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Abstract. In this paper, we consider a class of mathematical programs with robust equilibrium constraints represented by
a system of semi-infinite complementarity constraints (SICC). We propose a numerical scheme for tackling SICC. Specifically,
by relaxing the complementarity constraints and then randomizing the index set of SICC, we employ the well-known entropic
risk measure to approximate the semi-infinite constraints with a finite number of stochastic inequality constraints. Under some
moderate conditions, we quantify the approximation in terms of the feasible set and the optimal value. The approximation scheme
is then applied to a class of two stage stochastic mathematical programs with complementarity constraints in combination with the
polynomial decision rules. Finally, we extend the discussion to a mathematical program with distributionally robust equilibrium
constraints which is essentially a one stage stochastic program with semi-infinite stochastic constraints indexed by some probability
measures from an ambiguity set defined through the KL-divergence.
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1. Introduction. Consider the following mathematical program with semi-infinite complementarity con-
straints

(MPSICC) min
x∈X

f(x)

s.t. 0 ≤ x ⊥ g(x, t) ≥ 0, ∀t ∈ T,
(1.1)

where X is a nonempty compact set of IRn, f : IRn → IR and g : IRn × T → IRn are continuous functions,
T is a compact index set and a ⊥ b denotes orthogonality of vectors a and b. In practical applications,
the complementarity constraints are often used to describe an equilibrium arising from economic competition
or traffic flow, whereas the index parameter t may represent various uncertainties such as market demand,
economic or environmental conditions. Consequently MPSICC may be called a mathematical program with
robust complementarity constraints where the robustness is in the sense that the constraints must hold for every
realization of the uncertain parameter. In the case when T is a finite set, (1.1) is known as a mathematical
program with complementarity constraints (MPCC) which has been extensively investigated over the past two
decades, see monographs [28, 30] for a comprehensive treatment of the topic.

Our interest in this paper is on the case when T is an infinite set. To ease the exposition, we assume
that T is a compact set of a finite dimensional space although most of our technical results hold when T is a
subset of a Banach space. The MPSICC may be viewed as an extension of the mathematical programs with
robust equality and/or inequality constraints which has been investigated extensively over the past two decades
[1, 5, 6, 7, 8, 12, 13, 14, 16, 20, 45]. For instance, in multiload truss optimization, mechanical response of a
truss is often represented by a robust linear system of equations parameterized by nodal displacement vector,
which is a special case of robust complementarity constraints.

Our focus in this paper is on the numerical methods for solving MPSICC. Note that the optimization
problems with robust constraints in [12, 2] are convex while problem (1.1) is typically nonconvex because of
combinatorial structure of the complementarity constraints. Moreover, the feasible set of the problem does
not have an interior which means that a direct application of a randomization approach is often numerically
unstable. To address the issue, we employ the well known NLP-regularization scheme (see [36]) to relax the
complementarity constraints by replacing them with a parameterized semi-infinite system of inequalities:

(RMPSICC) min
x∈X+

f(x)

s.t.
−g(x, t) ≤ 0
x ◦ g(x, t) ≤ τe

}
∀t ∈ T,

(1.2)
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where X+ := X ∩ IRn+, IR
n
+ denotes the set of n-dimensional vectors whose components are nonnegative, τ ≥ 0

is a fixed positive parameter, e ∈ IRn is a vector with components 1 and “◦” denotes the Hadamard product.
The regularized problem MPSICC has at least two advantages from numerical point of view: (a) it involves
ordinary inequality constraints, and (b) its feasible solution set is more likely to have an interior as opposed to
RMPSICC. Under some moderate conditions, RMPSICC approximates MPSICC as τ is driven to zero. We will
come back to the details of this in Section 3. For a fixed parameter τ , we propose a randomization approach
based on the entropic risk measure to solve RMPSICC. Specifically, by treating t as a random parameter1, we
use the entropic risk measure of g(x, t) and x◦g(x, t) to approximate the semi-infinite constraints of RMPSICC.

Much of the rest of the work is on the theoretical analysis of the entropic approximation of RMPSICC as
the entropic risk measure parameter varies in terms of the optimal value and the optimal solutions (Section
3). Moreover, we propose a sample average approximation (SAA for short) for the entropic risk measure and
investigate the convergence of the optimal value and the optimal solutions as the sample size increases (Section
3). As an application, we apply the proposed numerical schemes to a two stage stochastic mathematical program
with complementarity constraints in a combination with the well known polynomial decision rule method [4]
(Section 4) and to a stochastic mathematical program with distributionally robust equilibrium constraints
where the distributional set is constructed through a nominal sample average approximated distribution within
a range specified through the Kullback-Leibler divergence (Section 5). As far as we are concerned, the main
contributions of the paper can be summarized as follows:

• Entropic approximation for MPSICC.

MPSICC(1.1)
Reg−−−→ RMPSICC(1.2)

Entropic Appr−−−−−−−−−−→
SAA

SAA-EA-RMPSICC(3.4).

We propose a new optimization model with robust complementarity constraints (1.1) which extends the
existing optimization models with robust inequality and/or equality constraints. We develop a numerical
scheme for solving the problem (1.1) which utilizes the entropic risk measure and sample average
approximation, and carry out qualitative and quantitative stability analysis of the approximation scheme
in terms of the optimal value and the optimal solutions. Differing from the mainstream approaches
in distributionally robust optimization, the approximation scheme does not require dualization for
transforming the semi-infinite constraint into a semi-definite constraint and hence can be applied to a
nonconvex function g(x, t). It also differs from Calafiore and Campi’s randomization method [12, 13]
in that the resulting optimization problem does not increase the number of constraints as the sample
size increases, and the use of the entropic risk measure may lead to stability of the optimal values.

• Entropic approximation for two stage SMPECs.

SMPEC(4.1)
Reg−−−→
PDL

PDL-RSMPEC(4.3)
Entropic Appr−−−−−−−−−−→

SAA
SAA-EA-PDL-RSMPEC(4.6).

By applying the numerical scheme in a combination with the polynomial decision rule (PDL) [4] and
the sample average approximation method to a two stage stochastic mathematical program with com-
plementarity constraints (SMPEC), we provide an alternative method to tackle two stage SMPECs
which are often notoriously difficult to solve. A significant advantage of the new framework is that it
does not scale in the number of the sample size.

• Entropic approximation for one stage mathematical programs with distributionally robust equilibrium
constraints (MPDRE).

MPDRE(5.1)
Reg−−−→ RMPDRE(5.3)

Entropic Appr−−−−−−−−−−→
SAA

SAA-EA-EMPDRE(5.7).

The MPDRE model provides a mathematical tool for the study of robust equilibria. It has potential
applications in market design where equilibria withstand uncertain economic circumstances. The new
model and the numerical scheme extend the recent research on optimization problems with distribu-
tionally robust inequality constraints by Hu and Hong [21].

Throughout the paper, we will use the following notation. We denote by ∥·∥ the Euclidean norm of a vector,
d(x,D) the distance from a point x to a set D and Diam(D) the diameter of the set D, that is, d(x,D) :=
infx′∈D ∥x−x′∥ and Diam(D) := supx′,x′′∈D ∥x′−x′′∥. For two compact sets D1 and D2, we write D(D1, D2) the

1Even if t is a random parameter in practical applications, there is usually no information on the distribution of t in this
formulation. Indeed, the constraints depend only on the support set of t rather than its distribution.
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deviation of D1 from D2, that is, D(D1, D2) := supx∈D1
d(x,D2) and H(D1, D2) := max (D(D1, D2),D(D2, D1))

for the Hausdorff distance between D1 and D2. Finally, we use standard notation clD for the closure of set D
and limk→∞Dk for the outer limit of a sequence of sets {Dk}.

2. Entropic risk measure approximation. Let M denote the linear space of bounded measurable
functions defined on some measurable space (Ω,F). Consider a set A ⊂ M such that

Z ∈ A, U ∈ M, U ≥ Z =⇒ U ∈ A.

Define the functional ρ : M → IR by ρ(Z) := inf{m ∈ IR : Z +m ∈ A}. It is easy to verify that ρ(Z1) ≤ ρ(Z2),
for Z1 ≥ Z2 and ρ(Z+m) = ρ(Z)−m. In the literature of finance risks, ρ(·) is known as a monetary risk measure
when Z represents a financial position, e.g., capital, see [18]. Let γ be a positive number and u(z) = 1− e−γz

be an exponential utility function. If we define A := {Z ∈ L∞ : |EP [u(Z)]| ≥ u(0)}, then the resulting risk
measure is

eγ(Z) := ρ(Z) =
1

γ
lnEP [e−γZ ] (2.1)

for Z ∈ L∞. The risk measure has a robust representation

eγ(Z) = sup
Q∈M1

{EQ[Z]−
1

γ
H(Q|P )},

where M1 denotes the set of all probability measures on M, and

H(Q|P ) :=

{
EQ
[
ln dQ

dP

]
, for Q ≽ P

+∞, otherwise
(2.2)

denotes the relative entropy of Q with respect to P , Q ≽ P means Q is absolutely continuous with respect to
P . Consequently eγ(Z) is called entropic risk measure, see [17] for a thorough treatment of the concept. It is
well known (see e.g. [18, formulation (4)]) that eγ(Z) is monotonically increasing in γ and

lim
γ→∞

eγ(Z) = ess sup(−Z) (2.3)

in the case that ess inf Z > −∞. Our focus in this paper is mainly on the limit rather than the financial
background of the risk measure.

Let h : IRn × IRk → IR be a continuous function and X be a subset of IRn. Let ξ : Ω → IRk be a random
variable defined on the probability space (Ω,F , P ) with support set Ξ. Our interest is the uniformity of limit
(2.3) when z = h(x, ξ) w.r.t. x. We address this in the following proposition.

Proposition 2.1. (Entropic approximation of random functions) Let H(x), Fx(t) and Ωx denote
respectively the essential supremum, the cumulative distribution function and the support set of −h(x, ξ). Let
Diam(Ωx) denote the diameter of the support set Ωx which is the distance between H(x) and essential infimum
of −h(x, ξ). Assume: (a) X ⊂ IRn be a compact set, (b) for each fixed x ∈ X,

inf
ξ∈Ξ

h(x, ξ) > −∞. (2.4)

Then for each fixed x ∈ X,

lim
γ→∞

eγ(h(x, ξ)) = H(x). (2.5)

Assume in addition that (c)

inf
x∈X

inf
ξ∈Ξ

h(x, ξ) > −∞, (2.6)

and (d) for any fixed small positive number ϵ, there exists δ(ϵ) ∈ (0, 1) such that

1− Fx(H(x)− ϵ) ≥ δ(ϵ), ∀x ∈ Xϵ, (2.7)



4 Y. LIU AND H. XU

where Xϵ := {x ∈ X : Diam(Ωx) > 2ϵ}. Then

|eγ(h(x, ξ))−H(x)| < 2ϵ+
1

γ
|ln δ(ϵ)| . (2.8)

Proof. The convergence (2.5) is well known, see the comments following [18, Formulation (4)]. Here, we provide
a proof for completeness. We proceed the proof in two steps according to the distribution of ξ.

Step 1. ξ follows a discrete distribution, that is, Prob
{
ξ = ξj

}
= pj , j = 1, 2, · · · . This includes both

infinite and finite distribution (in which case pj = 0 when j ≥ k for some k). Let x be fixed and ϵ be a fixed
small positive number. Let Jϵ(x) := min{j : −h(x, ξj) ≥ H(x)− ϵ}. Then

eγ(h(x, ξ)) ≥
1

γ
ln

 ∑
j∈Jϵ(x)

eγ(−h(x,ξ
j))pj

 = H(x) +
1

γ
ln

 ∑
j∈Jϵ(x)

eγ(−h(x,ξ
j)−H(x))pj

 .

Since −h(x, ξj)−H(x) ≥ −ϵ for j ∈ Jϵ(x), then

0 >
1

γ
ln

 ∑
j∈Jϵ(x)

eγ(−h(x,ξ
j)−H(x))pj

 > −ϵ+ 1

γ
ln

 ∑
j∈Jϵ(x)

pj

 . (2.9)

Note that for fixed x,
∑
j∈Jϵ(x)

pj > 0. Therefore, by driving γ to ∞, we obtain

0 > lim
γ→∞

1

γ
ln

 ∑
j∈Jϵ(x)

eγ(−h(x,ξ
j)−H(x))pj

 ≥ −ϵ,

which implies (2.5) because ϵ can be arbitrarily small.

To show (2.8), we note that under condition (2.7),

1

γ

∣∣∣∣∣∣ln
 ∑
j∈Jϵ(x)

pj

∣∣∣∣∣∣ ≤ 1

γ
|ln δ(ϵ)| , ∀x ∈ Xϵ,

where Xϵ ̸= ∅. Through (2.9), the inequality above implies (2.8). When x ∈ X \Xϵ, Diam(Ωx) ≤ 2ϵ. Since

E[−h(x, ξ)] ≤ eγ(h(x, ξ)) ≤ H(x), ∀γ > 0,

then

|eγ(h(x, ξ))−H(x)| ≤ 2ϵ < 2ϵ+
1

γ
| ln δ(ϵ)|. (2.10)

Summarising the two cases, we have shown that (2.8) holds for all x ∈ X under condition (2.7).

Step 2. ξ follows a continuous distribution 2. Observe first that (2.10) holds regardless of the distribution
of ξ. Therefore, we only need to consider the case when x ∈ Xϵ. Recall that Fx(t) is the cumulative distribution
function of −h(x, ξ). It is easy to verify that

E[e−γh(x,ξ)] = eγH(x)

[
1− γ

∫ H(x)

−∞
eγ(t−H(x))Fx(t)dt

]
.

Therefore

1

γ
ln
(
E[e−γh(x,ξ)]

)
= H(x) +

1

γ
ln

(
1− γ

∫ H(x)

−∞
Fx(t)e

γ(t−H(x))dt

)
.

2We gratefully acknowledge that this part of the proof follows from a private communication with Thomas Knispel.
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Let ϵ be a small positive number. Then

γ

∫ H(x)

−∞
Fx(t)e

γ(t−H(x))dt = γ

∫ H(x)−ϵ

−∞
Fx(t)e

γ(t−H(x))dt+ γ

∫ H(x)

H(x)−ϵ
Fx(t)e

γ(t−H(x))dt

≤ Fx(H(x)− ϵ)e−γϵ + 1− e−γϵ,

where the inequality follows from the monotonicity of the cumulative distribution function and the exponential
function. Therefore∣∣∣∣ 1γ ln

(
E[e−γh(x,ξ)]

)
−H(x)

∣∣∣∣ < ∣∣∣∣ 1γ ln(1− (1− e−γϵ)− Fx(H(x)− ϵ)e−γϵ)

∣∣∣∣
= ϵ+

1

γ
| ln(1− Fx(H(x)− ϵ))|.

For fixed x, since 1−Fx(H(x)− ϵ) > 0, we arrive at (2.5) by driving γ to infinity and then ϵ to zero. The error
bound (2.8) follows from the inequality above under condition (2.7).

Note that condition (2.7) is similar to the so called consistent tail behaviour condition for CVaR approxima-
tion of the essential superemum of a random function in [2]. Indeed, the latter implies the former. We explain
how the condition may be satisfied through a simple example varied from [2, Example 1].

Example 2.1. Consider h(x, ξ) = −xξ, where x ∈ [0, 1] ⊂ IR and ξ follows a uniform distribution over
interval [−1, 1]. Let ϵ < 1 be a small positive number. Then H(x) = x, Ωx = [−x, x] and Xϵ = {x ∈ [0, 1] : 2ϵ <
2x} = (ϵ, 1]. It is easy to derive that

1− Fx(H(x)− ϵ) =
ϵ

2x
≥ ϵ

2
, ∀x ∈ Xϵ.

This shows that condition (2.7) holds with δ(ϵ) = ϵ
2 . Let us now consider the case when x ∈ [0, 1] \Xϵ = [0, ϵ].

Then Diam(Ωx) = 2x ≤ 2ϵ and hence |eγ(h(x, ξ))−H(x)| ≤ 2ϵ.

Proposition 2.1 says that under some moderate conditions, the entropic risk measure of h(x, ξ) converges
to the essential supremum of −h(x, ξ) uniformly w.r.t. x as γ → ∞. Under the similar condition, Anderson
et al. [2] presented some conditions which ensure the CVaR of a random function converges uniformly to its
essential supremum. The main differences are two fold: (a) CVaR utilizes the tail distribution whereas entropic
approximation uses the whole distribution with more weights on the tail when γ is large. (b) CVaR is nonsmooth
as it only uses the tail distribution while the entropic risk measure is smooth.

3. Stability analysis. In this section, we use the entropic risk measure as the workhorse to construct an
approximation of the robust semi-infinite constraints of problem (1.2). We examine the accuracy and efficiency
of the approximation from a stability point of view.

3.1. Stability w.r.t. parameters τ and γ. Let us start by writing problem (1.2) equivalently as

(RMPSICC) min
x∈X+

f(x)

s.t. sup
t∈T

x ◦ g(x, t) ≤ τe,

sup
t∈T

−gj(x, t) ≤ 0, for j ∈ {1, · · · , n},
(3.1)

where X+ := X ∩ IRn+. The proposition below states the approximation of RMPSICC (3.1) to MPSICC (1.1)
in terms of the optimal value and the optimal solutions as τ is driven to 0.

Proposition 3.1. (Stability of RMPSICC (3.1)) Let X(τ) and X∗ denote the sets of the optimal
solutions to the problems (3.1) and (1.1) respectively. Let v(τ) and v∗ denote the corresponding optimal values.
Then limτ→0X(τ) ⊂ X∗ and limτ→0 v(τ) = v∗.

Proof. Let F(τ) and F denote the feasible sets of the problems (3.1) and (1.1) respectively. Since F ⊂ F(τ), it
follows by [43, Lemma 4.2(i)], limτ→0 H(F(τ),F) = 0. Let xτ ∈ X(τ) and y∗ ∈ X∗. Assume for the simplicity
of exposition (by taking a subsequence if necessary) that xτ → x∗. Since x∗ ∈ F and y∗ ∈ F(τ), then

f(y∗) ≤ f(x∗) = lim
τ→0

f(xτ ) ≤ f(y∗).
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This shows f(x∗) = f(y∗) hence x∗ ∈ X∗. The convergence of the optimal value also follows.

In what follows, we regard t as a random variable with support set T and approximate the supermum with
the entropic risk measure, namely,

(EA-RMPSICC) min
x∈X+

f(x)

s.t.
ejγ(x) ≤ 0
ējγ(x) ≤ τ

}
for j ∈ {1, · · · , n},

(3.2)

where γ is a fixed positive parameter,

ejγ(x) := eγ(gj(x, t)), ējγ(x) := eγ(−xj · gj(x, t)),

and eγ(·) is defined in equation (2.1). Compared to RMPSICC (3.1), EA-RMPSICC (3.2) consists of two
ordinary stochastic constraints where the underlying functions are continuously differentiable and can be ap-
proximated through sampling. Moreover, the stability results to be established in this section do not depend on
the probability distribution of t, which means t can be any random variable whose support set is T . Our focus
in this section is to look into the approximation of the optimal value and the optimal solutions of EA-RMPSICC
(3.2) to those of RMPSICC (3.1) as γ increases. Observe that the two problems have identical objective func-
tions. Therefore it suffices to investigate the approximation of feasible constraints/solutions and its impact on
the optimal value and the optimal solutions.

Let F(τ) and Fγ(τ) denote the feasible solution sets of problems (3.1) and (3.2) respectively. Obviously
F(τ) ⊆ Fγ(τ). In other words, Fγ(τ) provides an outer bound for F(τ). The following proposition gives a
quantitative description of the excess of Fγ(τ) over F(τ).

Proposition 3.2. (Error bound of the feasible solution set of EA-RMPSICC (3.2)) Let F 1j
x (t)

and F 2j
x (t) denote the cumulative distributions of gj(x, t) and xjgj(x, t) respectively for j = 1, · · · , n. Assume

there exists a positive constant C such that

d(x,F(τ)) ≤ C
n∑
j=1

((
sup
t∈T

−gj(x, t)
)

+

+

(
sup
t∈T

xj · gj(x, t)− τ

)
+

)
(3.3)

and for any fixed positive number ϵ, there exists δ(ϵ) ∈ (0, 1) such that for j = 1, · · · , n,

1− F 1j
x

(
sup
t∈T

gj(x, t)− ϵ

)
≥ δ(ϵ), ∀x ∈ X1j

ϵ

1− F 2j
x

(
sup
t∈T

xjgj(x, t)− ϵ

)
≥ δ(ϵ), ∀x ∈ X2j

ϵ ,

where X1j
ϵ := {x ∈ X+ : Diam(Ω1j

x ) > 2ϵ}, X2j
ϵ := {x ∈ X+ : Diam(Ω2j

x ) > 2ϵ} and Ω1j
x and Ω2j

x are the
support sets of random variables gj(x, ξ) and xjgj(x, ξ) respectively. Then

(i) for any ϵ∗ > 0, there exists a positive number γϵ∗ such that H(Fγ(τ),F(τ)) ≤ ϵ∗ when γ ≥ γϵ∗ ;
(ii) H(Fγ(τ),F(τ)) ≤ C∆γ , where ∆γ := 4nϵ+ 2n

γ | ln δ(ϵ)|, and n is the dimension of variable x.

The condition (3.3) is an error bound for the system of inequalities in the constraints. This type of conditions
has been well studied in the past decade, see survey papers [3, 31] for more details.

Proof. Part (i). Let ϵ∗ be a fixed small positive number. Define

Rj(ϵ
∗) := inf

x∈X+

d(x, F(τ))≥ϵ∗

sup
t∈T

−gj(x, t),

R̄j(ϵ
∗) := inf

x∈X+

d(x, F(τ))≥ϵ∗

sup
t∈T

xj · gj(x, t)− τ,

and R(ϵ∗) := max
j∈{1,··· ,n}

max{Rj(ϵ∗), R̄j(ϵ∗)}. Let δ := R(ϵ∗)/2. Then δ > 0. By Proposition 2.1, ejγ(x) and

ējγ(x), converge to supt∈T −gj(x, t) and supt∈T xj · gj(x, t) uniformly on compact set X+ as γ → ∞. Therefore,
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there exists a sufficiently large γϵ∗ such that

sup
x∈X+

j∈{1,··· ,n}

{
sup
t∈T

−gj(x, t)− ejγ(x)

}
≤ δ

and

sup
x∈X+

j∈{1,··· ,n}

{
sup
t∈T

xj · gj(x, t)− ējγ(x)

}
≤ δ,

when γ ≥ γϵ∗ .

Let x ∈ X+ be such that d(x,F(τ)) ≥ ϵ∗ and γ ≥ γϵ∗ . There exists j ∈ {1, · · · , n} such that at least one
of the following inequalities holds

ējγ(x)− τ = sup
t∈T

xj · gj(x, t)− τ + ējγ(x)− sup
t∈T

xj · gj(x, t) ≥ R(ϵ∗)−R(ϵ∗)/2 = R(ϵ∗)/2 > 0,

ejγ(x) = sup
t∈T

−gj(x, t) + ejγ(x)− sup
t∈T

−gj(x, t) ≥ R(ϵ∗)−R(ϵ∗)/2 = R(ϵ∗)/2 > 0,

which means x ̸∈ Fγ(τ), or equivalently, d(x,F(τ)) < ϵ∗ for every x ∈ Fγ(τ). This shows D(Fγ(τ),F(τ)) ≤ ϵ∗

and hence H(F(τ),Fγ(τ)) ≤ ϵ∗ given F(τ) ⊆ Fγ(τ).

Part (ii). Observe that F(τ) ⊆ Fγ(τ). Hence, it suffices to prove D(Fγ(τ),F(τ)) ≤ C∆γ . Let x̂ ∈ Fγ(τ).
For j = 1, · · · , n, ejγ(x̂) ≤ 0 and ējγ(x̂)− τ ≤ 0. Through (2.8), we have∣∣∣∣sup

t∈T
−gj(x̂, t)− ejγ(x̂)

∣∣∣∣ ≤ 2ϵ+
1

γ

∣∣∣∣ln(1− F 1j
x̂ (sup

t∈T
−gj(x̂, t)− ϵ))

∣∣∣∣
and ∣∣∣∣sup

t∈T
x̂j · gj(x̂, t)− ējγ(x̂)

∣∣∣∣ ≤ 2ϵ+
1

γ

∣∣∣∣ln(1− F 2j
x̂ (sup

t∈T
x̂j · gj(x̂, t)− ϵ))

∣∣∣∣ .
By exploiting the inequalities above and the condition (3.3), we arrive at

d(x̂,F(τ)) ≤ C

n∑
j=1

((
sup
t∈T

−gj(x̂, t)
)

+

+

(
sup
t∈T

xj · gj(x̂, t)− τ

)
+

)

≤ C

 n∑
j=1

(
sup
t∈T

−gj(x̂, t)− ejγ(x̂)

)
+

+

(
sup
t∈T

xj · gj(x̂, t)− ējγ(x̂)

)
+


≤ 4nϵ+

2n

γ
ln |δ(ϵ)|.

The proof is complete.

Proposition 3.2 says that the feasible set mapping of EA-RMPSICC (3.2) converges to the feasible set of
RMPSICC (3.1) as γ → ∞. Using this property, we can establish the convergence of the optimal value and the
optimal solutions.

Theorem 3.1. (Stability of EA-RMPSICC (3.2)) Let Xγ(τ) and X(τ) denote the sets of optimal
solutions of the problems (3.2) and (3.1) respectively, vγ(τ) and v(τ) be the corresponding optimal values.
Assume the conditions of Proposition 3.2. Then

(i) limγ→∞ vγ(τ) = v(τ) and limγ→∞Xγ(τ) ⊆ X(τ);
(ii) if, in addition, f(x) is Lipschitz continuous with modulus L, then |vγ(τ) − v(τ)| ≤ LC∆γ , where ∆γ

and C are given as in Proposition 3.2.
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Proof. Part (i). It is sufficient to show the convergence of the optimal solutions as f(·) is continuous and
independent of γ. Assume a contradiction that there exists xN ∈ XγN (τ) such that xN → x∗ and x∗ ̸∈ X(τ),
where γN → +∞. By Proposition 3.2, x∗ ∈ F(τ). Moreover, there exists x̄ ∈ X(τ) such that f(x∗)− f(x̄) > 0.
On the other hand, since x̄ ∈ F(τ) ⊂ FγN (τ), f(xN )− f(x̄) ≤ 0. This contradicts an earlier inequality when N
is sufficiently large.

Part (ii). The conclusion essentially follows from Part (i) and [22, Theorem 1]. Here we include a brief
proof for completeness. Let xγ and x0 be the optimal solutions of the problems (3.2) and (3.1) respectively. By
part (ii) of the proposition 3.2 , there exists x̄γ ∈ F(τ) such that ∥xγ − x̄γ∥ ≤ C∆γ . Moreover

v(τ) ≤ f(x̄γ) ≤ f(xγ) + |f(x̄γ)− f(xγ)| ≤ vγ(τ) + LC∆γ .

Under the symmetry of the Hausdorff distance between Fγ(τ) and F(τ), we can show vγ(τ) ≤ v(τ) + LC∆γ .
The conclusion follows.

In the classical stability analysis of nonlinear programming, it is often assumed some kind of growth con-
ditions for the objective function in order to derive the stability of the optimal solution, see for instance Klatte
[22, Theorem 2]. In this context, the growth condition would be

f(x′) ≥ min
x∈F(τ)

f(x) + αd(x′, X(τ)).

Since problems (3.1) and (3.2) have identical objective functions while the feasible set of the former is contained
in that of the latter, the growth condition would force the set of optimal solutions to the problem (3.2) to stay
on the set of optimal solutions to the problem (3.1). To see this more clearly, let x̄ ∈ Xγ(τ) be an optimal
solution to the problem (3.2). Since X(τ) ⊂ Fγ(τ), the growth condition means

0 ≥ vγ(τ)− v(τ) = f(x̄)− v(τ) ≥ αd(x̄,X(τ)),

which yields x̄ ∈ X(τ) and hence Xγ(τ) ≡ X(τ).

3.2. Sample average approximation. In some circumstances, it might be numerically too expensive
to calculate the expected values in the entropic function. A well-known approximation method to deal with
the mathematical expectation in stochastic programming is the sample average approximation (SAA) which is
also known under various name such as Monte Carlo method, sample path optimization method, see [35] for a
comprehensive review. The basic idea of SAA can be described as follows. Suppose that we have an independent
and identically distributed (iid) sample t1, · · · , tN of random vector t. This may be obtained through random
sampling over set T or we have a way to obtain samples of t (e.g. empirical data) in the case when t is a random
parameter in the original problem. With the samples, we can construct the sample average approximation:

(SAA-EA-RMPSICC) min
x∈X+

f(x)

s.t.
ej,Nγ (x) ≤ 0
ēj,Nγ (x) ≤ τ

}
for j ∈ {1, · · · , n},

(3.4)

where

ej,Nγ (x) :=
1

γ
ln

(
1

N

N∑
i=1

e−γgj(x,t
i)

)
, ēj,Nγ (x) :=

1

γ
ln

(
1

N

N∑
i=1

eγxj ·gj(x,ti)

)
.

In what follows, we investigate the convergence of the optimal value and the optimal solutions obtained
from solving SAA-EA-RMPSICC (3.4) as the sample size increases. To this end, we consider the following
general stochastic inequality constrained minimization problem

min
x∈D

E[ψ0(x, ξ)]

s.t. E[ψj(x, ξ)] ≤ 0, for j = 1, · · · ,m,
(3.5)

where ψj(x, ξ) : IR
n× IRk → IR, j = 0, · · · ,m, are continuous functions. Let ξ1, · · · , ξN be independent random

vectors following a distribution identical to that of ξ and

ψNj (x) :=
1

N

N∑
i=1

ψ(x, ξi), for j = 0, · · · ,m.
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By replacing E[ψj(x, ξ)] with ψNj (x), we can construct sample average approximation of the problem (3.5) as
follows:

(SAA) min
x∈D

ψN0 (x)

s.t. ψNj (x) ≤ 0, for j = 1, · · · ,m.
(3.6)

Let FN , SN and vN denote the set of feasible solutions, the set of optimal solutions, and the optimal value of
problem (3.6) respectively, let F , S∗ and v∗ denote the set of feasible solutions, the set of optimal solutions,
and the optimal value of problem (3.5). Let Fs denote the set of strictly feasible solutions of problem (3.5),
that is,

Fs := {x ∈ D : E[ψj(x, ξ)] < 0, for j = 1, · · · ,m}. (3.7)

Note that Fs should be distinguished from the interior of the feasible set F because what we need here is the
strict inequality in the constraints.

The following lemma summarizes the convergence of problem (3.6) to problem (3.5) in terms of the optimal
value and the optimal solutions as the sample size N increases.

Lemma 3.1. (Convergence of SAA (3.6)) Assume: (a) D is a compact set; (b) clFs ∩ S∗ ̸= ∅; (c)
ψj(x, ξ), j = 0, · · · ,m, is integrably bounded. Then,

(i) with probability one (w.p.1)

lim
N→∞

SN ⊆ S∗ and lim
N→∞

vN = v∗.

(ii) Assume, in addition, that (d) the objective E[ψ0(·, ξ)] satisfies some growth condition, that is, there
exists ϵ0 > 0 such that

R(ϵ) := inf
x∈F

d(x,S∗)≥ϵ

E[ψ0(·, ξ)]− v∗ > 0, ∀ϵ ∈ (0, ϵ0];

(e) the constraints E[ψj(·, ξ)] j = 1, · · · ,m satisfy some growth condition, that is

R̂(ϵ) := inf
x∈X, j∈{1,··· ,m}

d(x,F)≥ϵ

E[ψj(·, ξ)] > 0, ∀ϵ ∈ (0, ϵ0];

(f) for every x ∈ D, the moment function M j
x(s) := E

[
es(ψj(x,ξ))

]
, j = 0, · · · ,m, is finite valued for all

s in a neighborhood of zero; (g) there exist a measurable function L(ξ) and a constant ν such that

|ψj(x′, ξ)− ψj(x, ξ)| ≤ L(ξ)∥x′ − x∥ν , j = 0, · · · ,m,

for all ξ ∈ Ξ and all x′, x ∈ D, and the moment function ML(s) of L(ξ) is finite for s in a neighborhood
of zero. Then for any ϵ ∈ (0, ϵ0] and sequence {xN} with xN ∈ SN , there exist positive constants C(ϵ)
and α(ϵ) (independent of N) such that

Prob
{
d(xN , S∗) ≥ ϵ

}
≤ C(ϵ)e−α(ϵ)N (3.8)

for N sufficiently large.

Before presenting a proof, it might be helpful to make some comments on the conditions of the lemma.
Condition (b) requires that there exists an optimal solution which is an accumulation point of a sequence of
strict feasibility points. Condition (d) is weaker than the second order growth condition which is widely adopted
in the literature of stability analysis for nonlinear programming. Condition (e) is a kind of growth condition
for the constraint functions which is needed for characterizing the error bound of the feasible solutions in terms
of the constraint functions. The condition may be dropped when the constraint functions are convex, see [2,
Theorem 5] for the case where the constraint function is CVaR of a convex random function. Conditions (f)
and (g) are the moment conditions which require the tail of the random variables die at exponential rate and
they are satisfied when ξ has bounded support set. These conditions are standard for deriving exponential rate
of convergence, see for example [41].
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Proof of Lemma 3.1. Part (i). Let

ΨN (x) :=

 ψN1 (x)
...

ψNm(x)

 and Ψ(x) :=

 E[ψ1(x, ξ)]
...

E[ψm(x, ξ)]

 .

The feasible sets FN and F can be represented respectively as the sets of solutions to the following generalized
equations

0 ∈ ΨN (x) + IRm+ and 0 ∈ Ψ(x) + IRm+

restricted to the set D. Under condition (c), it follows by [35, Chapter 6, Proposition 7] that ψNj (·) converges
to E[ψj(·, ξ)] uniformly over D w.p.1, which means that ΨN (x) converges to Ψ(x) uniformly over D. By [43,
Lemma 4.2 (i)],

lim
N→∞

D(FN ,F) = 0, w.p.1. (3.9)

Let {xN} be a sequence of the optimal solutions to problem (3.6). Since the sequence is contained in the compact
set D, by taking a subsequence if necessary we may assume for the simplicity of notation that xN → x∗. By
(3.9) and the closedness of F , x∗ ∈ F . In what follows, we show that x∗ ∈ S∗ w.p.1. Observe first that the
uniform convergence of ψN0 (·) ensures

lim
N→∞

vN = lim
N→∞

ψN0 (xN ) = E[ψ0(x
∗, ξ)] ≥ v∗.

Under condition (b), there exists a y∗ ∈ S∗ such that y∗ ∈ clFs. By the continuity of E[ψ0(·, ξ)], for any small
positive number ϵ, there exists yϵ ∈ Fs such that E[ψ0(y

ϵ, ξ)]− v∗ ≤ ϵ. Since yϵ ∈ Fs, and ΨN (x) converges to
Ψ(x) uniformly over D, it is easy to show that there exists yN ∈ FN such that ||yN−yϵ∥ → 0, w.p.1. Therefore

v∗ ≥ E[ψ0(y
ϵ, ξ)]− ϵ = lim

N→∞
ψN0 (yN )− ϵ ≥ lim

N→∞
ψN0 (xN )− ϵ = E[ψ0(x

∗, ξ)]− ϵ

w.p.1. Since ϵ is chosen arbitrarily, we arrive at v∗ ≥ E[ψ0(x
∗, ξ)] which means that x∗ ∈ S∗.

Part (ii). To make it easier to follow, we divide the proof of this part into 5 steps.

Step 1. Let σ be a small positive number. Under condition (e), it follows by [41, Theorem 5.1] that there
exist positive constants C(σ), α(σ) and N(σ) such that

Prob

{
sup
x∈D

∣∣ψNj (x)− E[ψj(x, ξ)]
∣∣ ≥ σ

}
≤ C(σ)e−α(σ)N , for j ∈ {0, · · · ,m}, (3.10)

when N ≥ N(σ).

Step 2. Let ϵ ≤ ϵ0 be a positive number and yϵ ∈ Fs such that E[ψ0(y
ϵ)]− v∗ ≤ R(ϵ)/4, where ϵ0 is given

in condition (d). The existence of yϵ is ensured by condition (b). We estimate Prob
{
yϵ ̸∈ FN

}
.

Prob
{
yϵ ̸∈ FN

}
= Prob

{
max

j∈{1,··· ,m}
ψNj (yϵ) > 0

}
= Prob

{
max

j∈{1,··· ,m}
ψNj (yϵ)− max

j∈{1,··· ,m}
E[ψj(yϵ, ξ)] > − max

j∈{1,··· ,m}
E[ψj(yϵ, ξ)]

}
.

Since yϵ ∈ Fs, there exists a positive number λ such that

− max
j∈{1,··· ,m}

E[ψj(yϵ, ξ)] ≥ λ.

Under condition (f), there exist positive constants C(λ) and α(λ) (independent of N) such that

Prob
{
yϵ ̸∈ FN

}
≤ C(λ)e−α(λ)N (3.11)

for N sufficiently large.
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Step 3. When yϵ ∈ FN , ψN0 (xN ) ≤ ψN0 (yϵ), which implies

ψN0 (xN )− v∗ ≤ ψN0 (xN )− E[ψ0(y
ϵ, ξ)] +R(ϵ)/4 ≤ ψN0 (yϵ)− E[ψ0(y

ϵ, ξ)] +R(ϵ)/4.

Therefore

Prob
{
E[ψ0(x

N , ξ)]− v∗ ≥ R(ϵ) and yϵ ∈ FN
}

≤ Prob
{
E[ψ0(x

N , ξ)]− ψN0 (xN ) ≥ R(ϵ)/2
}
+ Prob

{
ψN0 (xN )− v∗ ≥ R(ϵ)/2

}
≤ Prob

{
E[ψ0(x

N , ξ)]− ψN0 (xN ) ≥ R(ϵ)/2
}
+ Prob

{
ψN0 (yϵ)− E[ψ0(y

ϵ, ξ)] ≥ R(ϵ)/4
}
.

The uniform exponential convergence in (3.10) ensures that E[ψ0(x
N , ξ)] − ψN0 (xN ) and ψN0 (yϵ) − E[ψ0(y

ϵ, ξ)]
converge to zero at exponential rate as N → ∞. Then

Prob
{
E[ψ0(x

N , ξ)]− v∗ ≥ R(ϵ) and yϵ ∈ FN
}
≤ 2C(R(ϵ)/4)e−α(R(ϵ)/4)N .

Step 4. Let ϵ̂ ≤ ϵ0 be a positive number. By the growth condition (e)

Prob(d(xN ,F) > ϵ̂) ≤ Prob

(
min

j∈{1,··· ,m}
E[ψj(xN , ξ)] ≥ R̂(ϵ̂)

)
≤ Prob

(
min

j∈{1,··· ,m}
|E[ψj(xN , ξ)]− ψNj (xN )| ≥ R̂(ϵ̂)

)
≤ Prob

(
sup
x∈D

min
j∈{1,··· ,m}

|E[ψj(x, ξ)]− ψNj (x)| ≥ R̂(ϵ̂)

)
≤ C(R̂(ϵ̂))e−α(R̂(ϵ̂))N .

Step 5. We are now ready to estimate Prob
{
d(xN , S∗) ≥ ϵ

}
. Observe that

Prob
{
d(xN , S∗) ≥ ϵ

}
≤ Prob

{
d(xN , S∗) ≥ ϵ and yϵ ∈ FN

}
+ Prob

{
yϵ ̸∈ FN

}
. (3.12)

By (3.11), Prob
{
yϵ ̸∈ FN

}
goes to zero at an exponential rate. Thus, it is sufficient to estimate the first term at

the right hand side of (3.12). Let zN be a project of xN on F . Then ∥xN − zN∥ = d(xN ,F). Taking advantage
of the step 4, it is sufficient to consider the case that ∥xN − zN∥ ≤ ϵ̂ where 0 < ϵ̂ < ϵ ≤ ϵ0 and such that
R(ϵ− ϵ̂)− E[L(ξ)]ϵ̂ > 0.

Observe first that d(xN , S∗) ≤ ∥xN−zN∥+d(zN , S∗). Subsequently d(xN , S∗) ≥ ϵ implies d(zN , S∗) ≥ ϵ−ϵ̂.
Then under the growth condition (d), we have for sufficiently large N ,

Prob
{
d(xN , S∗) ≥ ϵ and yϵ ∈ FN

}
≤ Prob

{
d(zN , S∗) ≥ ϵ− ϵ̂ and yϵ ∈ FN

}
≤ Prob

{
E[ψ0(z

N , ξ)]− v∗ ≥ R(ϵ− ϵ̂) and yϵ ∈ FN
}

≤ Prob
{
E[ψ0(x

N , ξ)]− v∗ ≥ R(ϵ− ϵ̂)− E[L(ξ)]ϵ̂ and yϵ ∈ FN
}
.

Through Step 3, we have

Prob
{
E[ψ0(x

N , ξ)]− v∗ ≥ R(ϵ− ϵ̂)− E[L(ξ)]ϵ̂ and yϵ ∈ FN
}

≤ 2C([R(ϵ− ϵ̂)− E[L(ξ)]ϵ̂]/4)e−α([R(ϵ−ϵ̂)−E[L(ξ)]ϵ̂]/4)N .

Summarizing the discussions above, we can find some positive constants C(ϵ), α(ϵ) and N(ϵ) such that (3.8)
holds for N ≥ N(ϵ).

Note also that Shapiro [37] investigated the approximation of problem (3.6) to (3.5). He derived a δ-theorem

which describes the asymptotic behavior of
√
N(vN − v∗) under the condition that the underlying functions

are convex. It is unclear whether similar results can be established without convexity. Lemma 3.1 implies the
convergence on probability but does not specifically describe the behavior of

√
N(vN − v∗) as N increases.

With Lemma 3.1, we are ready to state the convergence of the optimal solutions of problem (3.4).

Theorem 3.2. (Convergence of SAA-EA-MPSICC (3.4)) Let XN
γ (τ), Xγ(τ) and X(τ) denote the

set of optimal solutions of problems (3.4), (3.2) and (3.1) respectively, vNγ (τ), vγ(τ), and v(τ) the corresponding
optimal values. Assume: (a) the conditions of Proposition 3.2 hold; (b) Xγ(τ)∩Fs

γ(τ) ̸= ∅, where the superscript
s in Fs

γ(τ) indicates the set of strictly feasible solutions as in (3.7). Then the following assertions hold.
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(i) For fixed γ, w.p.1

lim
N→∞

XN
γ (τ) ⊆ Xγ(τ), lim

N→∞
vNγ (τ) = vγ(τ);

(ii) w.p.1

lim
N→∞
γ→∞

XN
γ (τ) ⊆ X(τ), lim

N→∞
γ→∞

vNγ (τ) = v(τ).

Assume, in addition, (c) the objective function and the constraint functions of problem (3.2) satisfy the
growth conditions similar to those of (d)-(e) in Lemma 3.1, (d) g(x, t) is Lipschitz continuous on X
uniformly with respect to t, that is, there exists a constant L such that

∥g(x′, t)− g(x′′, t)∥ ≤ L∥x′ − x′′∥, ∀x′, x′′ ∈ X, ∀t ∈ T.

Then D(XN
γ (τ), X(γ)) converges to zero at exponential rate with increase of the sample size.

Theorem 3.2 follows from Lemma 3.1. Indeed, conditions (a)-(c) of the theorem are sufficient for the
conditions (a)-(e) in Lemma 3.1. The compactness of T and condition (d) imply the conditions (f)-(g) in
Lemma 3.1.

Before concluding this section, we clarify the difference between the SAA-EA-MPSICC scheme and the well
known randomization scheme for mathematical programs with robust convex constraints proposed by Calafiore
and Campi [12] and the CVaR approximation scheme recently considered by Anderson et al [2]. To simplify the
discussion, let us consider the semi-infinite system

h(x, ξ) ≤ 0, ∀ξ ∈ Ξ,

where h : IRn× IRk → IR is a continuous function. Let ξ1, · · · , ξN be an iid sample of ξ. The SAA-EA-MPSICC
scheme approximates the system with

1

γ

[
ln
(
eγh(x,ξ

1) + · · ·+ eγh(x,ξ
N )
)
− lnN

]
≤ 0 (3.13)

whereas Calafiore and Campi’s scheme approximates it by

max
i∈{1,··· ,N}

h(x, ξi) ≤ 0. (3.14)

On the other hand, the CVaR approximation is defined as

min
η∈IR

η +
1

1− β

N∑
i=1

(h(x, ξi)− η)+ ≤ 0, (3.15)

where β ∈ (0, 1) is a parameter and (a)+ = max(0, a) for a scalar a. Obviously the three approximation
schemes are different in that (3.13) uses all samples while (3.14) only captures the extreme ones and the CVaR
approximation utilizes the samples at the tail of the distribution of h(x, ξ). When γ → ∞ and β → 1, the
three schemes coincide. Note that Calafiore and Campi [12] presented a sample based probabilistic statement
for the optimal value and feasibility of the optimal solution obtained from solving their randomization scheme.
It will be interesting to investigate whether similar claims can be made without convexity (which is typical in
MPECs). We leave this for future research.

4. Two stage SMPECs. In this section, we apply the approximation schemes proposed in the preceding
section to the following two stage SMPECs:

(SMPEC) min
x∈X, y(·)∈Y

E[f(x, y(ξ), ξ)]

s.t. 0 ≤ G(x, y(ξ), ξ) ⊥ H(x, y(ξ), ξ) ≥ 0, ∀ξ ∈ Ξ,
(4.1)

where X is a nonempty closed subset of IRn, f,G,H are continuously differentiable functions from IRn× IR× IR
to IR, ξ : Ω → Ξ is a random variable defined on the probability space (Ω,F , P ) with compact support set
Ξ ⊂ IR, and E[·] denotes the expected value with respect to probability measure P . As before ‘⊥’ denotes the



Entropic approximation for MPSICC 13

orthogonality of two vectors, Y denotes a space of functions y(·) : Ξ → IR such that E[f(x, y(ξ), ξ)] is well
defined. Note that our restriction of G and H to a scalar function is purely for the simplicity of exposition,
the numerical scheme and technical results in this section can be easily applied to the case when G and H are
vector-valued.

Over the past few years since the pioneering work by Patriksson andWynter [32] on SMPEC, there have been
increasing discussions on the two stage SMPECs, which cover a wide range of topics from optimality theory
[42, 44] to numerical methods such as sample average approximation methods [38, 41], implicit smoothing
method [24] and regularized method [26, 29]. Here we take a completely different numerical strategy: we apply
the well known polynomial decision rule in robust optimization to approximate the second stage equilibrium
constraint so that the two stage SMPEC effectively reduces to a one stage stochastic mathematical program
with robust semi-infinite complementarity constraints, we then tackle the latter with the numerical scheme
discussed in the preceding section.

The basic idea of the polynomial decision rule is to replace the second stage equilibrium y(ξ) with a
polynomial function of ξ. This replacement effectively restricts the functional form of the decision variable at
the second stage to a class of polynomial functions rather than measurable functions as it’s supposed to be,
and hence reduces the space of feasible equilibrium solutions to those which are representable by polynomials.
The radical approach was proposed by Ben Tal et al [9] with a linear decision rule and was later extended by
Shapiro and Nemirovski [40], Chen et al [15]. More recently, the approach has been further developed to a class
of two stage stochastic programs by Kuhn et al [23] and extended to the polynomial decision rule by Bampou
and Kuhn [4].

One of the main technical issues in the polynomial decision rule is the feasibility of the constraints when
the second stage decision variables are restricted to a polynomial function of ξ. The equilibrium constraints
at the second stage essentially involve equality constraints and the approximated problem may not have a
feasible solution if we apply the polynomial decision rule to the constraints directly. Indeed, it is easy to observe
from the classical implicit function point of view that the implicit function may not exist if it is restricted to
polynomial class. To get around this technical difficulty, we apply the NLP relaxation as we discussed in the
preceding sections to SMPEC (4.1) so that the complementarity constraints at the second stage are represented
by a system of inequalities parameterized by a controllable parameter and then apply the polynomial decision
rule to the latter. Specifically, we consider

min
x∈X, y(·)∈Y

E[f(x, y(ξ), ξ)]

s.t.
G(x, y(ξ), ξ) ≥ 0
H(x, y(ξ), ξ) ≥ 0
G(x, y(ξ), ξ) ·H(x, y(ξ), ξ) ≤ τ

 ∀ξ ∈ Ξ,
(4.2)

where τ is a small positive parameter. Clearly the optimal value of problem (4.2) provides a lower bound for its
true counterpart. Under some moderate conditions, it can be shown that problem (4.2) approximates problem
(4.1) in terms of the optimal value, the optimal solutions as well as the stationary points as τ → 0, see [26, 41].

Let us now fix the relaxed parameter τ and apply the polynomial decision rule to problem (4.2). We restrict
the second stage decision variable y(ξ) to the space of polynomials with degree k, that is

y(ξ) := y0 + y1ξ + y2ξ
2 + · · ·+ ykξ

k,

where y0, · · · , yk are real numbers. For brevity, we write y = (y0, · · · , yk). Substituting y(ξ) into (4.2), we
obtain a stochastic mathematical program with robust semi-infinite NLP constraints:

(PDL-RSMPEC) min
x∈X y∈IRk+1

EP [f(x,y, ξ)]

s.t.
G(x,y, ξ) ≥ 0
H(x,y, ξ) ≥ 0
G(x,y, ξ) ·H(x,y, ξ) ≤ τ

 ∀ξ ∈ Ξ.
(4.3)

When problem (4.2) constitutes a strictly feasible solution, it is easy to show the feasibility of problem (4.3).
Strict feasibility of the regularized problem (4.2) is related to the constraints of the original problem (4.1). For
example, if there exist a point x̂ ∈ X, a feasible solution at the second stage y(x̂, ·) to problem (4.1) and positive
constants C1 and C2 such that

H ′
y(x̂, y(x̂, ξ), ξ), G

′
y(x̂, y(x̂, ξ), ξ) ∈ [C1, C2]
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for all ξ ∈ Ξ, then there exists a positive number δ0 such that

H(x̂, y(x̂, ξ) + δ, ξ) > 0,

G(x̂, y(x̂, ξ) + δ, ξ) > 0,

G(x̂, y(x̂, ξ) + δ, ξ) ·H(x̂, y(x̂, ξ) + δ, ξ) < τ,

for all ξ ∈ Ξ and δ ∈ [0, δ0), which means (x̂, y(x̂, ξ)) is a strictly feasible solution to problem (4.2). In such
a case, the approximated problem (4.3) has a feasible solution for some appropriate degree of the polynomial.
See [4] a similar discussion on continuous linear programming problems with inequality constraints. In what
follows, we make a blanket assumption that problem (4.3) is feasible, that is, there exists at least one feasible
solution.

The rest of discussions are similar to the preceding section: we write the problem above as

min
x∈X,y∈IRk+1

EP [f(x,y, ξ)]

s.t. sup
ξ∈Ξ

−G(x,y, ξ) ≤ 0,

sup
ξ∈Ξ

−H(x,y, ξ) ≤ 0,

sup
ξ∈Ξ

G(x,y, ξ) ·H(x,y, ξ) ≤ τ,

(4.4)

and then construct an entropic approximation to the constraints.

Note that problem (4.4) provides an upper bound for the optimal value of problem (4.3). Moreover, the
gap between the optimal values of problems (4.4) and (4.3) decreases as the degree of the polynomial of y(ξ)
increases. In what follows, we discuss the entropic approximation of problem (4.4) for fixed a degree k, namely,
we consider

min
x∈X, y∈IRk+1

EP [f(x,y, ξ)]

s.t. e1γ(x,y) ≤ 0,
e2γ(x,y) ≤ 0,
e3γ(x,y) ≤ τ,

(4.5)

where

e1γ(x,y) := eγ(G(x,y, ξ)),

e2γ(x,y) := eγ(H(x,y, ξ)),

e3γ(x,y) := eγ(−G(x,y, ξ) ·H(x,y, ξ)),

and eγ(·) is defined in Section 2. Clearly problem (4.5) is a one stage stochastic minimization problem. Similar
to the discussions in Section 3, we can easily establish the convergence of the optimal value of problem (4.5) as
γ increases.

Let us now turn to discuss computation of ejγ(x,y). In practice, the distribution of ξ is often unknown
or it is numerically too expensive to calculate the expected values. Instead it might be possible to obtain a
sample of the random vector ξ from historical data. This motivates us to find an approximate optimal solution
to problem (4.5) on the basis of the empirical data. Suppose that we have an iid sample ξ1, · · · , ξN of random
vector ξ. Then EP [f(x,y, ξ)] and ejγ(x,y) can be approximated by the sample average as follows:

fN (x,y) :=
1

N

N∑
i=1

f(x,y, ξi),

e1,Nγ (x,y) :=
1

γ
ln

(
1

N

N∑
i=1

e−γG(x,y,ξi)

)
,

e2,Nγ (x,y) :=
1

γ
ln

(
1

N

N∑
i=1

e−γH(x,y,ξi)

)
,

e3,Nγ (x,y) :=
1

γ
ln

(
1

N

N∑
i=1

eγG(x,y,ξi)·H(x,y,ξi)

)
.
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Consequently we may consider the following sample average and entropic approximated PDL-RSMPEC (4.3)

(SAA-EA-PDL-RSMPEC) min
x∈X, y∈IRk+1

fN (x,y)

s.t. e1,Nγ (x,y) ≤ 0,
e2,Nγ (x,y) ≤ 0,
e3,Nγ (x,y) ≤ τ.

(4.6)

For the simplicity of notation, let w := (x,y). The following theorem states the convergence of the optimal
value and the optimal solutions of problem (4.6) as the sample size increases. We omit the proof as it follows
directly from Lemma 3.1.

Theorem 4.1. (Convergence of SAA-EA-PDL-RSMPEC (4.6)) Let WN
γ and Wγ denote the sets

of optimal solutions of problems (4.6) and (4.5) respectively, and vNγ and vγ the corresponding optimal values.

Assume that (a) WN
γ and Wγ are nonempty and contained in a compact set W ; (b) there exists w ∈Wγ which is

strictly feasible, (c) the functions f(w, ξ), G(w, ξ), H(w, ξ) and G(w, ξ)TH(w, ξ) are measurable and integrably
bounded. Then the following assertions hold.

(i) w.p.1 lim
N→∞

vNγ → vγ ;

(ii) w.p.1 lim
N→∞

WN
γ ⊆Wγ .

5. Mathematical programs with distributionally robust constraints. In this section, we consider
the mathematical programs with distributionally robust complementarity constraints

(MPDRE) min
x∈X

f(x)

s.t. 0 ≤ x ⊥ EP [F (x, ξ)] ≥ 0, ∀P ∈ P,
(5.1)

where X is a nonempty closed set of IRn, f : IRn → IR and F : IRn × Ξ → IRn are continuous functions, ξ is a
random vector with support set Ξ ⊂ IRd and the mathematical expectation EP [·] is taken w.r.t. the distribution
of ξ, P is a set of probability measures.

A unique feature of this model is the distributionally robust constraints. Differing from MPSICC (1.1),
here the equilibrium/complementarity constraints must hold for a set of probability distributions rather than for
every realization of the random variable. From a practical perspective, it may be interpreted as an equilibrium
to be held for any distribution that the underlying random variable may possibly follow, and we are looking
at such an equilibrium which minimizes the disutility f(x). Equilibrium is also known as distributional ex
post equilibrium [33]. The model may be used as an approach for new market design where the regulator sets
out optimal parameters (representing regulative policies) which maximize its utility whereas market players
are expected to reach an equilibrium (on the basis of expected profit maximization) under any foreseeable
distribution of underlying uncertainty.

From computational point of view, MPDRE (5.1) might provide an approximation to MP-
SICC (1.1) if we restrict P to a subset of distributions that it could possibly take because the
optimal value of the former would give rise to a lower bound for the optimal value of the latter.
If we do so to the Lagrange dual of MPDRE (5.1), then we may obtain an upper bound for the
optimal value of MPSICC (1.1). Examples for the selection of P include empirical probability
measures and some specific distributions such as uniform distribution, normal distribution etc
depending on the requirement on the accuracy of the approximation and consequently MPDRE
(5.1) reduces to a deterministic MPCC or a one stage stochastic MPCC.

Two specific cases to note: when P consists of the Dirac probability measures, MPDRE (5.1) coincides
with MPSICC (1.1), and when P contains a finite number of distributions, it reduces to one stage SMPEC. The
latter has been well studied over the past decade, see for instance [25, 27] and references therein. Our focus
here is on the case when P is a compact set in weak topology. A particular instance for this is when Ξ is a
compact set.

At this point, we need to distinguish model (5.1) from one stage distributionally robust SMPEC. The latter
focuses on the case where a decision maker is unaware of the true distribution of the underlying uncertainty and
the optimal decision is taken on the basis of the worst distribution and worst equilibrium. In that case, only
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a single stochastic complementarity constraint based on the worst probability distribution from the ambiguity
set P is considered.

We now turn to discuss the construction of the ambiguity set P. In many practical circumstances, it might
be possible to construct a nominal distribution, denoted by P0, with samples and/or historical data. It is then
natural to construct P as a set of distributions within certain range of P0. A popular way to quantify such a
range is Kullback-Leibler divergence (or relative entropy), that is

P := {Q ∈ P : H(Q|P0) ≤ c},

where P denotes the set of all probability distributions, H(Q|P0) is defined by (2.2) and it is known as the
relative entropy, c is a positive constant.

For a random variable Z, let

ρc(Z) := sup
{Q∈P:H(Q|P0)≤c}

EQ[−Z]. (5.2)

In what follows, we will represent the distributionally robust constraints of MPDRE (5.1) in terms of ρc(·)
and then approximate the latter through the entropic risk measure eγ(·) defined in Section 2. To this end, we
consider an NLP relaxation for MPDRE (5.1):

(RMPDRE) min
x∈X+

f(x)

s.t.
sup
P∈P

EP [−Fj(x, ξ)] ≤ 0

sup
P∈P

EP [xj · Fj(x, ξ)] ≤ τ

 for j ∈ {1, · · · , n},
(5.3)

where τ is a fixed positive number. Through (5.2), we can reformulate problem (5.3) as

min
x∈X+

f(x)

s.t.
ρc(Fj(x, ξ)) ≤ 0
ρc(−xj · Fj(x, ξ)) ≤ τ

}
for j ∈ {1, · · · , n}.

Let P (Z) := Prob{Z = ess infZ}. For given c, if Fj(·, ξ) and x satisfy

c < − ln (P (Fj(x, ξ))) , (5.4)

then it follows by [18, Proposition 3.1]

ρc(Fj(x, ξ)) = min
γj
1>0

c

γj1
+ eγj

1
(Fj(x, ξ)).

In the case when (5.4) fails to hold, [18, Proposition 3.1] ensures

ρc(Fj(x, ξ)) = ess sup(−Fj(x, ξ)) = lim
γj
1→∞

c

γj1
+ eγj

1
(Fj(x, ξ)).

Indeed, it follows by [21, Proposition 2],

lim
γj
1→∞

c

γj1
+ eγj

1
(Fj(x, ξ)) = inf

γj
1>0

c

γj1
+ eγj

1
(Fj(x, ξ)).

Summarizing the discussions above, we conclude that

ρc(Fj(x, ξ)) =


min
γj
1>0

c

γj
1

+ eγj
1
(Fj(x, ξ)), for c < − ln (P (Fj(x, ξ))) ,

inf
γj
1>0

c

γj
1

+ eγj
1
(Fj(x, ξ)), for c ≥ − ln (P (Fj(x, ξ))) .

Likewise,

ρc(−xj · Fj(x, ξ)) =


min
γj
2>0

c

γj
2

+ eγj
2
(−xj · Fj(x, ξ)), for c < − ln (P (−xj · Fj(x, ξ))) ,

inf
γj
2>0

c

γj
2

+ eγj
2
(−xj · Fj(x, ξ)), for c ≥ − ln (P (−xj · Fj(x, ξ))) .



Entropic approximation for MPSICC 17

The discussions above show that we can recast problem (5.3) in a unified form:

min
x∈X+

f(x)

s.t.

inf
γj
1>0

c

γj
1

+ eγj
1
(Fj(x, ξ)) ≤ 0

inf
γj
2>0

c

γj
2

+ eγj
2
(−xj · Fj(x, ξ)) ≤ τ

 for j ∈ {1, · · · , n},
(5.5)

where eγj
1
(·) and eγj

2
(·) are defined in (2.1) and the involved mathematical expectation is taken with respect to

P0. For brevity, we write γ1γ1γ1 = (γ11 , · · · , γn1 ) and γ2γ2γ2 = (γ12 , · · · , γn2 ). It is not difficult to verify that problem
(5.5) is equivalent to

(EA-RMPDRE) inf
x∈X+, γ1γ1γ1∈IRn

++, γ2γ2γ2∈IRn
++

f(x)

s.t.

c

γj
1

+ eγj
1
(Fj(x, ξ)) ≤ 0

c

γj
2

+ eγj
2
(−xj · Fj(x, ξ)) ≤ τ

}
for j ∈ {1, · · · , n},

(5.6)

where IRn++ denotes the set of n-dimensional vectors whose components are strictly positive.

In many practical cases, P0 is often constructed through samples such as empirical data. Assume for the
simplicity of discussion that the samples are iid. We consider the following sample average approximation of
problem (5.6)

(SAA-EA-RMPDRE) inf
x∈X+, γ1γ1γ1∈IRn

++, γ2γ2γ2∈IRn
++

f(x)

s.t.
ej,N1 (x, γj1) ≤ 0,

ej,N2 (x, γj2) ≤ τ

}
for j ∈ {1, · · · , n},

(5.7)

where

ej,N1 (x, γj1) :=
c

γj1
+

1

γj1
ln

(
1

N

N∑
i=1

e−γ
j
1Fj(x,ξ

i)

)
,

ej,N2 (x, γj2) :=
c

γj2
+

1

γj2
ln

(
1

N

N∑
i=1

eγ
j
2xj ·Fj(x,ξ

i)

)
.

The following theorem states the convergence of SAA-EA-RMPDRE (5.7) as the sample size N increases.
For the simplicity of notation again, let w := (x, γ11 , · · · , γn1 , γ12 , · · · , γn2 ).

Theorem 5.1. (Convergence of SAA-EA-RMPDRE (5.7)) LetWN andW denote the sets of optimal
solutions, vNγ and vγ the corresponding optimal values of problems (5.7) and (5.6) respectively. Suppose that (a)

WN and W are nonempty and bounded, (b) there exists w ∈ W which is strictly feasible; (c) X is a compact
set, F (x, ξ) is measurable and integrably bounded. Then the following assertions hold.

(i) w.p.1 lim
N→∞

vNγ → vγ ;

(ii) w.p.1 lim
N→∞

WN ⊆W.

We omit the proof as it is a direct application of Lemma 3.1. Note that the distributionally robust linear
optimization problems were studied by Ben-Tal et al [10] where the ambiguity set is characterized by ϕ-divergence
with KL-divergence being a special case. More recently, Hu and Hong [21] investigated a distributionally robust
convex optimization problem with ambiguity set being defined through KL-divergence, they reformulated the
minimax distributionally robust optimization problem into a one-layer convex minimization problem via a
dualization approach. Our formulation (5.5) may be regarded as an extension of the works [10, 21] to stochastic
programs with equilibrium constraints.

6. Numerical tests. We have carried out some numerical experiments on the SAA-EA-PDL-RSMPEC
scheme (4.6) for solving a two stage SMPEC and the EA-RMPDRE scheme (5.6) for solving a mathematical
program with distributional robust constraints in Matlab R2008a installed in a PC with Windows XP operating
system. In this section, we report some details of the tests and results. Throughout the tests, we employed
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the random number generator rand in Matlab R2008a to generate the samples and solver fmincon to solve
problems.

Example 6.1. Consider the following two stage SMPEC

min
x,y(·)

E[2x− y(ξ)]

s.t. x ∈ [2, 6],
0 ≤ y(ξ) ⊥ y(ξ) + sin ξ − x ≥ 0, ∀ξ ∈ Ξ,

(6.1)

where x is the first stage decision variable and y(·) is the second stage decision variable, ξ is a random parameter
following the uniform distribution over set Ξ := [−π, π].

Observe that for every x ∈ [2, 6], y(ξ) = x− sin ξ is the solution of the complementary constraint. Therefore
the problem is equivalent to

min
x

E[x+ sin(ξ)]

s.t. x ∈ [2, 6].

The optimal solution to problem (6.1) is x∗ = 2 and the optimal value is 2. The second stage optimal solution
to problem (6.1) is y∗(ξ) = x∗ − sin(ξ) = 2− sin(ξ).

Problem (6.1) is a very simple two stage SMPEC. Our intention here is to test the SAA-EA-PDL-RSMPEC
scheme (4.6) with this problem and compare its numerical performance with the existing method for two stage
SMPECs, namely, the NLP-regularization based SAA method for two stage SMPECs proposed by Shaprio and
Xu [41]. For readers who are not familiar with the latter algorithm, let us note that it is SAA applied to the NLP
regularized scheme (4.2). The differences between the regularized SAA scheme and SAA-EA-PDL-RSMPEC
scheme (4.6) are two-fold: (a) the polynomial decision rule, (b) the entropic approximation. We want to get a
confirmation through the tests that applying the decision rule and the entropic approximation will significantly
increase the numerical efficiency.

The numerical results are displayed in Tables 6.1 and 6.2. Here, τ denotes the regularization parameter,
N the sample size, γ the parameter in entropy approximation, k the degree of the polynomial rule, Appr.Sol
the approximate optimal solution and Appr.V al the optimal value, t the execution time (seconds). Note that
fmincon requires an initial point. We set the starting point to be a vector with components 1 for the entropic
method and a vector with components 0 except the first component being 1 for Shapiro and Xu’s method.

Table 6.1
SAA-EA-PDL-RSMPEC scheme for problem (6.1)

τ N γ k
Appr.Sol

Appr.V al t
xN yN (coefficients)

10−1 200 50 1 2.0025 2.1881, −0.1712 1.7980 0.0667

10−2 500 100 3 2.0000 1.9599, −0.8675, −0.0112, 0.0937 2.0286 0.1450

10−3 1000 150 5 2.0000 1.9990, −0.9865, 0.0003, 0.1553, −0.0001,
−0.0057

2.0054 1.0775

Table 6.2
Shapiro and Xu’s method for problem (6.1)

τ N Appr.Sol Appr.V al t

10−1 200 1.0007 1.8752 0.7699

10−2 500 1.3159 2.1538 9.7875

10−3 1000 1.0023 1.8566 63.8623

Table 1 displays the results when the SAA-EA-PDL-RSMPEC scheme (4.6) is applied to problem (6.1).
For the fixed regularization parameter τ = 10−1 and the sample size N = 200, the linear decision rule (k = 1)
generates an optimal value of 1.7980 in execution time t = 0.0667. Compared to Shapiro and Xu’s regularized
SAA scheme with the same regularization parameter and sample size (Table 2), the optimal value is 1.8752 and
the execution time is t = 0.7699. The difference between the optimal values is about 0.09 while the execution
time of the latter is 10 times that of the former. If we increase the degree of the polynomial approximation to
k = 5 and sample size to 1000 while the regularization parameter set 10−3, the difference between the execution
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times is almost 60 times in favor of the decision rule. This is fundamentally due to the fact that under the
decision rule approach, the number of constraints is independent of the sample size and hence the size of the
resulting NLP is fixed. In contrast, Shapiro and Xu’s regularized SAA scheme does not enjoy this property. The
difference of the optimal values is about 0.14 which means the SAA-EA-PDL-RSMPEC scheme (4.6) provides
a reasonable upper bound for the problem. The preliminary tests results raises a promising prospect for the
SAA-EA-PDL-RSMPEC scheme (4.6) although more numerical experiments are needed.

Next, we look into the EA-RMPDRE scheme (5.6).

Example 6.2. Consider the following mathematical program with distributionally robust equilibrium con-
straints

min 100(x− y)
s.t. x ∈ [2, 8],

EP [7 sin ξ − x] ≤ 0
0 ≤ y ⊥ EP [(y + sin ξ − x)(x− 2y)] ≥ 0

}
∀P ∈ P,

(6.2)

where P := {Q ∈ P : H(Q|P0) ≤ c} and P0

(
ξ = iπ

8

)
= 1

5 , for i = 0, 1, 2, 3, 4. It is easy to see that for each fixed
P ∈ P and x ∈ [2, 8], both y = x/2 and y = EP [x− sin ξ] satisfy the complementary constraint. However, here
we require the complmentarity constraint to be held for all P ∈ P. This effectively excludes y = EP [x − sin ξ]
because it shifts as P varies. Therefore the set of feasible solutions to problem (6.2) is {(x, x/2) : x ∈ [u(c), 8]},
where u(c) := maxP∈P EP [7 sin ξ] is calculated from the inequality constraint. The objective function takes a
value of 50x at the feasible solution point (x, x/2) and it is minimized at (u(c), u(c)/2) with the optimal value
being 50u(c).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Robust parameter:c

 

Approximation opt−val
True opt−val

Fig. 6.1. Optimal value of problem (6.2)

We have carried out numerical tests on EA-RMPDRE scheme (5.6) by applying it to problem (6.2) with
ambiguity parameter c increasing from 0 to 1. The red star dotted curve in Figure 1 displays the approximate
optimal values obtained from solving the EA-RMPDRE scheme (5.6) with c taking values from 101 grid points
evenly spread over the interval [0,1]. The blue curve corresponds to the true optimal value 50u(c) where u(c) is
the optimal value of the following convex programming problem

min
P

50EP [−7 sin ξ]

s.t. H(P |P0) ≤ c.
(6.3)

As it is too difficult to obtain a closed form for the optimal value of problem (6.3), we use solver CVX (version
1.2) developed by Michael Grant and Stephen Boyd [19] to solve for each fixed c.

The EA-RMPDRE scheme (5.6) is a nonlinear programming problem. We solve it with an exterior penalty
function method and implement the latter through Matlab NLP solver fmincon3. As we can see from the Figure

3We set the maximal penalty parameter as 1000 and the tolerance as 10−3.
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1, the approximate optimal values obtained from latter fall below the true optimal values with a few exceptions.
The underlying reason is that the regularization scheme and the penalty method enlarge the feasible set of
the true problem and the “approximate optimal value” is obtained outside the feasible region. As c increases,
the ambiguity set gets larger and hence the set of feasible solutions to problem (5.6) becomes smaller. This
explain the overall increasing tendency of the optimal values as c increases. We have also tested the impact
of regularization parameter τ . It seems that reducing the value of τ does not help to reduce the gap between
the two curves. This is because the optimal solution obtained always satisfies the complementarity constraints
(satisfying y = x/2) in which case deriving τ to 0 does not help to reinforce the complementarity constraint.

Acknowledgements. We would like to thank the two referees and the Area Editor Mikhail V. Solodov for
their constructive comments which significantly help us improve the presentation of the paper.
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[39] A. Shapiro, D. Dentcheva and A. Ruszczyński, Lectures on Stochastic Programming: Modeling and Theory, MPS-SIAM

Series on Optimization, 2009.
[40] A. Shapiro and A. Nemirovski, On complexity of stochastic programming problems. V. Jeyakumar, A. Rubinov (eds.)

Continuous Optimization: Current Trends and Applications, pp. 111-144, 2005.
[41] A. Shapiro and H. Xu, Stochastic mathematical programs with equilibrium constraints, Modeling and sample average ap-

proximation, Optimization, 57 (2008), pp. 395-418.
[42] H. Xu, An implicit programming approach for a class of stochastic mathematical programs with complementarity constraints,

SIAM J. Optim., 16 (2006), pp. 670-696.
[43] H. Xu, Uniform exponential convergence of sample average random functions under general sampling with applications in

stochastic programming. J. Math. Anal. Appl., 368 (2010), pp. 692-710.
[44] H. Xu and J. J. Ye, Necessary optimality conditions for two-stage stochastic programs with equilibrium constraints, SIAM

J. Optim., 20 (2010), pp. 1685-1715.
[45] H. Xu, C. Caramanis and S. Mannor, A distributional interpretation of robust optimization, Math. Oper. Res., 37 (2012),

pp. 95-110.


