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In this paper, we study distributionally robust optimization approaches for a one stage stochastic minimiza-
tion problem, where the true distribution of the underlying random variables is unknown but it is possible
to construct a set of probability distributions which contains the true distribution and optimal decision is
taken on the basis of the worst possible distribution from that set. We consider the case when the distribu-
tional set (which is also known as ambiguity set) varies and its impact on the optimal value and the optimal
solutions. A typical example is when the ambiguity set is constructed through samples and we need look into
impact from increase of the sample size. The analysis provides a unified framework for convergence of some
problems where the ambiguity set is approximated in a process with increasing information on uncertainty
and extends the classical convergence analysis in stochastic programming. The discussion is extended briefly
to a stochastic Nash equilibrium problem where each player takes a robust action on the basis of the worst
subjective expected objective values.
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1. Introduction. Consider the following distributionally robust stochastic program (DRSP):

minsup Ep[f(z,{(w))]
© pep
s.t. T € Xa

(1)
where X is a closed set of IR”, f:IR" x IR — IR is a continuous function, £: Q —=c IR" is a
vector of random variables defined on measurable space (2, F) equipped with sigma algebra F,
P is a set of probability distributions of £ and Ep[-| denotes the expected value with respect to
probability distribution P € P. If we consider (Z, %) as a measurable space equipped with Borel
sigma algebra 2, then P may be viewed as a set of probability measures defined on (Z, %) induced
by the random variate . Following the terminology in the literature of robust optimization, we
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call P the ambiguity set which indicates ambiguity of the true probability distribution of £ in this
setup. To ease notation, we will use £ to denote either the random vector £(w) or an element of
IR" depending on the context.

Differing from classical stochastic programming models, the distributionally robust formulation
(1) determines the optimal policy x on the basis of the worst expected value of f(z,£) over the
ambiguity set P. It reflects some practical situation where a decision maker does not have complete
information on the distribution of £ and has to estimate it from data or construct it using subjective
judgements [37]. This kind of robust optimization framework can be traced back to the earlier
work by Scarf [32] which which addresses incomplete information on the underlying uncertainty in
supply chain and inventory control problems. In such problems, historical data may be insufficient
to estimate future distribution either because sample size of past demand is too small or because
there is a reason to suspect that future demand will come from a different distribution which
governs past history in an unpredictable way. A larger ambiguity set P which contains the true
distribution may adequately address the risk from the uncertainty.

The minimax formulation has been well investigated through a number of further research works
by Zackové [46], Dupacova [14, 15], and more recently by Riis and Andersen [29], Shapiro and
Kleywegt [38] and Shapiro and Ahmed [37]. Over the past few years, it has gained substantial
popularity through further contributions by Bertsimas and Popescu [7], Betsimas et al [6], Goh
and Sim [17], Zhu and Fukushima [47], Goh and Sim [17], Goldfarb and Iyengar [18], Delage and
Ye [13] and Xu et al [45], to name a few, which cover a wide range of topics ranging from numerical
tractability to applications in operations research, finance, engineering and computer science. In
the case when P is a set of Dirac distributions which put weights on a single point in the support
set =, DRSP (1) reduces to worst scenario robust optimization, see monograph by Ben Tal et al
[5] for the latter.

A key step in the research of DRSP (1) is to construct the ambiguity set P. The construction must
balance between exploitation of available information on the random parameters and numerical
tractability of the resulting robust optimization model [15]. One way is to use samples/empirical
data to estimate moments (e.g., mean and variance) and then specify the probability distribution
through sample approximated moments [38, 13, 18]. Delage and Ye [13] propose a model that
describes uncertainty in both the distribution form and moments, and demonstrate that for a wide
range of functions f, (1) can be solved efficiently. Moreover, by deriving a new confidence region
for the mean and the covariance matrix of £, they provide probabilistic arguments for so called
data-driven problems that heavily rely on historical data and the arguments are consolidated by
So [33] under weaker moment conditions. Another way is to use Bayesian method to specify a set
of parameterized distributions that make the observed data achieve a certain level of likelihood
43, 44].

Obviously there is a gap between the ambiguity set constructed through estimated moments
and that constructed with true moments and this gap depends on the sample size. An important
question is whether one can close up this gap with more information on data (e.g., samples) and
what is the impact of the gap on the optimal decision making. The question is fundamentally down
to stability /consistency analysis of the robust optimization problem. In the case when the ambiguity
set reduces to a singleton, DRSP (1) collapses to a classical one stage stochastic optimization
problem. Convergence and/or stability analysis of the latter has been well documented, see review
papers by Pflug [25], Romisch [31] and Shapiro [36]. The importance of such analysis lies in the
fact that it develops a framework which enables one to examine convergence/asymptotic behavior
of statistical quantities such as optimal value and optimal solution obtained through samples (or
other approximation methods). The analysis provides a basic grounding for statistical consistency
and numerical efficiency of the underlying approximation scheme. This argument applies to the
DRSP when we develop various approximation schemes for the problem and this paper aims to
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address the underlying theoretical issues relating to convergence and rate of convergence of optimal
value and solutions obtained from solving an approximated DRSP.

However, there does not seem to be much compelling research on convergence/stability analysis
of DRSPs. Breton and Hachem [11, 12] and Takriti and Ahmed [42] carry out stability analysis for
some DRSPs with finite discrete probability distributions. Riis and Andersen [29] extend signifi-
cantly their analysis to continuous probability distributions. Dupacova [15] shows epi-convergence
of the optimal value function based on the worst probability distribution from an ambiguity set
defined through estimated moments under some convexity and compactness conditions. Shapiro
[35] investigate consistency of risk averse stochastic programs, where the dual formulation is a
distributionally robust optimization problem. In a more recent development, there emerge a few
new research which addresses convergence of distributionally robust optimization problems where
P is Monte Carlo sampling, see Xu et al [45], Wang et al [43] and Wiesemann et al [44].

Our focus in this paper is on the case when the ambiguity set is approximated by a sequence
of ambiguity sets constructed through samples or other means. For instance, when P is defined
through moment conditions, the true moments are usually unknown but they can be estimated
through empirical data. The ambiguity set (e.g. constructed through the estimated moments) may
converge to a set with true moments rather than a single distribution. Riis and Andersen [29] carry
out convergence analysis for this kind of minimax two stage stochastic optimization problem where
P is inner approximated by a sequence of ambiguity sets under weak topology. Here we propose
to study approximation of ambiguity sets under total variation metric and the pseudometric. The
former allows us to measure the convergence of the ambiguity set as sample size increases whereas
the latter translate the convergence of probability measures to that of optimal values. Specifically,
we have made the following contributions:

e We treat the inner maximization problem of (1) as a parametric optimization problem and
investigate the impact of variation of x and ambiguity set P on the optimal value. Under some
moderate conditions, we show that the optimal value function is equi-Lipschitz continuous and
the optimal solution set is upper semicontinuous w.r.t. x. Moreover, we demonstrate uniform
convergence of the optimal value function and consequently convergence of the robust optimal
solution of (1) to its true counterpart as the gap between the approximated ambiguity set and its
true counterpart closes up. The convergence analysis provides a framework for examining statistical
consistency and numerical efficiency of a fairly general approximation scheme for the DRSP and
significantly strengthens an earlier convergence result by Riis and Andersen [29] (see details at the
end of Section 3).

e We investigate convergence of the ambiguity sets under total variation metric as sample size
increases for the cases when the ambiguity set is constructed through moments, mixture distribu-
tion, and moments and covariance matrix due to Delage and Ye [13] and So [33]. In the case when
an ambiguity set is defined through moment conditions, we derive a Hoffman type error bound
for a probabilistic system of inequalities and equalities through Shapiro’s duality theorem [34] for
linear conic programs and use it to derive a linear bound for the distance of the two ambiguity sets
under the total variation metric.

e Finally, we outline possible extension our convergence results to a distributionally robust
Nash equilibrium problem where each player takes a robust action on the basis of their subjective
expected objective value over an ambiguity set.

Throughout the paper, we will use IR"*" to denote the space of all n x n matrices, and S7*" and
S"™*™ the cone of positive semi-definite and negative semi-definite symmetric matrices respectively.
For matrices A, B € IR""", we write A e B for the Frobenius inner product, that is Ae B :=tr(A” B),
where “tr” denotes the trace of a matrix and the superscript 1" denotes transpose. Moreover, we
use standard notation || A||z for the Frobenius norm of A, that is, | Al := (A e A)Y/2, ||z| for the
Euclidean norm of a vector z in IR", ||z||» for the infinity norm and ||¢||« for the maximum norm
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of a real valued measure function ¢ : = — IR. Finally, for a set .S, we use cl S to denote the closure
of S and int S the interior.

2. Problem setting

2.1. Definition of the true and approximation problems. Let (2, F) be a measurable
space equipped with o-algebra F and & : Q — = C IR be a random vector with support set =. Let
A denote the sigma algebra of all Borel subsets of = and &2 be the set of all probability measures
of the measurable space (=, %) induced by &. Let P C & be defined as in (1) and Py C & be a
set of probability measures which approximate P in some sense (to be specified later) as N — co.
We construct an approximation scheme for the distributionally robust optimization problem (1)
by replacing P with Py:

min su EP[f(x’f(W))]
i sup (2)

s.t. reX.

Typically, Py may be constructed through samples. For instances, Shapiro and Ahmed [37] consider
P being defined through moments and use empirical data (samples) to approximate the true
moments. Delage and Ye [13] consider the case when P is defined through first order and second
order moments and then use iid samples to construct Py which approximates P. More recently
Wang et al [43] and Wiesemann et al [44] apply the Bayesian method to construct Py. Note that
in practice, samples of data-driven problem are usually of small size. Our focus here is on the case
that sample size could be large in order for us to carry out the convergence analysis. Note also
that Px does not have to be constructed through samples, it may be regarded in general as an
approximation to P.
To ease the exposition, for each fixed x € X, let

vn(x):= sup Ep[f(z,&)] (3)

PePyn

denote the optimal value of the inner maximization problem, and ®y(z) the corresponding set of
optimal solutions, that is,

Dy (x) :={P €clPy :vy(z) =Ep[f(z,6)]},

where “cl” denotes the closure of a set and the closure is defined in the sense of weak topology, see
Definition 3. Likewise, we denote

v(z) :=sup Ep[f(z,§)] (4)

PeP

and ®(z) the corresponding set of optimal solutions
O(x):={PeclP:v(x)=Ep[f(z,&]}.

Consequently we can write (2) and (1) respectively as

Oy = grg{l vy () (5)
and
¥ :=minv(x) (6)

zeX
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where ¥y and ¥ denote the optimal value and Xy and X* the set of optimal solutions of (5)
and (6) respectively. Our aim is to investigate convergence of ¥y to ¥ and Xy to X* as N — oc.
The reason that we consider Py — P rather than the true distribution is that the latter may be
different from the distribution which generates the samples. This is particularly so when £ is used
to describe the future uncertainty.

In the case when Py is a singleton, (2) reduces to an ordinary approximation scheme of one stage
stochastic minimization problem and our proposed analysis collapses to classical stability analysis
in stochastic programming [31]. From this perspective, we might regard the convergence analysis
in this paper as a kind of global stability analysis which allows the probability measure to perturb
in a wider range.

In this section, we discuss well-definedness of (1) and (2). To this end, let us introduce some
metrics for the set Py and P, which are appropriate for our problems.

2.2. Total variation metric. Let & be defined as in the beginning of the previous sub-
section. We need appropriate metrics for the set in order to characterize convergence of Py — P
and vy (z) — v(x) respectively. To this end, we consider total variation metric for the former and
pseudometric for the latter. Both metrics are well known in probability theory and stochastic
programming, see for instance [2, 31].

DEFINITION 1. Let P,Q € & and .# denote the set of measurable functions defined in the
probability space (£, %). The total variation metric between P and @ is defined as (see e.g., page
270 in [2])

drv (P, Q) := sup (Ep[h()] —Eq[h(£)]), (7)
where
M = {h:RF = R|his Z measurable,sup |h(£)| < 1}, (8)
£e=

and total variation norm as
||Pllrv = sup Ep[o(€)].

I$lloo <1
If we restrict the measurable functions in set .# to be uniformly Lipschitz continuous, that is,
M = [ sup B(E)| <1, Ly(h) <1}, (9)
¢ex
where Ly (h) =inf{L: |h(&") —h(")| < L||&' =&, V¢, ¢" € 2}, then dry (P, Q) is known as bounded
Lipschitz metric, see e.g. [26] for details.

Using the total variation norm, we can define the distance from a point to a set, deviation from
one set to another and Hausdorff distance between two sets in the space of &. Specifically, let

dTV(Q77D) = 113Ielf7; dTV(QaP)a

DTV(PN,P) = sup dTV(QaP)
QEPN

and
HTV (PN, P) = maX{DTV (PN, P), DTV (P, PN)}

Here Hry (Py, P) defines Hausdorff distance between Py and P under the total variation metric
in space Z. It is easy to observe that Hzy (Py,P) — 0 implies Dy (Py, P) — 0 and

Jnf sup (Epy [h(&)] = Eq[h(£)]) = 0

for any Py € Py. We will give detailed discussions about this when P and Py are constructed in
a specific way in Section 4.
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DEFINITION 2. Let {Py} C 2 be a sequence of probability measures. { Py} is said to converge
to P € & under total variation metric if

lim [ h()Py(d€) = / h(E)P(dg)

N—oo [= =

for each h € . Let A be a set of probability measures on (=, %), where Z is the Borel o-algebra
on E. A is said to be compact under total variation metric if for any sequence {Py} C A, there
exists subsequence {Py,} C { Py} such that Py, — P under total variation metric and P € A.

REMARK 1. Let h € .# and A be a set of probability measures. If A is compact under total
variation metric, then # :={Ep[h]: P € A} is a closed set. To see this, let {w,} C # and w, — v
as t — oo. It suffices to show w € #'. By definition, for each w; € #, there exists a P; € P such that
w; =Ep,[h]. Since P is compact under the total variation metric, there exists a subsequence { P, }
such that P;, converges to some P (under the total variation metric) with P € P, which means
.= lim Ep, [1(€)] =Ep[h(e)].

s§— 00

w= lim w,
ts—00

This shows w € # because Ep[h(§)] € #'.

DEFINITION 3. Let A be a set of probability measures on (2, %). A is said to be tight if for any
€ > 0, there exists a compact set =. C = such that infpe 4 P(ZE.) > 1 — €. In the case when A is a
singleton, it reduces to the tightness of a single probability measure. A is said to be closed (under
the weak topology) if for any sequence { Py} C A with Py — P weakly, we have P € A.

DEFINITION 4. Let {Py} C & be a sequence of probability measures. { Py} is said to converge
to P € & weakly if

A}E%O/:h(g)PN(d’g):/:h(OP(dg)

for each bounded and continuous function h: = — IR. Let A C o/ be a set of probability measures.
A is said to be weakly compact if every sequence {Ay} C A contains a subsequence {Ay+} and
A € A such that Ay, — A.

Obviously if a sequence of probability measures converges under the total variation metric,
then it converges weakly. Moreover, if h is a bounded continuous function defined on =, then
{Ea[h]: A€ A} is a compact set in IR. Furthermore, by the well-known Prokhorov’s theorem (see
[27, 2]), a closed set A (under the weak topology) of probability measures is compact if it is tight.
In particular, if = is a compact metric space, then the set of all probability measures on (2, %) is
compact in that = is in a finite dimensional space; see [34]. In Section 4, we will discuss tightness
and compactness in detail where Py has a specific structure.

LEMMA 1. Let Z be a separable metric space, P and {P;} be Borel probability measures on Z
such that P, converges weakly to P, let h: Z — IR be a measurable function with P(D,) =0, where
Dy, :={z€ Z:h is not continuous at z}. Then it holds

lim [ h()Py(dz) = / h(=)P(d2)

t—o0 Z 7z

if the sequence {P;h™'} is uniformly integrable, i.e.,

lim sup/ |h(2)|Py(dz) =0,
T teN J{ze2: h(z)| >}

where N denotes the set of positive integers. A sufficient condition for the uniform integrability is:

sup/ |h(2)|"tPi(dz) < oo  for some € > 0.
teN Jz
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The results of this lemma are summarized from [8, Theorem 5.4] and the preceding discussions.
It is easy to observe that if h is continuous and bounded, then for all probability measure P,
P(D;,)=0 and {P,h~'} is uniformly integrable.

PROPOSITION 1. Let P be a set of probability measures of separable measurable space Z, let
h:Z — 1R be a measurable function with P(D;) =0 for all P € P and {Ph™', P € P} is uniformly
integrable, where Dy, = {z € Z : h is not continuous at z}. Let ¥ :={Ep[h(z)]: P €clP}. If P is
tight, then ¥ is a compact set.

Proof. Since h(z) is uniformly integrable for all P € P, ¥ is bounded. It suffices to show that ¥
is closed. Let {v;} C ¥ be any sequence converging to 0. We show © € ¥. Let {P,} be such that
Ep, [h(2)] = v;. Since ¥ is bounded, by taking a subsequence if necessary, there exists ¢ such that
vy — 0. Since clP is compact under the weak topology, by taking a subsequence if necessary, we
may assume that P, — P weakly. It follows by Lemma 1

0= tlim vy = tlim Ep, [h(2)] =Ep[h(2)]
The closedness of cIP means P € clP and hence 9 € 7. O

2.3. Pseudometric. The total variation metric we discussed is independent of function
f(x,€) defined in the distributionally robust optimization problem (1). In what follows, we intro-
duce another metric which is closely related to the objective function f(z,¢).

Define the set of random functions:

G :={g9(:):=f(z,"):xe X}. (10)
The distance for any probability measures P,Q € & is defined as:
2(P,Q) :=sup [Erlg] - Eqg]]. (11)
geY

Here we implicitly assume that Z(P,Q) < co. We will come back to this in the next subsection.
We call Z(P,Q) pseudometric in that it satisfies all properties of a metric except that 2(P,Q) =0
does not necessarily imply P = @ unless the set of functions ¢ is sufficiently large. This type
of pseudometric is widely used for stability analysis in stochastic programming; see an excellent
review by Romisch [31].

Let Q € & be a probability measure and A; C &2, i = 1,2, be a set of probability measures.
With the pseudometric, we may define the distance from a single probability measure @) to a set of
probability measures A; as 2(Q, A;) :=infpec 4, Z(Q, P), the deviation (excess) of A; from (over)
A, as

D( A1, As) = sup Z(Q, Az) (12)

QeA

and Hausdorff distance between A; and A, as

H (A, As) := max{ sup 2(Q, Asz), sup @(Q,Al)}. (13)

QeA QeAy

REMARK 2. There are two important cases to note.
(i) Consider the case when ¢ is bounded, that is, there exists a positive number M such that
SUp,eq (|9l < M. Let 9 =% /M. Then

2(P,Q) := M sup |Ep[g] — Eq[g]| < Mdrv (P, Q). (14)

gev
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(ii) Consider the set of functions
9= {f(@.8):x € X,sup|f(2,8) = (@, ) < (& € =N ¥, £ € = (15)

where ¢, (&,&') ;== max{1, [|€]|, |||}~ for all £, € = and p> 1. When p=1, Z(P,Q) is associated
with the well-known Kantorovich metric and when p > 1 it is related to the p-th order Fortet-
Mourier metric over the subset of probability measures having finite p-th order moments. It is
well-known that a sequence of probability measures {Py} converges to P under Fortet-Mourier
metric (both Py and P having p-th order moments) iff it converges to P weakly and

Jim By (€17 = Ep [l < oo, (16)

see [31]. It means that if f satisfies conditions (15), then weak convergence of Py to P € P and
(16) imply Z(Py,P) — 0 and hence 2(Py,P) — 0. If (16) holds for any {Px} € {Px}, then we
arrive at Z(Pn,P) — 0.

2.4. Well definedness of the robust problem. We need to make sure that problems (5)
and (6) are well defined, that is, the objective functions vy (z) and v(x) are finite valued and enjoy
some nice properties. This requires us to investigate parametric programs (3) and (4) where z
is treated as a parameter and probability measure P is a variable. To this end, we make a few
assumptions. Let P C & denote a set of distributions such that

P, PyvCP (17)

for N sufficiently large. Existence of P is trivial as we can take the union of P and Py, for
N =1,2,3,--- . However, our interest is in the case where P satisfies (17) and has some specified
characteristics such as tightness or compactness under the weak topology. We also prefer the set to
be as small as possible although we do not necessarily consider the smallest one. We will elaborate
with details later on.

ASSUMPTION 1. Let f(x,§) be defined as in (1) and P be a set of probability measures satisfying
(17).

(a) For each fixed & € E, f(-,€) is Lipschitz continuous on X with Lipschitz modulus being
bounded by k(§), where supp.p Ep[k(€)] < 0o.

(b) There exists xo € X such that suppep [|Ep[f(x0,§)]]] < 0.

(¢) X is a compact set.

Assumption 1 (a) is a standard condition in stochastic programming, see e.g. [40]; Assumption 1
(b) is also standard if 7? is a singleton. Our interest here is the case when P is a set. The condition
may be satisfied when Pis tight and f(x¢,&) is uniformly integrable, see Proposition 1. Assumption
1 (c) may be relaxed to the case when X is merely closed but it would then require additional
conditions such as inf-compactness for the convergence analysis. We make it simpler so that we
can concentrate our analysis on other important aspects.

Under Assumption 1, it is easy to verify that the pseudometric defined in (11) is bounded.

ASSUMPTION 2. Let P, Py be defined as in (1) and (2) respectively.
(a) P is nonempty and tight;

(b) for each N, Py is a nonempty tight set;

(¢) there exists a weakly compact set P C P such that (17) holds.

The assumption is rather general and may be verified when we have a concrete structure of the
ambiguity sets, see Remark 3, Proposition 5 and Proposition 7. Note that in general tightness is
weaker than weak compactness, the following example explains this.
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ExaMPLE 1. Let £ be a random variable defined on IR with o-algebra F. Let & denote the
set of all probability measures on (IR, F). Let

Pe{reo: g}

Note that P is not closed. To see this, we consider a special sequence of distributions {P;} with

PE =V = 52 BEO) =1— 5 and P (/i) =5~

It is easy to see that P; € P, and P; converges weakly to P* with P*(£71(0)) =1, but P* ¢ P. Note
that since Ep[¢?] is bounded for all P € P, by Dunford-Pettis theorem (see [3, Theorem 2.4.5]), P
is tight.

The proposition below summarizes main properties of the optimal value and the optimal solutions
of parametric programs (3) and (4).

PROPOSITION 2. Let Assumption 1 (a) and (b) hold. The following assertions hold.
(i) Under Assumption 1 (c), Ep[f(z,£)] is Lipschitz continuous w.r.t. (P,z) on int cl Py x X,
that is,
[Ep(f(2,6)] =Eq[f(y, O]l < Z(P, Q) + sup Ep[r(&)][lz - yl| (18)

peP

for P,Q €intcl Py and x,y € X.
Assume, in addition, Assumption 2 holds and {Pf~*(x,-), P € Py} is uniformly integrable, i.e.,

i sup | /(. 8)|P(d) =0. (19
"0 PEPN J{geE:|f (x.8)| 2}
Then
(ii) ®n(x)#0;
(i1i) ®n(-) is upper semicontinuous at every fixed point in X;
(iv) for all z € X, vy(z) < 0o. Moreover, vy(-) is equi-Lipschitz continuous on X with modulus
being bounded by supp.p Ep[k(§)], that is,

lon (2) —un(y)] < IS;HEIEPD—@(O]IIJj —yll, Y,y € X; (20)

(v) if {Pf~'(x,-),P € P} is uniformly integrable, then v(-) is Lipschitz continuous on X.

Proof. Under Assumption 1
sup ||Ep[f(,8)]] < oo

zeX,PeP

Part (i). Observe first that for every x € X, Ep[f(z,£)] is continuous in P under the pseudometric
2. In fact, for any P,Q € Py

[Ep[f(z,8)] - Eq[f(z,8)]l < Z2(P,Q) < 0. (21)
For any z,y € X,
[Ep[f(z,6)] —Ep[f(y, O]l < IS_;ugIEP[/-’»(ﬁ)]||~’C =yl (22)

Combining (21) and (22), we obtain (18), that is, Ep[f(z,£)] is Lipschitz continuous w.r.t. (P,x)
on Py x X.
Part (ii). Let
7/]\[:: {Ep[f(x,ﬁ)] PECIPN} (23)
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Assumption 1 ensures that ¥y is bounded and through Prokhorov’s theorem, Assumption 2 (b)
guarantees that cl Py is compact under weak topology. With the weak compactness, and the
uniform integrability of {Pf~'(z,-), P € Py}, it follows by Proposition 1 that ¥y is compact and
hence @y () # 0.

Part (iii). Under the continuity of Ep[f(z,&)] with respect to P and the nonemptiness of ®y(z),
it follows by [4, Theorem 4.2.1] that ®(-) is upper semicontinuous at every point in X.

Part (iv). Under Assumption 1, ¥y is bounded which implies boundedness of vy (x). The proof
of Lipschitz continuity is similar to [22, Theorem 1]. By Part (ii), ®x(y) is not empty. Let Py (y) €
D(y). By (18)

un () > Bpy ) [f(2,)] = Epy)[f (4,6)] = [Epy[f (@,6)] = Epyw)[f (4, 6]l

un(y) — ISDuI;IEp[H(&)]IIw —yl.

>
>

Exchanging the role of z and y, we obtain (20).

Part (v). Similar to the proof of Parts (ii)-(iv), we can show that ®(x) is nonempty for every
x € X, ®(-) is upper semicontinuous on X and v(-) is Lipschitz continuous by replacing Py with
P. We omit the details. The proof is complete. O

Note that in order to solve distributionally robust optimization problem (3), one usually needs
to reformulate it through Lagrangian dualization in the case when Py has a specific structure.
We will not go to details in this regard as it is well discussed in the literature, see [13] and the
references therein.

3. Convergence analysis. In this section, we analyze convergence of the optimal value ¥y
and the optimal solution set Xy as Py — P. We will carry out the analysis without referring to a
specific structure of Py or P in order to maximize the coverage of the established in application.
To ensure convergence of the ambiguity sets implies convergence of the optimal values and the
optimal solutions, we need to strengthen our assumptions so that the optimal value function of (5)
converges to that of (6) under pseudometrics.

ASSUMPTION 3. Let P, Py be defined as in (1) and (2) respectively.
(a) 7 (Pn,P)— 0 almost surely as N — oo, where J(-,-) is defined as in (13);
(b) for any € >0, there exist positive constants o and  (depending on €) such that

Prob(2(Pn,P) >€) < ae N

for N sufficiently large, where D(-,-) is defined as in (12).

We consider the convergence of 2(Py,P) in a probabilistic manner because in practice, Py
may be constructed in various ways associated with sampling. For instance, if Py is generated
through a sequence of independent and identically distributed (iid) random variables &', &2 - -
with the same distribution as &, then the probability measure “Prob” should be understood as the
product probability measure of P over measurable space = X = - - - with product Borel sigma-algebra
BXRB---.

Assumption 3 is rather general and can be verified only when Py has a structure. In Section
4, we will discuss how Assumption 3 (b) may be satisfied (note that (b) implies (a)) when the
ambiguity set Py is constructed in a specific way, see Corollary 1, Corollary 2 and Theorem 4.
It is an open question as to whether the assumption is satisfied when Py is constructed through
Kullback-Leibler-divergence.

Under Assumption 3, we are able to present one of the main convergence results in this section.

THEOREM 1. Under Assumption 1 and Assumption 3 (a), the following assertions hold.
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(i) vn(x) converges uniformly to v(z) over X as N tends to infinity, that is,

lim sup |vy(z) —v(x)]=0 (24)
N—ooex
almost surely.
(i1) If, in addition, Assumption 3 (b) holds, then for any € >0 there exist positive constants o
and 3 such that
Prob (sup loy(z) —v(x)| > 6) <ae PN (25)

zeX

for N sufficiently large.

Part (i) of the theorem says that vy(-) converges to v(:) uniformly over X almost surely as
N — oo and Part (ii) states that it converges in distribution at an exponential rate.
Proof of Theorem 1. Under Assumption 1, it follows from the proof of Proposition 2 (ii),
vy (z) < o0.

Part (i). Let x € X be fixed. Let ¥ :={Ep[f(z,&)]: P € cl P} and ¥y be defined as in (23).
Under Assumption 1, both ¥ and ¥y are bounded sets in IR. Let

a —mfv b:=supv; ay:= mf v; by := sup v.
veY vEYVN

Let “conv” denote the convex hull of a set. Then the Hausdorfl distance between conv?” and
conv¥y can be written as follows:

H(conv¥’, conv¥y) = max{|by — b|,|a — an|}.

Note that

by —b= max Ep[f(z,)] — maxEp[f(z,¢)]
and

ax —a= in B[/ (2,€)] - minEelf(z.)
Therefore

H(conv¥', conv¥y) = max {

}grel%}]i Ep[f(x,&)] — I}QggEP[f@ I

i Eelf(2.9)] - i 0,61 |

On the other hand, by the definition and property of the Hausdorff distance (see e.g. [20]),
H(conv¥',conv¥y) <H(¥, ¥5) = max(D(¥, ¥n),D(¥n,¥))
where
D7, i) = maxd(v, V) = max min Hv—v I =max min [Ep[f(z,£)] - Eqlf(z, )l
< max min sup [Ep[f(2 O] - Eolf (2,6)]| = 2(P, Py).

PeP QePN

Likewise, we can show D(¥y,?) < Z(Pn,P). Therefore
H(conv¥ ,conv¥y) <H(¥,¥y) < A (P, Pn),

which subsequently yields

o (2) —v(@)[ = | max Ep[f(z,£)] - maxEp[f(z,§)]| < (P, Py).

EPN
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Note that z is any point taken from X and the right hand side of the inequality above is independent
of z. By taking supremum w.r.t.  on both sides, we arrive at (24).
Part (ii) follows straightforwardly from part (i) and Assumption 3 (b). O
Assumption 3 is essential for deriving the convergence results in Theorem 1. It would therefore
be helpful to discuss how the conditions stipulated in the assumption could be possibly satisfied.
The proposition below states some sufficient conditions.

PROPOSITION 3.  Assumption 3 (a) is satisfied if one of the following conditions hold.

(a) Px converges to P under total variation metric and f(x,€) is uniformly bounded, that is,
there ezists a positive constant My such that |f(z,§)| < My, for all (x,§) € X x =.

(b) 2(P,Pn)—0, f satisfies condition (15), and for every sequence {Px} C {Pn}, {Pn} con-
verges to P € P weakly and (16) holds.

Proof. Sufficiency of (a) and (b) follows from Remark 2 (i) and (ii). O

As we have commented in Section 2, our analysis collapses to classical stability analysis in
stochastic programming when Py reduces to a singleton. In such a case, condition (b) in Propo-
sition 3 reduces to the standard sufficient condition required in stability analysis of stochastic
programming; see [31]. The uniform convergence established in Theorem 1 may be translated into
convergence of the optimal values and the optimal solutions of problem (5) through Liu and Xu
[23, Lemma 3.8]. Therefore the convergence analysis presented here is a kind of global (or robust)
stability analysis of the optimal value and the optimal solutions in a stochastic decision making
system against the underlying system error (random data).

THEOREM 2. Let Xy and X* denote the set of the optimal solutions to (2) and (1) respectively,
Yy and U the corresponding optimal values. Assume that X is a compact set, Xy and X* are
nonempty. Under Assumptions 1, 2 and 3 (a),

lim Xy C X* and lim 9y =9.
N—oo N—co

If, in addition, Assumption 3 (b) holds, then for any € >0 there exist positive constants o and 3

(depending on €) such that
Prob (|9x — 9] > €) < ae N

for N sufficiently large.

Proof. By Proposition 2, v(-) and vy(-) are continuous. The conclusions follow from Theorem 1
and Liu and Xu [23, Lemma 3.8]. O
To emphasize the importance of the convergence results, we conclude this section with an example
suggested by a reviewer.
EXAMPLE 2. Let £ be a random variable defined on IR with o-algebra F. Let & denote the
set of all probability measures on (IR, F). Let

P:={Pe2:PE'(0)=1}
which is a singleton. We consider the following distributionally robust optimization problem

min sup Ep[z&?]. (26)

z€[1,2] pep

Obviously suppep Ep[zé?] =0 and the optimal value is 0. Let us now consider an approximation
of P by P, which is defined as:

B P(e1(0) =11
7’“‘{“” Ple- ([2,ﬂ1>>=} 27)

By
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The corresponding distributionally robust minimization problem is

min sup EP[eTfQ]- (28)

z€[1,2] PePy

Let P, be such that ) 1
PN 0)=1- and P (VD) =7

Then P; € P; and it is easy to observe that suppep, Ep[2£?] = Ep, [2£%] =  for all z € [1,2]. However,
there is another issue here: with P; being defined as in (27), the optimal value of problem (28) is 1
whereas the optimal value of problem (26) is 0. On the other hand, P, converges to P weakly. The
underlying reason for the failure of convergence of the optimal value of problem (28) to that of
problem (26) is that (P, P) = 2, which Assumption 3 (a) fails. In other words, this assumption is
a necessary condition for the desired convergence without which one can construct a specific f(z,¢)
and a sequence of ambiguity sets such that 7 (P;, P) 4 0 and consequently ¥, fails to converge to
9.

Before concluding this section, we note that Riis and Andersen [29] carry out similar convergence
analysis when the minimax distributionally robust formulation is applied to a two-stage stochastic
program with recourse. A key condition in their analysis is that there exists a sequence of probability
measures { Py} C Py such that Py converges to P € P weakly (see [29, Proposition 2.1]). This
condition implicitly requires the underlying random function f(x, &) to be bounded and continuous
w.r.t. £ over IR" in some circumstances; see condition (iii) [29, Proposition 2.1]. Our analysis is
carried out under the pseudometric which is based on the uniform integrability of f over its support
set =. Another important assumption in [29] is that Py must be contained in P. Here, we don’t
require P to be inner approximated by Py because it may not be satisfied in some important
instances, see Section 4.

4. Approximations of the ambiguity set. One of the key assumptions in the conver-
gence analysis is the convergence of Py to P. In this section, we look into details as to how such
convergence may be obtained. In the literature of robust optimization, there have been various
ways to construct the ambiguity set Px. Here we review some of them and present a quantitative
convergence analysis of Py to P under total variation metric.

4.1. Moment problems. Let us first consider the case when the ambiguity set P is defined
through moment conditions:

Ep[1:(§)] = ps, fori=1,--- |p }
P:=XPeP: ’ . , 29
\ Ep[ty(€)] < pe. fori=p+ 1 g 29)
where £ : Q0 — = is defined as in (1), ¥;: = — 1R, i=1,--- , g, are measurable functions and & is the

set of all probability measures on = induced by ¢ as defined at the beginning of Section 2.1. In other
words, the mathematical expectations are taken with respect to some probability distribution of
the random vector &. Let

- EP[¢1(§)]:H?[7 fori:]-v"'ap
Prm P O e a1 (30)

be an approximation to P, where 2 is constructed through samples. To simplify the notation,
let ¥p = (Y1, -, )7, Y1 = (Ypi1,-- ,,)", where the subscripts E and I indicates the com-
ponents corresponding equality constraints and inequality constraints respectively. Likewise, let
pr = (pa, - pp)t and pg = (ps1, - 5 pg)". Then we can rewrite P and Py as

P={PecZ:Ep[tr()]=ueEp[vr(&)] <ur}
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and
Py ={PeZ:Ep[p(&)] = pnp, Ep[t(£)] < pr'}.

In what follows, we investigate approximation of Py to P when ¥ converges to p;. By viewing
P as a set of solutions to the system of equalities and inequalitie defined by (29), we may derive an
error bound for a probability measure deviating from set P. This kind of result may be regarded
as a generalization of classical Hoffman’s lemma in a finite dimensional space (see [39, Theorem
7.11)).

Let us write (P, (§)) for Ep[vr(§)] and (P,¢;(§)) for Ep[tr(€)]. Let int (S) denote the interior
of set S. Let .#, denote the space of positive measures generated by .

LEMMA 2. (Hoffman’s lemma for moment problem). Assume the regularity condition

(L, pp, ) € it [((P,1), (P,¢pg(€)), (P, ¢1(€))) —{0} x {0p} X IRT™": P € 4] (31)

holds and P is tight. Then there exists a positive constant Cy depending on v such that

drv (Q,P) < Cy ([[(Eq[r(§)] — pur) + | + [[Eq [ (€)] — nell) , (32)

where (a); =max(0,a) for a € IR, and the mazimum is taken componentwise when a is a vector,
|- || denotes the FEuclidean norm.

The lemma says that the deviation of a probability measure Q) € & from P under the total
variation metric is linearly bounded by the residual of the system of equalities and inequalities
defining P. In the case when = is a discrete set with finite cardinality, Lemma 2 reduces to the
classical Hoffman’s lemma (see [39, Theorem 7.11]).

Proof of Lemma 2. The proof is essentially derived through Shapiro’s duality theorem [34,
Proposition 3.1]. We proceed it in three steps.

Step 1. Let P € & and ¢(£) be P-integrable function. Let (P, ¢) :=Ep[¢p(£)]. By the definition
of the total variation norm (see [2]), ||P||rv = sup 4. <1 (P ¢). Moreover, by the definition of the
total variation metric

dTV(va) = Jyé%dTV(Q’P)

inf su - P
Pe{PEp[Ypl=pp.Epldrl<pr} \|¢(§)\|£)O§1 @ )
= su inf (Q—P,¢),

p
lp(&)]loo <1 PE{PEp[YEl=pE.Eplr]<ur}

where the exchange is justified by [16, Theorem 1] because the closure of P is weakly compact under
the tightness condition. It is easy to observe that dgy (P, P) < 2. Moreover, under the regularity
condition (31), it follows by [34, Proposition 3.4] that

(Q—P,¢) = sup inf (Q—P,¢)+ N ((Py)) —p)+X((P1) 1)

inf
Pe{P:Eplypl=pp.Ep[¥r]<ur} NeA N PEA

= sup inf (Q— P, — A" — o) +{(Q, T+ Xo) — AT — Ao,
AEA N Pey
(33)

where ¥ = (Y, %), p= (g, pr) and A:={( A1, -+, A): A >0, fori=p+1,--- ,q}. If there exists
some wy such that ¢(&(wp)) — AT (E(wp)) — Ao > 0, then the right hand side of (33) is +00 because
we can choose P = adg(.)(-), where d¢(,) () denotes the Dirac probability measure at £(wo, and
drive o to +00. Thus we are left to consider that case with

H(E(w)) — AT (E(w)) — Ao <0, for ae.w € Q.
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Consequently we can rewrite (33) as

retrEnels w0 = I Q=P8 AT = Ao +(Q AT+ 20) — X = Ag
= (Q, 0= AT = Xo) +{(Q, AP+ Xo) = A =X
= <Q) ¢> - )\T:u’ - )‘0'

The second inequality is due to the fact that the optimum is attained at P =0. Summarizing the
discussions above, we arrive at

sup  sup (Q,0) — AT — X
drv(Q,P) = ll¢(©)llec<1AEA N
s.t. H(E(w)) = ATY(E(w)) — A <0, ae we

sup (Q,min{AT(E(w)) + Mo, 1}) — X — Ag
s AEA,)\O (34)
st —1=AT¢(E(w)) =X <0, ae we.

Step 2. We show that the optimization problem at the right hand side of (34) has a bounded
optimal solution. Let

Fi={(MX) EAXTR: =1 - A9P(¢(w)) =X <0, ae weN}
denote the feasible set of (34) and
C:={(MXo) EAXIR: A +]No| =1, -AT(¢(w)) = Ao <0, ae we N} (35)
Then F may be represented as
F=Fo+{tC:t>0}.

where F; is a bounded convex set and the addition is in the sense of Minkowski. If C = (), then F
is bounded. Consequently we have

SUPjyeay, (@) min{ ATy (&(w)) + Ao, 1}) — AT — Ao
st. —1=ATY(E(w)) =X <0, ae. we

< sup (Q AN P(E(w))) — AT p

AEA N

up N ((Q, (E())) — ). (36)

In what follows, we consider the case when C # (). From (35) we immediately have
MNP p(E(w))) — Ao(P,1) <0,¥(A\, \o) €EC,PE M. (37)
On the other hand, by the Slater type condition (31),
(0,0,) € int [((P,1) — 1, (P, (&) — i, {0} x {0,} x RSV s P e ],
Therefore there exists a closed neighborhood of (0,0,), denoted by W, such that
W Cint [((P,1) = 1,(P,¢(§)) — p), {0} x {0, } x RT™": P € .4,].

Let € be a small positive number and (), Ag) € C. Then there exists a vector @ € WW (depending on
e and (A, \g)) such that (w, (A, A\g)) < —e. In other words, there exist P € .#, and n € IR”? such
that

A((P,1) = 1) + AT ((P,4p(€)) — 1) =" As < —e. (38)
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Since —n"A\; > 0, we deduce from (37) and (38) that —\g — ATu < —e. The inequality holds for
every (A, Ag) € C. Thus, for any (A, \g) € F, we may write it in the form

()\7 )\0) = (;\7 5‘0) + t(j‘a 5\0)7
where (X, Ao) € Fo, (A, Ao) €C and t > 0. Observe that (Q, min{A\T4(&(w)) 4+ Ao, 1}) € [~1,1] and
AT =g =—pT A= Ao —t(WT A+ Xo) < —p" A — Ao — te.

To ensure the optimal value of the optimization problem at the r1ght hand side of (34) to be
positive, we must have —1 — TX— X —te>0 or equivalently ¢ < ( + MT)\ + )\0) A sufficient

condition is ¢ < 1 <1 + SUP 5 50 7o (MTS\ + 5\0)> . Let

1 C
t1=<1+ sup (HMIIH/\||+|>\0|)>,

()\ AO)E}—O

o))

and Fy := Fy+ {tC : t; >t > 0}. Based on the discussions above, we conclude that the optimization
problem at the right hand side of (34) has and optimal solution in Fj.
Step 3. Let C) :=max(y x,)er, ||A|. Then

drv(Q,P) = sup (Q,min{ A"y (&(w)) + Ao, 1}) = AT — Ao

(M A0)EF
< sup (QATY(E(W)) + o) = AT =X
(A A0)EF
= )\T(EQW(E)] - M)
<Z)\ Esz Z)\ EQ¢’L ,uz)
i=p+1
< Z (Nl [Eq[vi(§)] — pal + Z Ai(Eq[vi(§)] — pi)+
1=p+1
< Cl(H(EQ[wE(&H )|+ 1B [r ()] — pur) 1.
The inequality also holds for the case when C = () because F, C F,. The proof is complete. O

REMARK 3. It might be helpful to make a few comments on the proof and conditions of the
lemma.

(i) An important argument we have made in the proof is that for a linear semi-infinite program
with finite optimal value, there exists a bounded set of optimal solutions where the bound is
determined by the feasible set.

(ii) The regularity condition (31) is a kind of Slater constraint qualification which is widely used
in the literature of distributionally robust optimization. It means the underlying functions % in the
definition of the ambiguity set through moment conditions cannot be arbitrary.

(iii) P is tight if there are positive constraints 7 and o such that

supb/m\éHl*TP%d£)<:@- (39)
PeP J=

To see this, let € be any fixed small positive number and r > 1 be sufficiently large. Then by (39)

1 1
sup | Pldg) < Lsup [ PP < sup [ e+ Pdg) < 2 <
PeP J{ge=|g]|>r} T PeP J{cem|¢ll>r} T PeP J{ce=:|¢|>r} r

Note that (39) holds trivially when = is a compact set.
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(iv) In the case when P is tight, then a sufficient condition for P to be closed is
sup/ [0 ()T P(dE) < g,i=1,- (40)
PeP

for some strictly positive number 7 and positive number p. To show this, let {P,} C P be a sequence
which converges to P weakly. Under condition (40), it follows by Lemma 1,

M = tILHDlO Ep, [¥:(§)] =Ep[1i(§)]
fori=1,---,p. Likewise
pi > lim Ep, [1i(§)] =Ep[i(€)]

fori=p+1,---,q, which shows P € P.
With Lemma 2, we are able to quantify the approximation of Py to P under the total variation
metric.

PROPOSITION 4. Suppose that (31) holds and pY and pf converge to p; and pg respectively
as N — oco. Then

Hry (P, P) < Ci[max([| (17" — pr)+ Il 1Ger = p12") 4 1) + N1z — pasl], (41)

where C is defined as in Lemma 2. Moreover, if there exists a positive constant My such that
llgl| < My for all g €Y, where ¢4 is defined in (10), then

A (Px,P) < CiMa[max([| (g — por)+ [ [1(er = 1)) + g — pesll).

Proof. Let @ € Py. By Lemma 2, there exists a positive constant C; such that

drv (@ P) < Ci(l[(Bqvr (§(w))] = o)+ + 1By (§(w))] — pe|)
< Ci([[(Eqlubr (€] — 17 )+l + IEq[vm (€)= a1+ 111" = o)+l + i — psll)
= Cu(ll(pr — pr)+ ||+||ALE piell)-

Therefore, Dry (P, P) = supgep,, drv(Q,P) < Cr([|(uf — pr)+ |l + |ln — pel]). On the other hand,
since p¥ and ¥ converge to pu; and pg, a regularity condition similar to (31) for the system defining
Pn holds when N is sufficiently large. By applying Lemma 2 to the moment system defining Py,
we have that for all P € P

dry (P, Px) < CL(|(Ep[thr()] — 17 )+l + | Ep [ (€)] — 1z )
< Cill(Ep[vr(&)] — ur)+ | + IEp[E(E)] — uell + 1(er — 1)+ | + e — 1z 1]
= Ci(l(ur = p7 )l + e — )

and hence
Drv (P, Pn) < Crlll(pr — p7") el + lpee — p |)-
Combining the inequalities above, we have
Hery (P, P) < Cr(max(|| (u7 — uz)+||a Cer = 17" ) D) + Nl = sl

For (P, P), it follows by Remark 2 that ;-2(P,Q) < drv(P,Q), which implies ' (Py,P) <
MyHpy (Py, P). Since Hypy (P, P) < Oyl iy — MH

A (Px, P) < CrMa(max(|| (7 — por) 4l 1 Ger = 62)+ 1) + s — psl)-

The proof is complete. O
In the case when p is constructed from independent and identically distributed samples of £, we
can show Hry (Py, P) converges to zero at an exponential rate with the increase of sample size N.
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COROLLARY 1. Let &, j=1,---,N be independent and identically distributed sampling of &,
LN =~ Z;\;lw(éj). Assume that the conditions of Proposition 4 hold, Z is a compact subset of
R* and ;, i=1,---,q, is continuous on Z. Then for any € > 0, there exist positive numbers a and
B such that

Prob(Hzy (Py,P) >€) < ae PN

for N sufficiently large. If f(x,&) satisfies one of the conditions in Proposition 3, then
Prob(J#(Py,P) >€) < ae N

for N sufficiently large.

Proof. The conclusion follows from classical large deviation theorem being applied to the sample
average of ¥. The rest follows from (41) and Proposition 3 since both P and Py are compact. [

Note also that Dupacova [15] recently investigates stability of one stage distributionally robust
optimization problem. She derives convergence of optimal value of distributionally robust minimiza-
tion problems where the ambiguity set is constructed by sample average approximated moments
and the underlying objective function is lower semicontinuous and convex w.r.t. decision variables.
Assuming the random variable is defined in a finite dimensional space with compact support set,
Dupacova establishes convergence of the optimal solutions and the optimal values, see [15, Theorem
2.6, Theorem 3.1 and Theorem 3.3]. It is possible to relate the results to what we have established
in this paper. Indeed, if we strengthen the fourth condition in [15, Assumption 2.5] to continuity of
f(-,€), we may recover [15, Theorem 3.3] through Theorem 2 without convexity of the feasible set
X. Note that when the support set is compact, the ambiguity set P and Py are weakly compact.

4.2. Mixture distribution Let P;,---, Py be a set of probability measures and

L L
Pi= {ZazB:Zalzl,alzo,Fl’“' ’L}'
=1 =1

In this setup, we assume that probability distributions P, [ =1,---,L, are known and the true
probability distribution is in the convex hull of them. Robust optimization under mixture proba-
bility distribution can be traced back to Hall et al [19] and Peel and McLachlan [24]. More recently,
Zhu and Fukushima [47] studied robust optimization of CVaR of a random function under mixture
probability distributions.

Assume that for each P}, one can construct P/ to approximate it (e.g. through samples). Let

L L
Pn ::{ZalPlN:Zalzl,alzo,lzl,--- ,L}.
=1

1=1
We investigate the convergence of Py to P.

PROPOSITION 5. Assume that {P,} (resp. {PN}), 1=1,---,L, is tight. Then P (resp. Py) is
compact.

Proof. Observe that P is the convex hull of a finite set P, :={P,,l=1,..., L}, which is the image of
the set under continuous mapping F': (P, -+, Pr;aq,--- ,ap) — Ele o P;. The image of a compact
set under continuous mapping is compact. Therefore it is adequate to show that P, is compact.
However, the compactness of P, is obvious under the tightness of P, and finite cardinality of the
set. U

Note that in the case when the random variable £ is defined in finite dimensional space, it follows
by [8, Theorem 1.4] that P, € P, is tight.
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PROPOSITION 6. Assume that | PN — P)||ry — 0,forl=1,--- L as N — co. Then for N suffi-
ciently large

HTV(PN,P)SmaX{HPlN—PlHTvil:L“' 7L}- (42)

Proof. Let
P:={P:l=1,---,L} and Py:={P":l=1,---,L}.

By [20, Proposition 2.1], Hyy (Py, P) < Hyy (Py, P). It suffices to show that
Hry (Px, P) < max{||PN — Blry:i=1,---,L}. (43)
Let € denote the minimal distance between each pair of probability measures in P under total

variation metric, that is, € := min{||P; — Pj||rv : 4,5 =1,--- ,L,i # j}. Let Ny be sufficiently large
such that for N > Ny,

max{|[BY = Pllgy si=1,- L} < . (44)
Note that, for any I,
N N 7
|15 = Pullrv 2 [P = Pollrv = |17 = Pllrv 2 g6 vm=1--,Lm#L
By above inequality and (44), we have
Dry (P, P)= min 0 I1PY = Pullrv = |BY = Plrv
forl=1,---,L. Therefore
Drv (P, P) = max{||PN — Py :1=1,--- ,L}. (45)
Likewise, we can show
Dyy (P, Py) =max{| BN — P|lpv:l=1,---,L}. (46)
Combining (45) and (46), we obtain (42). O
COROLLARY 2. If PN converges to P, at an exponential rate forl=1,--- , L, then Py converges

to P at the same exponential rate under the total variation metric.

Note that convergence under the total variation metric may be too strong for some approxima-
tions. For example, if P/ is an empirical probability measure, then Pflug and Pichler have shown
that we may end up with ||PY — Pj||rv =1, see [26]. The fundamental reason is that the metric
is too restrictive. If we restrict h in (7) to a class of Lipschitz continuous functions with bounded
modulus, then we will get a weaker metric which is known as bounded Lipschitz metric under which
an empirical measure PN would converge to P, see [26].The latter is related to Kantorovich metric
and Fortet-Mourier metric that we discussed in Remark 2. All our technical results in the section
hold under bounded Lipschitz metric.
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4.3. Ambiguity set due to Delage and Ye [13] and So [33]. Delage and Ye [13] propose
to construct an ambiguity set through moment conditions which consist of the mean and covariance
matrix. Specifically they consider the following ambiguity set:

Epl€ - ol "S5 Erlé — pol <7 } | (47)

P (10, Xo,71,72) := {PEWZ 0 =Ep[(§ — o) (€ — p10)"] X722

where o € IRF is the true mean vector, ¥ € S’ﬁXk is the true covariance matrix, and v;, 1 = 1,2
are parameters. The parameters are introduced in that the true mean value and covariance may
be estimated through empirical data in data-driven problems and in these circumstances one may
not be entirely confident in these estimates. The formulation allows one to construct an ambiguity
set where the true mean and covariance do not have to be matched precisely and this particularly
helpful when py and ¥, are estimated through empirical data. Note that in [13], a condition on
the support set is explicitly imposed in the definition of the ambiguity set, that is, there is a
closed convex set in IR, denoted by S such that Prob{¢ € S} = 1. We remove this constraint as
it complicates the presentation of error bounds to be discussed later on. Moreover, without this
constraint, the main results in this subsection will not change.

Let {¢'}Y | be a set of N samples generated independently at random according to the distribu-
tion of . Let

— LN and sy = L3 f= )t
pim 3 S Y€ (€ )

Delage and Ye [13] propose to construct an approximation of P with the ambiguity set
Pun, En, 7Y, v3) by replacing the true mean and covariance py and Xy with their sample average
approximation py and Xy, where v and 72 are some positive constants depending on the sample.
By assuming that there exists a positive number R < 00 such that

P{(&—p0)"So M (€ — o) S R*} =1, (48)

they prove that the true distribution of ¢ lies in set P(uy, Xy, 7Y, vY) with probability at least
1 -4, see [13, Corollaries 3 and 4]. The condition implies the support set of £ is bounded. So [33]
observes that the condition may be weakened to the following moment growth condition:

Ep[l|Zo* (€ — mo) 5] < (ep)?’?, (49)
where ¢ and p are some parameters defined in [33]. Specifically, by setting

tN
,YN:: m
! 1—tN N

1+tN
and VY = T

m

where ) 4/

N._ 4ce*In*(2/9) N 4¢ (2¢/3)%/21n/ (4h/6)

m N ? c \/N ’

d €(0,2¢73), ¢ is a constant and p > 1, he shows that the true distribution of & lies in Py with
probability 1 —§ for N is sufficiently large, where

t

Pn 1=P(MN,2N,’YfV=’YéV)~ (5())

See [33, Theorem 9]. The significance of So’s new results lies not only in the fact condition (49)
is strictly weaker than (48) but the parameters v and 7Y depend merely on the sample size N
rather than the sample as in [13]. The latter will simplify our discussions later on.
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Note that as the sample size N — 00, it follows from law of large numbers that the iid sampling
ensures [y — o, Bn — 2o, 7 L 0 and v | 1 w.p.1. We predict that Py converges to the following
ambiguity set w.p.1:

. C Ep[€—po)" S0 Epl€ — 0] <0
P"{PE‘@' OﬁEP[(f—uo)(é—uo)T]iEo}' (51)

Before proceeding to convergence analysis of Py to P, we note that both sets are compact in weak
topology under some circumstances.

PROPOSITION 7. Both Py and P are tight. Moreover, they are closed (and hence compact in
the weak topology) if one of the following conditions holds.
(a) For Py (resp. P), there exists a positive number € such that

sup / €[>+ P(d€) < . (52)

PePN

(b) There exists a compact set S O = such that P{{ € S} =1 for all P € Py (resp. P€P).

Proof. We only prove the conclusion for Py as the proof for P is identical.
Tightness. The second inequality in the definition of Py implies

sup / €1 P(d€) < oo

PePN

which yields, through Lemma 1, that

iim sup [ €l P(dg) =0,
{E€E: gl >r}

r—00 pepy

Therefore

0< lim sup / P(d) < lim sup / Il P(de) =o.
{&€E:|€ll=r} {&€E:||€||=r}

T0 PePy T0 PePy

By [2, Definition 9.2.2], Py is tight.

Closedness. Let us prove the closedness under condition (a) first. Let { P,} € Py and P, — P* weakly.
Under the bounded integral condition (52), it follows from Lemma 1 that {P;h(-)} is uniformly
integrable, where h(-) denotes the inverse mapping of ||¢||?. Indeed

1
0< tim sup [ I€I2P(de) < lim - sup [ €[>+ P(de) = o.
{&€E:|[€||>r} e {¢€E:(|€ll=r}

=00 pePy oo T PePyn

The uniform integrability and the weak convergence yield

i [ el = [ PP o).
which ensures
lim Ep, [€ — un|" S Ep [§ — pv] =Ep-[§ — pn] BN Epe [§ — pn] <

and
lim Ep, [(§ - ) (€ = i) = Ep-[(€ = i) (€ = ) ] X Env.

This shows P* € Py and hence the closedness of Py.
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Now we prove the closedness under condition (b). This is obvious because the compactness of S
implies (52). O

Proposition 7 gives sufficient conditions for weak compactness of the ambiguity sets P and Py.
It is possible to derive some weaker conditions which ensure the closedness, e.g., by adjusting
the values of some parameters in the definition of the ambiguity sets. In the case when neither
condition (i) nor condition (ii) is satisfied, the ambiguity set is not necessarily weakly compact. In
these circumstances (the lack of closedness), we may consider the closure of the ambiguity set.

4.3.1. Error bound. We now turn to estimate Hyy (P, Py). The first step is to express P
and Py through a linear system of Ep[-]. To this end, we note that inequality

Epl€ — o) Eg 'Ep[€ — 110] <0

Ep K(MO__EE)T “Oo_gﬂ =<0,

where notation M < 0 means matrix M is negative semidefinite (we will come back to this shortly).
Likewise

is equivalent to

Ep[¢ — un]" Sy Ep[€ — pun] <71 (53)

o K (u;%é)T Mf{{vg)] <0,

Consequently, we can rewrite P and Py as

P={Pec: EP[((/LO_—EO MO_ )] (54)
Ep[(§ = 1o)(€ — 1o)X X0

can be written as

and

—Xy UN f
Py=(PecZ: EPK(M-EV -7 ) =0 (55)
Ep((§ —pn)(€ —un)"] 270 SN

respectively.

We need some preliminary notation and results in matrix to proceed the rest of discussions.
Recall that for two real matrices A, B € IR"*", the Frobenius product of A and B is defined as
the trace of AT B. The Frobenius norm of A, denoted by [|A||r, is the square root of the trace of
ATA. Let M € R™™" be a real symmetric matrix and {¢;}7_, be the set of eigenvalue of M. Let
Qdiag{ty,. .., 1, }QT be the spectral decomposition of M with @ being an orthogonal matrix. We
define M, := Qdiag{max{.;,0},...,max{t,,0}} Q7 and M_:= M — M. This is motivated by the
need to quantify the violation of the semidefinite constraint M <0, where M < (0 means matrix M
is negative semidefinite and M > 0 means M is positive semidefinite. Clearly, if M is a negative
semidefinite matrix, then M, = 0. Moreover, it is easy to observe that M < M, .

LEMMA 3. Let A,B € S™™ and A= 0. The following assertion hold.
(i) tr(AB) <tr(ABy).
(ii) [[(A+B)llr < | Ayllr + By |le.
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Proof. Part (i). Since By — B >0 and A > 0, by [10, Example 2.24], tr(A(B; — B)) >0 and
tr(AB;) —tr(AB) =tr(A(B; — B)) > 0.

The conclusion follows.
Part (ii). Let M € S™*". It is well known that for X <0, || X — M]||r attaints its minimum when
X =M_, see [21]. Using this argument, we have

[(A+B)yllr = [[A+B—(A+B)_[[r <||A+B—-(A_+B_)|r
= [[Ay + By|lr <[ A¢llr + | Byl £

This completes the proof. O
We are now ready to return to our discussion on estimation of Hyzy (P, Py ). We do so by deriving
an error bound for dry(Q,P) and drv(Q,Py) in the first place.

THEOREM 3. Let P be defined as in (54) and Px by (55) respectively. Assume that the true
distribution of € is continuous with convexr support set =. Then the following assertions hold.
(i) There exists a positive constant Cy depending on P such that

dry(Q,P) < Ca (IEq[(€ — po)lll + (Eql(§ — 10) (€ = 110)"] — Xo)+|Ir) (56)

for every Q € 2.
(ii) There exists a positive constant Cs such that for every Q € & with |[Eq[¢]|| <n
+[1Z0 = Enllr + 71

drv(Q,Py) < Cs (H(IEQ K(MO_EZ)T “°0§>D+ )
I (Eel(€ — 1) (€ — 110)"] =72 En)+ 12 + 2l |10 — ) (57)

with probability approaching one when N — co.

Proof. Part (i). To ease the notation, let

P1(§) =& —po and ¥y(§) == (& — o) (€ — ,UO)T-

Then the ambiguity set defined in (54) can be equivalently written as

- . EPWH(&)]:O
P‘{PE‘@' Ep[wz(@]jzo}'

Let (&) := (1,11(£),12(§)) and uw = (1,0,%,). Since the true distribution of £ is continuous with
convex support set, then the mean value of £ is located in the interior of =, the support set of &.
Using the definition of positive definiteness of a matrix, we can easily show that g > Opxz. Let
M, denote the set of all positive measures of = and K := {0} x {0} x S***. We want to show

(0,08, 0kxx) € int {Ep[1] = L,Ep[¢)(§)] —u—K: P € .4, }, (58)

where for two sets A and B, A — B stands for the Minkowski difference. For £ € =, let 3y := & — o and
P, denote the Dirac probability measure at &, that is, P,({{}) =1. Then Ep, [¢(£)] = (1,y,yy").
Let A\;, :=1,---,n, denote the i-th eigenvalue of ¥y and ¢; the corresponding eigenvector. For each
)

(17 07 )\zQ’LqELT) € cone {(1’y’ny) 7 c E _ MO}
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and hence u = (1,0,%) = (1,0,>_;", \igiq] ) € int cone {(y,yy”) : y € Z— po}. On the other hand,
it is easy to show {Ep[¢)(£)]: P € A} = cone{(y,yy”) :y € E — uo}. Therefore

w=(0,0) € int {Ep[(€)]: P e A},

which implies (58) because int {Ep[¢(§)]: P € A4, } Cint {Ep[(§)]: Pe A} —K).

The rest of proof is similar to that of Lemma 2 except that 1, is a matrix. Let P € & and
¢(§) be P-integrable componentwise. Recall that (P, ¢) =Ep[¢(£)] and || P||ry = sup| .. <i (P, ®).
Through a similar argument to that of Step 1 in Lemma 2, we have

dTv(Q,P) = Iiprel%dTv(Q,P) = <Q_Pa ¢>

inf sup
Pe{PEp[P(E)]Zu} ||¢(6)[l00<1

= su nf (Q— P, ).

\|¢(g)\|ig1 PG{P:Eizv[w(f)]ﬁu}

Let \; € IRF and T', € §%* denote the dual variables of constraints Ep[(€)] < u, let
Ai={(\,Ty) i\ €IRF, Ty € SH*FY.

Under the regularity condition (58), it follows by [34, Proposition 3.4] that

inf —P,¢) = su T'e(E —u)],
pepa M (@ PO = s e (Eglp(§)] )

where I" 0 9(£) := AT 1 (£) + T 015(§) and

Lo (Eq[i(§)] —u) = /\1TEQ [11(§)] + o @ (Eq[tha(§)] — Xo).

Consequently we arrive at

drv(Q,P) = sup I'e (Eq[i(§)] —w). (59)

(A1, T2)€A,|[Top (&) lloo<1

The rest of the proof amounts to estimate (59). Since the Frobenius inner product of two matrices is
the sum of the scalar product of vectors, problem (59) is a linear program with linear semi-infinite
constraints. Using a similar argument to that in the proof of Lemma 2, it is not difficult to show
that the optimum is achieved in a bounded set. Let (A;,I'5) denote the corresponding optimal
solution. Then

drv(Q,P) = AT Eql(€ — p0)] +T's ® (EQl(€ — 10) (€ — 110)"] = %o)-

Let (5 denote the maximum F-norm of all I' from the bounded set. Then the right hand side of
the equation above is bounded by Cs (|[Eq[¢] — poll + [|[(Eq[(€ — o) (€ — to)”] — Xo)+ || 7) and hence
(56) follows.

Part (ii). Consider Py. Let

(@)= ( (o Ty 5 ¢ and ) = (€= )€ )"

Let
Yo— XN BN — o

T}V . <(MN ) T >
and
T2 (Q) 1= (Eql€] — po) (o — i)™ + (10 — o) (B [€] — pun) ™
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Then

o | (e ey "’ ) | Bl + 7t
and

Eq[(€ — pn) (€ — pn) '] =B (€)] +73/(Q).

Note that by assumption ||[Eg[¢]]] < 7. Therefore there exists a positive constant C, such that

I7alle < Calllpto — pnll + 1120 — En || +91)

and w.p.1 |73 (Q)||r < C4llpo — pv||. The second inequality implicitly uses the law of large numbers
to ensure py converges to o almost Surely as N goes to infinity and hence ,u ~ is bounded w.p.1.
Let 9(€) = (1,41(£),2(€)), ul = (), @ ='Sn —73(Q) and @V := (1,ay, a}). Based on the
discussions above, we can present Py as Py ={P € & :Ep[p(§)] = EN}. A clear benefit of the
presentation is that in the system Ep[t¢)(w)] <@, only the right hand side depends on N and this
will facilitate us to derive an error bound analogous to Lemma 2.

We first prove the Slater type regularity condition. Note that puy — pe and Xy — 3. Thus
when NV is sufficiently large, uy € int 2 and X > Opxx, which implies Yy € int S_”ﬁXk . For fixed
N, let Zle )\jqjqu be the spectral decomposition of ¥ y. Let o be a positive number such that
& =uny +ovVhg €E fori=1,-- k:and&.—uN—cr )\1 kqlke_forZ—k:—i—l ,2k. Let
P; denote the Diract probability measure at & and Pi= P . Z P;. We can make the following
three claims. (a) P € .#,; (b) Ep[ths(€)] —ad = (1— )2y <0 and (¢) Ep[th1(€)] — @Y <0 beause
—Yn <0, Es[po —&] =0, and hence its Schur complement, namely —vN +Ep[un — TSV Eplun —
¢] = -~ <0. The claims immediately indicate

(0,00k+1)x (k+1), Ok xx) € int {Epllﬁ(f)l — pix + {0} x SEFVXEF s ghxh pe ,///+} . (60)

The rest of proof is similar to part (i). Specifically
drv(Q,Pn) = sup Lo (Eql(6)] —a"), (61)

(T1.02)€AL 1P (1 ry) (E) o<1

where
Lo (Eq[i(€)] —a™) =Ty o (Eq[th (&) +7x)) + T2 0 (Eq[th2(6)] — 75" Sw +73(Q)),
w(FLFz)(é.) = 1;1 (g) i I‘1 + 77;2(5) hd F27

and
Ay = {(T},Ty): Ty € SPH*HD Py e ghxhy,

Following a similar argument to Part (i) of the proof, we can show that there exists Cy > ||IT*| &
where I'* is an optimal solution of (61) and (57) holds with C5:= C,C,. O

Theorem 3 gives a bound for a probability measure ) deviating from P and Py respectively in
terms of the residual of the linear inequality systems defining the ambiguity sets. With the error
bounds established in Theorem 3, we are ready to give an upper bound for the Hausdorff distance
between P and Py under the total variation metric.

THEOREM 4. Under the setting and conditions of Theorem 3, the following assertions hold.
(i) There exists a positive constant Cs such that

Hry (P, Pn) < CS(ngaX{HJSVéVEN = 30)+1lF, [1(Z0 — 12 En)+ 1l F} + 2l o — ]
71+ ()2 + B0 — ZN) (62)

with probability approaching 1 when N — oo.
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(ii) Let
Mi(t) —F [et[fi—IE[fi]]] and Mij (t) — R [et(Eifj—E[éiEj])]
denote the moment generating function of the random wvariable & — E[&;], for i =1,---,k, and

random variable &;&; —E[§:€;], fori,j=1,..., k. If M;(t) and M;;(t) are finite valued for allt close
to 0, then for any € >0, there exist positive constants a(e) and B(€) such that

Prob(Hyy (P, Py) > €) < afe)e POV (63)

when N is sufficiently large.
Proof. Part (i). By the definition of Hry,, we show that

max { sup dryv(Q,P), ZLII; drv(Q, PN)}
S

QEPN

is bounded by the term at the right hand side of (62). Let Ay and Ay be the maximize eigenvalue
of EN and Eo,
75 = (v — ko) (Eql€] — pun) " + (Eql€] — po) (1w — po) ™

Moreover, since fiy — flg, 2n — S0, Ax — Ao and vV is close to 0 with probability approaching 1
at exponential rate as N — oo, it follows via inequality (53) that both Eq[¢] — uny and Eq[€] — 1o
are bounded w.p.1 for ) € Py. then we claim that there exist positive numbers Cg and o such that
1(73)+1lF < Csllpn — pol| and Ay < Ao+ 0 < 75CZ with probability close to 1 when N — oo. Next,
using the notation Tg , we have, through a simple rearrangement

Eq[€ — 1ol = Eq[€ — pn] + (1n — pto)

and
EQ[(‘S — o) (§ — MO)T] = EQ[@ —pun)(§— MN)T] +Tg-

Let Q € Py. Since Ay < 5C2 for N sufficiently large, Eq[(§ — 10)]"Sy' Eo[(€ — p0)] <41 implies
IEol€ — un]ll < k(Mo + 0)yY)Y/2 < Cs(yN)Y/2. By Theorem 3 (i) and Lemma 3 (ii),

drv(Q,P) < Cs (|| (Balé — pu] + (1 — o). |
HI(Eol(€ — pr) (€ = px)™] 79 =21 Ew) el + (35" Sx = So) 1)
< Co(Co+ D)llin = ol + Co(ri) 2 + %0 = S|l + (33 Sn = So)elr). - (64)

The second inequality holds because the second term at the right hand side of the first inequality
are bounded by ||(75)+||r. Likewise, for @ € P, it follows by Theorem 3 (ii) and Lemma 3 (ii)
+11Z0 = Enlle +1

drv(Q,Py) < Cs <H(EQ [((MO_—EZ)T MOO_§>D+ F

+(EQl(€ = po) (€ = )] =72 En) + |7 + 210 — v l])

< Cs3([1%0 = Enllr +71 + |(EQl(€ — po) (€ — p0)"] — Lo+ o — 73 Bn )+ ||
+2[[ (10 — ) )

< C5(|1Z0 = Znllr+7 +1(Zo =7 )+ 7 + 2/ (o — )]s (65)

where the second inequality follows from the fact that Eq[€ — po]” Sy "Eg[€ — to] = 0 implies

Eq K(MO_?Z)T ”00_5)] =<0.

Combining (64) and (65), we obtain (62) with Cj5 :=max{C>(Cs +1),C3}.
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Part (ii). Under the moment conditions, it follows from Cramér’s Large Deviation Theorem that

[ SV EL—E[g]] = 0 at an exponential rate with increase of sample size N for i =1,--- ,k and
hence ||t — fio|| converges to 0 at the exponential rate. Likewise, || & >, el —E[E5]] = 0 at an
exponential rate with increase of sample size N for ¢,j =1,--- , k, which imply that ||Xx — X|| =0

and [| Xy r <2||X0]|r with probability approaching one when N is sufficiently large. Observe that
N =0(1/N) and v —1=0(1/v/N). On the other hand, it follows by Lemma 3 (b)

1072 Ex = Zo)+llr < 2 = HIEn) 117 + 1(Ey — o)+l 7

and
1(Z0 =72 2n) 4l < (B0 = 2n) 4 lle + 12 = UII(Ex) 4l

Combing the inequalities with the discussions above, we conclude that the right hand side of
(62) converges to zero at an exponential rate as N — co. We omit the details as it is a standard
argument. U

REMARK 4. A few comments about Theorem 4 are in sequel. (i) In this theorem, P is not
a singleton in general which means an increase of the sample size N will not eventually reduce
ambiguity of the true probability distribution. (ii) Theorem 4 does not require condition (49).
Indeed, the theorem does not indicate whether the true distribution is located in Py or not although
Py may be arbitrarily close to P. However, under the condition, we are guaranteed that Py
contains the true distribution with a probability at least 1 —4. (iii) The moment conditions in Part
(ii) imply that the probability distribution of random variables §; and ;£; die exponentially fast
in the tails. In particular, it holds if = is bounded; see comments before [40, Theorem 5.1]. The
exponential rate of convergence can also be proved through a combination of [13, Corollary 2| and
[13, Theorem 1] despite there is a small disadvantage where the support set = needs to be bounded;
see [13, Assumption 5]. (iv) It is possible to strengthen Part (ii) of Theorem 4 by presenting a kind
of asymptotic convergence, that is, for any positive number € < 1 there exists a positive constant
B(N,€) such that

Prob (\/NHTV(P,PN) < B(N, e)) >1—¢

when N is sufficiently large. Here 5(N,e) — 0 as N — co. This can be achieved by utilizing asymp-
totic convergence of ux to g and Xy to X, established by Delage and Ye in [13, Corollary 1]
and [13, Theorem 2] respectively, and then by following a similar analysis to that of [13, Section
3], demonstrating that the right hand side of (62) converges to zero at a rate of O(1/v/N) with
probability 1 — e, see also [25]. Such a result will indicate the rate of convergence of Hry (P, Py )
(O(1/v/N)) but requires some delicate analysis to derive the constant B(N,e), we leave this to
interested readers.

We conclude this section with a note that the error bounds derived in this section are about
approximation of Py to P under the pseudometric and the total variation metric when the ambi-
guity sets are constructed in a specific manner. The results can be immediately plugged into
Assumption 3 and consequently translated into convergence of the optimal value and the optimal
solutions through Theorems 1 and 2 when f(z,€) satisfies Assumption 1.

5. An extension to distributionally robust equilibrium problems. In this section, we
sketch some ideas of potential extension of the convergence analysis in the preceding sections
to robust equilibrium problems. Let us consider a stochastic game where m players compete to
provide a homogenous goods or service for future. Players need to make a decision at the present
before realization of uncertainty. Each player does not have complete information on the underlying
uncertainties but he is able to use partial information (e.g. samples) or subjective judgement to
construct a set of distributions (ambiguity set) which contains the true distribution. We consider an
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equilibrium where each player takes a robust action, that is, calculating his expected disutlity based
on the worst distribution from his ambiguity set. Mathematically, we can formulate an individual
player i’s problem as follows:

ﬁi(yi,yﬂ') = min sup EPi [fi(yiyyfiag(w))]v (66>

Yi€Yi pep;

where Y; is a closed subset of IR, y; denotes player i’s decision vector and y_; the decision vectors
of his rivals. The uncertainty is described by random variable £ : Q2 — = defined in space (€2, F) and
his true distribution is unknown. However, player i believes that the true distribution of £ lies in
an ambiguity set, denoted by P;, and the mathematical expectation on the disutility function f;
is taken with respect to P; € P;. If we consider (2, %) as a measurable space equipped with Borel
sigma algebra 2, then P; may be viewed as a set of probability measures defined on (£, %) induced
by the random variate £. Note that in this game, players face the same uncertainty but different
players may have a different ambiguity set which relies heavily on availability of information on the
underlying uncertainty to them. The robust operation means that due to incomplete information
on the future uncertainty, player 7 takes a conservative view on his expected disutility to hedge the
risks. To simplify our discussion, we assume that player i’s feasible solution set Y; is deterministic
and independent of his competitor’s action.

Assuming the players compete under Nash conjecture, we may consider the following one stage
distributionally robust Nash equilibrium problem: find y* := (y, -+ ,y%) €Y1 x--- xY,, =Y such
that

y: € arg min sup IEP%- [fz(ywyimg(w))]v for i=1,---,m. (67)

vi€Yi pep;

Aghassi and Bertsimas [1] apparently are the first to investigate robust games. They consider
a distribution-free model of incomplete-information finite games, both with and without private
information, in which the players use a robust optimization approach to contend with payoff uncer-
tainty. More recently, Qu and Goh [28] propose a distributionally robust version of the finite game
where each player uses a distributionally robust approach to deal with incomplete information of
uncertainty. Our model (67) may be viewed as an extension of [28] to continuous games.

If we look at a situation where each individual player builds his ambiguity set P; in a process
(of accumulation of sample information), then we may analyze convergence of the resulting robust
equilibrium as the process goes to a limit. Specifically, let P denote an approximation of P; for

i=1,---,m. We consider the approximate robust Nash equilibrium problem: find y"¥ € Y such that
y¥ cargmin sup Ep[fi(yey"s €w))], for i=1,+ ,m. (63)
yic ZPZG’Pl]V

Here y¥ may be interpreted as a robust Nash equilibrium on the basis of each player’s perception of
uncertainty at stage N. Our interest here is convergence of such equilibrium as each player gathers
more information to build up his ambiguity set. Through a similar analysis in Section 3, we may
establish convergence of y¥ to y* under some appropriate conditions, we omit the details as the
analysis is fundamentally analogous to the minimax distributionally robust optimization problem.
We refer interested readers to our earlier report [41].
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