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Material for on-line supplement

Appendix A: Proofs for some of the results

Proof for Lemma 3.3

Part (i). For each realization of the random variable t, the reaction function Y (X, t) behaves as
that of a deterministic problem with multiple leaders and followers. Moreover, it does not make
any difference to the followers equilibrium whether X is produced by a single leader or multiple
leaders. Hence, the result follows from the analogous result for the model with deterministic
demand and a single leader, which is proven in H. D. Sherali [1983, Theorem 2].

Part (ii). Let t∈ T and y(X, t) be the follower equilibrium. We consider the complementarity
problem

yj(X, t)≥ 0,Gj(X,y(X, t), t)≥ 0, yj(X, t)Gj(X,y(X, t), t) = 0.

It suffices to show the conclusion at points where yj(X, t)> 0 as yi(X, t) is a continuous non-
negative function. By the complementarity condition Gj(X,y(X, t), t) = 0; that is,

−p (X +Y (X, t), t)− yj(X, t)p′q (X +Y (X, t), t) + c′j(yj(X, t)) = 0. (20)

By using Clarke’s generalized implicit function theorem [Xu 2005, Lemma 3.2], we obtain

∂Xyj(X, t)⊂
[
p′q (X +Y (X, t), t) + p′′qq (X +Y (X, t), t)yj(X, t)

]
(1 + ∂XY (X, t))

−p′q (X +Y (X, t), t) + c′′j (yj(X, t))
. (21)

Note that at a point where Y (X, t) is differentiable, both ∂XY (X, t) and ∂Xyj(X, t) reduce to a
singleton.

To show the conclusion, we note that part (i) of this lemma indicates that 1 + ∂XY (X, t)⊂
(0,1]. Part (i) of Lemma 2.4 indicates that

p′q (X +Y (X, t), t) + p′′qq (X +Y (X, t), t)yj(X, t)≤ 0.

By Assumptions 3.1 (i),

−p′q (X +Y (X, t), t) + c′′j (yj(X, t))≥ σ > 0.

Thus every element of Clarke subdifferential ∂Xyj(X, t) is non-positive, which implies that
yj(X, t) is nonincreasing with respect to X.

Part (iii). From Proposition 2.6 (iii), we know that yj(X, t) is piecewise smooth in X. Let
X(1),X(2) ≥ 0 be any two points. By the mean value theorem,

yj(X(1), t)− yj(X(2), t) =
∫ 1

0

(yj)′X
(
X(2) + θ(X(1)−X(2)), t

)
(X(1)−X(2))dθ.

Under Assumption 3.1, we have from (21) that∣∣(yj)′X (X(2) + θ(X(1)−X(2)), t
)∣∣≤ (1 + yuj )L1(t)/σ.

The conclusion follows by taking L2(t) :=L1(t)(1 + yuj )/σ.
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Proof for Proposition 4.2

Observe that Assumptions 2.2, 2.3, 2.5, and 3.2 are satisfied and hence all conditions of Propo-
sition 2.6 hold which means that Y (X, t) is well defined.

Condition (i). We first prove the conclusion under condition (i). The method of proof is similar
to that of [Sherali 1984, Theorem 3] except we use the complementarity reformulation.

Let X(t) denote a point at which the supply of one or more of the followers yj(X, t) turns
from strictly positive to zero as X increases. From Proposition 2.6 we have that Y (X, t) is
piecewise smooth with respect to X, where the only points at which Y (X, t) may not be smooth
are precisely the points X(t). For points X at which Y (X, t) is differentiable, it is easy to see,
from the linearity of the demand function in X and the fact that the follower cost functions are
quadratic, that yj(X, t) is linear in X for all j. Hence, yj(X, t) is convex in a neighborhood of
such points.

It only remains to show that Y (X, t) is convex in X in a neighborhood of points X(t) at
which yj(X, t) turns from strictly positive to zero for one or more followers. Let I(X, t) denote
the index set of the followers with yj(X, t)> 0. Then I(X(t)−, t)\I(X(t)+, t) is the index set of
followers who turn from positive to zero at X(t), where

I(X(t)−, t) = lim
δ→0
I(X(t)− δ, t), I(X(t)+, t) = lim

δ→0
I(X(t) + δ, t).

Because yj(X, t) is piecewise smooth in X (nonsmooth only at a finite number of points), we may
assume that in a neighborhood of X(t), yj(X, t) is differentiable except at X(t). Because p(q, t)
is linear in X, we have from the complementarity formulation of the followers equilibrium that
Gj(X,y(X, t), t) = 0 for X in a left neighborhood of X(t)—because in this left neighborhood we
have yj(X, t)> 0. That is

−α(t) +β(t)(X +Y (X, t)) +β(t)yj(X, t) + c′j(yj(X, t)) = 0. (22)

Differentiating the above equation with respect to X, we obtain

(β(t) + c′′j (yj(X, t))(yj)
′
X(X, t) =−β(t)(1 +Y ′X(X, t)). (23)

Because cj is quadratic, c′′j (yj(X, t)) is a constant. To simplify notation, let ηj denote c′′j (yj(X, t)).
Then we have from (23)

(yj)′X(X, t) =− β(t)
β(t) + ηj

(1 +Y ′X(X, t)).

By adding this equation with respect to j ∈ I(X, t) and observing that

Y ′X(X, t) =
∑

j∈I(X,t)

(yj)′X(X, t),

we have

Y ′X(X, t) =−
∑

j∈I(X,t)

β(t)
β(t) + ηj

(1 +Y ′X(X, t)).
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This can be rewritten as

Y ′X(X, t) =− u(X, t)
1 +u(X, t)

,

where

u(X, t) :=
∑

j∈I(X,t)

β(t)
β(t) + ηj

.

Let |I(X, t)| denote the cardinality of the set I(X, t), then we obviously have |I(X(t)−, t)| ≥
|I(X(t)+, t)| and hence u(X, t) decreases when X changes from X(t)− to X(t)+, while Y ′X(·, t)
increases. This shows the convexity of Y (X, t) with respect to X.

Condition (ii). We now prove the conclusion under condition (ii). For the case where all
followers have the same cost function, the production of all followers at equilibrium is identical
yj(X, t) = y(X, t) for j = 1, · · · ,N . At a point X1 such that y(X1, t) = 0 we have that y(X2, t) = 0
for all X2 >X1—this is true because from Lemma 3.3 (given that Assumptions 2.2, 2.3, 2.5, 3.1,
and 3.2 hold) we have that y(X, t) is nonincreasing in X and it must be nonnegative. Hence,
clearly y(X, t) is convex (equal to zero) for all X ≥X1.

It only remains to show convexity at points X such that y(X, t)> 0 or at points X at which
y(X, t) turns from strictly positive to zero as X increases. For this points, we have from the
complementarity reformulation of the followers equilibrium that

−α(t) +β(t)(X +My(X, t)) +β(t)y(X, t) + c′(y(X, t)) = 0.

Differentiating the equation above with respect to X twice, we obtain

β(t)(M + 1)y′′X(X, t) + c′′′(y(X, t))(y′X(X, t))2 + c′′(y(X, t))y′′X(X, t) = 0,

from which we derive y′′X(X, t)≥ 0 because by assumption c′′′(y)≤ 0.

Proof for Theorem 4.4

Theorem 4.3 shows that there exists an equilibrium. It only remains to show uniqueness. Because
by Theorem 3.5 the leader objective functions φi(xi,X−i) are twice continuously differentiable,
we can apply Theorems 2 and 6 in Rosen [1965]. Hence, we only need to show that the Jacobian
matrix of the function g(x, r) is negative definite for all x ∈ [0, xu1 ]× · · · × [0, xuM ]. We proof the
results in three steps.

Step 1. Derive an expression for the Jacobian of g(x, r). Note that under the conditions of
Theorem 3.5, the functions φi are twice continuously differentiable. Moreover, note that

(φi)′xi(xi,X−i) =
∫
t∈T

[p (xi +X−i +Y (xi +X−i, t), t)

+xip′q (xi +X−i +Y (xi +X−i, t), t) (1 +Y ′X(xi +X−i, t))]ρ(t)dt
−C ′i(xi),

and

(φi)′′xixj (xi,X−i) =

{∫
t∈T [2p′q(1 +Y ′X) +xip

′′
qq(1 +Y ′X)2 +xip

′
qY
′′
X ]ρ(t)dt−C ′′i (xi), if j = i,∫

t∈T [p′q(1 +Y ′X) +xip
′′
qq(1 +Y ′X)2 +xip

′
qY
′′
X ]ρ(t)dt, if j 6= i.
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Observe that for a given leader i, we have that (φi)′′xixk(xi,X−i) = (φi)′′xixj (xi,X−i) for all j, k 6= i.
This implies that all the components of the vector ∇x(φi)′xi(xi, x−i) are equal except for the i-th
component.

Consequently, using the quantities ζi and δi defined in the statement of this theorem, we can
obtain the following expression for the Jacobian matrix of the function g(x, r)

∇g(x, r) = (r1ζ1, · · · , rMζM)TeT + diag(r1δ1, · · · , rMδM), (24)

where diag(r1δ1, · · · , rMδM) ∈ IRM is a diagonal matrix whose i-th diagonal element is riδi and
e∈ IRM is a vector of ones.

Step 2. The Jacobian matrix ∇g(x, r) is negative definite. It suffices to show that the symmetric
matrix W =∇g(x, r)T +∇g(x, r) is negative definite. We do this in three steps.

Step 2.1. Rewriting ∇g(x, r) as the sum of a rank-two matrix and a diagonal matrix. It is clear
from (24) that

W =A+ ∆,

where A := aeT + eaT , a := (r1ζ1, · · · , rMζM)T , and ∆ := 2diag(r1δ1, · · · , rMδM). Note that A is
a rank-two matrix and ∆ is a diagonal matrix.

Step 2.2. Characterizing the two nonzero eigenvalues of the rank-two matrix A. Note that we
can rewrite the matrix A as

A= (e, a)(a, e)T .

Let B := (a, e)T (e, a). Then B is a 2 by 2 matrix. It is well known in algebra that the two
eigenvalues of B coincide with two of the eigenvalues of A. Let λ1, λ2 be the two eigenvalues.
Because

B =

(∑M

i=1 ai M∑M

i=1 a
2
i

∑M

i=1 ai

)T
,

it is easy to derive that

λ1 =
M∑
i=1

ai +

√√√√M
M∑
i=1

a2
i > 0, λ2 =

M∑
i=1

ai−

√√√√M
M∑
i=1

a2
i < 0.

Step 2.3. The Jacobian matrix ∇g(x, r) is negative definite. We have just shown that the matrix

A has only one positive eigenvalue equal to
∑M

i=1 riζi+
√
M
∑M

i=1 r
2
i ζ

2
i . Moreover, because p′q < 0

and C ′′i (xi) ≥ 0, we know that ∆ is a negative definite diagonal matrix. Hence, the largest
eigenvalue of W is bounded above by

M∑
i=1

riζi +

√√√√M
M∑
i=1

r2
i ζ

2
i + 2 max

i=1,··· ,M
riδi,

which is negative by assumption. Therefore W is a symmetric negative definite matrix.
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Step 3. The SMS equilibrium is unique. From Step 2 and Theorem 6 in Rosen [1965], we
have that σ(x, r) is diagonally strictly concave. Then, by Theorem 2 in Rosen [1965], we have
that the leaders equilibrium is unique. Then, because Proposition 2.6 shows that the followers
equilibrium is also unique, we have that the SMS equilibrium is unique.

Proof for Theorem 5.1

Part (i). We first prove the almost sure convergence of a sequence of SMS equilibria of the
SAA problems to the unique SMS equilibrium. For clarity, we break the proof of Part (i) into
three steps.

Step 1. F (x, z, ξ(ω)) is Lipschitz continuous with an integrable module.

To see this, note that by Assumptions 2.2 and 2.3 and Lemma 3.3, we have that fi is piecewise
continuously differentiable. At a point where fi is differentiable with respect to zi, we have

(fi)′zi(x1, · · · , zi, · · · , xM , ξ(ω)) = p (zi +X−i +Y (zi +X−i, ξ(ω)), ξ(ω))
+zip′q (zi +X−i +Y (zi +X−i, ξ(ω)), ξ(ω)) (1 +Y ′X(zi +X−i, ξ(ω)))
−C ′i(zi).

Likewise, at a point where f(x1, · · · , zi, · · · , xM , ξ(ω)) is differentiable with respect to xj, we
have for j = 1, · · · , i− 1, i+ 1, · · · ,M ,

(fi)′xj (x1, · · · , zi, · · · , xM , ξ(ω)) = zip
′
q (zi +X−i +Y (zi +X−i, ξ(ω)), ξ(ω)) (1+Y ′X(zi+X−i, ξ(ω))).

Note that by Lemma 3.3, 1 +Y ′X ∈ [0,1]. Under Assumptions 3.1 and 3.4,

|(fi)′zi(x1, · · · , zi, · · · , xM , ξ(ω))| ≤L3(ξ(ω)) +xui L1(ξ(ω)) + max
zi∈[0,xui ]

|C ′i(zi)|

and
|(fi)′xj (x1, · · · , zi, · · · , xM , ξ(ω))| ≤ xui L1(ξ(ω)).

By the piecewise continuous differentiability of fi, the mean-value theorem Clarke [1983] implies
that there exists a nonnegative function

κ(ξ(ω)) :=L3(ξ(ω)) +xui L1(ξ(ω)) + max
zi∈[0,xui ]

|C ′i(zi)|

such that E[κ(ξ(ω))]<∞ and

|fi(w(1), ξ(ω))− fi(w(2), ξ(ω))| ≤ κ(ξ(ω))‖w(1)−w(2)‖,∀w(1),w(2) ∈W, (25)

where w(l) := (x(1)
1 , · · · , z(l)

i , · · · , x
(l)
M )T , for l = 1,2 and W := [0, xu1 ]× · · · × [0, xuM ]. This implies

F (x, z, ξ(ω)) is Lipschitz with an integrable module.

Step 2. With probability one, the function Φk(x, z) converges to Φ(x, z) uniformly over W×W.

Because F (x, z, ξ(ω)) is Lipschitz with an integrable module, by the uniform strong law of
large numbers [Rubinstein and Shapiro 1993, Sections 2.6 and 6.2] we have that with probability
one

lim
k→∞

sup
(x,z)∈W×W

∣∣Φk(x, z)−Φ(x, z)
∣∣= 0. (26)
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Step 3. With probability one, the sequence {xk} converges to the unique SMS equilibrium x∗.

Note that because W is a compact set, we know that the sequence {xk} has an accumulation
point x̄; that is, there exists a subsequence such that {xkj}→ x̄ as kj→∞. Then

|Φkj (x
kj , z)−Φ(x̄, z)| ≤ |Φkj (x

kj , z)−Φ(xkj , z)|+ |Φ(xkj , z)−Φ(x̄, z)|.

By (26), the first term at the right hand side goes to zero uniformly with respect to z with
probability one. Because Φ(x, z) is Lipschitz continuous function on the compact set W ×W,
Φ(·, z) is uniformly continuous on W. Therefore the second term at the right hand side goes to
zero uniformly with respect to z with probability one as xkj → x̄. Let δ > 0 be any small positive
number and kj be sufficiently large such that

sup
z∈W
|Φkj (x

kj , z)−Φ(x̄, z)| ≤ δ

with probability one. Let z̄ be a global maximizer of Φ(x̄, z). Observe that

Φkj (x
kj , xkj )−Φ(x̄, z̄) = Φkj (x

kj , xkj )−Φ(x̄, xkj ) + Φ(x̄, xkj )−Φ(x̄, z̄)≤ δ,

where the inequality holds because supz∈W |Φkj (x
kj , z)−Φ(x̄, z)| ≤ δ and Φ(x̄, xkj )−Φ(x̄, z̄)≤ 0

because z̄ is a global maximizer. Using a symmetric argument, we can show that Φkj (x
kj , xkj )−

Φ(x̄, z̄)≥−δ. Therefore
|Φkj (x

kj , xkj )−Φ(x̄, z̄)| ≤ δ,

and hence

|Φ(x̄, xkj )−Φ(x̄, z̄)| ≤ |Φ(x̄, xkj )−Φkj (x
kj , xkj )|+ |Φkj (x

kj , xkj )−Φ(x̄, z̄)| ≤ 2δ,

which means xkj becomes a 2δ-global maximizer of Φ(x̄, ·) for kj sufficiently large. Since δ can
be arbitrarily small, by driving δ to zero and kj to infinity, we show that x̄ is a global maximizer
of Φ(x̄, z) w.p.1. Under the conditions of Theorem 4.4, Φ(x̄, z) is strictly concave which implies
that Φ(x̄, z) has a unique global maximizer, hence x̄ = z̄. The uniqueness of the equilibrium
(from Theorem 4.4) indicates that x̄ must coincide with x∗.

Part (ii). We now prove that with probability approaching 1 exponentially fast with the increase
of the sample size, the sequence {xk} converges to an approximate SMS equilibrium satisfying
(14). For clarity, we break the proof into four steps.

Step 1. The ε-subdifferential, ∂εzF (x,x, ξ) is a random set-valued mapping that is Lipschitz
continuous in Hausdorff metric.

Recall that for a concave function h, the ε-subdifferential of h at a point y, denoted by ∂εh(y),
is the set of vectors u such that

uT (z− y)≥ h(z)−h(y)− ε,∀z.

Because F (x, z, ξ) is a concave function in z, we can define the ε-subdifferential of F (x, z, ξ)
with respect to z at point x ∈W as above. To simplify notation we use Aε(x, ξ) to denote the
ε-subdifferential, that is,

Aε(x, ξ) := ∂εzF (x,x, ξ).
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Using a similar discussion to that in [Hiriart-Urruty and Lemaréchal 1993, page 103] and
[Rockafellar and Wets 1998, Theorem 14.37], we know that Aε(x, ξ) is measurable and hence it
is a random set-valued mapping. Moreover, by [Hiriart-Urruty and Lemaréchal 1993, Theorem
4.1.3], Aε(x, ξ) is Hausdorff continuous with respect to x.1 That is, there exists an integrable
function κ(ξ, ε)> 0 such that

H(Aε(x′, ξ),Aε(x′′, ξ))≤ κ(ξ, ε)‖x′−x′′‖, (27)

where κ(ξ, ε) = max(2L(ξ),4L(ξ)2)/ε, L(ξ) is the Lipschitz constant of F (x, z, ξ) with respect
to variables (x, z), and H(D1,D2) is the Hausdorff distance between sets D1 and D2; that is,

H(D1,D2) := max{D(D1,D2),D(D2,D1)},

where

D(D1,D2) := sup
x∈D1

d(x,D2)

and d(x,D) := infx′∈D ‖x−x′‖ is the distance from a point x to a set D.

Step 2. The support function of the ε-subdifferential is Lipschitz continuous with an integrable
module.

Note that the ε-subdifferential is a random set-valued mapping. Our intention is to use
[Shapiro and Xu 2008, Theorem 5.1] (which for convenience is restated in Appendix B as
Lemma B.2) to show exponential convergence, but this result can only be applied to random
functions. For this reason, we need to use the support function of the ε-subdifferential to bridge
the gap.

The support function σ(u,D) of a set D is defined as

σ(u,D) := sup
d∈D

pTd.

Let B denote the unit ball in IRM . We now show that σ(u,Aε(x, ξ)) is Lipschitz continuous with
respect to (u,x) and

|σ(u′,Aε(x′, ξ))−σ(u′′,Aε(x′′, ξ))| ≤ κ̃(ξ, ε)(‖u′−u′′‖+ ‖x′−x′′‖), (28)

for all ξ ∈Ξ, u′, u′′ ∈B and x′, x′′ ∈X , where

κ̃(ξ, ε)≤max(κ(ξ, ε),‖Aε(x̄, ξ)‖+κ(ξ, ε)max
x∈W
‖x‖),

1 In more detail, by [Hiriart-Urruty and Lemaréchal 1993, Theorem 4.1.3] we have that ∂εzF (x, z, ξ) is Hausdorff

continuous with respect to z. Moreover, the only nondifferentiable term in the definition of F (x, z, ξ) is Y (zi +

X−i, ξ(ω)), and this term depends on zi and X−i on the same manner (the sum of the two variables is the

first argument of Y (., ξ(ω))). Hence, ∂εzF (x, z, ξ) is also Hausdorff continuous with respect to x. Note that the

discussion in Hiriart-Urruty and Lemaréchal [1993] is for convex function but the results are applicable to concave

functions by changing the sign.
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where x̄ is any fixed point in W and for a compact set S, ‖S‖= sups∈S ‖s‖. Obviously κ̃(ξ, ε)
bounds ‖Aε(x̄, ξ)‖ and is integrable because W is a compact set. To show that (28) holds, note
that by the Lipschitz continuity of Aε we have that Aε(x′′, ξ)⊂Aε(x′, ξ) +κ(ξ, ε)B and hence

σ(u′,Aε(x′, ξ))−σ(u′′,Aε(x′′, ξ)) = sup
a∈Aε(x′,ξ)

(u′)Ta− sup
a∈Aε(x′′,ξ)

(u′′)Ta

≥ sup
a∈Aε(x′,ξ)

(u′)Ta− sup
a∈Aε(x′,ξ)+κ(ξ,ε)‖x′−x′′‖B

(u′′)Ta

≥ sup
a∈Aε(x′,ξ)

(u′)Ta− sup
a∈Aε(x′,ξ)

(u′′)Ta−κ(ξ, ε)‖x′−x′′‖

≥ − sup
a∈Aε(x′,ξ)

(u′′−u′)Ta−κ(ξ, ε)‖x′−x′′‖

≥ −κ̃(ξ, ε)(‖u′′−u′‖+ ‖x′−x′′‖).

Swapping x′, u′ with x′′, u′′, we obtain (28).

Step 3. We apply [Shapiro and Xu 2008, Theorem 5.1] to obtain the exponential convergence.

We have shown that σ(u,A(x, ξ)) is Lipschitz continuous with an integrable module. Moreover,
because Aε(x, ξ) is bounded by an integrable function, which is also denoted by κ̃(ξ, ε), we have
for ‖u‖= 1

|σ(u,Aε(x, ξ))−E[σ(u,Aε(x, ξ))]| ≤ ‖Aε(x, ξ)‖+ E[‖Aε(x, ξ)‖]≤ κ̃(ξ, ε) + E[κ̃(ξ, ε)].

Because ξ has a bounded support set, then the moment generating function of κ̃(ξ, ε) (that is,
the function E[etκ̃(ξ,ε)]) is finite valued for t close to zero. Hence, from [Shapiro and Xu 2008,
Theorem 5.1],13 we have that for any α> 0, there exist positive constants C(α)> 0 and β(α)> 0
such that for k sufficiently large we have that

Prob

(
sup

‖u‖=1,x∈W

∣∣∣∣∣1k
k∑
l=1

σ(u,Aε(x, ξl))−E[σ(u,Aε(x, ξ))]

∣∣∣∣∣≥ α
)
≤C(α)e−β(α)k. (29)

Moreover, because Aε(x, ξl), l= 1, · · · , k, is a convex set, then we have (see for instance Artstein
and Vitale [1974])

σ(u,Aεk(x)) =
1
k

k∑
l=1

σ(u,Aε(x, ξl)),

where Aεk(x) is the average of the Minkowski sum of sets Aε(x, ξl); that is,

Aεk(x) =
1
k

k∑
l=1

Aε(x, ξl).

Furthermore, by [Papageorgiou 1985, Proposition 3.4]

σ(u,E[Aε(x, ξ)]) = E[σ(u,Aε(x, ξ))].

Therefore, (29) can be rewritten as

Prob

(
sup

‖u‖=1,x∈W
|σ(u,Aεk(x))−E[σ(u,Aε(x, ξ))])| ≥ α

)
≤C(α)e−β(α)k. (30)
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Finally, by [Hiriart-Urruty and Lemaréchal 1993, Theorem 4.1.3], for compact convex sets
D1,D2

H(D1,D2) = max
‖u‖=1

{|σ(u,D1)−σ(u,D2)|}.

Hence, from (30) we have that

Prob

(
sup
x∈W

H(Aεk(x),E[Aε(x, ξ)])≥ α
)
≤C(α)e−β(α)k. (31)

Step 4. With probability approaching 1 exponentially fast with the increase of the sample size,
xk converges to an approximate SMS equilibrium satisfying (14).

Because ∂zΦk(xk, xk)⊂Aεk(xk), it follows by (14) that xk satisfies

0∈Aεk(xk) +NW(xk). (32)

From (31) we then have that with probability 1− e−β(α)k, xk satisfies

0∈E[Aε(xk, ξ)] +NW(xk) +αB (33)

where B denotes a unit ball. Following the discussion of ε-subdifferentials in [Hiriart-Urruty and
Lemaréchal 1993, pages 130-131], we have that

Aε(xk, ξ)⊂
⋃

z∈xk+
√
εB

∂zF (xk, z, ξ).

Using the upper semicontinuity of ∂zF (xk, ·, ξ), we have that for η > 0, there exists ε such that
for all z ∈ xk +

√
εB, we have that

∂zF (xk, z, ξ)⊂ ∂zF (xk, xk, ξ) +
1
2
ηB,∀ξ.

The uniformity w.r.t. ξ is due to the fact that both p(q, t) and p′q(q, t) and YX(X, t) are uniformly
continuous w.r.t. q and X by Assumption 3.1, Lemma 3.3 and the boundedness of support set
of ξ(ω). Therefore

E[∂zF (xk, z, ξ)]⊂E[∂zF (xk, xk, ξ)] +
1
2
ηB.

Note that from Lemma 3.3 it is easy to see that F (xk, z, ξ) is piecewise twice continuously
differentiable. Hence

E[∂zF (xk, xk, ξ)] = E[∇zF (xk, xk, ξ)] =∇zΦ(xk, xk),

where the last equality is due to the Lebesgue dominated convergence theorem because
∇zF (xk, xk, ξ) is bounded by an integrable random variable. By setting ε sufficiently small in
the first place and α= 1

2
η, we have

E[Aε(xk, ξ)]⊂∇zΦ(xk, xk) + ηB.

Combining this with (33), we obtain (14).
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Appendix B: Statement of frequently used results from the literature

Lemma B.1. ([Ruszczyński and Shapiro 2003, Proposition 2]) Let h(x, ξ) : IRn×Ξ→ IR be a
real valued function and ξ is a random variable. Suppose that: (a) E[h(x, ξ)] is well defined, (b)
h(·, ξ) is differentiable at x w.p.1, (c) there exists an integrable function κ(ξ)> 0 such that

‖h(x1, ξ)−h(x2, ξ)‖ ≤ κ(ξ)‖x1−x2‖

holds w.p.1. Then E[h(x, ξ)] is differentiable and

∇xE[h(x, ξ)] = E[∇xh(x, ξ)].

Theorem B.2. ([Shapiro and Xu 2008, Theorem 5.1]) Let h(x, ξ) : X ×Ξ→ IR be a random
real valued function and f(x) = E[h(x, ξ)]. Let ξ1, ..., ξN be an iid sample of the random vector
ξ, and consider the corresponding sample average function f̂N(x) := 1

N

∑N

j=1 h(x, ξj).

We discuss now uniform exponential rates of convergence of f̂N(x) to f(x). We denote by

Mx(t) := E
{
et[h(x,ξ)−f(x)]

}
the moment generating function of the random variable h(x, ξ)−f(x). Let us make the following
assumptions.

Suppose that: (C1) For every x∈X the moment generating function

Mx(t) := E
{
et[h(x,ξ)−f(x)]

}
is finite valued for all t in a neighborhood of zero; (C2) there exists a (measurable) function
κ : Ξ→ IR+ and constant γ > 0 such that

|h(x′, ξ)−h(x, ξ)| ≤ κ(ξ)‖x′−x‖γ

for all ξ ∈Ξ and all x′, x∈X ; (C3) the moment generating function Mκ(t) of κ(ξ) is finite valued
for all t in a neighborhood of zero. Then for any e> 0 there exist positive constants C =C(e)
and β = β(e), independent of N , such that

Prob

{
sup
x∈X

∣∣f̂N(x)− f(x)
∣∣≥ e

}
≤C(e)e−Nβ(e).




