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Abstract In this paper, we consider a class of stochastic mathematical programs
with equilibrium constraints introduced by Birbil et al. (Math Oper Res 31:739–760,
2006). Firstly, by means of a Monte Carlo method, we obtain a nonsmooth discrete
approximation of the original problem. Then, we propose a smoothing method together
with a penalty technique to get a standard nonlinear programming problem. Some
convergence results are established. Moreover, since quasi-Monte Carlo methods are
generally faster than Monte Carlo methods, we discuss a quasi-Monte Carlo sampling
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model and show some numerical results with this example.
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1 Introduction

The purpose of this paper is to develop an efficient numerical method for solving the
stochastic mathematical program with equilibrium constraints (SMPEC) formulated
as follows:

min E[ f (x, y, ω)]
s.t. g(x, y) ≤ 0, h(x, y) = 0, (1.1)

0 ≤ y ⊥ E[F(x, y, ω)] ≥ 0,

where E denotes expectation with respect to the random variable ω ∈ �, the functions
f : �n+m ×� → �, g : �n+m → �s1 , h : �n+m → �s2 , and F : �n+m ×� → �m

are all twice continuously differentiable, and the symbol ⊥ stands for orthogonality
of the two vectors on both sides. When the underlying sample space � has a finite
number of samples, problem (1.1) reduces to an ordinary MPEC and there have been
proposed a number of approaches (Fukushima and Lin 2004, Jiang and Ralph 2000,
Luo et al. 1996). Throughout the paper, we suppose that � has an infinite number of
samples.

Recently there has been quite active research on various formulations of SMPECs
such as the lower-level wait-and-see model (Lin et al. 2003, Shapiro 2006, Shapiro
and Xu 2005, Xu 2006) and the here-and-now model (Birbil et al. 2006, Lin et al.
2003, 2007, Lin and Fukushima 2005a,b). Despite the high potential of practical
applicability; however, the formulation (1.1) has rarely been studied except the recent
work of Birbil et al. (2006) who first treated the SMPEC of this form and presented a
sample-path method for solving it along with rigorous convergence analysis.

In this paper, we consider a Monte Carlo sampling method combined with a penalty
technique for solving problem (1.1). That is, we discretize the true problem by approxi-
mating the expected value of the underlying functions with its sample average and then
solve the sample averaged approximation problem with a smoothed penalty method.
Monte Carlo sampling method is a very popular method in stochastic programming
and it is essentially the same as the sample path method. Our focus here is on the
combination of the Monte Carlo sampling method with a smoothing penalty method
for solving the SMPEC problem where the smoothing parameter and penalty para-
meter depend on the sample size. This is numerically meaningful in that we do not
want to solve a discretized problem with some penalty parameter rather than driving
the parameter to infinity to get an exact solution. This distinguishes our approach
from the work (Birbil et al. 2006) which discusses the limiting behavior of the opti-
mal solutions of a discretized (approximate) SMPEC without referring to a particular
numerical method for solving the discretized SMPEC.

We establish convergence of global optimal solutions and stationary points of
approximation problems generated by the proposed method. Moreover, since quasi-
Monte Carlo methods are generally faster than Monte Carlo methods, we suggest a
combined quasi-Monte Carlo sampling and penalty method. Finally, we show some
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preliminary numerical results with a stochastic version of Stackelberg–Nash–Cournot
game.

The following notations will be used throughout the paper. For a given function
c : �s → �s′

and a vector t ∈ �s, ∇c(t) ∈ �s×s′
is the transposed Jacobian of c at

t and Ic(t) := {i : ci (t) = 0} stands for the active index set of c at t . For a matrix
A, we let Ai denote a column vector whose elements consist of the i th row of A. In
addition, I and O denote the identity matrix and the zero matrix of suitable dimension,
respectively.

2 Preliminaries

In this section, we recall some basic concepts that are often employed in the literature
on MPEC. Let (x∗, y∗) be a feasible point of problem (1.1) and denote

G(x, y) := y, H(x, y) := E[F(x, y, ω)].

Definition 2.1 We say the MPEC-linear independence constraint qualification
(MPEC-LICQ) holds at (x∗, y∗) if the set of vectors

{∇gi (x
∗, y∗),∇h j (x

∗, y∗),∇Gı (x
∗, y∗),∇Hj (x

∗, y∗) :
i ∈ Ig(x

∗, y∗), j ∈ {1, . . . , s2}, ı ∈ IG(x
∗, y∗), j ∈ IH (x

∗, y∗)
}

(2.1)

is linearly independent.

Definition 2.2 (Scheel and Scholtes 2000) Suppose that there exist Lagrangian mul-
tiplier vectors α∗ ∈ �s1 , β∗ ∈ �s2 , and γ ∗, δ∗ ∈ �m such that

E[∇(x,y) f (x∗, y∗, ω)] + ∇g(x∗, y∗)α∗ + ∇h(x∗, y∗)β∗

− (
O
I

)
γ ∗ − E[∇(x,y)F(x∗, y∗, ω)]δ∗ = 0, (2.2)

0 ≤ α∗ ⊥ − g(x∗, y∗) ≥ 0, (2.3)

γ ∗
i = 0, i /∈ IG(x

∗, y∗), (2.4)

δ∗i = 0, i /∈ IH (x
∗, y∗). (2.5)

• We call (x∗, y∗) a Clarke or C-stationary point of (1.1) if γ ∗
i δ

∗
i ≥ 0 holds for each

i ∈ IG(x∗, y∗) ∩ IH (x∗, y∗).
• We call (x∗, y∗) a Bouligand or B-stationary point of (1.1) if γ ∗

i ≥ 0 and δ∗i ≥ 0
hold for each i ∈ IG(x∗, y∗) ∩ IH (x∗, y∗).

Definition 2.3 We say that the lower-level strict complementarity (LLSC) condition
holds at (x∗, y∗) if IG(x∗, y∗) ∩ IH (x∗, y∗) = ∅.

Note that, when the LLSC holds, there is no difference between the stationarity
concepts given in Definition 2.2.
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3 Monte Carlo sampling and penalty method

For ε ≥ 0, we define φε : �2 → � by φε(a, b) := a + b − √
a2 + b2 + ε2. Then φ0

is the well-known Fischer–Burmeister function, which is differentiable except at the
origin. When ε > 0, the function φε is differentiable everywhere. Furthermore, we
define 
ε : �2m → �m by


ε(y, w) :=
⎛

⎜
⎝

φε(y1, w1)
...

φε(ym, wm)

⎞

⎟
⎠ .

It is obvious that problem (1.1) is equivalent to

min E[ f (x, y, ω)]
s.t. g(x, y) ≤ 0, h(x, y) = 0, (3.1)


0(y,E[F(x, y, ω)]) = 0.

Since both the objective function and the constraints involve expectations, problem
(1.1) or (3.1) is more difficult to deal with than an ordinary MPEC. Moreover, the
constraints in problem (1.1) fail to satisfy a standard constraint qualification at any
feasible point (Chen and Florian 1995), while (3.1) is actually a nonsmooth program.
We next employ a penalty technique and the Monte Carlo sampling method to get
some appropriate approximations of the above problems.

For an integrable function ψ : � → �, the Monte Carlo sampling estimate
for E[ψ(ω)] is obtained by taking independently and identically distributed random
samples {ω1, . . . , ωk} from � and letting E[ψ(ω)] ≈ 1

k

∑k
�=1 ψ(ω�). The strong

law of large numbers guarantees that this procedure converges with probability one
(abbreviated by “w.p.1”), i.e.,

lim
k→∞

1

k

k∑

�=1
ψ(ω�) = E[ψ(ω)] :=

∫

�

ψ(ω)dζ(ω) w.p.1, (3.2)

where ζ(ω) is the distribution function of ω. See Birge and Louveaux (1997),
Niederreiter (1992) and Shapiro (2003) for more details.

Thus, by taking independently and identically distributed random samples
{ω1, . . . , ωk} from �, we obtain the following approximation of problem (3.1):

min
1

k

k∑

�=1
f (x, y, ω�)

s.t. g(x, y) ≤ 0, h(x, y) = 0,


0

(
y, 1

k

∑k
�=1 F(x, y, ω�)

)
= 0.

Note that the above problem is essentially an MPEC. Then, we introduce a smoothing
parameter εk > 0 and, in order to simplify the constraints, we employ a penalty
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technique to get the following smooth approximation:

min θk(x, y) := 1

k

k∑

�=1
f (x, y, ω�)+ ρk

∥
∥
∥
∥
εk

(
y,

1

k

k∑

�=1
F(x, y, ω�)

)∥∥
∥
∥

2

s.t. g(x, y) ≤ 0, h(x, y) = 0, (3.3)

where ρk > 0 is a penalty parameter. Problem (3.3) is no longer an MPEC and its
constraints are independent of k.

In what follows, we let F and X denote the feasible regions of problems (1.1) and
(3.3), respectively, and we suppose F is nonempty. It is obvious that F ⊆ X .

4 Convergence analysis

We investigate convergence properties of the Monte Carlo sampling and penalty
method in this section. In the rest of this section, we suppose that F is affine with
respect to (x, y) and is given by

F(x, y, ω) := N (ω)x + M(ω)y + q(ω),

where N : � → �m×n , M : � → �m×m , and q : � → �m are all continuous. In
what follows, we denote

N̄ := E[N (ω)], M̄ := E[M(ω)], q̄ := E[q(ω)].

In order to obtain some convergence results for the proposed method, we suppose that
the parameters ρk and εk satisfy the following conditions with probability one:

lim
k→∞ ρk = +∞, lim sup

k→∞
ρkεk < +∞, (4.1)

lim
k→∞

√
ρk

(
1

k

k∑

�=1
Ni (ω�)− N̄i

)
= 0

lim
k→∞

√
ρk

(
1

k

k∑

�=1
Mi (ω�)− M̄i

)
= 0

lim
k→∞

√
ρk

(
1

k

k∑

�=1
qi (ω�)− q̄i

)
= 0

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

i = 1, . . . ,m. (4.2)

Note that (4.1) implies lim
k→∞ εk = 0.

4.1 Limiting behavior of optimal solutions

We first study the convergence of optimal solutions of problems (3.3). The following
lemma can be verified easily.
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Lemma 4.1 Let ε ≥ 0. Then, for any real numbers ai and bi , i = 1, 2, we have

|φε(a1, b1)− φε(a2, b2)| ≤ 2(|a1 − a2| + |b1 − b2|),
|φε(a1, b1)− φ0(a2, b2)| ≤ 2(|a1 − a2| + |b1 − b2|)+ ε.

Definition 4.1 (Ortega and Rheinboldt 1970) Let σ > 0 and κ ≥ 0 be constants. We
say G : �s → �t to be Hölder continuous on K ⊆ �s with order σ and Hölder
constant κ if

‖G(u)− G(v)‖ ≤ κ‖u − v‖σ

holds for all u and v in K .

This concept is a generalization of Lipschitz continuity, which is, by definition,
Hölder continuity with order σ = 1. Note that, for two different positive numbers σ
and σ ′, Hölder continuous functions with order σ and those with order σ ′ constitute
different subclasses. For example, the function G(u) := √‖u‖ is Hölder continuous
with order σ = 1

2 but not Lipschitz continuous.

Theorem 4.1 Let f be Hölder continuous in (x, y) on X with order σ > 0 and Hölder
constant κ(ω) > 0 satisfying

∫
�
κ(ω)dζ(ω) < +∞. Let the parameters ρk and εk be

chosen to satisfy (4.1) and (4.2). Suppose that (xk, yk) solves problem (3.3) for each
k and (x∗, y∗) is an accumulation point of the sequence {(xk, yk)}. Then (x∗, y∗) is
an optimal solution of problem (1.1) with probability one.

Proof Without loss of generality, we suppose lim
k→∞(x

k, yk) = (x∗, y∗). Since (xk, yk)

is an optimal solution of problem (3.3), it follows that

1

k

k∑

�=1
f (xk, yk, ω�)+ ρk

∥
∥
∥
∥
εk

(
yk,

1

k

k∑

�=1
F(xk, yk, ω�)

)∥∥
∥
∥

2

≤ 1

k

k∑

�=1
f (x, y, ω�)+ ρk

∥
∥
∥
∥
εk

(
y,

1

k

k∑

�=1
F(x, y, ω�)

)∥∥
∥
∥

2

(4.3)

holds for any (x, y) ∈ X and each k.
(a) We first prove that (x∗, y∗) is almost surely a feasible point of problem (1.1).

In fact, for an arbitrary (x̄, ȳ) ∈ F , we have from (4.3), the Hölder continuity of f on
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X , and (3.2) that

ρk

(∥
∥
∥
∥
εk

(
yk,

1

k

k∑

�=1
F(xk, yk, ω�)

)∥∥
∥
∥

2

−
∥
∥
∥
∥
εk

(
ȳ,

1

k

k∑

�=1
F(x̄, ȳ, ω�)

)∥∥
∥
∥

2)

≤ 1

k

k∑

�=1
f (x̄, ȳ, ω�)− 1

k

k∑

�=1
f (xk, yk, ω�)

= 1

k

k∑

�=1
f (x̄, ȳ, ω�)− 1

k

k∑

�=1
f (x∗, y∗, ω�)+ 1

k

k∑

�=1

(
f (x∗, y∗, ω�)− f (xk, yk, ω�)

)

≤ 1

k

k∑

�=1
f (x̄, ȳ, ω�)− 1

k

k∑

�=1
f (x∗, y∗, ω�)+‖(xk, yk)− (x∗, y∗)‖σ · 1

k

k∑

�=1
κ(ω�)

k→∞−−−→ E[ f (x̄, ȳ, ω)] − E[ f (x∗, y∗, ω)] w.p.1.

This indicates that the sequence

ρk

{∥
∥
∥
∥
εk

(
yk,

1

k

k∑

�=1
F(xk, yk, ω�)

)∥∥
∥
∥

2

−
∥
∥
∥
∥
εk

(
ȳ,

1

k

k∑

�=1
F(x̄, ȳ, ω�)

)∥∥
∥
∥

2}

(4.4)

is almost surely bounded above. Since

∥
∥
∥
∥
εk

(
yk,

1

k

k∑

�=1
F(xk, yk, ω�)

)
−
εk

(
y∗, 1

k

k∑

�=1
F(x∗, y∗, ω�)

)∥∥
∥
∥

2

=
m∑

i=1

[
φεk

(
yk

i ,
1

k

k∑

�=1
Fi (x

k, yk, ω�)

)
− φεk

(
y∗

i ,
1

k

k∑

�=1
Fi (x

∗, y∗, ω�)
)]2

≤ 4
m∑

i=1

[
|yk

i − y∗
i | +

∣
∣
∣
∣
1

k

k∑

�=1

(
Ni (ω�)(x

k − x∗)+ Mi (ω�)(y
k − y∗)

)∣∣
∣
∣

]2

k→∞−−−→ 0 w.p.1

by Lemma 4.1, we have

lim
k→∞
εk

(
yk,

1

k

k∑

�=1
F(xk, yk, ω�)

)
= 
0(y

∗,E[F(x∗, y∗, ω)]) w.p.1. (4.5)

On the other hand, it follows from (x̄, ȳ) ∈ F that

lim
k→∞
εk

(
ȳ,

1

k

k∑

�=1
F(x̄, ȳ, ω�)

)
= 
0(ȳ,E[F(x̄, ȳ, ω)]) = 0 w.p.1.

Since the sequence (4.4) is almost surely bounded and lim
k→∞ ρk = +∞, we have


0(y
∗,E[F(x∗, y∗, ω)]) = 0 w.p.1.
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Namely, (x∗, y∗) is feasible to (1.1) with probability one.
(b) We next show that (x∗, y∗) is almost surely an optimal solution of problem

(1.1). Choose (x̄, ȳ) ∈ F arbitrarily. It follows that φ0(ȳi ,E[Fi (x̄, ȳ, ω)]) = 0 for
each i . From Lemma 4.1 and (4.1), (4.2), we have

ρk

∥
∥
∥
∥
εk

(
ȳ,

1

k

k∑

�=1
F(x̄, ȳ, ω�)

)∥∥
∥
∥

2

= ρk

m∑

i=1

[
φεk

(
ȳi ,

1

k

k∑

�=1
Fi (x̄, ȳ, ω�)

)
− φ0(ȳi ,E[Fi (x̄, ȳ, ω)])

]2

≤ ρk

m∑

i=1

(
2

∣
∣
∣
∣
1

k

k∑

�=1
Fi (x̄, ȳ, ω�)− E[Fi (x̄, ȳ, ω)]

∣
∣
∣
∣+ εk

)2

=
m∑

i=1

[

2
√
ρk

∣
∣
∣
∣
∣

(
1

k

k∑

�=1
Ni (ω�)− N̄i

)T

x̄

+
(

1

k

k∑

�=1
Mi (ω�)− M̄i

)T

ȳ +
(

1

k

k∑

�=1
qi (ω�)− q̄i

)∣∣
∣
∣+ εk

√
ρk

]2

k→∞−−−→ 0 w.p.1. (4.6)

Moreover, we have from (4.3) that, for every k,

1

k

k∑

�=1
f (xk, yk, ω�) ≤ 1

k

k∑

�=1
f (x̄, ȳ, ω�)+ ρk

∥
∥
∥
∥
εk

(
ȳ,

1

k

k∑

�=1
F(x̄, ȳ, ω�)

)∥∥
∥
∥

2

. (4.7)

On the other hand, it follows from the Hölder continuity of f that

∣
∣
∣
∣
1

k

k∑

�=1

(
f (x∗, y∗, ω�)− f (xk, yk, ω�)

)∣∣
∣
∣ ≤ (‖xk−x∗‖+‖yk−y∗‖)σ . . . 1

k

k∑

�=1
κ(ω�)

k→∞−−−→ 0 w.p.1,

which along with (3.2) yields

lim
k→∞

1

k

k∑

�=1
f (xk, yk, ω�) = lim

k→∞
1

k

k∑

�=1
f (x∗, y∗, ω�)

= E[ f (x∗, y∗, ω)] w.p.1. (4.8)

Thus, letting k → +∞ in (4.7) and taking (4.6) and (4.8) into account, we obtain

E[ f (x∗, y∗, ω)] ≤ E[ f (x̄, ȳ, ω)] w.p.1,

which indicates that (x∗, y∗) is an optimal solution of problem (1.1) with probability
one. This completes the proof of the theorem. ��
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4.2 Limiting behavior of stationary points

In general, it is difficult to obtain a global optimal solution of problem (3.3), whereas
computation of stationary points is relatively easy. Therefore, it is important to study
the limiting behavior of stationary points of problem (3.3). We will use the standard
definition of stationarity in nonlinear programming.

Definition 4.2 We say (xk, yk) ∈ X is stationary to (3.3) if there exist Lagrangian
multiplier vectors αk ∈ �s1 and βk ∈ �s2 such that

1

k

k∑

�=1
∇(x,y) f (xk, yk, ω�)+ 2ρk ∇(x,y)
εk

(
yk,

1

k

k∑

�=1
F(xk, yk, ω�)

)

×
εk

(
yk,

1

k

k∑

�=1
F(xk, yk, ω�)

)
+ ∇g(xk, yk)αk + ∇h(xk, yk)βk = 0, (4.9)

0 ≤ αk ⊥ − g(xk, yk) ≥ 0. (4.10)

Note that

∇x
εk

(
yk,

1

k

k∑

�=1
F(xk, yk, ω�)

)
= 1

k

k∑

�=1
∇x F(xk, yk, ω�) Bk, (4.11)

∇y
εk

(
yk,

1

k

k∑

�=1
F(xk, yk, ω�)

)
= Ak + 1

k

k∑

�=1
∇y F(xk, yk, ω�) Bk, (4.12)

where Ak := diag(ak
1, . . . , ak

m) ∈ �m×m and Bk := diag(bk
1, . . . , bk

m) ∈ �m×m with

ak
i := ∂aφεk

(
yk

i ,
1

k

k∑

�=1
Fi (xk, yk, ω�)

)

bk
i := ∂bφεk

(
yk

i ,
1

k

k∑

�=1
Fi (xk, yk, ω�)

)

⎫
⎪⎪⎬

⎪⎪⎭
i = 1, . . . ,m.

Here,

∂aφε(a, b) = 1 − a√
a2 + b2 + ε2

, ∂bφε(a, b) = 1 − b√
a2 + b2 + ε2

.

Theorem 4.2 Suppose both f and ∇(x,y) f are Hölder continuous in (x, y) on X with
order σ > 0 and Hölder constant κ(ω) > 0 satisfying

∫
�
κ(ω)dζ(ω) < +∞. Let the

parameters ρk and εk be chosen to satisfy (4.1) and (4.2). Let (xk, yk) be a stationary
point of (3.3) for each k and (x∗, y∗) be an accumulation point of {(xk, yk)}. Suppose
that there exists a constant π such that θk(xk, yk) ≤ π for each k and the MPEC-
LICQ holds at (x∗, y∗). Then (x∗, y∗) is almost surely a C-stationary point of (1.1).
Furthermore, if the LLSC holds at (x∗, y∗), it is B-stationary with probability one.
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Proof Assume without loss of generality that lim
k→∞(x

k, yk) = (x∗, y∗). By the

assumptions, we have

1

k

k∑

�=1
f (xk, yk, ω�)+ ρk

∥
∥
∥
∥
εk

(
yk,

1

k

k∑

�=1
F(xk, yk, ω�)

)∥∥
∥
∥

2

= θk(x
k, yk) ≤ π, ∀k (4.13)

and hence

∥
∥
∥
∥
εk

(
yk,

1

k

k∑

�=1
F(xk, yk, ω�)

)∥∥
∥
∥

2

≤ ρ−1
k

(
π − 1

k

k∑

�=1
f (xk, yk, ω�)

)
, ∀k. (4.14)

Note that (4.5) and (4.8) remain valid under the assumptions. Letting k → +∞ in
(4.14), we have 
0(y∗,E[F(x∗, y∗, ω)]) = 0 with probability one, which implies
that (x∗, y∗) is almost surely a feasible point of (1.1). We next show that (x∗, y∗) is a
C-stationary point of problem (1.1) with probability one.

Since (xk, yk) is stationary to (3.3), there exist Lagrangian multiplier vectors αk ∈
�s1 and βk ∈ �s2 satisfying conditions (4.9) and (4.10). Note that, by (4.11)–(4.12),
condition (4.9) can be rewritten as

1

k

k∑

�=1
∇(x,y) f (xk, yk, ω�)− (

O
I

)
γ k − 1

k

k∑

�=1
∇(x,y)F(xk, yk, ω�)δ

k

+∇g(xk, yk)αk + ∇h(xk, yk)βk = 0, (4.15)

where

γ k := −2ρk Ak 
εk

(
yk,

1

k

k∑

�=1
F(xk, yk, ω�)

)
, (4.16)

δk := −2ρk Bk 
εk

(
yk,

1

k

k∑

�=1
F(xk, yk, ω�)

)
. (4.17)

It follows from (4.13) and (4.8) that the sequence
{√
ρk φεk (y

k
i ,

1
k

∑k
�=1 Fi (xk, yk,

ω�))
}

, i.e.,

⎧
⎨

⎩
2
√
ρk yk

i (
1
k

∑k
�=1 Fi (xk, yk, ω�))− ε2

k
√
ρk

yk
i + 1

k

∑k
�=1 Fi (xk, yk, ω�)+

√
(yk

i )
2 + ( 1

k

∑k
�=1 Fi (xk, yk, ω�))2 + ε2

k

⎫
⎬

⎭
,

(4.18)

is almost surely bounded for each i . Let G and H be defined as in Sect. 2.
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(a) If i /∈ IG(x∗, y∗), we have lim
k→∞ yk

i = y∗
i > 0 and

lim
k→∞

1

k

k∑

�=1
Fi (x

k, yk, ω�)= lim
k→∞

1

k

k∑

�=1
Fi (x

∗, y∗, ω�)=E[Fi (x
∗, y∗, ω)] = 0 w.p.1.

It then follows from (4.1) and the boundedness of (4.18) that
{√
ρk (

1
k

∑k
�=1 Fi (xk,

yk, ω�))
}

is almost surely bounded. As a result,

ρkak
i =

ρk

(
1
k

∑k
�=1 Fi (xk , yk , ω�)

)2 + ρkε
2
k

(yk
i )

2 +
(

1
k

∑k
�=1 Fi (xk , yk , ω�)

)2 + ε2
k + yk

i

√

(yk
i )

2 +
(

1
k

∑k
�=1 Fi (xk , yk , ω�)

)2 + ε2
k

is almost surely bounded. On the other hand, in a similar way to (4.5), we can show
that

lim
k→∞φεk

(
yk

i ,
1

k

k∑

�=1
Fi (x

k, yk, ω�)

)
= φ0(y

∗
i ,E[Fi (x

∗, y∗, ω)]) = 0 w.p.1.

In consequence,

lim
k→∞ γ

k
i = − lim

k→∞ 2 ρkak
i φεk

(
yk

i ,
1

k

k∑

�=1
Fi (x

k, yk, ω�)

)
= 0 w.p.1.

Similarly, we can prove that limk→∞ δk
i = 0 with probability one if i /∈ IH (x∗, y∗).

(b) By the continuity of the functions involved, when k is sufficiently large, there
hold

Ig(x
k, yk) ⊆ Ig(x

∗, y∗), IG(x
k, yk) ⊆ IG(x

∗, y∗), IH (x
k, yk) ⊆ IH (x

∗, y∗).

Note that, by (4.10), (4.15) can be further rewritten as

1

k

k∑

�=1
∇(x,y) f (xk, yk, ω�)− ∑

i /∈IG (x∗,y∗)
γ k

i

(
0
ei

)

− ∑

i /∈IH (x∗,y∗)
δk

i

(
1

k

k∑

�=1
∇(x,y)Fi (x

k, yk, ω�)

)

= ∑

i∈IG (x∗,y∗)
γ k

i

(
0
ei

)
+ ∑

i∈IH (x∗,y∗)
δk

i

(
1

k

k∑

�=1
∇(x,y)Fi (x

k, yk, ω�)

)

− ∑

i∈Ig(x∗,y∗)
αk

i ∇gi (x
k, yk)− ∇h(xk, yk)βk, (4.19)

where ei is the i th unit vector in �m . Note that, from (a), the multiplier sequences
that appear on the left-hand side of (4.19) are convergent to zero with probability one.
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By (a) and the Hölder continuity of ∇(x,y) f on X , the left-hand side is convergent to
E[∇(x,y) f (x∗, y∗, ω)] with probability one. Since the MPEC-LICQ holds at (x∗, y∗),
it is not difficult to see that all the multiplier sequences that appear on the right-hand
side of (4.19) are convergent with probability one. Letting

α∗ := lim
k→∞α

k, β∗ := lim
k→∞β

k, γ ∗ := lim
k→∞ γ

k, δ∗ := lim
k→∞ δ

k

and taking a limit in (4.19), we obtain (2.2). Moreover, (2.3)–(2.5) follow from (4.10)
and (a) immediately. In addition, since both ak

i and bk
i are nonnegative, from (4.16)

and (4.17), we have γ ∗
i δ

∗
i = lim

k→∞ γ
k
i δ

k
i ≥ 0 for each i ∈ IG(x∗, y∗) ∩ IH (x∗, y∗).

Therefore, (x∗, y∗) is a C-stationary point of (1.1) with probability one. If the LLSC
holds at (x∗, y∗), then C-stationarity is equivalent to B-stationarity. This completes
the proof of the theorem. ��

Furthermore, we have the following result.

Theorem 4.3 Let ( f,∇(x,y) f ) be Hölder continuous in (x, y) on X with order σ > 0
and Hölder constant κ(ω) > 0 satisfying

∫
�
κ(ω)dζ(ω) < +∞ and the parameters

ρk and εk be chosen to satisfy (4.1) and (4.2). Let (xk, yk) be a stationary point
of (3.3) for each k and (x∗, y∗) be an accumulation point of {(xk, yk)}. Suppose
that there exists a constant π such that θk(xk, yk) ≤ π for each k and the MPEC-
LICQ holds at (x∗, y∗). Suppose also that the weak second-order necessary conditions
hold at (xk, yk) for each k sufficiently large and {(xk, yk)} is asymptotically weakly
nondegenerate. Then (x∗, y∗) is almost surely a B-stationary point of (1.1).

Let G and H be defined as in Sect. 2. Roughly speaking, the asymptotically weak
nondegeneracy of {(xk, yk)} means that, for each i ∈ IG(x∗, y∗) ∩ IH (x∗, y∗),
Gi (xk, yk) and Hi (xk, yk) approach zero in the same order of magnitude. This pro-
perty is obviously weaker than the LLSC condition. See Fukushima and Pang (1999)
for more details. Although the results established in this theorem are more interesting
and important, its proof is somewhat lengthy and technical. To avoid disturbing the
readability, we omit its proof here. One can understand this theorem from Theorem
3.1 in Fukushima and Pang (1999) and Theorem 4.2.

5 Choice of parameters

Suppose that F is given as in Sect. 4. We now discuss how to choose the parameters
ρk and εk so that both (4.1) and (4.2) hold with probability one.

In the case where (N̄ , M̄, q̄) is known, we can set the parameters as follows: Let
σ ∈ (0, 2) and λ > 0 be given numbers and choose a sequence {ρ̄k} from (0,+∞)
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such that lim
k→∞ ρ̄k = +∞. Let ρk := min{ρ̄k, ρ

N
k , ρ

M
k , ρ

q
k } and εk ∈ (0, λ/ρk], where

ρN
k := min

1≤i≤m

∥
∥
∥
∥

1

k

k∑

�=1
Ni (ω�)− N̄i

∥
∥
∥
∥

−σ

1

,

ρM
k := min

1≤i≤m

∥
∥
∥
∥

1

k

k∑

�=1
Mi (ω�)− M̄i

∥
∥
∥
∥

−σ

1

,

ρ
q
k :=

∥
∥
∥
∥

1

k

k∑

�=1
q(ω�)− q̄

∥
∥
∥
∥

−σ

1

.

It is easy to see from (3.2) that both (4.1) and (4.2) hold for the above settings.
If some data in (N̄ , M̄, q̄) are unknown, we suggest to set the parameters as follows.

• Let σ ∈ (0, 2) and λ > 0 be given scalars. Choose a sequence {ρ̄k} from (0,+∞)

such that

lim
k→∞ ρ̄k = +∞, lim

k→∞
ρ̄k

k
= 0. (5.1)

• Let ρk := min{ρ̄k, ρ
N
k , ρ

M
k , ρ

q
k }, where

ρN
k := min

{ ∣
∣
∣
∣
1

k

k∑

�=1
Ni j (ω�)− N̄i j

∣
∣
∣
∣

−σ
: N̄i j is known

}

,

ρM
k := min

{ ∣
∣
∣
∣
1

k

k∑

�=1
Mi j (ω�)− M̄i j

∣
∣
∣
∣

−σ
: M̄i j is known

}

,

ρ
q
k := min

{ ∣
∣
∣
∣
1

k

k∑

�=1
qi (ω�)− q̄i

∣
∣
∣
∣

−σ
: q̄i is known

}

.

• Choose εk ∈ (0, λ/ρk].
Then, we have (4.1), (4.2) at least in probability. In fact, it is obvious that (4.1) holds
with probability one. Moreover, if N̄i j , M̄i j or q̄i is known, we have

lim
k→∞

√
ρN

k

∣
∣
∣
∣
1

k

k∑

�=1
Ni j (ω�)− N̄i j

∣
∣
∣
∣ ≤ lim

k→∞

∣
∣
∣
∣
1

k

k∑

�=1
Ni j (ω�)− N̄i j

∣
∣
∣
∣

1−σ/2
= 0,

lim
k→∞

√
ρM

k

∣
∣
∣
∣
1

k

k∑

�=1
Mi j (ω�)− M̄i j

∣
∣
∣
∣≤ lim

k→∞

∣
∣
∣
∣

1

k

k∑

�=1
Mi j (ω�)− M̄i j

∣
∣
∣
∣

1−σ/2
= 0,

lim
k→∞

√
ρ

q
k

∣
∣
∣
∣
1

k

k∑

�=1
qi (ω�)− q̄i

∣
∣
∣
∣≤ lim

k→∞

∣
∣
∣
∣

1

k

k∑

�=1
qi (ω�)− q̄i

∣
∣
∣
∣

1−σ/2
= 0
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with probability one; otherwise, we have

lim
k→∞

√
ρ̄k

(
1

k

k∑

�=1
Ni j (ω�)− N̄i j

)
= lim

k→∞

√
ρ̄k

k

√
k

(
1

k

k∑

�=1
Ni j (ω�)− N̄i j

)
= 0,

lim
k→∞

√
ρ̄k

(
1

k

k∑

�=1
Mi j (ω�)− M̄i j

)
= lim

k→∞

√
ρ̄k

k

√
k

(
1

k

k∑

�=1
Mi j (ω�)− M̄i j

)
= 0,

lim
k→∞

√
ρ̄k

(
1

k

k∑

�=1
qi (ω�)− q̄i

)
= lim

k→∞

√
ρ̄k

k

√
k

(
1

k

k∑

�=1
qi (ω�)− q̄i

)
= 0

in probability, since the convergence in (3.2) is of order O(k−1/2) in probability

(Hall and Marron 1991), which implies that

{√
k

(
1

k

∑k
�=1 ψ(ω�)− E[ψ(ω)]

)}
is

convergent in probability as k → +∞. Therefore, from the manner in which ρk is
determined, we have (4.2) in probability.

Remark 5.1 Another strategy for choosing ρk is simply to set ρk := ρ̄k for every k,
where ρ̄k is chosen to satisfy (5.1). However, in order to ensure that more conditions
in (4.2) hold with probability one (not just in probability), we make most of the data
(N (ω�),M(ω�), q(ω�)) in the definition of ρk .

6 Extensions to Quasi-Monte Carlo approach

We have presented a Monte Carlo sampling and penalty approach for solving problem
(1.1). Actually, Monte Carlo sampling methods have been proved useful in the eva-
luation of integration. However, the convergence of Monte Carlo methods is not fast
and various techniques have been proposed to speed up the convergence. In this area,
the most well-known innovation is the introduction of quasi-Monte Carlo methods, in
which the integral is evaluated by using deterministic sequences rather than random
sequences. These deterministic sequences have the property that they are well disper-
sed throughout the domain of integration. Sequences with this property are called low
discrepancy sequences. See the monograph (Niederreiter 1992) for more details.

Next, we briefly introduce two advantages of quasi-Monte Carlo methods.

(i) Since quasi-Monte Carlo methods employ deterministic sequences instead of
random sequences, the convergence in (3.2) is valid in a deterministic way
for any integrable function ψ : � → �. This is different from Monte Carlo
methods, for which convergence is always probabilistic.

(ii) Quasi-Monte Carlo methods are generally faster than Monte Carlo methods in
numerical integration. Actually, the expected convergence in (3.2) is of order
O(k−1/2) for Monte Carlo methods, whereas the worst case convergence for

quasi-Monte Carlo methods is of order O
(
(log k)d

k

)
, where k is the number of

samples and d is the dimension of the integration.

We may readily develop a quasi-Monte Carlo and penalty approach for solving
problem (1.1). In the case where F is affine, we can establish all the results in Sect. 4
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in a similar way, and particularly, those convergence results are deterministic by (i).
Moreover, by (ii), the choice of the parameter ρk given in Sect. 5 can also be improved.
For example, we may choose the sequence {ρ̄k} from (0,+∞) such that

lim
k→∞ ρ̄k = +∞, lim

k→∞
ρ̄k(log k)2d

k2 = 0

instead of (5.1). Then, we may expect that the quasi-Monte Carlo sampling and penalty
method is faster than the method suggested in Sect. 3.

7 Applications

Consider a supply side oligopoly market where (m + 1) firms compete to supply
a homogeneous product in a non-competitive manner. A dominant firm, called the
leader hereafter, knows how the other firms (called followers) react to its supply and
chooses optimal supply to maximize its profit by expecting the other firms to reach a
Nash–Cournot equilibrium after its supply is determined. It is well known that such a
market competition can be modeled as a Stackelberg–Nash–Cournot game.

Now suppose that the market demand is unknown at the time when the firms make
decisions on their supplies and the demand contains some uncertainties. Assume also
that all firms know the distribution of the random factors in the demand. Then each
firm may consider the expected profit rather than the profit in a particular demand
scenario in its decision making.

In what follows, we demonstrate that this type of Stackelberg leader-follower games
can be modeled as (1.1). We start by describing the market demand with the inverse
demand function p(τ, ω), where τ stands for the total quantity of supply to the market,
ω is a random shock with known distribution, and p(τ, ω) is the market price.

Let x denote the decision variable of the leader, that is, the quantity supplied by
the leader to the market. Let yi denote the decision variable of the i th follower, that
is, the quantity supplied by the i th firm to the market.
The Followers’ decision problems. Suppose that the leader’s supply is
x and the aggregate supplies of the followers except the i th firm is

∑m
j=1, j �=i y j . If

the i th firm’s supply is yi , then the market price in this demand scenario is p(x +∑m
j=1 y j , ω). The total revenue of the i th firm is yi p(x +∑m

j=1 y j , ω). Suppose that
the total cost for the i th firm to produce yi is ci (yi ). Then the i th firm’s expected profit
can be formulated as

E

[

yi p

(

x +
m∑

j=1
y j , ω

)]

− ci (yi ).

Since the market price depends on yi (in other words, the i th firm has market power),
the i th firm would like to choose an optimal yi in order to maximize his expected
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profit. Therefore the i th follower’s profit maximization problem can be written as

max
yi ≥0

fi (yi ) := E

[

yi p

(

x + yi +
m∑

j=1, j �=i
y j , ω

)]

− ci (yi ). (7.1)

In choosing an optimal decision, the i th firm holds the other firms’ supplies as
constants. A Nash–Cournot equilibrium among the followers is a situation where,
given the leader’s supply, no firm can improve its expected profit by unilaterally chan-
ging his supply. We denote such an equilibrium by (y1(x), . . . , ym(x)), where each
yi (x) is a global optimal solution of (7.1) with y j = y j (x) for all j �= i .
The Leader’s Decision Problem. We suppose that the leader expects the
followers to choose their outputs as described in (7.1) and maximizes his expected
profit based on his knowledge on the market demand distribution and the followers’
reaction to his supply. Therefore we can formulate the leader’s decision problem as
follows:

max
0≤x≤L

f0(x) := E

[
x p

(
x +

m∑

i=1
yi (x), ω

)]
− c0(x),

where L > 0 is a constant and c0(x) is the cost for the leader to produce x .
Stochastic Stackelberg–Nash–Cournot Equilibrium. We investig-
ate a situation where the leader maximizes the expected profit while the followers
reach a Nash–Cournot equilibrium. A Stackelberg–Nash–Cournot equilibrium is an
(m + 1)-dimensional vector (x∗, y1(x∗), . . . , ym(x∗)) such that

f0(x
∗) = max

0≤x≤L
E

[
x p

(
x +

m∑

i=1
yi (x), ω

)]
− c0(x)

with

yi (x) ∈ Arg max
yi ≥0

(

E

[

yi p

(

x + yi +
m∑

j=1, j �=i
y j (x), ω

)]

− ci (yi )

)

,

i = 1, . . . ,m. (7.2)

If the function E[yi p(x + yi + ∑m
j=1, j �=i y j (x), ω)] − ci (yi ) is concave in yi , the

Nash–Cournot equilibrium problem (7.2) is equivalent to the following nonlinear
complementarity problem:

0 ≤ y ⊥ E[F(x, y, ω)] ≥ 0,

where

F(x, y, ω) := −p(x + yT e, ω) e − p′
τ (x + yT e, ω) y + c′(y).
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Here, e := (1, . . . , 1)T ∈ �m and c′(y) := (c′
1(y1), . . . , c′

m(ym))
T . Thus, we can

rewrite the stochastic Stackelberg–Nash–Cournot equilibrium problem as an SMPEC:

max E
[
x p

(
x + eT y, ω

)]− c0(x)
s.t. 0 ≤ x ≤ L ,

0 ≤ y ⊥ E[F(x, y, ω)] ≥ 0.
(7.3)

Obviously (7.3) is subsumed by (1.1).

Remark 7.1 Suppose that p(τ, ω) := α(ω)−β(ω)τ with E[α(ω)] > 0 and E[β(ω)] ≥
0 and ci (yi ) is affine. It is easy to show that the function E[yi p(x + yi +∑m

j=1, j �=i y j (x), ω)] − ci (yi ) is concave in yi .

As an application of the proposed methods, we consider a simple case in which
there are three followers and the involved functions are given by

p(τ, ω) := 20 − (0.002ω + 0.003)τ,

c0(x) := 9.5x + 60,

c1(y1) := 8.6y1 + 48,

c2(y2) := 8.9y2 + 45,

c3(y3) := 9.2y3 + 75,

respectively. We suppose that the random shock ω is uniformly distributed on � :=
[−1, 1] and the maximum amount L of the leader is equal to 1800. Then the model
(7.3) becomes

max E[x(20 − (0.002ω + 0.003)(x + y1 + y2 + y3)+ ω)] − c0(x)

s.t. 0 ≤ x ≤ 1800,

0 ≤ y ⊥ E[F(x, y, ω)] ≥ 0

with F(x, y, ω) := N (ω)x + M(ω)y + q, where

N (ω) :=
⎛

⎝
0.002ω + 0.003
0.002ω + 0.003
0.002ω + 0.003

⎞

⎠ ,

M(ω) :=
⎛

⎝
0.004ω + 0.006 0.002ω + 0.003 0.002ω + 0.003
0.002ω + 0.003 0.004ω + 0.006 0.002ω + 0.003
0.002ω + 0.003 0.002ω + 0.003 0.004ω + 0.006

⎞

⎠ ,

and q := −(11.4, 11.1, 10.8)T . The solution of this problem is (x∗, y∗) = (1450,
662.5, 562.5, 462.5).

We applied the proposed methods to solve the above problem. In our experiments,
in order to demonstrate the methods, we treated the expectations N̄ and M̄ as unknown
data although they are easy to calculate. For the Monte Carlo sampling method, we
set ρ̄k = k3/4, εk = ρ−1

k , and we used the random number generator rand in Matlab
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Table 1 Computational results

(x∗, y∗)

MC QMC

k = 102 (1800.0, 60.5, 54.4, 48.7) (1800.0, 383.2, 288.4, 199.3)

k = 103 (1800.0, 469.3, 369.7, 271.5) (1546.6, 622.2, 522.3, 422.2)

k = 104 (1546.6, 622.2, 522.3, 422.3) (1459.2, 658.7, 558.7, 458.7)

k = 105 (1466.3, 655.7, 555.7, 455.7) (1450.9, 662.1, 562.1, 462.1)

k = 106 (1452.9, 661.3, 561.3, 461.3) (1451.0, 662.2, 562.2, 462.2)

k = 107 (1453.1, 661.6, 561.6, 461.6) (1450.9, 662.3, 562.3, 462.3)

6.5 to generate random samples {ξ1, . . . , ξk} from [0, 1] and then let ωi = 2ξi −
1 ∈ � for each i = 1, . . . , k. For the quasi-Monte Carlo sampling method, we
set ρ̄k = k, εk = ρ−1

k , and used the classical constructions method in Niederreiter
(1992) to generate samples. Then, we employed the solver fmincon in Matlab 6.5
to solve the subproblems (3.3). The initial points were chosen to be (0, . . . , 0) and
the computed solutions were used as the starting points in the next iterations. The
computational results are shown in Table 1. The results shown in the table reveal that
the proposed methods were able to solve the problem successfully and the quasi-Monte
Carlo method was faster than the Monte Carlo method.

8 Conclusion

We have presented Monte Carlo and quasi-Monte Carlo sampling methods with a
penalty technique for solving problem (1.1) and, under appropriate assumptions, we
have established a comprehensive convergence theory for the proposed methods. Espe-
cially, different from the approach proposed in Birbil et al. (2006), the approximation
problems given in this paper are standard differentiable optimization problems and
hence they are easy to deal with.
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