing function given
by Theorem 3.2. Then, for all z∈Z,
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∂y(z)⊂ plen πz∂ŷ(z,0), (11)

∂ŷ(z,0)⊂ plen conv {−M−1[N,b] : [MNb]∈ ∂BF̂ (y(z), z,0)}, (12)

πz∂ŷ(z,0)⊂ plen conv {−M−1N : [MNb]∈ ∂BF̂ (y(z), z,0)}. (13)

Proof. The main idea is to introduce the function

G(y, z, ε)= (F̂ (y, z, ε), z, ε)T ,

where x ∈Rn, y ∈Rm, and ε ∈R, and observe that its generalized Jacobian
at (ȳ, z̄,0) is nonsingular; hence, the generalized inverse function theorem
(Ref. 6, Theorem 7.1.1) promises that G is a Lipschitzian homeomorphism
near (ȳ, z̄,0). The result follows by examining the local inverse of G; see
Ref. 7 for details.

We note that, when F̂ is a bounded integral smoothing of F , we have,
from (5) and (13),

πz∂ŷ(z,0)⊂ plen conv {−M−1N : [MN ]∈ plen ∂F (y(z), z)}.
From Theorem 3.3, we can deduce some properties of y(·) and ŷ(·, ·).

Corollary 3.1. Let F̂ (y, z, ε) be a smoothing of F(y, z). Suppose that
πy∂F (ȳ, z̄) is nonsingular. Then:

(a) ŷ(z, ε) is Lipschitz near (z̄,0) of modulus Lŷ for any Lŷ greater
than max{‖M−1[N,b]‖ : [MNb] ∈ ∂BF̂ (ȳ, z̄,0)}. Similarly, y(z) is
Lipschitz of modulus Lŷ near z̄.

(b) In addition, if F is strictly differentiable at (ȳ, z̄) and F̂ is a
strict smoothing, then ŷ(·, ·) is strictly differentiable at (z̄,0) and
πzŷ(z̄,0)=∇y(z̄)=−M−1N, where [MN ]=∇F(ȳ, z̄).

Proof. Part (a) can be obtained easily by using the mean-value the-
orem (Ref. 6, Proposition 2.6.5) and Theorem 3.3 Part (b) follows from
Theorem 3.3 and Part (d) of Definition 2.1.

The set ∂BF̂ (y(z), z,0) plays an important role in the estimation of
∂ŷ(z,0). Of particular interest is the case when

∂y(z)=πz conv {−M−1[N,b] : [MNb]∈ ∂BF̂ (y(z), z,0)}, (14)

which yields, according to Theorem 3.3,

plen ∂y(z)= plenπz∂ŷ(z,0).



JOTA: VOL. 124, NO. 3, MARCH 2005 683

The latter establishes an exact relationship between ∂y(z) and the general-
ized Jacobian ŷ(z,0), which implies that every accumulation matrix of the
sequence {∇yε(z)} is contained in plen ∂y(z). Unfortunately, (14) cannot
be satisfied easily. Indeed, the relation relies on not only the structure of
F , but also the smoothing method. We will discuss this in the next section;
see Proposition 4.2 and Theorem 4.2.

4. Implicit Smoothing of a Piecewise Smooth Function

In this section, we will investigate the implicit smoothing of piecewise
smooth functions and try to obtain stronger results than Theorem 3.3 for
example.

We discuss first the structure of the generalized Jacobians, in particu-
lar the B-subdifferential, of the implicit function defined via (1) in the cir-
cumstance of piecewise smoothness.

Recall that a function F : Rn → Rm is said to be piecewise smooth
(PC1 for short), on an open set U ⊂Rn, if it is continuous and there exists
a finite family of C1 functions F i : Rn → Rm, i = 1, . . . , l, such that, for
every x ∈U,F(x)=F i(x) for at least one index i ∈ {1, . . . , l}. We say that
F is a continuous selection of {F i :i = 1, . . . , l}. We denote by IF (x) the
sets of indices i such that F(x)=F i(x). For convenience, when a point is
represented by two arguments, say (y, z), we will use IF (y, z) rather than
IF ((y, z)).

Piecewise smooth functions form a very important class of functions.
In nonsmooth equations and nonsmooth optimization, many problems
involve only PC1 functions; see Ref. 16 for analysis and applications.

Proposition 4.1. Let F :Rn →Rm be PC1. Let c∈Rm and �⊂F−1(c).
Then, there exists a relatively open, dense subset �′ of � with the prop-
erty that, for every y ∈�′, there exists a neighborhood N�(y) of y relative
to � such that IF (·) is constant on N�(y).

Proof. Define �′ as a set of points x ∈ � such that, for all x′ in a
relative neighborhood N�(x),IF (x′)=IF (x); clearly, �′ is open relative to
�. Take x ∈�\�′ and any relative neighborhood N�(x) such that

IF (x′)⊂IF (x), for all x′ ∈N�(x).

Since x �∈ �′, there exists a point x′ ∈ N�(x) and i ∈ IF (x) such that
IF (x′) ⊂ IF (x)\{i}. Then, there exists a relative neighborhood N�(x′) of
x′ such that N�(x′)⊂N�(x) and, for all y′ ∈N�(x′),

IF (y′)⊂IF (x)\{i}.
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Since IF (x) is finite, by repeating the analysis with the set IF (x′) and so
on, we can obtain finally a point y in N�(x) such that IF (·) is constant
on a relative neighborhood N�(y) of y and N�(y)⊂N�(x). By definition,
y ∈ �′. Note that N�(x) can be arbitrarily small. This proves x ∈ cl �′.

Remark 4.1. Let F : Rn ×Rm →Rn be PC1 and let the hypotheses of
Theorem 3.1 hold. In later discussions, we will be interested particularly in
taking � as the local graph of the implicit function y:Z →Y, that is,

�={(y(z), z) : z∈Z}.

In this case, Proposition 4.1 guarantees that, for any z∈Z, there exists a
z′ arbitrarily close to z such that IF (·) is constant on a relative neighbor-
hood N�(y(z′), z′). It follows without difficulty that y(·) is differentiable
at z′ (indeed on a neighborhood of z′); see Proposition 4.2 (b).

Definition 4.1. Let F :Rn →Rm be PC1. We say that F is index- con-
sistent or i-consistent at a point x ∈ Rn with respect to a set S ⊂ Rn con-
taining x if IF (·) is constant on S ∩ B(x, δ) for some δ > 0. Denote by
ICF (S) the set of points in S at which F is i-consistent with respect to
S. We say that F is essentially index-consistent or e-i-consistent at x with
respect to a set S if IF (x)= ĪF (x, S), where we define

ĪF (x, S)= lim
x′∈ICF (S)

x′→x

IF (x′).

It is clear that i-consistency implies e-i-inconsistency. Consider the
case when F : Rn → Rm is i-consistent at a point x ∈ Rn with respect to a
neighborhood of x. By definition, IF (·) is constant near x. This implies
that all the functions F i, i ∈{1, . . . , l}, coincide with each other and with F

near x, hence that F is continuously differentiable in a neighborhood of x.
A slightly more general but perhaps more interesting case occurs when F

is e-i-consistent at x with respect to Rn. In such a case, we can no longer
derive the differentiability of F at x. However, we can see that ĪF (x,Rn)

is precisely the essentially active index set (Ref. 17) of F at x, defined by

Ie
F (x)={i :x ∈ cl int {x′ ∈Rn : i ∈IF (x′)}};

hence, we are able to use the former set to characterize the B-subdifferen-
tial of F at x.
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Lemma 4.1. If F : Rn →Rm is PC1, then for any neighborhood U of
x, ĪF (x,U)=Ie

F (x).

Proof. Let i ∈ ĪF (x,U) and let U be a neighborhood of x. By defi-
nition, there exists a sequence xn → x such that xn ∈ ICF (U) and i ∈
IF (xn). Hence, F is i-consistent at every xn with respect to U . Based on
our previous comments, this implies that F is continuously differentiable
in a neighborhood of xn. Obviously, such a sequence xn must lie in the
set int {x′ ∈U : i ∈IF (x′)} and hence i ∈Ie

F (x).
Conversely, let i ∈ Ie

F (x). Then, there exists a sequence xn → x such
that

xn ∈ int {x′ ∈U : i ∈IF (x′)}.

For every xn, there exists a neighborhood N (xn) such that F coincides
with F i and is continuously differentiable on the neighborhood. Clearly,
IF (·) is index consistent within the neighborhood. Thus, i ∈ ĪF (x,U).

Corollary 4.1. Let F : Rn →Rm be PC1. For each x ∈Rn,

∂BF (x)={∇F i(x) : i ∈ ĪF (x,Rn)}.

Thus,

∂BF (x)={∇F i(x) : i ∈IF (x)},

if F is e-i-consistent at x with respect to Rn.

Proof. According to Ref. 16, Lemma 2, ∂BF (x) is exactly the set of
Jacobians ∇F i(x) for essentially active indices i, giving the first equation.
The second equation follows immediately under the e-i-consistency of F at
x.

Example 4.1. Consider the following function:

F(y, z)=




f 1(y, z)=y + (1/3)z, for z≤0, y ≤−(1/3)z,

f 2(y, z)=2(y + (1/3)z), for z≤0, y ≥−(1/3)z,

f 3(y, z)=y + (1/2)z, for z≥0, y ≤−(1/2)z,

f 4(y, z)=2(y + (1/2)z), for z≥0, y ≥−(1/2)z.
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Here, F(y, z) is a PC1 function. Let

S1 ={(y, z) :y =−(1/3)z, z≤0},
S2 ={(y, z) :y =−(1/2)z, z≥0},
S =F−1(0)=S1 ∪S2.

Then, F(y, z) is i-consistent with respect to S at any point of S\{(0,0)}
and e-i-consistent at (0,0), but not i-consistent.

Example 4.2. Consider the following function:

F(y, z)=




f 1(y, z)=y + (1/2)z, for y � |z|,
f 2(y, z)= z+ (1/2)y, for y ≥ z≥0,

f 3(y, z)= (1/2)y, for y ≥−z≥0.

Here, F(y, z) is a PC1 function. Let

S =F−1(0)={(y, z) :y =−(1/2)z}.

Then, F(y, z) is i-consistent with respect to S at any point of S\{(0,0)}.
However, F is NOT e-i-consistent at (0,0). Indeed,

lim
(y,z)∈S

(y,z)→(0,0)

IF (y, z)={1} �= {1,2,3}=IF (0,0).

Consider the following nonlinear complementarity problem (NCP):

P(y, z)≥0, Q(y, z)≥0, P (y, z)T Q(y, z)=0.

where P,Q : Rn ×Rm →Rn are continuously differentiable. Let

H(y, z)=min(P (y, z),Q(y, z))

where min is taken componentwise. Suppose that πy∂H(ȳ, z̄) is nonsingu-
lar and that y(·) is the implicit function determined by H(y, z) = 0 in a
neighborhood of (ȳ, z̄). If complementarity is strict or nondegenerate at
(ȳ, z̄), that is, if Pi(ȳ, z̄)= 0 implies Qi(ȳ, z̄)> 0, then H is i-consistent at
(ȳ, z̄) with respect to set {(y(z), z) : z ∈Z}, where Z is a neighborhood of
z̄. This is due to the continuous differentiability of H at strictly comple-
mentarity points.
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Proposition 4.2. Let F be a PC1 function defined as in (1) and
assume that πy∂F (ȳ, z̄) is nonsingular. Let y:Z → Y be the associated
implicit function as in Theorem 3.3, where we choose Z such that
πy∂F (y(z), z) is nonsingular for each z ∈ Z; let � be {(y(z), z) : z ∈ Z};
and let πzICF (�) be the set of points z∈Z such that F is i-consistent at
(y(z), z) with respect to �. Suppose that z̄ �∈πzICF (�). Then:

(a) πzICF (�) is open and dense on Z;
(b) y(·) is differentiable on πzICF (�) and, for every z∈πzICF (�),

∇y(z)=∇yi(z)=−(Mi)−1Ni, ∀i ∈IF (y(z), z). (15)

where [MiNi ]=∇F i(y(z), z);
(c) let J = lim z∈πzICF (�)

z→z̄

IF (y(z), z) and ∂J
B F(ȳ, z̄) = {∇Fj (ȳ, z̄) :

j ∈ J }; we have

∂By(z̄)={−M−1N : [MN ]∈ ∂J
B F(ȳ, z̄)}; (16)

(d) if F is e-i-consistent at (ȳ, z̄), then

∂By(z̄)={−M−1N : [MN ]∈ ∂BF (ȳ, z̄)}.

Proof. This requires careful but routine arguments; see Ref. 7.

Consider Example 4.1. It is easy to see that

y(z)=
{

−(1/3)z, if z≤0,
−(1/2)z, if z>0

is the unique implicit function of F at (0, 0). Moreover,

∂y(0)= [−1/2,−1/3].

On the other hand,

∂BF (0,0)=
{[

1
1/3

]
,

[
1

1/2

]
,2

[
1

1/3

]
,2

[
1

1/2

]}

and

conv{M−1N : [MN ]∈ ∂BF (0,0)}= conv {−1/3,−1/2}= [−1/2,−1/3],

as expected from Proposition 4.2 (d).
Now, consider Example 4.2. The implicit function of F at (0, 0) is

y(z) = −(1/2)z, which is smooth. ∂J
B F(0,0) = ∂1

BF(0,0) = (1,1/2)T . This
confirms (16). We note that here ∂y(0) has nothing to do with f 2(y, z)
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and f 3(y, z). In particular ∂y(0) is a strict subset of conv {−M−1N :
[MN ]∈ ∂F (0,0)}.

We discuss now the generalized Jacobians of the implicit smoothing
ŷ(z, ε) of y(z), which is given by Theorem 3.2, at a point (z,0) under
the assumption that F is piecewise smooth. Since the Clarke generalized
Jacobian is no more than the convex hull of the B-differential, our results
established in terms of the B-subdifferentials can be extended easily to
those based on the Clarke generalized Jacobian.

Our first result here is a refinement to the PC1 case of Proposi-
tion 3.1, in which the plenary hull of the projected Clarke operator
plen πx∂ is replaced by the projected B-subdifferential operator πx∂B .

Proposition 4.3. Let G:Rn × Rm → Rn be PC1 and g(·) = G(·,0).
Then, g : Rn →Rn is PC1 and, for every x ∈Rn, ∂Bg(x)⊂πx∂BG(x,0).

Proof. The piecewise smoothness of g is obvious. First, we have
from Ref. 28, for any x′ ∈Rn and (u, v)∈Rn ×Rm, that

G′((x′,0), (u, v))∈ ∂BG(x′,0)(u, v), (17)

where G′(a, b) denotes the directional derivative of G at point a in the
direction b; second, ∂BG(x′,0) coincides with {∇Gi(x′,0) : i ∈ Ie

G(x′,0)},
where

Ie
G(x′,0)={i : (x′,0)∈ cl int{(u, v)∈N (x′,0) : i ∈IG(u, v)}}.

Taking x′ ∈Dg and v =0 in (17) gives

∇g(x′)u=G′((x′,0), (u,0))∈ [πx∂G(x′,0)]u,

that is,

∇g(x′)∈ plen πx∂G(x′,0)

because u is arbitrary. By Ref. 18, Example 4.09, every countable set of
matrices is plenary; hence, πx∂BG(x′,0) is a plenary set and consequently

∇g(x′)∈πx∂BG(x′,0).

Let

x′ ∈Dg and x′ →x.

By the definition of the B-subdifferential and the upper semicontinuity of
∂BG(·,0), we know that every accumulation matrix of ∇g(x′) is contained
in πx∂BG(x,0).
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Theorem 4.1. Let F(y, z) be defined as in (1) and be PC1. Let F̂ be
a smoothing of F that satisfies the conditions of Theorem 3.2 and let ŷ

be the implicit smoothing function given there. Then, for all z near z̄:

(a) we have

∂By(z)⊂πz∂Bŷ(z,0), (18)

πz∂Bŷ(z,0)⊂{−M−1N : [MNb]∈ ∂BF̂ (y(z), z,0)}; (19)

(b) if F̂ (y, z, ε) satisfies the strong Jacobian consistency at (y(z), z),
then

πz∂Bŷ(z,0)⊂{−M−1N : [MN ]∈ ∂F (y(z), z)};
(c) if F̂ (y, z, ε) satisfies the strong B-subdifferential consistency at

(y(z), z), then

πz∂Bŷ(z,0)⊂{−M−1N : [MN ]∈ ∂BF (y(z), z)}.

Proof. Part (a). The relation ∂By(z)⊂πz∂Bŷ(z,0) follows from Prop-
osition 4.3 and (19) follows from a similar proof to that of Theorem 3.3.

Part (b) follows from Part (a) and the strong Jacobian consistency.
Part (c) follows from Part (a) and the strong B-subdifferential

consistency.

We note that Theorem 4.1 is stronger that Theorem 3.3 when F is
PC1. For instance, (18) implies (11), (19) implies (12), and in general the
set

plen{−M−1N : [MNb]∈ ∂BF̂ (y, z,0)}
is strictly larger than the set

{−M−1N : [MNb]∈ ∂BF̂ (y, z,0)}.
We note also that when F is PC1, the implicit function y(·) defined as

in the situation of Theorem 3.3 is also piecewise smooth. Given the Clarke
implicit function theorem, the following is essentially due to Refs. 1,19.

Lemma 4.2. Let F(y, z) be defined as in (1). Suppose that F is PC1

and πy∂F (ȳ, z̄) is nonsingular. Then, y(·) is PC1 and it is a continuous
selection of a family of continuously differentiable functions {yi(·) : i ∈
Ie

y(z̄)}, where Ie
y(z̄)={i : z̄ ∈ cl int {z′ ∈Z : i ∈ Iy(z

′)}}. Moreover, yi(z) is
associated with a smooth system F i(y, z)=0 in the sense that y =yi(z) is
the unique solution of F i(y, z)=0 for (y, z) close to (ȳ, z̄).
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This shows that ∂y(z̄) is theoretically computable. However, the set
Ie

y(z̄) is often difficult to identify in practice, particularly in the implicit case.

Remark 4.2. Let F(y, z) be defined as in (1) and be PC1. Suppose
that F̂ (y, z, ε) is the adaptive integral smoothing of F(y, z). Using Ref. 11,
Corollary 2.1, we can prove that F̂ satisfies the strong Jacobian consis-
tency at (ȳ, z̄), that is,

πy,z∂BF̂ (ȳ, z̄,0)⊂ ∂F (ȳ, z̄).

Under the condition of Theorem 4.1, we have that, for all z near z̄,

πz∂Bŷ(z,0)⊂{−M−1N : [MN ]∈ ∂F (y(z), z)}.
We conjecture that this condition can be extended to the case when F̂ is
the bounded integral smoothing.

As an application of Proposition 4.2, we want to strengthen Theo-
rem 4.1. It follows directly from Theorem 4.1 (b) and Proposition 4.2 (b)
that, for every z such that F is index-consistent at (y(z), z), that is, z ∈
πzICF (�),

lim
|ε|↓0

∇zŷ(z, ε)=∇y(z).

Moreover, by virtue of Theorem 4.1 (a), (c), and Proposition 4.2 (d), we
have the following theorem.

Theorem 4.2. Let F(y, z) be defined as in (1) and let F̂ (y, z, ε) be
a smoothing of F(y, z). Suppose that the conditions of Theorem 3.2 are
satisfied and that F is PC1. Let ŷ:Z × E → Rn be the unique implicit
smoothing function defined by Theorem 3.2. Assume F̂ satisfies the strong
B-subdifferential consistency and that F is e-i-consistent at (ȳ, z̄) with
respect to πzICF (�). Then, for all z∈Z,

∂By(z)=πz∂Bŷ(z,0)={−M−1N : [MN ]∈ ∂BF (y, z)}.

The above results implies that ∂By(z) can be approximated by
∇zŷ(z, ε). Unfortunately, strong B-subdifferential consistency does not
hold for some interesting smoothing functions. Indeed, πx∂BF̂ (x,0) is
much larger than ∂BF (x) in general. Note that ∂BF̂ (x,0) is the set of
accumulation matrices {∇F̂ (xk, εk)} as (xk, εk) → (x,0). If we restrict εk

in some way, for example, by taking only a special subsequence, then the
set of accumulation matrices is only a subset of ∂BF̂ (x,0). An interesting
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question is: to what extent can we restrict εk so that the B-subdifferential
consistency holds for a subset of ∂BF̂ (x,0)? Let F : Rn →Rm be a locally
Lipschitz function, let F̂ (x, ε) be a smoothing function of F and x ∈ Rn.
Let T denote a class of function τ such that, for xk �= x, τ (xk) �= 0 and
τ(xk)→0 as xk →x. We say F̂ (x, ε) satisfies the T -weak B-subdifferential
consistency at x if there exists a function τ ∈ T such that πx∂

τ
BF̂ (x,0) =

∂BF (x), where

∂τ
BF̂ (x,0)=


 lim

xk �=x
xk→x

∇F̂ (xk, τ (xk))


 .

We call πx∂
τ
BF̂ (x,0) a restricted B-subdifferential with respect to τ . We

note that many smoothing NCP functions in Ref. 4 satisfy the T -weak
B-subdifferential consistency provided that τ(t) = o(t), that is, τ(t)/t → 0
as t →0. We will not go further in this direction as it is not the main inter-
est of this paper.

In somes cases, it is interesting to consider the following perturbed
system of equations of (1):

F(y, z)= t, (20)

where F is defined as in (1). Suppose that F is PC1 and πy∂F (ȳ, z̄) is non-
singular. Then, by Theorem 3.1, there exist neighborhoods Z of z̄ and T

of 0∈Rn such that ỹ :Z ×T →Rn is the unique solution of (20). Here, we
denote the implicit function by ỹ in order to distinguish it from ŷ, which
stands for the implicit smoothing function associated with (8). In the fol-
lowing, we shall investigate ∂ỹ(z̄,0).

Proposition 4.4. Suppose that F is PC1 and πy∂F (ȳ, z̄) is nonsingu-
lar. Then, there exists a function ỹ(·, ·), the unique solution of (20) in a
neighborhood Z ×T of (z̄,0), such that

∂Bỹ(z̃,0)={−M−1[N,−I ] : [MN ] ∈ ∂BF (ȳ, z̄)}, (21)

where M ∈Rn×n,N ∈Rn×m, and I ∈Rn×n is the identity matrix. Also,

∂BF̃ (ȳ, z̄,0)= [∂BF (ȳ, z̄),−I ].

Proof. See Ref. 7.

The significance of this result is that the PC1 property allows ∂Bỹ(z̄,0)

and ∂BF̃ (ȳ, z̄,0) to be expressed exactly by ∂BF (ȳ, z̄). Of course, ∂ỹ(z̄,0)

is the convex hull of the set given by (21).
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5. Application to Optimization with Piecewise Smooth Equality Constraints

In this section, we will investigate the generalized Karush-Kuhn-
Tucker conditions of several (roughly) equivalent formulations of a non-
smooth equality constrained minimization problem. We are interested
mainly in the case when F(y, z) is PC1.

5.1. Formulation with Nonsmooth Equality Constraints. We study the
first-order necessary conditions of the following equality constrained min-
imization problem:

(P) min
y,z

f (y, z),

s.t. F(y, z)=0,

where f :Rn ×Rm →Rn is continuously differentiable and F :Rn ×Rm →Rn

is locally Lipschitz. We omit smooth inequality constraints to simplify the
discussion. This class of optimization problems is interesting particularly
in the study of MPEC and BP.

Here, we utilize the theory developed in the previous sections to inves-
tigate the generalized Karush-Kuhn-Tucker (GKKT) conditions of the
minimization problem and its variations resulting from the smoothing or
perturbation of the constraint functions. See Ref. 20 for details on GKKT
points.

Our purpose here lies with the GKKT conditions of different pro-
grams related to (P). In particular, we would like to understand the rela-
tionship between a smoothed program (implicit or not implicit) or (P)

and a perturbed program and hence explain a smoothing method as essen-
tially an inexact method which solves the equality constraints approxi-
mately. We would also like to understand that, if (P) is reformulated from
MPEC, whether or not numerical methods based on different programs
will generate the same GKKT points.

Throughout this section, we assume that πy∂F (ȳ, z̄) is nonsingular
for any ȳ ∈ Rn, z̄ ∈ Rm such that F(ȳ, z̄) = 0; hence there exists a locally
unique implicit function y(·) such that y(z̄)= ȳ and F(y(z), z)=0 for every
z near z̄.

Recall that the GKKT condition of (P) is

∇f (y, z)+ ∂F (y, z)T λ � 0,

F (y, z)=0,

where λ∈ Rn. Note that, by convention, we regard the gradient of a real
valved function as a column vector. If a triplet (y, z, λ) satisfies the above
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equations, (y, z) is called a GKKT stationary point and λ is called a
GKKT multiplier.

Remark 5.1. We note that

∂F (y, z)T λ= [plen ∂F (y, z)]T λ.

Thus, replacing ∂F (y, z) with plen ∂F (y, z) gives the same GKKT condi-
tions.

Since πy∂F (y(z), z) is nonsingular, we can obtain the following equiv-
alent GKKT condition of (P):

∇zf (y(z), z)∈�F (y(z), z)∇yf (y(z), z), (22)

where

�F (y, z)={NT M−T :M ∈Rn×n,N ∈Rn×m, [MN ]∈ ∂F (y, z)}, (23)

where M−T denotes (M−1)T .

5.2. Implicit Programming Formulation. In some cases, we may solve
(P) determining the vector y from the constraints as a locally unique
implicit function of the vector z and substituting it into the objective
function. Consequently, (P) is reduced to an unconstrained minimization
problem. We write such a program as

(PI ) min
z

f (y(z), z)

where y(z) solves F(y, z)=0. Therefore, it is interesting to investigate the
relationship between the GKKT conditions of (P) and (PI ). The GKKT
conditions of (PI ) are given by

0 ∈ (∂y(z), I )T ∇f (y(z), z),

which can be rearranged as

∇zf (y(z), z)∈−∂y(z)T ∇yf (y(z), z). (24)

When F is PC1, it follows from Proposition 4.2 that

−∂y(z)T = conv{NT M−T : [MN ]∈ ∂J
B F(y, z)}; (25)

see Proposition 4.2 for details. For simplicity of notation, let
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GJ
F (y, z)={NT M−T : [MN ]∈ ∂J

B F(y, z)},
�J

F (y, z)={NT M−T : [MN ]∈ ∂J F(y, z)},
where

∂J
F F (y, z)= conv ∂J

B F(y, z).

In general, �J
F (y, z) is not a convex set and hence

convGJ
F (y, z) �=�J

F (y, z).

When F is not e-i-consistent at (y, z),IF (y, z) is strictly larger than
J , hence �F (y, z) may be larger than �J

F (y, z), which is roughly equiva-
lent to −∂y(z) (Ref. 7) in that there is a bijection between these sets that
preserves the generating elements M−1N of the latter; c.f. (25). As such,
we regard the GKKT conditions of (PI ) as being sharper than those of
(P).

Example 5.1. Let F be defined as in Example 4.2. Consider a mini-
mization program with the objective function

f (y, z)=−0.5y − z+y2 + z2

and equality constraint

F(y, z)=0.

At the point (0,0),

∇f (0,0)= (−0.5,−1)T ,

∂F (0,0)=
{[

1
0.5

]
,

[
0.5
1

]
,

[
0.5
0

]}
.

Then, there exists λ=1 such that

0∈∇f (0,0)+λ∂F(0,0).

Therefore, (0,0) is a generalized stationary point of (P).

Now, we look at (PI ). The implicit function defined by F(y, z)=0 is

y =−0.5z.

Substituting it into f , we have

f̂ ≡f (−0.5z, z)=−0.5(−0.5z)− z=−0.75z+1.25z2.

Obviously, z=0 is not a stationary point of (PI ).



JOTA: VOL. 124, NO. 3, MARCH 2005 695

5.3. Formulation with Perturbed Nonsmooth Constraints. We investi-
gate now the perturbed case of (P) which is defined as

(Pt ) min
y,z,t

f (y, z),

s.t. F(y, z)= t,

t =0.

A point (y, z,0) is a GKKT stationary point of (Pt ) if there exist λ ∈
Rn,µ∈Rn such that(∇f (y, z)

0

)
+

(
∂F (y, z)T

−I

)
λ+

(
0
I

)
µ � 0,

F (y, z)− t =0,

t =0.

Equivalently, there exist M ∈Rn×n such that [M,N ]∈ ∂F (y, z) and

−M−T ∇yf (y, z)=λ,

∇zf (y, z)−NT M−T ∇yf (y, z)=0,

−λ+µ=0,

F (y, z)− t =0,

t =0.

When F is PC1, the above equations can be reduced to

∇zf (y(z), z)∈�F (y(z), z)∇yf (y(z), z), (26)

where �F (y(z), z) is defined by (23).

Proposition 5.1. Let F :Rn × Rm → Rn be a PC1. Then, the GKKT
condition of (P) is equivalent to that (Pt ); that is, if (y, z) is a GKKT
point of (P), then (y, z,0) (here 0 ∈ Rn) is a GKKT point of (Pt ); con-
versely, if (y, z, t) is a GKKT point of (Pt ), then (y, z) is a GKKT point
of (P).

5.4. Smoothing Approach. When the equality constraints in (P) are
smoothed by a smoothing method (see Ref. 4 and references therein), we
have the following smoothed program:

(Pε) min
y,z,ε

f (y, z),

s.t. F̂ (y, z, ε)=0,

ε =0,
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where F̂ (y, z, ε) is a smoothing of F . We will discuss the applica-
tion of nonlinear programming techniques to this formulation later. The
GKKT condition of (Pε) can be given as follows: there exists M ∈ Rn×n,

N ∈Rn×m, b∈Rn such that

[M,N,b] ∈ ∂F̂ (y, z, ε),

with

−M−T ∇yf (y, z)=λ,

∇zf (y, z)−NT M−T ∇yf (y, z)=0,

−λT b+µ=0,

F̂ (y, z, ε)=0,

ε =0.

Thus, the GKKT condition is equivalent to the following:

∇zf (y(z), z) ∈ BP (y(z), z)∇yf (y(z), z),

where

BP (y(z), z)={NT M−T : [MN ]∈π(y,z)∂F̂ (y(z), z,0)}.

If F̂ satisfies (9), then

plen π(y,z)∂F̂ (y(z), z,0)=plen ∂F (y(z), z);

consequently,

{NT M−T : [MN ]∈plen π(y,z)∂F̂ (y(z), z,0)}
={NT M−T : [MN ]∈plen ∂F (y(z), z)}.

Here, we use the fact that the plenary hull does not change the nonsin-
gularity; see Ref. 27. Following Remark 5.1, we know that the GKKT
conditions of (Pε) and (P) are equivalent. Based on this observation and
Proposition 5.1, we have the following proposition.

Proposition 5.2. Suppose that F̂ is a smoothing of F and satisfies
(9). Then, the GKKT condition of (Pε) is equivalent to that of (P) and
(Pt ) in a sense similar to Proposition 5.1.
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The equivalence of the GKKT conditions between (Pε) and (Pt )

has some interesting implications. Practically, because of nonsmoothness
of F , we may use some smoothing method to find a smoothing func-
tion F̂ (y, z, ε) to replace F(y, z) and get a smooth program. At step
k, ε =εk, we solve exactly the smooth program (Pε) by some minimization
method and obtain a stationary point (ŷ(zk, εk), zk, εk). As we discussed, if
(ŷ(zk, εk), zk, εk)→ (y, z,0) as |εk|↓0, then, (y, z,0) is a stationary point of
(Pε) and, by Proposition 5.2, (y, z,0) (here 0∈Rn) is a stationary point of
(Pt ). Also, since εk �= 0, (ŷ(zk, εk), zk) is not a solution of F(y, z)= 0, but
of F(y, z)= tk, where tk =F(ŷ(zk, εk), zk). Thus (ŷ(zk, εk), zk, tk) is a feasi-
ble point of the following program:

min
y,z,t

f (y, z), (27a)

s.t. F(y, z)= t, (27b)

t = tk. (27c)

Note that (ŷ(zk, εk), zk, tk) is not necessarily a stationary point of (27).
However, any stationary point (y′

k, z
′
k, tk) of (27) must be a feasible point

and therefore satisfy F(y′
k, z

′
k)= t and t = tk. Moreover, tk → 0 as |εk| ↓ 0.

It is easy to check that every accumulation point (y′, z′,0) of (y′
k, z

′
k, tk)

is a stationary of (Pt ). By Proposition 5.2 (y′, z′,0) is also a stationary
point of (Pε). Furthermore, if (y′, z′,0) is the unique GKKT point of
(Pt ), then (Pε) has the unique stationary point (y′, z′,0). We can conclude
that smoothing the constraint functions can be interpreted as a (proper)
perturbation of the constraints.

5.5. Further Implicit Programming Approaches. We may consider the
implicit form of the perturbed program (Pt ),

(PI
t ) min

z,t
f (ỹ(z, t), z),

s.t. t =0, (28)

where ỹ(z, t) solves

F̃ (y, z, t)=F(y, z)− t =0.

In the PC1 case it can be shown (Ref. 7) that the GKKT conditions of
(PI

t ) are roughly equivalent to those of (P).
The implicit form of (Pε) is defined as

(PI
ε ) min

z,ε
f (ỹ(z, ε), z),

s.t. ε =0, (29)
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where ŷ(z, ε) solves

F̂ (y, z, ε)=0.

As discussed in Ref. 7, the GKKT conditions of (PI
ε ) are generally weaker

than those of (PI ), but they are roughly equivalent when F̂ satisfies the
strong B-subdifferential consistency and F is e-i-consistent.

5.6. Overview of GKKT Conditions. Based on the preceding discus-
sions, we compare the stationary conditions of various formulations:

(i) (PI ) generally has the sharpset GKKT conditions;
(ii) the GKKT conditions of (P) and (Pt ) are equivalent; when F̂

satisfies (9), they are equivalent to those of (Pε);
(iii) when F̂ satisfies the strong B-subdifferentials consistency and

F is e-i-consistent, the GKKT conditions of (PI
ε ), (PI ), (Pε),

(P), (Pt ), (PI
t ) are roughly equivalent.

The implication for numerical methods solving (P) is as follows.
Apart from smoothing methods, we may deal with the nonsmoothness
of the equality constraints with other methods which solve the equality
approximately. For instance, we may find an approximate solution (near
the exact solution) at which F is continuously differentiable. Under the
proper control of the residual of the equality constraints, such approx-
imate methods may generate the same GKKT points as a smoothing
method. Therefore, in dealing with equality constraints, a smoothing
method is essentially equivalent to an approximation method.
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