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problem in separable Banach space. Moreover, under Hausdorff continuity, we show that
with probability approaching one exponentially fast with the increase of sample size, the

'ggnv;‘ffjvmge approximation sample average of a convex compact set-valued mapping converges to its expected value
Stationary point uniformly. The result is used to establish exponential convergence of stationary sequence
Law of large numbers under some metric regularity conditions.

Exponential convergence Crown Copyright © 2008 Published by Elsevier Inc. All rights reserved.

Metric regularity

1. Introduction
We consider the following stochastic minimization problem:
minE| f(x, , 1
minE[f (x £(®))] (M

where f: X x R¥ — R is locally Lipschitz continuous, X is a separable Banach space, X is a subset of X and £ : 2 — R¥
is a random vector defined on a nonatomic probability space (§2, F, P) with support set & C RX. To ease the notation, we
will write £(w) as & and this should be distinguished from & being a deterministic vector of Z in a context.

Over the past few decades, problem (1) has been extensively investigated for the case when X is a finite dimensional
space. For details, see [20] and references therein. In this paper we consider the case when X is a separable Banach space.
Our focus is on the sample average approximation of the stochastic minimization problem. Sample Average Approximation
(SAA) is a popular method in stochastic programming. It is also known as Sample Path (SP) approximation [17]. For a com-
prehensive review of SAA, see recent work by Shapiro [22]. The basic idea of SAA is to generate an independently identically
distributed (iid) sample of random variables and replace the expected value with its sample average. Let &', ... &N be an
iid sample of &. The sample average approximation of the stochastic minimization problem (1) is defined as follows:

N
- i :
min fi (x) := i;f(x,é ). (2)
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Most convergence analysis of SAA problems in the literature concerns the convergence of optimal solutions and optimal
values [22], that is, if we solve an SAA problem and obtain an optimal solution, then we discuss the convergence of the
optimal solution sequence as sample size N increases. Our interest here, however, is on the convergence of stationary points,
that is, if we obtain only a stationary point of (2) which is not necessarily an optimal solution, then what is an accumulation
point of the sequence of the SAA stationary points? The rational behind this is that when f(x,£) is nonconvex in x, the
sample average function fN(x) is likely to be nonconvex. Consequently we may only obtain a stationary point rather than
an optimal solution in solving (2).

Our analysis is carried out in two steps: first we investigate the convergence of Clarke stationary points of the SAA
problem under the condition that f(x, &) is locally Lipschitz continuous but it is not necessarily continuously differen-
tiable (Section 4); then we discuss the rate of convergence under the condition that f(x, &) is continuously differentiable
(Section 5).

The main tool to be used in analysis is a uniform Strong Law of Large Numbers (SLLN) for random set-valued mappings
in separable Banach space. This is because the stationary points we consider in this paper are characterized by the Clarke
generalized gradient which is a set-valued mapping. In a finite dimensional space, Shapiro and Xu [24] obtained a uniform
SLLN for random set-valued mappings and applied it to the convergence analysis of sample average approximation of Clarke
stationary points. The uniform SLLN is a generalization of a uniform SLLN for scalar valued random functions (see Rubinstein
and Shapiro [19]) and an SLLN for compact random sets by Artstein and Vitale [3]. Here we generalize the uniform SLLN
of Shapiro and Xu [24] to a separable Banach space (Section 3). We achieve this by using a Strong Law of Large Numbers
established by Artstein and Hansen [2] for random sets in Banach space.

Note that when X is a Banach space, the Clarke generalized gradient of a general locally Lipschitz continuous function is
not necessarily a compact convex set. Instead, it is only weak* compact [7, Proposition 2.1.2]. Our focus here, however, is on
the case when the Clarke generalized gradient of f(x, &) is compact set-valued. On one hand, this gets around some diffi-
culties resulting from weak compactness of random sets in convergence analysis; on the other hand, this class of functions
covers a number of practically interesting functions such as composition of a smooth vector valued function from a Banach
space to a finite dimensional space and a real valued nonsmooth function from the finite dimensional space.

The main contributions of this paper are as follows: we present a uniform SLLN for a random set-valued mapping
in separable Banach space which extends the uniform SLLN of Shapiro and Xu [24] in finite dimensional spaces. More-
over, when the set valued mapping is Lipschitz continuous, we show that with probability approaching one exponentially
fast with the increase of sample, the sample average of a convex compact set-valued mapping converges to its expected
value uniformly. We then apply the results to analyze the sample average approximation of Clarke stationary points of
the nonsmooth stochastic minimization problem (1). In particular, when the underlying function is smooth, we obtain an
exponential convergence rate under some metric regularity conditions.

2. Preliminaries

Let X be a separable Banach space equipped with norm || - |. Let C C X be a set and y € X be a point. We denote a
pseudo distance from y to C by

d(y,C) :=Zig£ ly — zll.

For subsets C; and C of X, we define

D(Cq,Cy) ;= supd(x, C)

xeCq
which is known as excess of C1 over Cp [13] and the Hausdorff distance by
H(Cy, C2) := max{D(C1, C2), D(Cz2, C1)}.

For subsets Ci, C2, C3 in X,

D(C1, C3) < D(Cq, C2) + D(Ca, C3). (3)

Moreover, for subsets C, D, C’, D’ in X,

D(C+D,C"'+D)<DC,C)+D(D, D) (4)
where C + D denote the Minkowski addition, that is,

C+D={c+d: ceC, deD}.
Both (4) and (3) follow easily from

D(C, D) = inf{t: CC D +tB}

inf
t>0
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where B denotes the unit ball in X. Note both inequalities hold for the Hausdorff distance and we will use them in later
discussions. See elementary properties of D and H in [6, pp. 38 and 49].

Let (§2,F, P) be a probability space and A : 2 — 2X be a nonempty random compact set-valued mapping (note that
we are not defining through a random vector & here). A is said to be measurable if for all closed subset C C X, the set
{we R2: Aw)eC}eF.If Ais measurable, then A is called a random set. The expectation of a random set .4, denoted by
E[A], is the set

{ / ¢£dP: ¢ is an integrable selection from A}.
2

The integral [, {dP is in the sense of Bochner (see Diestel and Uhl [8]). E[.A] is known as Aumann’s integral [5] of set-
valued mapping A.
We call a random set A : 2 — 2% integrably bounded if there exists ¢ : £2 — R, with E[¢(w)] < oo such that

H(A(w), {0}) < ¢ (w)

for P-almost every w € £2.
For a set-valued mapping I" : X — 2X, we say I" is upper semicontinuous at x € X if for every open set C containing I" (),
there exists an open set D containing x such that

XeD = TIr)ccC.
It is easy to verify that if I" is upper semicontinuous at x and the value of I" is compact, then

}RD(F(y), I'(x))=0.

A few words about notation. We use B:(x) to denote a closed ball with center x and radius r, that is, B;(x) := {x €
X: ||x—x'|| <r}. For a set-valued mapping I" : X — 2%, we use I""(x) to denote the collection of I"(x’) for x' € B;(x), that is,

re:= J re«.

X' €Br(x)

For a compact set C € X, we let
ICIl = sup |[c]|.
ceC
3. A uniform SLLN for a random set-valued mapping

In this section, we establish a uniform SLLN for a random compact set-valued mapping in separable Banach space. For
this purpose, we need the following result due to Artstein and Hansen [2] and Hess [13, Theorem 5.4].

Lemma 1. Let (£2, F, P) be a probability space which is nonatomic and & : 2 — R¥ be a random vector. Let X be a separable Banach
space and A(£(-)) : 2 — 2% be an integrably bounded random set. Assume that for all w € 2, A(£(w)) is nonempty, compact. If €,
i=1,...,N,isaniid sample of &, then

N
1 .
Sni= > A(E) — E[A®)]
i=1
almost surely as N tends to infinity. Here the convergence is in the sense of Hausdorff metric in space 2X.

In what follows we use Lemma 1 to establish a uniform SLLN for a random set-valued mapping. The result below is
essentially a generalization of a uniform SLLN of Shapiro and Xu [24] to a Banach space.

Theorem 1. Let X be a separable Banach space and X C X be a compact subset of X. Let (§2, F, P) be a probability space which is
nonatomic and & : 2 — R¥ be a random vector with support set 5. Let A(-, £(-)) : X x §2 — 2% be a random nonempty compact
set-valued mapping. Let €1, ..., €N be an iid sample of & and

N
1 .
SN(x) == N Z.A(X, £").
i=1

Suppose that A(x, &) is integrably bounded by ¢ (£§) > 0, that is,
|A(x. s@)] < p(E@)).
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for all x € X and P-almost every w € $2, and E[¢ (§)] < oo. Suppose also that A(-, &(w)) is upper semicontinuous on X for P-almost
every w € §2. Then

sup D(Sy(x), E[A"(x,§)]) > 0 (5)
xeX
almost surely as N — oo, where

Axe= | Ax.o.

x'eBr(x)NX

Proof. Since A(x) is integrably bounded, E[.A(x)] is well defined for all x € X. Let k be a positive integer and V(x) :={y €
Xy —x| < %}. By the triangle inequality, we have for any x’, x € X,

N
/ 1 /arn| i
D(Sn(x"), Sn (%)) < N .§_1 D(A(x', &), A(x. £")).

Consequently
N
sup ]D)(SN(X/),SN(X))é%Z sup D(A(x/,éi),A(x,Si)).
X'eVi(x) i—1 X' €V

Since supx,evk(x)]D)(A(x’,E), A(x, &)) is bounded by 2¢(¢) and by [4, Theorem 8.2.11] it is measurable, then by the strong
law of large numbers

N

1 . .
S sup D(AR, ), A(x, &) > B[ sup D(AK' &), A, 6))]

N i—1 X eV (x) X' eVi(x)

almost surely as N — oo. By the Lebesgue dominated convergence theorem for Bochner integrals and the upper semiconti-
nuity of A(-, §), we conclude that for all € > 0, the right-hand side of the above equation is less than € for all k sufficiently
large. Thus there exists a positive number § > 0 such that for almost every w € £2, there exists N(w) such that

sup D(Sn(x), Sn(x)) <, (6)

Xx'€Bs(X)

for all N > N(w). Let r > 0 be a positive constant and § be such that § < r/2. By the compactness of X, there exists a finite
set of points x; € X, j=1,...,l, with respect to neighborhoods W; := B;(x;), such that X C UL] Wi;. Using Lemma 1, we
have that by setting N(w) larger if necessary,

D(Sn(x)), E[A(xj, ©)]) <€, for j=1,...,1, (7)
for all N > N(w). Let x € X. Then there exists some j such that xe W j. Consequently we have

D(Snx), E[A"(x,&)]) <D(Sn(x), Sn(x))) + D(Sn(x)), E[A(xj, &)]) + D(E[A(*x}, &) ] E[A"(x, §)]).
The last term in the above equation is zero as ||x — xj|| <r. Thus for all N > N(w), we have from (6) and (7) that

sup D(Sy(x), E[A"(x, §)]) < 2e.
xeX
This completes the proof. O

Note that r > 0 in (5). In the case when X is a finite dimensional convex combination space, Teran [25] proved recently
that

su)lgH(SN(x), E[A®x, £)]) — 0. (8)

It is an open question whether (8) holds when X is an infinite dimensional space. However when A(-, &) is continuous in
Hausdorff distance with respect to x, we can strengthen the result of Theorem 1 as follows.

Corollary 1. Assume the conditions of Theorem 1. If, in addition, A(-, £ (w)) is continuous (in the Hausdorff metric) on X for P-almost
every w € §2, then the following holds:

su)lgH(SN(x), E[A(x.&)]) >0 (9)

almost surely as N — oo.

The result is straightforward from the proof of Theorem 1 by replacing D with H.
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Remark 1. In the case when A(x, £(w)) is single valued, upper semicontinuity implies continuity. Consequently (9) holds.
In what follows, we investigate the rate of convergence when A(-, &) is Lipschitz continuous.

Definition 1. Let X’ be a subset of X and & : 2 — RK be a random vector with support set =. A random set-valued mapping
A(-,£()) 1 X x 2 — 2% is said to be Lipschitz continuous with respect to x, if there exists « (¢) > 0 such that

H(A(X', §(@)), A(x", £(@))) <k (§(@))llx" —x"]| (10)

for all x’,x” € X and P-almost every w € £2.
Let ¢ (&) be defined as in Theorem 1 and k(¢) be defined by (10), let
(&) =max(o &) +E[¢ ()], k OIXIl, k(5)). (11)
Theorem 2. Assume conditions of Theorem 1. Assume further that:

(@) A, () : X x 2 — 2X is convex set-valued and X’ is a compact subset of X ;
(b) A(x, &(w)) is Lipschitz continuous with respect to x for P-almost every w € 2, that is, (10) holds;
(c) E[&(£)] < oo and the moment generating function E[eX®)] of k (£) is finite valued for t close to zero, where & (€) is defined

by (11).
Then for every € > 0, there exist positive constants C(€) > 0, 8(€) > 0 independent of N such that

Prob( SUEH(SN(X), E[A(x,£)]) > e) < Cle)e PON, (12)
Xe

for N sufficiently large.

Proof. Let o (u,C) denote the support function of a set C C X, that is, for u € X*

o(u,C) :=sup(u,c)

ceC

where (u, c) denotes the duality pairing and X* for the dual space of X.
Let B* denote the unit ball in X*. For any two compact sets C1,Cy C X, we have by the Hormander formula (see for
instance [1,6,13]) that

H(C1,C2) = sup |o(u,Cr) — o (u,C)|.
ueB*
Using this relationship, it suffices to prove that

Prob( sup |o(u, SN®) —o (1, E[Ax. §)])| > e) < C(e)e PEN, (13)
ueB*, xeX

Since A(x, &) is convex set-valued for all £ € & and o (p, C) is homogeneous and additive in C, then

o(u, SN®) = Za u, A(x, 5
1:1

Moreover, by [16, Proposition 3.4],

o(u,E[Ax,§)]) =E[a(u A®x, 8))],

Z 1, A(x. ) — E[o (1, Ax. £))]

ueB*, xeX

Prob( sup > e) < C(e)e PN, (14)

We use [23, Theorem 5.1] to prove (14) and hence (13) (note that the theorem is established in finite dimensional space but
it also holds in a separable Banach space). In what follows, we verify the conditions of [23, Theorem 5.1].
First, since [|A(x, &)l < #(8),

o (u, Ax, §)) — E[o (1, A(x, ))]] < A O | +E[| A, &[] <o) +E[o©)]

for all u € B*. This shows that the random variable o (u, A(x, §)) —E[o (u, A(x, £))] is bounded by & (¢). Since by assumption
the moment generating function E[eX©)!] of & (&) is finite valued for t close to zero, then the moment generating function
E[et@ W AXE))-Elo . AxE)D] s finite valued for t close to zero.
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Second, we show that o (u, A(x, £)) is Lipschitz continuous with respect to (u, x) and

lo(u', AKX, &) —o (u”, A", ©))| <k @ (v = u" [« + ¥ = x"]), (15)
forall £ € £, x’,x” € X and v, u” € B*, where | - ||, denotes the norm of X*. Observe that
o, Ax", &) —o ", Ax",&)> sup W' a)— sup u”,a)
acA(x',§) ac A(X',&)+k @) |Ix'—x" | B
> sup (u,a)— sup (u”,a)—k@Ix —x"|
ac A(x',&) ac A(x'.§)
>— sup ' —u',a)—Kk@E|x" —x"|
ac A(x',&)

> =R E)(Ilu” — [l + 1" = x"]).

Swapping position of x’, u’ with x”, u”, we obtain (15). Since k(&) > 0 is integrable and by assumption the moment function
of k(&) is finite valued for all t close to zero, all three conditions in [23, Theorem 5.1] are verified, by the theorem there
exist positive constants C(e¢) and B(¢€) such that (14) holds. The conclusion follows. O

4. Convergence of stationary points

In this section, we apply the uniform SLLN, Theorem 1, to analyze the convergence of Clarke stationary points of SAA
problem (2). We need to make the following assumptions on f.

Assumption 1. Let f(x, &) be defined as in (1). The following hold.

(a) f(x, &) is locally Lipschtz in x.
(b) The function E[ f(x, £)] is finite valued.
(c) There exists x (&) > 0 with E[«x(§)] < oo such that

|f(x. ) — f(y.E@)| <k(E@)x—yll, ¥x,yeX (16)

and P-almost every w € 2.

Obviously Assumption 1(c) implies that E[f(x, &)] is a Lipschitz continuous function. In what follows, we need to con-
sider the Clarke generalized gradient of both E[f(x, )] and f(x, &) with respect to x.

Recall that for a locally Lipschitz function h(x) defined on separable Banach space X, the Clarke directional derivative [7]
at a point x € X in the direction d, denoted by hg (x; d), is defined as follows:

h tdy—h
h; (X, d) = lim sup M’
y—x,t10 t

where y € X and t is a positive scalar. h is said to be regular at x, if for all d, the usual one-sided directional derivative
K (x;d) exists and h°(x;d) = h’(x;d). See [7, Definition 2.3.4]. The Clarke generalized gradient [7] of h(x) at x, denoted by
oh(x), is a subset of the dual space X* of continuous linear functionals on X defined as

dh(x) :={n e X*: h°(x;d) > (n.d)},

see [7, p. 27]. Throughout this paper, we denote by 9 f (x, £) the Clarke generalized gradient of function f(x, &) with respect
to x. It follows from Assumption 1(c) that 9y f(x, &) is well defined and ||dx f (x, £)| is bounded by « (§).
We now consider the SAA problem (2). Let fy(x) be defined as in (2), that is,

R 1 :
Inew =53 f(x€).
i=1

We need to consider the Clarke generalized gradient of fN(x). For this purpose, we define the following two sets both of
which may serve as an upper bound of 9 fy(x):

1 ,.
SN = i§:]: O f(x. &)
and

1o ;
SN = > orf(x "),
i=1
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where r > 0 is a constant and

nfxe= J afx. 9.

x'eBr(x)NX
Proposition 1. The following hold.

(i) 3fn(X) C SN(X);
(i) OELf (X, &)] C Eldyf (x, £)].

Proof. The first inclusion follows from [7] and second from [15, Lemma 6.18]. Notice that E[dy f (x, £)] is well defined. To see
this, we note that because f is measurable, by [4, Lemma 8.2.12], we can easily see that the Clarke generalized derivative
f°(x, &;d) is also measurable. Since f°(x,&;d) is the support function of d f(x, £), we know from [4, Theorem 8.2.14] that
ox f (x, &) is also measurable. The well-definedness follows from the measurability and the integrably boundedness. O

Let x € X. A vector v in X is tangent to & at x if the Clarke generalized derivative d°, (x; v) of distance function d(x, X)
is zero. Let Ty (x) denote the set of all tangents and Ny (x) denote the normal cone to X at x. In the case when X is convex,
Nxx) :={neX*: (n,v)<0, VveTx®]},
where X* is the dual space of X. A point x* € X is said to be a Clarke stationary point of (1) if
0 € IE[f(x*, &)] + Nx (x¥).
A point x* € X is said to be a weak Clarke stationary point of (1) if
0 € E[axf(x*, )] + Nx (x*).

Because JE[ f (x, &)] C E[ox f (x, £)], it is obvious that a Clarke stationary point is a weak Clarke stationary point but not vice
versa unless f(x, &) is Clarke regular at x* for all &.
A point xy € X is said to be a Clarke stationary point of the SAA problem (2) if

0 € dfn(xn) + N (xw). (17)
In what follows, we use Theorem 1 to analyze the convergence of a sequence of Clarke stationary points {xy} as N — oc.
Theorem 3. Let X’ C X be a compact set and X* be a separable Banach space. Let {xy} C X be a sequence of Clarke stationary points

which satisfies (17). Assume: Assumption 1 holds, dx f (x, &) is compact valued for every x € X and & € & and upper semicontinuous
with respect to x for every &. Then every accumulation point of {xy} is a weak stationary point of (1) almost surely.

Proof. Let x* be an accumulation point of {xy}, and €,r > 0 be small numbers. By triangle inequality,

D(Sn(xn), E[87" f (x*, £)] + €B*) < D(Sn(xn), Sy (x)) + D(SK (x*), E[32" f (x*, )] + €BY) (18)

for all xy, where B* denotes the unit ball in X*. By considering a subsequence if necessary, we assume for the simplicity
of notation that {xy} — x* almost surely as N — co. Let N(w) be sufficiently large such that for all N > N(w), xy € Br(x*).
Then Sy(xy) C Sy (x*) and hence

D(Sn(xn), Sy (x*)) = 0.

In what follows, we use Theorem 1 to show that the second term of (18) tends to zero almost surely as N — oo. To this
end, we need to verify the conditions of Theorem 1 for the Clarke generalized gradient mapping dx f (-, £(-)) : X x £ — 2X".
By assumption, 9 f (-, £(w)) is upper semicontinuous for P-almost every w and it is convex compact set-valued. Moreover,
by Assumption 1, ||dxf(x, §(w)) |« < (&), where ||c| . denotes the norm of c € X* and for a set C € X*,

ICll« =sup{licll«: ceC}. (19)

Therefore all conditions of Theorem 1 are satisfied by A := dyf. We apply the theorem. Let € > 0 be given and N(w) be
sufficiently large such that for N > N(w)

Sn(x) CE[3;f(x,£)] +€B*
for all x € X. Then
Sven=|J svexhc | (Blaf&.&)]+eB) CE[3 f(x*. 6)]+eB.

X' €Br(x*) X’ €Br(x*)
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Therefore the second term of (18) must converge to zero w.p. 1. Since € can be any positive number, the discussion above
shows that for any given € > 0, we can choose N(w) sufficiently large such that for N > N(w), we have

Sn(xn) CE[3F f(x*,&)] +eB*.
This implies that
limsup Sy (xn) C E[8Z f(x*,&)] + 2¢B*,

N—>oo
almost surely, where “limsup” denotes the upper limit of a set-valued mapping (see [4]). On the other hand, from the
definition of the normal cone, it is easy to show that
Nx (xn) C Ny (x¥)
for large N. Taking the limit on both sides of (17) and using Proposition 1(i), we have

0 € lim sup{ax]‘N(xN) + Nx(xn)}

N—oo

C limsup{Sn (xn) + Nx (xn)}

N—oo
CE[3 f(x*,&)] + Nx (x*) + 2¢B*

almost surely. Next we use the dominated convergence theorem to show that for any monotonically decreasing sequence of
positive numbers {r,} — 0,

lim E[2" f (x*, )] = E[rliino 92 f(x*, g)] =E[0f ", 6)]- (20)

m—0

To this end, we make the following observations. First, by assumption, a,%r" f(x*, &) is integrably bounded by x(£) and
1827 f (x*), )|l is decreasing on ry, therefore [|02™ f(x*), £)|| is uniformly integrable. Second, 8fr”f(x*, &) is closed. To see
this, let 7' be a sequence of X* such that n' € ;" f(x*) and n' — 7. By definition, there exists x' € X such that x'
X*+2mmB and n' € 0 f (X', &). Suppose without loss of generality that x' — x. Then by [7, Proposition 2.1.5(b)], 7 € 3 f (x*, &) C
Bfr"f(x*, &). Third, for every &, it follows from [7, Proposition 2.1.5(b)] that

lim o for o= |J afxo=afe 5.

m>0 xex*+2mB

By [11, Theorem 2.5] (or [11, Theorem 2.8] and the following remark, or [14, Theorem 1.43(iii)]), (20) holds. Consequently
0¢ 1in3)1|«:[32ff(x*, £)] + Nx (x*) + 2¢B*
r—

= rlig]()IE[azr"f(x*, £)] + Ny (x*) + 2¢B*

= IE|: limoazr”f(x*, s)} + Ny (x*) + 2eB*
=E[df(x*, &)] + Nx (x*) + 2¢B*.

Since € > 0 can be arbitrary, we conclude from the above equation that x* is a weak Clarke stationary point of (1) almost
surely. O

In some practical instances, f(x,&) may take specific forms. The following corollary addresses the case when f is a
composition of a smooth vector valued function and a nonsmooth function.

Corollary 2. Let h : X x £2 — R™ be a smooth function and g : R — R be a nonsmooth function which is locally Lipschitz continuous.
Then the sequence of stationary points {x;} of (2) for the random function f := g o h converges to the stationary point of the true
problem.

The result is immediate from Theorem 3 in that by [7, Theorem 2.3.10], we have

W f(x,&) Cog(h(x,&)Dxh(x, &),

where Dy denote the Fréchet derivative, and the set at the right-hand side of the above equation is a compact set.

To conclude this section, we note that it is possible to consider generalized gradients other than Clarke’s such as Michel-
Penot subdifferential and Mordukhovich subdifferential in the analysis presented in this section so long as the generalized
gradient mapping satisfies the properties required by Theorem 1.
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5. Exponential convergence

The convergence result established in Theorem 3 does not provide us with any information about the rate of conver-
gence. In this section, we investigate this issue. To this end, we assume throughout this section that f(x, &) is continuously
differentiable with respect to x. Consequently the first order optimality conditions of the true and SAA problems can be
written respectively as

0 € E[{Dxf(x.&)}] + Nx(x) (21)

and

0e {Dxfn(} + Nx (), (22)
where Dy denotes the Fréchet derivative and
N

(Dufneo} = 1 o {Dur (v 8

i=1

Note that both {Dy f(x, &)} and {Dx]‘N (x)} are single valued. We write them this way rather than Dy f(x, &) and Dfo (x) to
indicate that they are specific set valued mappings so that we can apply Theorem 2 readily in the later discussion (in the
proof of Theorem 5). In what follows, we analyze the convergence rate of the sequence of the stationary point defined by
(22) as sample size N — oo. We need the theory of metric regularity.

Let I" : X — 2X be a set valued mapping. I" is said to be closed at x if for x;, C X, X — X, yx € ['(x) and y, — ¥
implies y € I'(y). For x € X and y € I' (%), a closed set-valued mapping I" is said to be metrically regular at x for y if there
exists a constant « > 0 such that

d(x, T7'(y)) < ad(y, I'(x) for all (x, y) close to (%, y).

Here the inverse mapping I'~! is defined as I'"'(y) = {x € X: y € I'(x)} and the minimal o which makes the above
inequality hold is called regularity modulus [9]. The metric regularity is equivalent to the surjectivity of coderivative of I" at
x for y or Aubin’s property of I'~! at y. In particular, it holds under the graphic convexity of I" [9]. For a comprehensive
discussion of the history and recent development of the notion, see [9], [18, Chapter 9] and references therein.

Theorem 4. Let

r) :=E[{Dxf(x.&)}]+ Nx®),

xn be a stationary point which satisfies (22) and sequence {xy} converge to x* w.p. 1 as N — oo. Suppose that:

(a) Assumption 1 holds;
(b) f(x, &) is continuously differentiable with respect to x;
(c) I is metrically regular at x* for 0.

Then for N sufficiently large
d(xn, I (0) < «H(E[{Dif (xn, &)}], {DuSr(xm)}), (23)
where « is the regularity modulus of I' at x* for 0.

Proof. Let N be sufficiently large such that for all N > N, w.p. 1 xy falls into a neighborhood of x* where the metric
regularity applies. By the metric regularity of I" at x* for 0, there exists a constant « > 0 such that

d(xn, I'"1(0)) < ad(0, I'(xn)). (24)
By the definition of D,

d(xn, I 71(0)) < ad(0, I'(xn))
<aD({Dxfn(xn)} + N @), E[{Dxf (v, 6)}] + N (xn)
<aD({Dxfn(xn)}, E[{Dxf (x, )}])-
The last inequality is due to (4). The proof is complete. O
A note on the regularity assumption. The optimality condition of the true problem 0 € I'(x) is essentially an infinite

dimensional stochastic variational inequality problem. The metric regularity of the latter is investigated by Dontchev, Lewis
and Rockafellar [9]. See [9, Theorem 5.1].
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Theorem 4 is interesting from numerical perspective in that it gives an error bound for xy in terms of H(E[Dy f (xn, €)1,
{Dfo(xN)}). The latter may be used as a stopping criterion. In what follows we use the result to derive the exponential
convergence rate.

Let My(t) := E[eM(DxfxELEUDfX.HIDt] denote the moment generating function of random variable H({Dyf(x, £)},

E[{Dxf(x, £)}D).
Theorem 5. Assume conditions in Theorem 4. Assume, in addition, that:

(a) the moment generating function My(t) is finite valued for t close to zero;
(b) there exists a positive integrable function k (§) > 0 such that

H({Dxf (X", )}, {Dxf (", ©)}) <k ©Ix" =x"|l, Vx',x" € X;

(c) X*is a separable Banach space.

Then for any small positive number € > 0, there exist positive constants C(e) > 0, B(€) > 0 independent of N such that for N suffi-
ciently large

Prob(d(xn., F_](O)) > ae) < C(e)e PN (25)

w.p. 1, where « is the regularity modulus of I' at x*.

Proof. Let € > 0 be a small number. Under conditions (a), (b) and (c), it follows by Theorem 2 and Remark 1 that there
exist positive constants C(¢) > 0 and B(¢) > 0 independent of N such that for N sufficiently large

Prob( sup H({Dx]‘N(x)}, E[{Dxf(x,&)}]) > E) < Cle)e PON,
xeX

Let N be such that for all N > N, w.p. 1, xy satisfies (23). Combining the above equation with (23), we have that

Prob(d(xn, I'"1(0)) > awe) < Prob(aH(E[{Dx f (xn, €)}], {Dxfnxn)}) = cve)
< Prob( su)gH({Dfo(x)}, E[{Dxf(x,£))]) > e)

< C(e)e PN,

The proof is complete. 0O

The established exponential convergence should be distinguished from those in the literature [21,22] where it is often
shown that with probability approaching one exponentially fast with the increase of sample size, an optimal solution of
the true problem becomes an e-optimal solution of its sample average approximation. The latter is numerically useful only
when the e-optimal solution set is small. Our result here is stronger in the sense we measure the distance of a computed
approximate stationary point to the set of stationary points of the true problem.

Note that our rate is obtained for d(xy, I"~1(0)) rather than |xy — x*||. The latter is larger than the former. It is possible
to obtain an estimate for the latter under some stronger regularity conditions. We omit details.

Note also that our results in this section can be easily extended to stochastic variational inequality problems in a Banach
space. To see this, we only need to replace Dy f (x, £) with a general smooth integrable vector valued function F(x, £) in (21)
and {DXJ‘N (x)} with its sample average in (22). Stochastic variational inequality model in finite dimensional space has been
proposed by Giirkan, Ozge and Robinson [10]. The model has interesting applications in economics and engineering where
equilibrium problems can be modeled as a variational inequality.

Finally, we note that our results established in this section are based on a key assumption that f(x, &) is continuously
differentiable with respect to x. It is possible to extend the results to the case when f(x, &) is nonsmooth but has some
specific structure such as a composite function as discussed in Corollary 2. In such a case, we may replace Dy with some
approximate subdifferential which is Lipschitz continuous with respect to x. Consider for instance a composite function
f:=goh as defined in Corollary 2. If g is convex, then we can construct an approximate subdifferential of f by using
the e-convex subdifferential. It is well known [12, Theorem 4.1.3] that the latter is Lipschitz continuous for fixed € > 0.
Consequently, we can establish exponential convergence rates of a sequence of stationary points of SAA characterized by
such an approximate subdifferential. We omit the details as they are purely technical.
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