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Abstract. We consider the solution of a system of stochastic generalized equations (SGE) where the underlying functions

are mathematical expectation of random set-valued mappings. SGE has many applications such as characterizing optimality

conditions of a nonsmooth stochastic optimization problem or equilibrium conditions of a stochastic equilibrium problem. We

derive quantitative continuity of expected value of the set-valued mapping with respect to the variation of the underlying

probability measure in a metric space. This leads to the subsequent qualitative and quantitative stability analysis of solution

set mappings of the SGE. Under some metric regularity conditions, we derive Aubin’s property of the solution set mapping

with respect to the change of probability measure. The established results are applied to stability analysis of stochastic varia-

tional inequality, stationary points of classical one stage and two stage stochastic minimization problems, two stage stochastic

mathematical programs with equilibrium constraints and stochastic programs with second order dominance constraints.
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1. Introduction. In this paper, we consider the following stochastic generalized equations (SGE):

0 ∈ EP [Γ(x, ξ)] + G(x), (1.1)

where Γ : X × Ξ → 2Y and G : X → 2Y are closed set-valued mappings, X and Y are subsets of Banach

spaces X and Y (with norm ∥ · ∥X and ∥ · ∥Y ) respectively, ξ : Ω → Ξ is a random vector defined on a

probability space (Ω,F , P ) with support set Ξ ⊆ IRd and probability distribution P , and EP [·] denotes the
expected value with respect to P , that is,

EP [Γ(x, ξ)]:=

∫
Ξ

Γ(x, ξ)dP (ξ)

=

{∫
Ξ

ψ(ξ)P (dξ) : ψ is a Bochner integrable selection of Γ(x, ·)
}
.

The expected value of Γ is widely known as Aumann’s integral of the set-valued mapping, see [2, 3, 17].

The SGE formulation extends deterministic generalized equations [33] and underlines first order op-

timality/equilibrium conditions of nonsmooth stochastic optimization problems and stochastic equilibrium

problems and stochastic games, see [30, 31] and references therein. In a particular case when Γ is single

valued and G(x) is a normal cone of a set, (1.1) is also known as stochastic variational inequality for which

a lot of research has been carried out over the past few years, see for instance [8, 46].

Our concern here is on the stability of solutions of (1.1) as the underlying probability measure P varies

in some metric space. Apart from theoretical interest, the research is also numerically motivated: in practice,

the probability measure P may be unknown or numerically intractable but it can be estimated from historical

data, or approximated by numerically tractable measures. Consequently there is a need to establish a

relationship between the set of solutions of true problem and that of the approximated problem.
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Let Q denote a perturbation of the probability measure P . We consider the following perturbed stochas-

tic generalized equations:

0 ∈ EQ[Γ(x, ξ)] + G(x). (1.2)

Let S(Q) and S(P ) denote the set of solutions to (1.1) and (1.2), respectively. We study the relationship

between S(Q) and S(P ) as Q approximates P under some appropriate metric.

There are two issues that we need to look into: (a) When Q is “close” to P , does equations (1.2) have

a solution? (b) Can we obtain a bound for the distance between the solutions to (1.1) and (1.2) in terms

of certain distance between Q and P? The first issue was investigated by Kummer [21] for a general class

of deterministic parametric generalized equations in terms of solvability and further discussed by King and

Rockafellar [20] under subinvertibility of a set-valued mapping. The second issue was considered in [45]

under the context of perturbation of deterministic generalized equations.

In this paper, we derive quantitative continuity of EP [Γ(·, ξ)] with respect to the variation of the proba-

bility measure P in some metric spaces. This leads to the subsequent qualitative and quantitative stability

analysis of solution mappings of the SGE. Under some metric regularity conditions, we derive Aubin’s prop-

erty of the solution set mapping with respect to the change of probability measure. The results are applied

to study the stability of stationary points of a number of stochastic optimization problems. This effectively

extends the stability analysis in the literature of stochastic optimization (see e.g. Rachev and Römisch

[29] and Römisch [36]) which relates optimal values and optimal solutions to stationary points. Moreover,

the general framework of probability measure approximation extends recent work by Ralph and Xu [30] on

asymptotic convergence of sample average approximation of stochastic generalized equations where the true

probability measure is approximated through sequence of empirical probability measures, and has a potential

to be exploited to convergence analysis of stationary points when quasi-Monte Carlo methods are applied to

nonsmooth stochastic optimization problems and nonsmooth stochastic games/equilibrium problems.

The rest of the paper is organized as follows. We start in section 2 by recalling some basic notions,

concepts and results on generalized equations, set-valued analysis and Aumann’s integral of a set-valued

mapping. In section 3, we present the main stability results concerning stochastic generalized equations with

respect to the perturbation of the probability measure. Applications of the established results to classical

one stage and two stages linear stochastic programs and two stage stochastic mathematical programs with

complementarity constraints in section 4 and finally we apply the results to stochastic programs with second

order dominance constraints in section 5.

Throughout the paper, we use the following notation. Z denotes a Banach space with norm ∥ · ∥Z and

IRn denotes n dimensional Euclidean space. By convention, we write ⟨u, z⟩ for dual pairing of z ∈ Z which

is bilinear, where u is from the dual space of Z. In the case when Z is finite dimensional, the dual pairing

reduces to scalar product. Given a point z ∈ Z and a set D, we write d(z,D) := infz′∈D ∥z − z′∥Z for the

distance from z to D. For two closed sets C and D,

D(C,D) := sup
z∈C

d(z,D)

stands for the deviation of set C from set D, while H(C,D) represents the Hausdorff distance between the

two sets, that is,

H(C,D) := max (D(C,D),D(D, C)) .

In the case when C = {0}, H(0,D) = D(D, 0) and we use ∥D∥ to denote the quantity. We use B(z, δ) to

denote the closed ball with radius δ and center z, that is B(z, δ) := {z′ : ∥z′ − z∥Z ≤ δ}, and B to denote

the unit ball {z : ∥z∥Z ≤ 1} in a space. Finally, for a sequence of subsets {Sk} in a metric space, we follow

the standard notation [2] by using limk→∞ Sk to denote its upper limit, that is,

lim
k→∞

Sk = {x : lim inf
k→∞

d(x, Sk) = 0}.
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2. Preliminary results. Let Ψ : X → 2Y be a set-valued mapping. Recall that Ψ is said to be closed

at x̄ if xk ∈ X, xk → x̄, yk ∈ Ψ(xk) and yk → ȳ implies ȳ ∈ Ψ(x̄). Ψ is said to be upper semi-continuous

(usc for short) at x̄ ∈ X if and only if for any neighborhood U of Ψ(x̄), there exists a positive number δ > 0

such that for any x′ ∈ B(x, δ) ∩X, Ψ(x′) ⊂ U . When Ψ(x̄) is compact, Ψ is upper semicontinuous at x̄ if

and only if for every ϵ > 0, there exists a constant δ > 0 such that

Ψ(x̄+ δB) ⊂ Ψ(x̄) + ϵB.

Ψ is said to be lower semi-continuous (lsc for short) at x̄ ∈ X if and only if for any ȳ ∈ Ψ(x̄) and any

sequence {xk} ⊂ X converging to x̄, there exists a sequence {yk}, where yk ∈ Ψ(xk), converging to ȳ. The

lower semicontinuity holds if and only if for any open set U with U∩Ψ(x̄) ̸= ∅, the set {x ∈ X : U∩Ψ(x) ̸= ∅}
is a neighborhood of x̄. Ψ is said to be continuous at x̄ if it is both usc and lsc at the point; see [2] for

details.

2.1. Existence of a solution. We start by presenting a result that states existence of a solution to the

perturbed generalized equations (1.2). The issue has been well investigated in the literature of deterministic

generalized equations. For instance, Kummer [21] derived a number of sufficient conditions which ensure

solvability (existence of a solution) of perturbed generalized equations. Similar conditions were further

investigated by King and Rockafellar [20]. Here we present a stochastic analogue of one of Kummer’s results.

Assumption 2.1. Let Q be a perturbation of probability measure P such that

(a) EQ[Γ(x, ξ)] + G(x) is nonempty and convex;

(b) for any ϵ > 0, there exists a δ > 0 such that

EP [Γ(x, ξ)] ⊂ EQ[Γ(x, ξ)] + ϵB (2.1)

for all x ∈ X and Q with Q being sufficiently close to P under some metric;

(c) for α ∈ IR+, the set {
x ∈ X : inf

ζ∈EQ[Γ(x,ξ)]+G(x)
⟨ζ, u⟩ > α

}
is open for each u in the unit ball of the dual space of Y .

The following result is a direct application of [21, Proposition 3].

Proposition 2.2. Let Assumption 2.1 hold. The perturbed generalized equations (1.2) have a solution

for all Q sufficiently close to P if

∆(P ) := sup
∥u∥=1

inf
x∈X

inf
ζ∈EP [Γ(x,ξ)]+G(x)

⟨u, ζ⟩ < 0. (2.2)

Proof. Let ϵ ∈ (0,∆(P )) and Q satisfy (2.1). Then for each u in the unit ball of the dual space of Y

inf
ζ∈EP [Γ(x,ξ)]+G(x)

⟨u, ζ⟩ ≥ inf
ζ∈EQ[Γ(x,ξ)]+G(x)

⟨u, ζ⟩ − ϵ.

Therefore

inf
x∈X

inf
ζ∈EQ[Γ(x,ξ)]+G(x)

⟨u, ζ⟩ ≤ inf
x∈X

inf
ζ∈EP [Γ(x,ξ)]+G(x)

⟨u, ζ⟩+ ϵ ≤ ∆(P ) + ϵ < 0.

By [21, Proposition 2], (1.2) has a solution.

Assumption 2.1 (a) is satisfied when Γ(x, ξ) is convex set-valued mapping for almost every ξ and G(x) is a
convex set-valued mappings. In the case when Γ is the Clarke subdifferential of a random function and G(x)
is a normal cone to a convex set, the assumption is obviously satisfied. We will come back to this in Sections

4 and 5. Assumption 2.1 (b) means uniform Hausdorff continuity of set-valued mapping EQ[Γ(x, ξ)] w.r.t.
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Q at Q = P in the case when the set-valued mapping is usc w.r.t. Q. Under a pseudometric to be defined

in Section 3, the continuity is guaranteed when Γ(x, ξ) is bounded and continuous w.r.t. ξ independent of

x. Assumption 2.1 (c) means that the set{
x ∈ X : inf

ζ∈EQ[Γ(x,ξ)]+G(x)
⟨u, ζ⟩ ≤ α

}
is closed and hence infx∈X infζ∈EQ[Γ(x,ξ)]+G(x)⟨u, ζ⟩ is well defined provided the quantity has a lower bounded.

Condition ∆(P ) < 0 implies that for any u ∈ B, there exists x ∈ X such that infζ∈EQ[Γ(x,ξ)]+G(x)⟨u, ζ⟩ < 0.

By [21, Proposition 2] or the separation theorem, the latter means 0 ∈ EQ[Γ(x, ξ)] + G(x).

2.2. Metric regularity. Definition 2.3. Let Ψ : X → 2Y be a closed set valued mapping. For x̄ ∈ X

and ȳ ∈ Ψ(x̄), Ψ is said to be metrically regular at x̄ for ȳ if there exist a constant α > 0, neighborhoods of

U of x̄ and V of ȳ such that

d(x,Ψ−1(y)) ≤ αd(y,Ψ(x)), ∀x ∈ U, y ∈ V.

Here the inverse mapping Ψ−1 is defined as Ψ−1(y) = {x ∈ X : y ∈ Ψ(x)} and the minimal constant α <∞
which makes the above inequality hold is called regularity modulus and is denoted by reg Ψ(x̄|ȳ). Ψ(x) is

said to be strongly metrically regular at x̄ for ȳ if it is metrically regular and there exist neighborhoods Ux̄

and Uȳ such that for y ∈ Uȳ there is only one x ∈ Ux̄ ∩Ψ−1(y).

Metric regularity is a generalization of Jacobian nonsingularity of a vector-valued function to a set-valued

mapping [32]. The property is equivalent to nonsingularity of the coderivative of Ψ at x̄ for ȳ and to Aubin’s

property of Ψ−1. For a comprehensive discussion of the history and recent development of the notion, see

[14, 35] and references therein.

Using the notion of metric regularity, one can analyze the stability of generalized equations. The following

result is well known, see for example [46, Lemma 2.2].

Proposition 2.4. Let Ψ, Ψ̃ : X → 2Y be two set-valued mappings. Let x̄ ∈ X and 0 ∈ Ψ(x̄). Suppose

that Ψ is metrically regular at x̄ for 0 with the neighborhoods of Ux̄ of x̄ and V0 of 0. If 0 ∈ Ψ̃(x) with

x ∈ Ux̄, then

d
(
x,Ψ−1(0)

)
≤ αD(Ψ̃(x),Ψ(x)),

where α is the regularity modulus of Ψ at x̄ for 0. If Ψ(x) is strongly metrically regular at x̄ for 0, that is,

there exist neighborhoods Ux̄ and Uȳ such that for y ∈ Uȳ there is only one x ∈ Ux̄ ∩Ψ−1(y), then

∥x− x̄∥ ≤ αD(Ψ̃(x),Ψ(x)).

2.3. Fubini’s theorem for Aumann’s integral. Let E be a Hausdorff locally convex vector space

and E′ the dual space. Let S be a nonempty subset of E. The support function of S is the function defined

on E′ by

u→ σ(S, u) = sup
a∈S

⟨u, a⟩.

The following result which is widely known as Hörmander theorem establishes a relationship between the

distance of two sets in E and the distance of their support functions over a unit ball in E′.

Lemma 2.5. ([7, Theorem II-18]) Let C,D be nonempty compact and convex subsets of E with support

functions σ(u, C) and σ(u,D). Then

D(C,D) = max
∥u∥≤1

(σ(C, u)− σ(D, u))
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and

H(C,D) = max
∥u∥≤1

|σ(C, u)− σ(D, u)|.

Let X and Y be Banach spaces and Z a Hausdorff locally convex vector space (here we are slightly

abusing the notation as X and Y have already been used in the definition of generalized equations (1.1)).

Let µ, µx and µy denote the bounded Borel measures in X×Y , X and Y respectively. Consider a nonempty

compact and convex set-valued mapping Ψ : X × Y → 2Z and its Aumann’s integrals
∫
X×Y Ψ(x, y)µ(dxdy),∫

X
∫
Y Ψ(x, y)µy(dy)µx(dx) and

∫
Y
∫
X Ψ(x, y)µx(dx)µy(dy), where X and Y are nonempty compact subset

of X and Y . The following proposition states that under some appropriate conditions, the three integrals

are equal.

Proposition 2.6. Let X and Y be separable Banach space. Assume that Ψ is upper semi-continuous

with respect to x and y. Then the following assertions hold.

(i) σ(Ψ(x, y), u) is upper semi-continuous in x and y uniformly w.r.t. u;

if, in addition, Ψ is µ-integrably bounded, that is, there exists a nonnegative µ-integrable function κ(x, y)

with
∫
X×Y κ(x, y)µ(dxdy) <∞ such that

∥Φ(x, y)∥ ≤ κ(x, y),

then

(ii) Ψ(·, y) and Ψ(x, ·) are µx and µy integrably bounded for each y and x respectively, and∫
X×Y

Ψ(x, y)µ(dxdy) =

∫
X

∫
Y
Ψ(x, y)µy(dy)µx(dx) =

∫
Y

∫
X
Ψ(x, y)µx(dx)µy(dy);

(iii) for any x′, x ∈ X ,

H
(∫

Y
Ψ(x′, y)µy(dy),

∫
Y
Ψ(x, y)µy(dy)

)
≤
∫
Y
H(Ψ(x′, y),Ψ(x, y))µy(dy).

Proof. The results are well known, see for instance [17, 47]. We give a proof for completeness.

Part (i). Since Ψ is upper semi-continuous w.r.t. x and y, it follows by Hörmander’s theorem that

σ(Ψ(x′, y′), u)− σ(Ψ(x, y), u) ≤ D(Ψ(x′, y′),Ψ(x, y))

which indicates that σ(Ψ(x, y), u) is upper semi-continuous in x and y uniformly w.r.t. u.

Part (ii) is well known, see [47, Theorem 2.1]. Here we include a proof for completeness. By as-

sumption, Ψ is nonempty, compact, convex and integrably bounded. It follows by [17, Theorem 5.4],

that
∫
X
∫
Y Ψ(x, y)µy(dy)µx(dx) and

∫
Y
∫
X Ψ(x, y)µx(dx)µy(dy) are nonempty, compact and convex. By

Hörmander’s theorem (Lemma 2.5)

D
(∫

X

∫
Y
Ψ(x, y)µy(dy)µx(dx),

∫
Y

∫
X
Ψ(x, y)µx(dx)µy(dy)

)
= sup

∥u∥≤1

[
σ

(∫
X

∫
Y
Ψ(x, y)µy(dy)µx(dx), u

)
− σ

(∫
Y

∫
X
Ψ(x, y)µx(dx)µy(dy), u

)]
.

Applying [27, Proposition 3.4] to the support function above, we have

σ

(∫
X

∫
Y
Ψ(x, y)µy(dy)µx(dx), u

)
=

∫
X

∫
Y
σ(Ψ(x, y), u)µy(dy)µx(dx)

and

σ

(∫
Y

∫
X
Ψ(x, y)µx(dx)µy(dy), u

)
=

∫
Y

∫
X
σ(Ψ(x, y), u)µx(dx)µy(dy).
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It follows from part (i) that σ(Ψ(x, y), u) is upper semi-continuous in x and y. Since X and Y are compact

sets Ψ(x, y) is bounded which implies the boundedness of σ(Ψ(x, y), u). By Fubini’s theorem∫
X

∫
Y
σ(Ψ(x, y), u)µy(dy)µx(dx) =

∫
Y

∫
X
σ(Ψ(x, y), u)µx(dx)µy(dy).

The discussions above yield

D
(∫

X

∫
Y
Ψ(x, y)µy(dy)µx(dx),

∫
Y

∫
X
Ψ(x, y)µx(dx)µy(dy)

)
= sup

∥u∥≤1

[∫
X

∫
Y
σ(Ψ(x, y), u)µy(dy)µx(dx)−

∫
Y

∫
X
σ(Ψ(x, y), u)µx(dx)µy(dy)

]
= 0.

Part (iii). The result is well known. See [17, Theorem 5.4]. Indeed, following similar arguments as in

the proof of Part (ii), we have

H
(∫

Y
Ψ(x′, y)µy(dy),

∫
Y
Ψ(x, y)µy(dy)

)
≤
∫
Y

sup
∥u∥≤1

|σ(Ψ(x, y), u)− σ(Ψ(x, y), u)|µy(dy)

=

∫
Y
H(Ψ(x′, y),Ψ(x, y))µy(dy).

The proof is complete.

3. Stability of stochastic generalized equations. Let P(Ξ) denote the set of all Borel probability

measures on Ξ. Assuming Q is close to P under some metric to be defined shortly, we investigate the

relationship between the solution set of stochastic generalized equations (1.2) and that of (1.1).

Let Γ(x, ξ) be defined as in (1.1) and σ(Γ(x, ·), u) be its support function. Let X be a compact subset

of X. Throughout this section, we assume that Γ(x, ξ) is nonempty, compact and convex for every x ∈ X

and ξ ∈ Ξ. Define

F := {g(·) : g(ξ) := σ(Γ(x, ξ), u), forx ∈ X , ∥u∥ ≤ 1}. (3.1)

Then F consists of all functions generated by the support function σ(Γ(x, ·), u) over the set X×{u : ∥u∥ ≤ 1}.
Let

D(Q,P ) := sup
g(ξ)∈F

(
EQ[g(ξ)]− EP [g(ξ)]

)
and

H (Q,P ) := max
(
D(Q,P ),D(P,Q)

)
.

It is easy to verify that

D(Q,P ) ≥ sup
∥u∥≤1

EQ[σ(Γ(x, ξ), u)]− EP [σ(Γ(x, ξ), u)] ≥ 0, ∀x ∈ X .

We will use this relationship later on. Note that by [27, Proposition 3.4],

EQ[σ(Γ(x, ξ), u)]− EP [σ(Γ(x, ξ), u)] = σ(EQ[Γ(x, ξ)], u)− σ(EP [σ(Γ(x, ξ)], u).

By Lemma 2.5, the inequality above implies

D(Q,P ) ≥ D(EQ[Γ(x, ξ)],EP [Γ(x, ξ)]) ≥ 0, ∀x ∈ X

and hence

D(Q,P ) = 0 =⇒ EQ[Γ(x, ξ)] ⊆ EP [Γ(x, ξ)], ∀x ∈ X .
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Likewise

H (Q,P ) = 0 =⇒ EQ[Γ(x, ξ)] = EP [Γ(x, ξ)], ∀x ∈ X .

Neither H nor D is a metric but one may enlarge the set F so that H (Q,P ) = 0 implies Q = P . We call

H (Q,P ) a pseudometric. It is also known as a distance of probability measures having ζ-structure, see [48].

Recall that for a sequence of probability measures {PN} in P(Ξ), PN is said to converge weakly to P if

lim
N→∞

EPN
[g(ξ)] = EP [g(ξ)]

for every bounded continuous real-valued function g on Ξ.

Let F be defined by (3.1) and {PN} ⊂ P(Ξ). We say F defines an upper P -uniformity class of functions

if

lim
N→∞

D(PN , P ) = 0

for every sequence {PN} which converges weakly to P , and a P -uniformity class if

lim
N→∞

H (PN , P ) = 0.

A family of functions K is said to be equicontinuous at a point x0 if for every ϵ > 0, there exists a δ > 0

such that ∥f(x0)− f(x)∥ < ϵ for all f ∈ K and all x, x0 such that ∥x0 − x∥ ≤ δ. A sufficient condition for

K to be a P -uniformity class is that K is uniformly bounded and

P ({ξ ∈ Ξ : K is not equicontinuous at ξ}) = 0,

see [41]. In our context, the latter is implied by

lim
ξ′→ξ

sup
x∈X

H(Γ(x, ξ′),Γ(x, ξ)) = 0 (3.2)

for almost every ξ w.r.t. probability measure P . At this point, we may refer readers to the work by Artstein

and Wets [1] on approximation of Aumann’s integral of multifunctions where the authors showed EPN
[Γ(x, ξ)]

converges to EP [Γ(x, ξ)] when PN converges weakly to P and Γ takes convex and compact values and is

continuous in ξ, see [1, Theorem 3.1].

Theorem 3.1. Consider the stochastic generalized equations (1.1) and its perturbation (1.2). Let X be

a compact subset of X, and S(P ) and S(Q) denote the sets of solutions of (1.1) and (1.2) restricted to X
respectively with cl S(P ) ̸= X , where cl denotes the closure of a set. Assume: (a) Y is a Euclidean space and

Γ is a set-valued mapping taking convex and compact set-values in Y; (b) Γ is upper semi-continuous with

respect to x for every ξ ∈ Ξ and bounded by a P -integrable function κ(ξ) for x ∈ X ; (c) G is upper semi-

continuous; (d) S(Q) is nonempty for Q ∈ P(Ω) and D(Q,P ) sufficiently small and . Then the following

assertions hold.

(i) For any small positive number ϵ, let

R(ϵ) := inf
x∈X , d(x,S(P ))≥ϵ

d(0,EP [Γ(x, ξ)] + G(x)). (3.3)

Then

D(S(Q), S(P )) ≤ R−1(2D(Q,P )),

where R−1(ϵ) := min{t ∈ IR+ : R(t) = ϵ}, and R−1(ϵ) → 0 as ϵ ↓ 0.

(ii) For any small positive number ϵ, there exists a δ > 0 such that if D(Q,P ) ≤ δ, then D(S(Q), S(P )) ≤
ϵ.
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(iii) If x∗ ∈ S(P ) and Φ(x) := EP [Γ(x, ξ)]+G(x) is metrically regular at x∗ for 0 with regularity modulus

α, then there exists neighborhood Ux∗ of x∗ such that

d(x, S(P )) ≤ αD(Q,P ) (3.4)

for x ∈ S(Q) ∩ Ux∗ ; if Φ is strongly metrically regular at x∗ for 0 with the same regularity modulus

and neighborhood, then

∥x− x∗∥X ≤ αD(Q,P ) (3.5)

for x ∈ S(Q) close to Φ−1(0).

Proof. Let {xN} ⊂ X be a sequence such that xN → x as N → ∞. Under conditions (a) and (b), Γ(x, ξ)

is upper semi-continuous and integrably bounded, and the space Y is finite dimensional (separable and

reflexive). By [18, Theorem 2.8] (see also [24, Theorem 1.43]),

lim sup
xN→x,xN∈X

EP [Γ(xN , ξ)] ⊂ EP

[
lim sup

xN→x,xN∈X
Γ(xN , ξ)

]
⊂ EP [Γ(x, ξ)] . (3.6)

Parts (i) and (ii). Let R(ϵ) be defined by (3.3). It is easy to observe that R(0) = 0 and R(ϵ) is

nondecreasing on [0,∞). In what follows, we show that R(ϵ) > 0 for ϵ > 0. Assume for a contradiction that

R(ϵ) = 0. Then there exists a sequence {xN} ⊆ X with d(xN , S(P )) ≥ ϵ such that

lim
N→∞

d(0,EP [Γ(xN , ξ)] + G(xN )) = 0,

which is equivalent to

0 ∈ lim sup
xN→x,xN∈X

(EP [Γ(xN , ξ)] + G(xN )). (3.7)

Since X is a compact set, we may assume without loss of generality that xN → x∗ for some x∗ ∈ X . Using

the upper semi-continuity of G(x) and (3.6), we derive from (3.7) that

0 ∈ lim sup
N→∞

(EP [Γ(xN , ξ)] + G(xN )) ⊆ EP

[
lim sup
N→∞

Γ(xN , ξ)

]
+ G(x∗) ⊂ E[Γ(x∗, ξ)] + G(x∗).

The formula above shows x∗ ∈ S(P ) which contradicts the fact that d(x∗, S(P )) ≥ ϵ. This implies that

R−1(ϵ) → 0 as ϵ ↓ 0.

Let δ := R(ϵ)/2 and D(Q,P ) ≤ δ. Let ρ′ := minx∈X d(0,G(x)). Under the closedness and upper

semi-continuity of G(·), it is easy to verify that ρ′ <∞. Let

ρ := ρ′ + sup
x∈X

max(∥EP [Γ(x, ξ)]∥, ∥EQ[Γ(x, ξ)]∥).

Under condition (b) and compactness of X , it is easy to show that ρ < ∞. Let t be any fixed positive

number such that t > ρ. Then for any point x ∈ X with d(x, S(P )) > ϵ,

d(0,EQ[Γ(x, ξ)] + G(x)) = d(0,EQ[Γ(x, ξ)] + G(x) ∩ tB)
≥ d(0,EP [Γ(x, ξ)] + G(x) ∩ tB)

−D(EQ[Γ(x, ξ)] + G(x) ∩ tB,EP [Γ(x, ξ)] + G(x) ∩ tB), (3.8)

where B denotes the unit ball in space Y. Using the definition of D, it is easy to show that

D(EQ[Γ(x, ξ)] + G(x) ∩ tB,EP [Γ(x, ξ)] + G(x) ∩ tB) ≤ D(EQ[Γ(x, ξ)],EP [Γ(x, ξ)]), (3.9)

see for instance the proof of [45, Lemma 4.2]. By invoking Hörmander’s theorem and [27, Proposition 3.4],

we have

D(EQ[Γ(x, ξ)],EP [Γ(x, ξ)]) = sup
∥u∥≤1

(σ(EQ[Γ(x, ξ)], u)− σ(EP [Γ(x, ξ)], u))

= sup
∥u∥≤1

(EQ[σ(Γ(x, ξ), u)]− EP [σ(Γ(x, ξ), u)]). (3.10)
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By the definition of D(Q,P ),

sup
∥u∥≤1

(EQ[σ(Γ(x, ξ), u)]− EP [σ(Γ(x, ξ), u)]) ≤ D(Q,P ). (3.11)

Combining (3.8)–(3.11), we have

d(0,EQ[Γ(x, ξ)] + G(x)) ≥ d(0,EP [Γ(x, ξ)] + G(x))− D(Q,P )

≥ R(ϵ)− δ

= δ > 0. (3.12)

This shows x ̸∈ S(Q) for any x ∈ X with d(x, S(P )) > ϵ, which implies

D(S(Q), S(P )) ≤ ϵ.

Let ϵ be the minimal value such that 1
2R(ϵ) = D(Q,P ) = δ. Then (3.12) implies

D(S(Q), S(P )) ≤ ϵ = R−1(2D(Q,P )).

Part (iii). Let B denote the unit ball of Y and t be a constant such that

t > max{∥EQ[Γ(x, ξ)]∥, ∥EP [Γ(x, ξ)]∥}.

Then for any x ∈ Φ−1(0) ∩ X

0 ∈ EP [Γ(x, ξ)] + G(x) ∩ tB.

Likewise, for x ∈ S(Q),

0 ∈ EQ[Γ(x, ξ)] + G(x) ∩ tB. (3.13)

On the other hand, the metric regularity of Φ(x) at x∗ for 0 with regularity modulus α implies that there

exists neighborhood Ux∗ of x∗ such that

d(x, S(P )) ≤ αd(0,Φ(x)) (3.14)

for all x ∈ S(Q) ∩ Ux∗ . Since

Φ(x) = EP [Γ(x, ξ)] + G(x) ⊃ EP [Γ(x, ξ)] + G(x) ∩ tB,

then

d(0,Φ(x)) ≤ d(0,EP [Γ(x, ξ)] + G(x) ∩ tB)

and hence

d(x, S(P )) ≤ αd(0,EP [Γ(x, ξ)] + G(x) ∩ tB)
≤ αD(EQ[Γ(x, ξ)] + G(x) ∩ tB,EP [Γ(x, ξ)] + G(x) ∩ tB) (3.15)

for all x ∈ S(Q) ∩ Ux∗ . The second inequality is due to (3.13) and the definition of D. Note that for any

bounded sets C, C′,D,D′, it is easy to verify that

D(C + C′,D +D′) ≤ D(C,D) + D(C′,D′).

Using this relationship and (3.9)–(3.11), we obtain

D(EQ[Γ(x, ξ)] + G(x) ∩ tB,EP [Γ(x, ξ)] + G(x) ∩ tB) ≤ D(EQ[Γ(x, ξ)],EP [Γ(x, ξ)])

≤ D(Q,P ). (3.16)
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Combining (3.14), (3.15) and (3.16), we obtain (3.4). Inequality (3.5) follows straightforwardly from (3.4)

and strong metric regularity.

In general, it is difficult to derive the rate function R−1(ϵ). Here we consider two particular cases that

we may derive an estimate of R−1(ϵ).

Corollary 3.2. Let Φ(x) := EP [Γ(x, ξ)] + G(x) and V := {v : v ∈ Φ(x),∀x ∈ S(P )}. Let ϵ be a

small positive number. Assume that, for any x with d(x, S(P )) ≥ ϵ, there exists positive constants C and τ

(depending on ϵ) such that

∥v′ − v∥ ≥ Cd(x, S(P ))τ , ∀ v′ ∈ Φ(x), v ∈ V. (3.17)

Then there exists a positive constant α such that

R−1(ϵ) ≤ αϵ
1
τ . (3.18)

Proof. By definition,

R(ϵ) = inf
x∈X , d(x,S(P ))≥ϵ

d(0,EP [Γ(x, ξ)] + G(x))

≥ inf
x∈X , d(x,S(P ))≥ϵ

inf
x∗∈S(P )

inf
v∈Φ(x∗)

d(v,EP [Γ(x, ξ)] + G(x))

= inf
x∈X , d(x,S(P ))≥ϵ

inf
x∗∈S(P )

inf
v∈Φ(x∗),v′∈Φ(x)

∥v − v′∥

≥ inf
x∈X , d(x,S(P ))≥ϵ

Cd(x, S(P ))τ

≥ Cϵτ ,

where the second last inequality follows from (3.17). The conclusion follows by setting α := C− 1
τ .

Condition (3.17) is a kind of growth condition for the set valued mapping Φ(x). To see this, consider a

simple example with Φ(x) = x2, where x ∈ IR. In this case, S(P ) = {0} and V = {0}. For any fixed ϵ,

∥v′ − v∥ = ∥x2 − 0∥ ≥ ϵd(x, 0), ∀ v′ ∈ Φ(x), v ∈ V.

Note also that (3.17) is implied by strong monotonicity of Φ(·), that is, for all x, x′ ∈ X

⟨v′ − v, x′ − x⟩ ≥ C∗∥x′ − x∥2, ∀ v′ ∈ Φ(x′), v ∈ Φ(x),

see [5, 6] and [35, Definition 12.53] for finite dimensional case. Under the strong monotonicity

∥v′ − v∥∥x′ − x∥ ≥ ⟨v′ − v, x′ − x⟩ ≥ C∗∥x′ − x∥2, ∀ v′ ∈ Φ(x′), v ∈ Φ(x),

which implies ∥x′ − x∗∥ ≥ d(x, S(P )) and hence (3.17) with C = C∗ and τ = 1. A well known example for

strong monotonicity is the subdifferential mapping of a strongly convex function, see [35] for the latter.

Let us now consider the case when Γ(·, ξ) is single valued for almost every ξ and it is Lipschitz continuous

over X ⊆ IRn with integrable Lipschitz modulus κ(ξ). Moreover G(x) = NK(x), where K is a polyhedral

in IRn and NK(x) denotes the normal cone to K at point x. Under these circumstances, SGE (1.1) can be

written as a stochastic variational inequality problem (SVIP)1

0 ∈ EP [Γ(x, ξ)] +NK(x). (3.19)

Observe that

d(0,EP [Γ(x, ξ)] +NK(x)) = d(−EP [Γ(x, ξ)],NK(x)).

1Note that there are many types of SVIP models. For instances, Chen et al [9] recently proposed a stochastic VIP

model where K depends on every realization of random variable ξ and a deterministic solution x is sought for solving 0 ∈
Γ(x, ξ) + NK(ξ)(x),∀ξ ∈ Ξ. It is unclear whether results to be presented here can be established for the new SVIP models in

the same manner.
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By [16, Proposition 1.5.14],

d(−EP [Γ(x, ξ)],NK(x)) = inf{∥FnorK (z)∥ : z ∈ Π−1
K (x)},

where ΠK denotes the Euclidean projection onto K and Π−1
K its inverse,

FnorK (z) := EP [Γ(ΠK(z), ξ)] + z −ΠK(z),

which is known as Robinson’s normal map. Let Z = X . It is easy to verify that FnorK (z) is Lipschitz

continuous on Z and with modulus being bounded by E[κ(ξ)] + 2. Moreover, since K is polyhedral, it

follows by [26, Theorem 2.7] that NK is a polyhedral multifunction and through [26, Theorem 2.4], locally

upper Lipschitz continuous. Using the relationship

Π−1
K (x) = (NK + I)(x),

where I denotes the identity mapping, we conclude that the set-valued mapping Π−1
K is locally upper Lipschitz

continuous.

Corollary 3.3. Consider (3.19). Let S(P ) denote its solution set, x∗ ∈ S(P ) and Z∗ = Π−1
K (S(P )).

Assume that there exists positive constants C and τ such that

∥FnorK (z)∥ ≥ Cd(z, Z∗)τ , ∀z ∈ Π−1
K (X ), (3.20)

that is, ∥FnorK (z)∥ satisfies some growth condition as z deviating from Z∗. Then there exists a positive

constant α such that (3.18) holds. If, in addition, FnorK (z) is locally Lipschitz homeomorphism near z∗, that

is, there exist neighborhoods of z∗ and FnorK (z∗) such that the map FnorK (·) restricted to the neighborhood is

bijective and its inverse is also Lipschitz, then (3.18) holds with τ = 1.

Proof. Let x ∈ X . Note that Π−1
K (x) may be set valued. Under condition (3.20),

inf
z∈Π−1

K (x)
∥FnorK (z)∥ = inf

z∈Π−1
K (x),z∗∈Z∗

(∥FnorK (z)∥ − ∥FnorK (z∗)∥)

≥ inf
z∈Π−1

K (x)
Cd(z, Z∗)τ .

With this, we can estimate R(ϵ). By definition,

R(ϵ) = inf
x∈X , d(x,S(P ))≥ϵ

d(0,EP [Γ(x, ξ)] +NK(x))

= inf
z∈Π−1

K (x),x∈X , d(x,S(P ))≥ϵ
∥FnorK (z)∥

≥ inf
z∈Π−1

K (x),x∈X , d(x,S(P ))≥ϵ
Cd(z, Z∗)τ

≥ inf
x∈X , d(x,S(P ))≥ϵ

C∥x− x∗∥τ (since ∥z − z∗∥ ≥ ∥x− x∗∥)

= Cϵτ .

If, in addition, FnorK (z) is locally Lipschitz homeomorphism near z∗, then Z∗ reduces to a singleton, denoted

by {z∗}, and S(P ) to {x∗}. Following a similar argument to the first part of the proof, we have

inf
z∈Π−1

K (x)
∥FnorK (z)∥ = inf

z∈Π−1
K (x)

(∥FnorK (z)∥ − ∥FnorK (z∗)∥)

≥ inf
z∈Π−1

K (x)
C ′d(z, z∗),

where C ′ is a positive constant. Consequently

R(ϵ) = inf
x∈X , ∥x−x∗∥≥ϵ

d(0,EP [Γ(x, ξ)] +NK(x))

= inf
z∈Π−1

K (x),x∈X , ∥x−x∗∥≥ϵ
∥FnorK (z)∥

≥ inf
z∈Π−1

K (x),x∈X , ∥x−x∗∥≥ϵ
C ′∥z − z∗∥

≥ inf
x∈X , ∥x−x∗∥≥ϵ

C ′∥x− x∗∥ (since ∥z − z∗∥ ≥ ∥x− x∗∥)

= C ′ϵ.
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The conclusions follow.

Note that part (iii) of Theorem 3.1 is derived under metric regularity. It is difficulty to verify the

condition in general. However, when either EP [Γ(x, ξ)] or G(x) reduces to a singleton, then we may char-

acterize the metric regularity of Ψ(x) = EP [Γ(x, ξ)] + G(x) through Mordukhovich coderivative, see [14].

For example, when EP [Γ(x, ξ)] is single valued and G(x) is a normal cone, [14, Theorem 5.1] gives details

on this. In the case when SGE represents the KKT conditions of a one stage smooth stochastic equality

and inequality constrained problems, the metric regularity conditions are equivalent to some stability/error

bound conditions and the latter are implied by second order sufficient conditions, see this sort of discussions

in [19] for deterministic minimization problems.

Note also that when Γ(·, ξ) is continuously differentiable for every ξ and G(x) is independent of x, e.g.,
G(x) = G, where G is a closed convex set in Y , the SGE recovers a stochastic cone constraint. In that case,

the metric regularity of EP [Γ(x, ξ)] + G is equivalent to Robinson’s constraint qualification, that is, there

exists x0 ∈ X such that

0 ∈ int{EP [Γ(x, ξ)] + ⟨EP [∇xΓ(x, ξ)], X⟩+ G,

where “int” denotes interior of a set; see [4, Proposition 2.89].

Finally, note that it is possible to obtain a linear lower bound forR(ϵ) without metric regularity condition.

Let F : IR2 → IR2 be such that F (x) = (x1, 0). Consider equations

F (x) = 0

and its solution restricted to set X = {(x1, x2) : ||x||∞ ≤ 1}. This is a very special generalized equations:

it is deterministic and linear. The solution set X∗ = {(x1, x2) ∈ X : x1 = 0}. The function F (x) is not

metrically regular because its Jacobian is singular. However, for small positive number ϵ,

R(ϵ) = inf
x∈X, d(x,X∗)≥ϵ

d(0, F (x)) = inf
x∈X:|x1|≥ϵ

|x1| = ϵ.

Remark 3.4. The assumption of Y to be a Euclidean space (finite dimensional) is only required in

(3.6). In some applications, Γ may consist of components which are single valued. It is easy to observe that

so long as the set-valued components are finite dimensional, the conclusion holds even when the single valued

components are infinite dimensional. We need this argument in Section 5.

4. Stochastic minimization problems. In this section, we use the stability results on the stochastic

generalized equations derived in the preceding section to study stability of stationary points of stochastic

optimization problems. This is motivated to complement the existing research on stability analysis of optimal

values and optimal solutions in stochastic programming [36].

4.1. One-stage stochastic programs with deterministic constraints. Let us start with one stage

problems. To simplify notation, we consider the following nonsmooth stochastic minimization problem

min
x

EP [f(x, ξ)]

s.t. x ∈ X,
(4.1)

where X is a closed subset of IRn, f : IRn × IRk → IR ∪ {+∞} is lower semi-continuous and for every fixed

ξ ∈ Ξ, the function f(·, ξ) is locally Lipschitz continuous on its domain but not necessarily continuously

differentiable or convex, P is the probability distribution of random vector ξ : Ω → Ξ ⊂ IRk defined on some

probability space (Ω,F , P ). Note that by allowing f to be nonsmooth, the models subsumes a number of

stochastic optimization problems with stochastic constraints and two-stage stochastic optimization problems.

To simplify the discussion, we assume that EP [f(·, ξ)] is well defined for some x0 ∈ X and the Lipschitz

modulus of f(·, ξ) is integrably bounded with respect to the probability measure P . It is easy to observe that
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the assumption implies EP [f(x, ξ)] is well defined for every x ∈ X and that EP [f(·, ξ)] is locally Lipschitz

continuous.

Let ψ : IRn → IR be a locally Lipschitz continuous function. Recall that Clarke subdifferential of ψ at

x, denoted by ∂ψ(x), is defined as follows:

∂ψ(x) := conv

 lim
x′∈D

x′→x

∇ψ(x′)

 ,

where D denotes the set of points near x at which ψ is Fréchet differentiable, ∇ψ(x) denotes the gradient of

ψ at x and ‘conv’ denotes the convex hull of a set, see [10] for details.

Using Clarke’s subdifferential, we may consider the first order optimality conditions of problem (4.1).

Under some appropriate constraint qualifications, a local optimal solution x∗ ∈ X to problem (4.1) necessarily

satisfies the following:

0 ∈ ∂EP [f(x, ξ)] +NX(x). (4.2)

The condition is also sufficient if f(·, ξ) is convex for almost every ξ. In general, a point x ∈ X satisfying

(4.2) is called a stationary point. A slightly weaker first optimality condition which is widely discussed in

the literature is

0 ∈ EP [∂xf(x, ξ)] +NX(x). (4.3)

The condition is weaker in that ∂EP [f(x, ξ)] ⊆ EP [∂xf(x, ξ)] and equality holds only under some regularity

conditions. A point x ∈ X satisfying (4.3) is called a weak stationary point of problem (4.1). For a detailed

discussion on the well-definedness of (4.2) and (4.3) and the relationship between stationary point and weak

stationary point, see [45] and references therein.

Let us now consider a perturbation of the stochastic minimization problem:

min
x

EQ[f(x, ξ)]

s.t. x ∈ X,
(4.4)

where Q is a perturbation of the probability measure P such that EQ[f(x, ξ)] is well defined for some x0 ∈ X

and the Lipschitz modulus of f is integrably bounded with respect to Q. In the literature of stochastic

programming, quantitative stability analysis concerning optimal values and optimal solutions in relation to

the variation of the underlying probability measure is well known, see for instance [36, 29]. Our focus here is

on stationary points. Let X(P ) and X(Q) denote the sets of stationary points of problems (4.1) and (4.4),

and X̃(P ) and X̃(Q) the sets of weak stationary points respectively. We use Theorem 3.1 to investigate

stability of the stationary points.

Theorem 4.1. Let fo(x, ξ;u) denote the Clarke generalized directional derivative for a given nonzero

vector u and

F := {g : g(·) := fo(x, ·;u), forx ∈ X, ∥u∥ ≤ 1}.

(i) Assume: (a’) f(·, ξ) is locally Lipschitz continuous for every ξ with P -integrable modulus; (b’)

Q ∈ P(Ξ); (c’) X is a compact set; (d’) X(P ) and X(Q) are nonempty. Then we obtain the

following estimate for the sets of weak stationary points:

D(X̃(Q), X̃(P )) ≤ R̃−1(2D(Q,P )),

where R̃ is the growth function

R̃(ϵ) := inf
x∈X,d(x,X̃(P ))≥ϵ

d(0,EP [∂xf(x, ξ)] +NX(x))
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and

D(Q,P ) := sup
g∈F

(
EQ[g(ξ)]− EP [g(ξ)]

)
.

(ii) Assume that there exists a non-decreasing continuous function h on [0,+∞) such that h(0) = 0,

sup{h(2t)/h(t) : t > 0} < +∞ and

sup
x∈X

sup
τ∈(0,δ)

sup
∥u∥≤1

∣∣∣1
τ
(f(x+ τu, ξ)− f(x, ξ))− 1

τ
(f(x+ τu, ξ̃)− f(x, ξ̃))

∣∣∣ ≤ h(∥ξ − ξ̃∥) (4.5)

holds for all ξ, ξ̃ ∈ Ξ and for δ > 0 sufficiently small. Then the estimate

D(X(Q), X(P )) ≤ R−1(2ζh(P,Q))

is valid for the sets of stationary points, where R is the growth function

R(ϵ) := inf
x∈X,d(x,X(P ))≥ϵ

d(0, ∂EP [f(x, ξ)] +NX(x))

and ζh the Kantorovich-Rubinstein functional

ζh(P,Q) = inf

∫
Ξ×Ξ

h(∥ξ − ξ̃∥)dη(ξ, ξ̃), (4.6)

where the infimum is over all finite measures η on Ξ×Ξ with P1η−P2η = P −Q and Piη denoting

the ith projection of η.

Proof. Part (i). For the proof we use Theorem 3.1. Therefore it suffices to verify the conditions of the

theorem for Γ(x, ξ) = ∂xf(x, ξ) and G(x) = NX(x). Conditions (a) and (c) of Theorem 3.1 are satisfied under

the assumption that f is locally Lipschitz continuous w.r.t. x with P -integrably Lipschitz constant and the

fact that the Clarke subdifferential ∂xf(x, ξ) is convex and compact and upper semi-continuous w.r.t. x for

every fixed ξ. Conditions (d) follows from condition (d’) and the fact that ∂EP [f(x, ξ)] ⊆ EP [∂xf(x, ξ)].

Part (ii). Analogous to the proofs of Theorem 3.1, we can derive

D(X(Q), X(P )) ≤ R−1
(
2 sup
x∈X

D(∂EQ[f(x, ξ)], ∂EP [f(x, ξ)])
)
.

In what follows, we use the notation FP (x) := EP [f(x, ξ)] and FQ(x) := EQ[f(x, ξ)], and estimate D∗ :=

supx∈X D(∂FQ(x), ∂FP (x)). By Hörmander’s theorem and the definition of the Clarke subdifferential,

D∗= sup
x∈X,∥u∥≤1

(σ(∂FQ(x), u)− σ(∂FP (x), u)

= sup
x∈X,∥u∥≤1

(
lim sup
x′→x,τ↓0

1

τ
(FQ(x

′ + τu)− FQ(x
′))− lim sup

x′→x,τ↓0

1

τ
(FP (x

′ + τu)− FP (x
′))
)

≤ sup
x∈X,∥u∥≤1

lim sup
x′→x,τ↓0

∣∣∣1
τ
(FQ(x

′ + τu)− FQ(x
′))− 1

τ
(FP (x

′ + τu)− FP (x
′))
∣∣∣

= sup
x∈X,∥u∥≤1

lim sup
x′→x,τ↓0

∣∣∣ ∫
Ξ

1

τ
(f(x′ + τu, ξ)− f(x′, ξ))d(Q− P )(ξ)

∣∣∣
≤ sup

x∈X,∥u∥≤1,τ∈(0,δ)

∣∣∣ ∫
Ξ

1

τ
(f(x+ τu, ξ)− f(x, ξ))d(Q− P )(ξ)

∣∣∣
≤ζh(P,Q).

Here, we used for the first estimate the fact that the inequality∣∣∣ lim sup
k→∞

ak − lim sup
k→∞

bk

∣∣∣ ≤ lim sup
k→∞

|ak − bk|
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holds for any bounded sequences {ak} and {bk}. For the final estimate we used the duality theorem [28,

Theorem 5.3.2] implying

ζh(P,Q) = sup
g∈Gh

∣∣∣ ∫
Ξ

g(ξ)d(P −Q)(ξ)
∣∣∣,

where the set Gh is defined by

Gh = {g : Ξ → IR : |g(ξ)− g(ξ̃)| ≤ h(∥ξ − ξ̃∥), ∀ξ, ξ̃ ∈ Ξ}

and the conditions imposed for h are needed for the validity of the duality theorem. The proof is complete.

Remark 4.2. If the integrand f(·, ξ) is Clarke regular on IRn for every ξ, i.e., in particular, if the

integrand is convex, the functions g = fo(x, ·;u) belong to the class Gh and, hence, we also obtain the

estimate

D(X̃(Q), X̃(P )) ≤ R̃−1(2ζh(Q,P ))

as a conclusion of part (i) of the previous theorem.

The Kantorovich-Rubinstein functional ζh(P,Q) is finite if the probability measures P and Q belong to the

set

Ph(Ξ) = {Q ∈ P(Ξ) :

∫
Ξ

h(∥ξ∥)dQ(ξ) < +∞}.

Note that ζh is a (so-called) simple distance on Ph(Ξ) (see [28, Section 3.2]) which means that (i) P = Q iff

ζh(P,Q) = 0, (ii) ζh(P,Q) = ζh(Q,P ), and (iii) ζh(P,Q) ≤ Kh(ζh(P, Q̃)+ζh(Q̃,Q)) for all P,Q, Q̃ ∈ Ph(Ξ),

where Kh is a positive constant depending on function h. An important special case is h(t) = tp with

p ≥ 1. In that case, one may deduce the Wasserstein metric of order p or Lp-minimal metric ℓp by setting

ℓp(P,Q) = (ζh(P,Q))
1
p with Ph(Ξ) being the set of all probability measures having finite pth order moments.

Alternatively, one might require in (4.5) that the term h(∥ξ − ξ̃∥) is replaced by

max{1, ∥ξ∥p−1, ∥ξ̃∥p−1}∥ξ − ξ̃∥

for some p ≥ 1. In that case the distance ζh is replaced by the pth order Fortet-Mourier metric ζp (see [28,

Section 5.1])) and Ph(Ξ) by the set of all probability measures having finite pth order moments.

In the case when f is convex w.r.t. x for almost every ξ, one can show that EQ[f(x, ξ)] converges to

EP [f(x, ξ)] uniformly over any compact of IRn as D(Q,P ) → 0. By Attouch’s theorem ([35, Theorem 12.35]),

which implies ∂EQ[f(·, ξ)] converges graphically to ∂EP [f(·, ξ)]. However, the graphical convergence does

not quantify the rate of convergence while Theorem 4.1 does.

Note that Liu et al [23] also investigated stability of problem (4.1) by looking into the impact on station-

ary points when P is approximated through a sequence of probability measures. Theorem 4.1 strengthens

[23, Theorem 5.3] by quantifying the rate of the approximation/convergence of the stationary points.

Note also that in the case when f(x, ξ) is continuously differentiable w.r.t. x for every ξ, the first order

optimality condition (4.2) coincides with (4.3). In that case, it is possible to explore metric regularity of

EP [∇xf(x, ξ)] +NX(x), see Corollary 3.3 and the following remarks. Subsequently, we may obtain a linear

bound for the inverse of the growth functions and hence establish linear bound for D(X(Q), X(P )).

4.2. Two-stage linear recourse problems. In what follows, we consider a linear two stage recourse

minimization problem:

min
x∈IRn

c⊤x+ EP [v(x, ξ)]

s.t. Ax = b, x ≥ 0,
(4.7)
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where v(x, ξ) is the optimal value function of the second stage problem

min
y∈IRm

q(ξ)⊤y

s.t. T (ξ)x+Wy = h(ξ), y ≥ 0,
(4.8)

whereW ∈ IRr×m is a fixed recourse matrix, T (ξ) ∈ IRr×n is a random matrix, and h(ξ) ∈ IRr and q(ξ) ∈ IRm

are random vectors. We assume that T (·), h(·) and q(·) are affine functions of ξ and that Ξ is a polyhedral

subset of IRs (for example, Ξ = IRs). If we consider the set X = {x ∈ IRn : Ax = b, x ≥ 0} and define the

integrand f by

f(x, ξ) = c⊤x+ v(x, ξ)

the linear two-stage model (4.7) is of the form of problem (4.1). Let

ϕP (x) = EP [v(x, ξ)].

By [43, Theorem 4.7], the domain of ϕP is a convex polyhedral subset of IRn and it holds

domϕP = {x ∈ IRn : h(ξ)− T (ξ)x ∈ posW, ∀ξ ∈ Ξ},

where “pos W” denotes the positive hull of the matrix W , that is, pos W := {Wy : y ≥ 0}. Next, we recall

some properties of v.

Lemma 4.3. Let M(q(ξ)) := {π ∈ IRr : W⊤π ≤ q(ξ)} be nonempty for every ξ ∈ Ξ. Then there exists

a constant L > 0 such that v satisfies the local Lipschitz continuity property

|v(x, ξ)− v(x̃, ξ̃)| ≤ L̂(max{1, ∥ξ∥, ∥ξ̃∥}2∥x̃− x∥+max{1, ∥x∥, ∥x̃∥}max{1, ∥ξ∥, ∥ξ̃∥}∥ξ̃ − ξ∥) (4.9)

for all pairs (x, ξ), (x̃, ξ̃) ∈ (X ∩ domϕP ) × Ξ and some constant L̂. Moreover, v(·, ξ) is convex for every

ξ ∈ Ξ.

Proof. v(x, ξ) is the optimal value of the linear program

min{b⊤y :Wy = a, y ≥ 0}, (4.10)

where a = a(x, ξ) = h(ξ)− T (ξ)x and b = b(ξ) = q(ξ). Let val(a, b) denote the optimal value of (4.10). It is

known from [42, 25] that the domain of val is a polyhedral cone in IRm × IRr and there exist finitely many

matrices Cj and polyhedral cones Kj , j = 1, . . . , ℓ, such that v and its domain allow the representation

dom(val) =
ℓ∪

j=1

Kj and val(a, b) = (Cja)
⊤b if (a, b) ∈ Kj .

Furthermore, it holds intKj ̸= ∅ and Kj ∩ Ki = ∅, i ̸= j, i, j = 1, . . . , ℓ. Hence, val satisfies the following

continuity property on its domain

|val(a, b)− val(ã, b̃)| ≤ L(max{1, ∥b∥, ∥b̃∥}∥a− ã∥+max{1, ∥a∥, ∥ã∥}∥b− b̃∥)

with some constant L > 0. Moreover, val(·, b) is convex for each b. Hence, the mapping x → v(x, ξ) =

val(h(ξ)− T (ξ)x, q(ξ)) is convex for each ξ ∈ Ξ. Furthermore, we obtain

|v(x, ξ)− v(x̃, ξ̃)| ≤ |v(x, ξ)− v(x̃, ξ)|+ |v(x̃, ξ)− v(x̃, ξ̃)|
≤ |val(h(ξ)− T (ξ)x, q(ξ))− val(h(ξ)− T (ξ)x̃, q(ξ))|

+|val(h(ξ)− T (ξ)x̃, q(ξ))− val(h(ξ̃)− T (ξ̃)x̃, q(ξ̃))|
≤ L(max{1, ∥q(ξ)∥, ∥q(ξ̃)∥}∥T (ξ)(x− x̃)∥

+max{1, ∥h(ξ)− T (ξ)x̃∥, ∥h(ξ̃)− T (ξ̃)x̃∥}∥q(ξ)− q(ξ̃∥)

Using that h, q and T are affine functions of ξ then leads to the desired estimate (4.9).
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For each x ∈ domϕP it follows from [38, Proposition 2.8] that

∂ϕP (x) = −EP [T (ξ)
⊤D(x, ξ)] +Ndom ϕP

(x), (4.11)

where ∂ denotes the usual convex subdifferential [34] and D(x, ξ) the solution set of the dual to (4.8), that

is,

D(x, ξ) := arg max
ζ∈M(q(ξ))

ζ⊤(h(ξ)− T (ξ)x).

The proposition below states an existence result and the first order optimality condition for the two-stage

minimization problem (4.7).

Proposition 4.4. Assume that X ∩ domϕP is nonempty and bounded, M(q(ξ)) is nonempty for

each ξ ∈ Ξ and P has finite second order moments, i.e., EP [∥ξ∥2] < ∞. Then there exists a minimizer

x∗ ∈ X ∩ domϕP of (4.7). Furthermore, x∗ ∈ X is a minimizer of (4.7) if and only if it satisfies the

generalized equations

0 ∈ EP [c− T (ξ)⊤D(x, ξ)] +NX∩domϕP
(x). (4.12)

Here, NX∩domϕP
(x) denotes the normal cone to the polyhedral set X ∩ domϕP .

Proof. Lemma 4.3 implies that EP [v(x, ξ)] is finite for every x ∈ X ∩ domϕP . Hence, the existence follows

from Weierstrass theorem and the first order optimality condition from [35, Theorem 8.15].

The polyhedral set domϕP may contain some induced constraints. If one assumes relatively complete

recourse, i.e., X ⊂ domϕP , the optimality condition (4.12) coincides with the one in [38, Theorem 2.11].

Our interest here is to apply the stability results of stochastic generalized equations in Section 3 to (4.12)

when the probability measure P is perturbed. To this end, we look at properties of the set-valued mapping

Γ given by

Γ(x, ξ) := c− T (ξ)⊤D(x, ξ) = c− T (ξ)⊤ arg max
W⊤ζ≤q(ξ)

ζ⊤(h(ξ)− T (ξ)x).

Proposition 4.5. Let D(x, ξ) be defined as above and assume that M(q(ξ)) is nonempty and bounded

for every ξ ∈ Ξ. Then Γ is locally upper Lipschitz continuous at any (x, ξ) in (X ∩ domϕP ) × Ξ and there

exists L̂ > 0 such that

Γ(x̃, ξ̃) ⊆ Γ(x, ξ) + L̂(max{1, ∥ξ∥, ∥ξ̃∥}3∥x̃− x∥+max{1, ∥x∥, ∥x̃∥}max{1, ∥ξ∥, ∥ξ̃∥}2∥ξ̃ − ξ∥)B

for all pairs (x, ξ), (x̃, ξ̃) ∈ (X ∩ domϕP )× Ξ. Here, B denotes the unit ball in IRn.

Proof. Let S(a, b) denote the dual solution set of (4.10). Since the objective function of the dual has linear

growth, the upper semi-continuity behavior of the solution set S is very similar to that of v (see (4.9)),

namely,

S(ã, b̃) ⊆ S(a, b) + L1(max{1, ∥b∥, ∥b̃∥}∥a− ã∥+max{1, ∥a∥, ∥ã∥}∥b− b̃∥)B

for some constant L1 > 0 and all pairs (a, b), (ã, b̃) ∈ dom(v). Since it holds D(x, ξ) = S(h(ξ)− T (ξ)x, q(ξ))

and h, q and T are affine functions of ξ, D is locally upper Lipschitz continuous at any pair (x, ξ) ∈
X ∩ domϕP × Ξ and it holds

D(x̃, ξ̃) ⊆ D(x, ξ) + L̂(max{1, ∥ξ∥, ∥ξ̃∥}2∥x̃− x∥+max{1, ∥x∥, ∥x̃∥}max{1, ∥ξ∥, ∥ξ̃∥}∥ξ̃ − ξ∥)B.

The result follows in a straightforward way from the local upper Lipschitz property of D.

We are ready to state our quantitative stability result for the solution set S(P ) of (4.7) if the probability

distribution P is perturbed by another probability distribution Q.
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Theorem 4.6. Assume that (a) relatively complete recourse is satisfied, (b) M(q(ξ)) = {π : W⊤π ≤
q(ξ)} is nonempty and bounded for every ξ ∈ Ξ, (c) P has finite second order moments, i.e., EP [∥ξ∥2] < +∞
and (d) X is nonempty and bounded. Then it holds for any probability measure Q such that D(Q,P ) is

sufficiently small

D(S(Q), S(P )) ≤ R−1(2D(Q,P )),

where the function R is defined by

R(ϵ) := inf
x∈X ,d(x,S(P ))≥ϵ

d(0,EP [Γ(x, ξ)] +NX(x)),

and the distance D is defined in Section 3.

Proof: We intend to apply Theorem 3.1 to the stochastic generalized equations

0 ∈ E[Γ(x, ξ)] +NX(x)

and check the corresponding assumptions. The set-valued mapping Γ takes convex polyhedral and compact

values according to condition (b) and is upper semi-continuous with respect to x for every fixed ξ ∈ Ξ

according to Proposition 4.6. The set D(x, ξ) is contained in M(q(ξ)), thus, it suffices to show that

κ(ξ) = ∥c∥+ ∥T (ξ)⊤∥µ(ξ) where ∥π∥ ≤ µ(ξ) ∀π ∈ M(q(ξ)) (4.13)

is P -integrable. The set-valued mapping M assigning to each q ∈ IRm the set M(q) has closed polyhedral

graph, hence, is Hausdorff Lipschitz continuous on its domain (say, with modulus LM ). Let ξ̄ be fixed in Ξ

and ξ ∈ Ξ be arbitrary. Then we have for any π ∈ M(q(ξ))

d(π,M(q(ξ̄))) ≤ LM∥ξ − ξ̄∥.

Hence, there exists π̄ ∈ M(q(ξ̄)) such that ∥π∥ ≤ ∥π̄∥+LM∥ξ − ξ̄∥. Since M(q(ξ̄)) is bounded, there exists

a constant C̄ such that, we may choose the function µ as µ(ξ) = C̄ + LM (∥ξ∥ + ∥ξ̄∥). We conclude that

the function κ given by (4.13) depends on ∥ξ∥ at most quadratically. Hence, κ is P -integrable according to

assumption (c). Finally, we note that the normal cone mapping NX is upper semi-continuous and S(Q) is

always nonempty due to the compactness of X and the fact the S(Q) is the solution set of the minimization

problem (4.8) with continuous objective function.

In order to compare the previous novel stability result for two-stage models with earlier ones, it is of

interest to characterize the distance D and the function RP in this particular case. While the function RP

depends intrinsically of the probability measure P , we may provide more insight of the distance D .

Proposition 4.7. Let the assumptions of the previous theorem be satisfied. Then the function class F

defined by (3.1) is contained in the function class

F = {g : Ξ → IR : g(x)− g(ξ̃) ≤ Cmax{1, ∥ξ∥, ∥ξ̃∥}2∥ξ − ξ̃∥,∀ξ, ξ̃ ∈ Ξ}

for some constant C > 0. Consequently, the estimate

D(P,Q) ≤ Cζ3(P,Q)

holds, where ζ3 denotes the third order Fortet-Mourier metric (see Remark 4.2).

Proof. Let u ∈ IRn with ∥u∥ ≤ 1, x ∈ X and ξ, ξ̃ ∈ Ξ. We consider g(ξ) = σ(Γ(x, ξ), u) and know from

Proposition 4.5 that

g(ξ)− g(ξ̃) = σ(Γ(x, ξ), u)− σ(Γ(x, ξ̃), u) ≤ D(Γ(x, ξ),Γ(x, ξ̃))
≤ L̂max{1, ∥x∥, ∥x̃∥}max{1, ∥ξ∥, ∥ξ̃∥}2∥ξ̃ − ξ∥.

Since X is bounded, we may choose the constant C such that L̂max{1, ∥x∥, ∥x̃∥} ≤ C for all x ∈ X.

Since the distance ζ3 is slightly stronger than the second order Fortet-Mourier metric ζ2, which appears

in the stability analysis for two-stage models in [36], Theorem 4.6 is slightly weaker than earlier ones.
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4.3. Two stage SMPEC. In this subsection, we consider application of the stability analysis es-

tablished in Section 3 to a two stage stochastic mathematical program with complementarity constraints

(SMPCC) defined as follows:

min
x, y(·)∈Y

EP [f(x, y(ω), ξ(ω))]

s.t. x ∈ X and for almost every ω ∈ Ω :

g(x, y(ω), ξ(ω)) ≤ 0,

h(x, y(ω), ξ(ω)) = 0,

0 ≤ G(x, y(ω), ξ(ω)) ⊥ H(x, y(ω), ξ(ω)) ≥ 0,

(4.14)

where X is a nonempty closed convex subset of IRn, f, g, h,G,H are continuously differentiable functions

from IRn × IRm × IRq to IR, IRs, IRr, IRm, IRm, respectively, ξ : Ω → Ξ is a vector of random variables defined

on probability (Ω,F , P ) with compact support set Ξ ⊂ IRq, and EP [·] denotes the expected value with

respect to probability measure P , and ‘⊥’ denotes the perpendicularity of two vectors, Y is a space of

functions y(·) : Ω → IRm such that EP [f(x, y(ω), ξ(ω))] is well defined. Stability analysis of problem (4.14)

has been discussed in [23] through NLP regularization. Our interest here is in a direct stability analysis on

the stationary point of the problem using the stochastic generalized equations scheme discussed in section 3.

Observe first that problem (4.14) can be written as

Pϑ : min
x

ϑ(x) = EP [v(x, ξ(ω))]

s.t. x ∈ X,

as long as EP [(v(x, ξ))+] < ∞ and EP [(−v(x, ξ))+] < ∞, where (a)+ = max(0, a) and v(x, ξ) denotes the

optimal value function of the following second stage problem:

MPCC(x, ξ) : min
y

f(x, y, ξ)

s.t. g(x, y, ξ) ≤ 0,

h(x, y, ξ) = 0,

0 ≤ G(x, y, ξ) ⊥ H(x, y, ξ) ≥ 0.

The reformulation is well-known in stochastic programming, see for example [37, Proposition 5, Chapter 1]

and a discussion in [39, Section 2] in the context of two stage SMPECs.

Define the Lagrangian function of the second stage problem MPCC(x, ξ):

L(x, y, ξ;α, β, u, v) := f(x, y, ξ) + g(x, y, ξ)⊤α+ h(x, y, ξ)⊤β −G(x, y, ξ)⊤u−H(x, y, ξ)⊤v.

We consider the following KKT conditions of MPCC(x, ξ):

0 = ∇yL(x, y, ξ;α, β, u, v),
y ∈ F(x, ξ),

0 ≤ α ⊥ −g(x, y, ξ) ≥ 0,

0 = ui, i /∈ IG(x, y, ξ),
0 = vi, i /∈ IH(x, y, ξ),

0 ≤ uivi, i ∈ IG(x, y, ξ) ∩ IH(x, y, ξ),

where F(x, ξ) denotes the feasible set of MPCC(x, ξ) and

IG(x, y, ξ) := {i |Gi(x, y, ξ) = 0, i = 1, · · · ,m},
IH(x, y, ξ) := {i |Hi(x, y, ξ) = 0, i = 1, · · · ,m}.

Let W(x, ξ) denote the set of KKT pairs (y;α, β, u, v) satisfying the above conditions for given (x, ξ) and

S(x, ξ) the corresponding set of stationary points, that is, S(x, ξ) = ΠyW(x, ξ). For each (y;α, β, u, v), y is

a C-stationary point of problem MPCC(x, ξ) and (α, β, u, v) the corresponding Lagrange multipliers. When

the stationary points are restricted to global minimizers, we denote the set of KKT pairs by W∗(x, ξ), i.e.,
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W∗(x, ξ) = {(y;α, β, u, v) ∈ W(x, ξ), y ∈ Ysol(x, ξ)}, where Ysol(x, ξ) denotes the set of optimal solutions of

MPCC(x, ξ).

Let (x∗, ξ) be fixed. Recall that MPCC(x∗, ξ) is said to satisfy MPEC-Mangasarian-Fromowitz Con-

straint Qualification (MPEC-MFCQ for short) at a feasible point y∗ if the gradient vectors

{∇yhi(x
∗, y∗, ξ)}i=1,··· ,r; {∇Gi(x

∗, y∗, ξ)}i∈IG(x∗,y∗,ξ); {∇Hi(x
∗, y∗, ξ)}i∈IH(x∗,y∗,ξ)

are linearly independent and there exists a vector d ∈ Rn perpendicular to the vectors such that

∇gi(x∗, y∗, ξ)⊤d < 0, ∀i ∈ Ig(x∗, y∗, ξ),

where

Ig(x∗, y∗, ξ) := {i |gi(x∗, y∗, ξ) = 0, i = 1, · · · , s}.

The following results are derived in [23].

Proposition 4.8. Let x∗ ∈ X. Suppose that there exist constants δ, t∗ > 0, a compact set Y ⊂ IRm

and a neighborhood U of x∗ such that

∅ ̸= {y : f(x, y, ξ) ≤ δ and y ∈ F(x, ξ)} ⊂ Y,

for all (x, ξ) ∈ U × Ξ. Suppose also that problem MPCC(x∗, ξ) satisfies MPEC-MFCQ at every point y in

solution set of MPCC(x∗, ξ), denoted by Ysol(x
∗, ξ). Then there exists a neighborhood U of x∗ such that

(i) v(·, ξ) is locally Lipschitz continuous on U ;

(ii) for any x ∈ U and ξ ∈ Ξ,

∂xv(x, ξ) ⊆ Φ(x, ξ),

and Φ(·, ·) is upper semi-continuous on U × Ξ, where

Φ(x, ξ) := conv

{ ∪
(y;α,β,u,v)∈W∗(x,ξ)

∇xL(x, y, ξ;α, β, u, v)
}
.

Using ∂xv(x, ξ) and Φ(x, ξ), we can define the weak KKT conditions of problem (4.14)

0 ∈ EP [∂xv(x, ξ)] +NX(x) (4.15)

and its relaxation

0 ∈ EP [Φ(x, ξ)] +NX(x). (4.16)

Both of the systems are stochastic generalized equations. If the probability measure P is perturbed by

another probability measure Q, the weak KKT conditions of problem (4.14) and its relaxation should be:

0 ∈ EQ[∂xv(x, ξ)] +NX(x) (4.17)

and

0 ∈ EQ[Φ(x, ξ)] +NX(x), (4.18)

respectively.

Theorem 4.9. Let vo(x, ξ;u) denote the Clarke generalized directional derivative of v(x, ξ) and for a

given nonzero vector u

F := {g : g(·) := vo(x, ·;u), forx ∈ X, ∥u∥ ≤ 1}.
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Let X̂(Q) and X̂(P ) denote the set of solutions of (4.17) and (4.15) respectively. Then

D(X̂(Q), X̂(P )) ≤ R̂−1(2D(Q,P )),

where R̂ is the growth function

R̂(ϵ) := inf
x∈X,d(x,X̂(P ))≥ϵ

d(0,EP [∂xv(x, ξ)] +NX(x))

and

D(Q,P ) := sup
g∈F

(
EQ[g(ξ)]− EP [g(ξ)]

)
.

Remark 4.10. The key condition in the conclusion (i) of Theorem 4.1 is the Lipschiz continuity of

v(x, ξ) which follows from Proposition 4.8. It is possible to derive a conclusion similar to Theorem 4.1 (ii).

To see this, it suffices to verify the existence of a non-decreasing continuous function h. To ease the technical

details, let us consider a special case of MPCC(x, ξ)

MPCC′(x, ξ) : min
y

f(x, y, ξ)

s.t. 0 ≤ y ⊥ H(x, y, ξ) ≥ 0,

where H is uniformly strongly monotone w.r.t. y, that is, there exists a positive constant C1 > 0 such

that ∥∇yH(x, y, ξ)−1∥ ≤ C1 for all x, y, ξ. By [44, Theorem 2.3], the complementarity inequality constraint

defines a unique feasible solution y(x, ξ) which is piecewise smooth provided H is smooth w.r.t. x and ξ.

Moreover, if H is uniformly globally Lipschitz continuous w.r.t. ξ, then y(x, ξ) is also uniformly globally

Lipschitz continuous w.r.t. ξ. Assuming that f(x, y, ξ) is continuously differentiable and uniformly globally

Lipschitz continuous w.r.t. y and ξ, then

v(x, ξ) = f(x, y(x, ξ), ξ)

is also piecewise continuously differentiable and uniformly globally Lipschitz continuous w.r.t. ξ. Denote the

Lipschitz modulus of y(x, ·) and f(x, ·, ·) by L1 and L2 respectively. Then

|v(x, ξ)− v(x, ξ′)| = |f(x, y(x, ξ), ξ)− f(x, y(x, ξ′), ξ′)|
≤ L2(∥y(x, ξ)− y(x, ξ′)∥+ ∥ξ − ξ′∥)
≤ L2(L1 + 1)∥ξ − ξ′∥.

Let L := 2L2(L1 + 1) and h(t) := Lt. Then

sup
x∈X

sup
τ∈(0,δ)

sup
∥u∥≤1

∣∣∣1
τ
(v(x+ τu, ξ)− v(x, ξ))− 1

τ
(v(x+ τu, ξ̂)− v(x, ξ̂))

∣∣∣ ≤ h(∥ξ − ξ̂∥)

which means (4.5).

5. Stochastic semi-infinite programming. In this section, we discuss application of our perturba-

tion theory developed in Section 3 to a class of nonsmooth stochastic semi-infinite programming problem

defined as follows:

min
x

EP [f(x, ξ)]

s.t. EP [(η −G(x, ξ))+] ≤ EP [(η − Y (ξ))+], ∀η ∈ [a, b],

x ∈ X,

(5.1)

where X is a closed convex subset in IRn, f,G : IRn × IRq → IR are continuously differentiable functions,

Y : IRq → IR is a continuous function, ξ : Ω → Ξ is a vector of random variables defined on probability

(Ω,F , P ) with support set Ξ ⊂ IRq, EP [·] denotes the expected value with respect to probability measure P ,

and [a, b] is a closed interval in IR.
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Problem (5.1) is a key intermediate formulation in the subject of stochastic programs with second

order dominance constraints. For the detailed discussions of the latter, see [11, 12, 13] and the references

therein. Liu and Xu [22] studied stability of optimal value and optimal solutions of (5.1) through exact

penalization. They also investigated approximation of stationary points of the penalized problem when the

latter is approximated by empirical probability measure (Monte Carlo sampling). However, there is a gap

between the stationary point of (5.1) and its penalized problem: a stationary point of the latter is not

necessarily that of the former.

Our focus here is to carry out stability analysis of the stationary point of (5.1) directly rather than

through its penalized problem. Moreover, we consider a general probability measure approximation to P

rather than restricted to empirical probability measure approximation. Specifically if the probability measure

Q is a perturbation of P , we would like to analyze the approximation of the stationary points of the following

perturbed problem

min
x

EQ[f(x, ξ)]

s.t. EQ[(η −G(x, ξ))+] ≤ EQ[(η − Y (ξ))+], ∀η ∈ [a, b],

x ∈ X,

(5.2)

as Q tends to P . To this end, we need to consider the first order optimality conditions of the problems.

For the simplicity of notation, let

H(x, η, ξ) := (η −G(x, ξ))+ − (η − Y (ξ))+.

It is easy to observe: (a) H(x, η, ξ) is globally Lipschitz continuous in η uniformly w.r.t. x and ξ, (b)

H(x, η, ξ) is Lipschitz continuous w.r.t. x if G(x, ξ) is so and they have the same Lipschitz modulus.

Recall that the Bouligrand tangent cone to a set X ⊂ IRn at a point x ∈ X is defined as follows:

TX(x) := {h ∈ IRn : d(x+ th,X) = o(t), t ≥ 0}.

The normal cone to X at x, denoted by NX(x), is defined as the polar of the tangent cone:

NX(x) := {h ∈ IRn : ζ⊤h ≤ 0, ∀h ∈ TX(x)}

and NX(x) = ∅ if x ̸∈ X.

Definition 5.1. Problem (5.2) is said to satisfy differential constraint qualification at a point x0 ∈ X

if there exist a feasible point xs and a constant δ > 0 such that∑
ζ∈∂xEP [H(x,η,ξ)]

ζ⊤(xs − x0) ≤ −δ

for all η ∈ I(x0), where I(x0) := {η : EP [H(x, η, ξ)] = 0, η ∈ [a, b]} and ∂xEP [H(x, η, ξ)] denotes the Clarke

subdifferential of EP [H(x, η, ξ)] w.r.t. x.

The constraint qualification was introduced by Dentcheva and Ruszczyński in [13]. Under the condition,

they derived the following first order optimality conditions of (5.1) in terms of Clarke subdifferentials.

Let x∗ ∈ X be a local optimal solution of the true problem (5.1) and assume that the differential

constraint qualification is satisfied at x∗. Then there exists µ∗ ∈ M+([a, b]) such that (x∗, µ∗) satisfies the

following: 
0 ∈ ∇EP [f(x, ξ)] +

∫ b

a
EP [∂xH(x, η, ξ)]µ(dη) +NX(x),

EP [H(x, η, ξ]) ≤ 0, ∀η ∈ [a, b],∫ b

a
EP [H(x, η, ξ)]µ(dη) = 0,

(5.3)

where M+([a, b]) is the set of positive measures in the the space of regular countably additive measures

on [a, b] having finite variation, see [4, Example 2.63], [11] the references therein; ∂xH(x, η, ξ) denotes the
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Clarke subdifferential of H w.r.t. x, that is,

∂xH(x, η, ξ) :=


{0} if G(x, ξ) > η,

conv{0,−∇xG(x, ξ)} if G(x, ξ) = η,

{−∇xG(x, ξ)} if G(x, ξ) < η,

and the mathematical expectation/integeral of the subdifferential (w.r.t. the distribution of ξ and µ(·)) is

taken in the sense of Aumann. We call a tuple (x∗, µ∗) a KKT pair of problem (5.1), x∗ a Clarke stationary

point and µ∗ the corresponding Lagrange multiplier.

Under the similar condition, we can derive the first order optimality conditions of the perturbed problem

(5.2) as follows: 
0 ∈ ∇EQ[f(x, ξ)] +

∫ b

a
EQ[∂xH(x, η, ξ)]µ(dη) +NX(x),

EQ[H(x, η, ξ)] ≤ 0, ∀η ∈ [a, b],∫ b

a
EQ[H(x, η, ξ)]µ(dη) = 0.

(5.4)

Our aim in this section is to investigate the approximation of the stationary points defined by (5.4) to

those of (5.3) as Q approximates P . To this end, we reformulate the optimality conditions as a system of

stochastic generalized equations so that we can apply Theorem 3.1. Since G(x, ξ) is Lipschitz continuous

in (x, ξ) and the modulus in x is bounded by a positive constant L1, H(x, η, ξ) is Lipschitz continuous in

(x, η, ξ). Then by [45, Proposition 2.1], ∂xH(x, η, ξ) is measurable with respect to η, ξ. Moreover ∂xH(x, η, ξ)

is bounded by L1. By invoking Proposition 2.6, we have∫ b

a

EP [∂xH(x, η, ξ)]µ(dη) = EP

[∫ b

a

∂xH(x, η, ξ)µ(dη)

]
.

Let

Γ(x, µ, ξ) :=

 ∇xf(x, ξ) +
∫ b

a
∂xH(x, η, ξ)µ(dη)

H(x, η, ξ) : η ∈ [a, b]∫ b

a
H(x, η, ξ)µ(dη)


and

G(x, µ) :=

 NX(x)

C+([a, b])

0

 . (5.5)

To simplify the notation, let z := (x, µ). Then we can reformulate the KKT conditions (5.3) as the following

stochastic generalized equations

0 ∈ EP [Γ(z, ξ)] + G(z), (5.6)

where the norm in space C ([a, b]) is ∥ · ∥∞. Obviously (5.6) falls into the framework of the stochastic gener-

alized equations (1.1). Likewise, we can reformulate the KKT conditions (5.4) as the stochastic generalized

equations

0 ∈ EQ[Γ(z, ξ)] + G(z). (5.7)

In what follows, we investigate the approximation of the set of solutions of (5.7) to that of (5.6) as Q→ P .

We need to introduce some new notation. Let Z denote a compact subset of X × M+([a, b]),

F := {g(ξ) : g(ξ) := σ(Γ(z, ξ), u), for z ∈ Z, ∥u∥ ≤ 1}.

Let

DS(Q,P ) := sup
g(ξ)∈F

(
EQ[g(ξ)]− EP [g(ξ)]

)
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and

HS(Q,P ) := max
(
DS(Q,P ),DS(P,Q)

)
.

Let S̃(P ) and S̃(Q) denote respectively the set of stationary points of problems (5.1) and (5.2), or equivalently

the set of solutions of generalized equations (5.6) and (5.7). Let S(P ) := S̃(P ) ∩ Z and S(Q) := S̃(Q) ∩ Z.

We are now ready to study the relationship between S(Q) and S(P ), that is, the stability of stationary

points.

Theorem 5.2. Consider the stochastic generalized equations (5.6) and its perturbation (5.7). Assume:

(a’) G(x, ξ) is Lipschitz continuous in x for every ξ with modulus L1 (independent of x and ξ), (b’) |G(x, ξ)|
is bounded by a positive constant L2 (independent of x and ξ), (c’) f(x, ξ) is Lipschitz continuous in x

for every ξ and the Lipschitz modulus is bounded by an integrable function κ(ξ), (d’) S(P ) and S(Q) are

nonempty. Then the conclusions (i)-(iii) of Theorem 3.1 hold for S(P ) and S(Q).

Proof. The thrust of the proof is to apply Theorem 3.1 to generalized equations (5.6) and its perturbation

(5.7), taking into account Remark 3.4 as the single valued components of Γ is infinite dimensional. To this

end, we verify hypotheses of Theorem 3.1. Note that hypothesis (c) is satisfied as G(·) (defined by (5.5)) is

upper semi-continuous, while (d) coincides with (d’). Therefore we are left to verify (a) and (b).

Observe first that ∂xH(x, η, ξ) is convex and compact valued (bounded by L1) and by [3, Theorems 1

and 4] of Aumann’s integral,
∫ b

a
∂xH(x, η, ξ)µ(dη) is also compact and convex set-valued. Since the other

components of Γ(x, µ, ξ) are single valued, this shows Γ is convex and compact valued and hence verifies (a).

In what follows, we verify (b), that is, upper semi-continuity of Γ(x, µ, ξ) with respect to (x, µ) and its

integrable boundedness. Let us look into the third component
∫ b

a
H(x, η, ξ)µ(dη). Under condition (b’), i.e.,

the boundedness of G(x, ξ), it is easy to see that H(x, η, ξ) is also bounded (by L2). Moreover, since the

Lebesgue measure µ(·) is bounded, then
∫ b

a
H(x, η, ξ)µ(dη) is continuous w.r.t. (x, µ).

Let us now consider the second component of Γ(x, µ, ξ), that is, the functional H(x, ·, ξ) defined on

interval [a, b] w.r.t. x. By the definition

∥H(x, ·, ξ)−H(x′, ·, ξ)∥∞ = sup
η∈[a,b]

∥(η −G(x, ξ))+ − (η −G(x′, ξ))+∥

≤ |G(x, ξ)−G(x′, ξ)| ≤ κ(ξ)∥x− x′∥,

which implies the continuity of H(x, ·, ξ) w.r.t. x.

Finally, we consider the first component of Γ(x, µ, ξ), that is,∇xf(x, ξ)+
∫ b

a
∂xH(x, η, ξ)µ(dη). Since f is

assumed to be continuously differentiable, it suffices to verify the upper semi-continuity of
∫ b

a
∂xH(x, η, ξ)µ(dη)

w.r.t. (x, µ). Using property of D, we have

D

(∫ b

a

∂xH(x′, η, ξ)µ′(dη),

∫ b

a

∂xH(x, η, ξ)µ(dη)

)

≤ D

(∫ b

a

∂xH(x′, η, ξ)µ′(dη),

∫ b

a

∂xH(x, η, ξ)µ′(dη)

)

+D

(∫ b

a

∂xH(x, η, ξ)µ′(dη),

∫ b

a

∂xH(x, η, ξ)µ(dη)

)
.

Since ∂xH(x, η, ξ) is convex and compact set-valued, by Hörmander’s theorem and [27, Proposition 3.4]

D

(∫ b

a

∂xH(x′, η, ξ)µ′(dη),

∫ b

a

∂xH(x, η, ξ)µ′(dη)

)

= sup
∥u∥≤1

(∫ b

a

[σ(∂xH(x′, η, ξ), u)− σ(∂xH(x, η, ξ), u)]µ′(dη)

)
.
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It is easy to verify that ∂xH(x′, η, ξ) is upper semi-continuous in x for every fixed η and ξ and it is bounded

by ∥∇xG(x, ξ)∥ which is integrably bounded by assumption.

By [3, Corollary 5.2],

lim
x′→x

∫ b

a

∂xH(x′, η, ξ)µ′(dη) ⊆
∫ b

a

∂xH(x, η, ξ)µ′(dη)

which implies

lim
x′→x

σ

(∫ b

a

∂xH(x′, η, ξ)µ′(dη), u

)
≤ σ

(∫ b

a

∂xH(x, η, ξ)µ′(dη), u

)

for any u with ∥u∥ ≤ 1. Through [27, Proposition 3.4], the latter inequality can be written as

lim
x′→x

∫ b

a

σ(∂xH(x′, η, ξ), u)µ′(dη) ≤
∫ b

a

σ(∂xH(x, η, ξ), u)µ′(dη). (5.8)

Let xk → x and uk be such that ∥uk∥ ≤ 1 and

sup
∥u∥≤1

(∫ b

a

[σ(∂xH(xk, η, ξ), u)− σ(∂xH(x, η, ξ), u)]µ′(dη)

)

=

∫ b

a

[σ(∂xH(xk, η, ξ), uk)− σ(∂xH(x, η, ξ), uk)]µ
′(dη).

Assume by taking a subsequence if necessary that uk → u. Using the continuity of the support function

w.r.t. u and the inequality (5.8), we obtain from

lim
k→∞

∫ b

a

[σ(∂xH(xk, η, ξ), uk)− σ(∂xH(x, η, ξ), uk)]µ
′(dη) ≤ 0.

Since xk is arbitrary, this implies

lim
x′→x

sup
∥u∥≤1

(∫ b

a

[σ(∂xH(x′, η, ξ), u)− σ(∂xH(x, η, ξ), u)]µ′(dη)

)
≤ 0.

On the other hand, it follows by [23, Lemma 5.1]

D

(∫ b

a

∂xH(x, η, ξ)µ′(dη),

∫ b

a

∂xH(x, η, ξ)µ(dη)

)
→ 0

as µ′ → µ. The discussions above show that
∫ b

a
∂xH(x, η, ξ)µ(dη) is upper semi-continuous w.r.t. (x, µ).

To complete the verification of (b), we need to show the integrable boundedness of Γ(x, µ, ξ). It is easy

to observe that ∂xH(x, η, ξ) is bounded by L1 and hence
∫ b

a
∂xH(x, η, ξ)µ(dη) is bounded by L1µ([a, b]). The

boundedness of G(x, ξ) by L2 implies the same boundedness of ∥H(x, ·, ξ)∥∞ and
∫ b

a
H(x, η, ξ)µ(dη). To-

gether with the boundedness of ∇xf(x, ξ) (by an integrable κ(ξ)), we have shown that Γ(x, µ, ξ) is integrably

bounded. The proof is complete.

Note that condition (d’) implicitly assumes that the Lagrange multipliers of problems (5.1) and (5.2)

are bounded at some stationary points. A sufficient condition for this is that the problems satisfy certain

constraint qualifications. The issue has been investigated by Sun and Xu in [40, Section 3], we refer interested

readers to [40, Proposition 3.1].
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