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Abstract We study the quantitative stability of the solution sets, optimal value and
M-stationary points of one stage stochastic mathematical programs with comple-
mentarity constraints when the underlying probability measure varies in some metric
probability space. We show under moderate conditions that the optimal solution set
mapping is upper semi-continuous and the optimal value function is Lipschitz contin-
uous with respect to probability measure. We also show that the set of M-stationary
points as a mapping is upper semi-continuous with respect to the variation of the
probability measure. A particular focus is given to empirical probability measure
approximation which is also known as sample average approximation (SAA). It is
shown that optimal value and M-stationary points of SAA programs converge to their
true counterparts with probability one (w.p.1.) at exponential rate as the sample size
increases.
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1 Introduction

Mathematical programs with equilibrium constraints (MPECs) is an important class
of optimization problems arising frequently in applications such as engineering de-
sign, economic equilibrium and multilevel game [1, 2]. In practice, MPECs often
involve some stochastic data, and this motivates one to consider stochastic MPECs
(SMPECs). Since the first paper on SMPEC by Patriksson and Wynter [3], many re-
searchers have paid attention to the class of optimization problems; see for example
[4–9].

In this paper, we consider a one stage SMPEC where the underlying functions in
the objective and constraints are expected value of some random functions. Birbil
et al. [4] apparently first considered the problem and proposed a sample-path opti-
mization method for solving the problem. They investigated convergence of optimal
solutions and stationary points when the underlying functions are approximated by a
sample-path based simulation. Lin et al. [5] proposed a smoothing penalty function
method for solving the one stage SMPEC, where the complementarity constraints are
reformulated as a system of non-smooth equations and then smoothed and penalized
to the objective. The well-known Monte Carlo and quasi-Monte Carlo methods were
subsequently used to approximate the expected value of the underlying random func-
tions and almost sure convergence of optimal values and B-stationary points were
obtained. The model was further studied by Meng and Xu [7], who demonstrated
exponential rate convergence of weak stationary points obtained from solving the
SAA problem and presented some numerical results based on the well-known NLP-
regularization method [10]. A detailed convergence analysis of the latter (SAA com-
bined with NLP-regularization) was given by Liu and Lin [6].

Our focus here is on the stability analysis of the one stage SMPEC. Specifically,
we look into change of optimal values, optimal solutions and stationary points as the
underlying probability measure varies under some appropriate metric. This kind re-
search is numerically motivated in that, in practice, due to lack of complete informa-
tion of the distribution of the random variables, it is often difficult to obtain a closed
form of the expected values of the random function in the objective and constraints
and subsequently numerical schemes are proposed to approximate the expected val-
ues. The stability analysis in this paper may provide a unified theoretical framework
for various numerical approximation schemes of the expected values of the underly-
ing functions in the SMPEC. Indeed, such a stability analysis has been well-known
for classical stochastic programs with equality and/or inequality constraints although
it is new for SMPEC; see for instance [11–13] and [14] for the recent development
when this kind of stability analysis is applied to stochastic mathematical programs
with dominance constraints.

An interesting question is: instead of applying the existing stability results in [12,
13], why should we carry out a separate analysis? To answer this question, we need to
point out the fundamental difference between SMPEC and classical stochastic pro-
gramming problems: reformulating the complementarity constraints as a system of
equality or inequalities does not guarantee certain constraint qualifications [15, 16]
(such as LICQ, MFCQ) which are often needed for stability analysis.

This motivates us to undertake an independent stability analysis. Our key approach
is to use an error bound of the feasible set and Klatte’s earlier stability result on an
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abstract parametric nonlinear programming [17, 18] to derive the Lipschitz continuity
of optimal values and semi-continuity of optimal solutions of the problem. Moreover,
by exploiting a recent breakthrough in reformulation of MPEC first order optimality
conditions [19], we extend our stability analysis to stationary points, particularly the
M-stationary point. As a particular case, we examine the asymptotic convergence of
stationary points under empirical probability measure approximation.

The rest of the paper are organized as follows. In Sect. 2, we present some basic
definitions. In Sect. 3, we study the stability of optimal solutions, optimal values and
stationary points with respect to the probability measure. In Sect. 4, we focus on the
empirical probability measure case. Finally a brief conclusion is given in Sect. 5.

2 Preliminaries

Throughout this paper, we use the following notation. For vectors a, b ∈ R
n, aT b

denotes the scalar product, ‖ · ‖ denotes the Euclidean norm of a vector, B denotes
the closed unit ball in the respective space. d(z, D) := infz′∈D ‖z − z′‖ denotes the
distance from a point z to a set D. For two bounded sets C and D,

distV(C, D) := sup
z∈C

d(x, D)

denotes the deviation of C from D and distH(C, D) := max(distV(C, D),distV(D, C))

denotes the Hausdorff distance between C and D. Moreover, C + D denotes the
Minkowski addition of the two sets, that is,

{C + D : C ∈ C,D ∈ D}.
For a real-valued differentiable function g(z), we use ∇g(z) to denote the trans-
pose of Jacobian of g at point z. Finally, for a set {(x, y) = z : z ∈ Z}, ΠxZ =
{x : ∃y such that (x, y) ∈ Z}.

Definition 2.1 [20] Let C be a nonempty subset of R
n. The mapping F : R

n → R
n

is said to be a uniform P-function over set C iff, for some γ > 0,

max
1≤i≤n

[
Fi(x) − Fi(y)

]
(xi − yi) ≥ γ ‖x − y‖2, ∀x, y ∈ C.

Let X,Y be finite dimensional spaces and T : X ⇒ Y be a set-valued mapping.
Let (x̄, ȳ) ∈ gph T , the graph of T . T is said to be metrically regular at x̄ for ȳ iff
there exist constants κ > 0, δ > 0 such that

d
(
x,T −1(y)

) ≤ κd
(
y,T (x)

)
, ∀(x, y) ∈ (x̄, ȳ) + δB.

It is said to be upper semi-continuous at x in the sense of Berge iff for any ε > 0,
there exists a number δ > 0 such that

T (x′) ⊆ T (x) + εB, ∀x′ ∈ x + δB.
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It is said to be Lipschitz continuous at x iff there exist a constant L and a neighbor-
hood Ux of x such that

distH
(
T (x′), T (x′′)

) ≤ L‖x′ − x′′‖, ∀x′, x′′ ∈ Ux.

See [21] for more details of set-valued mapping.
Consider the standard MPEC:

min f (z)

s.t. z ∈ Z,

0 ≤ g(z) ⊥ h(z) ≥ 0,

(1)

where Z is a nonempty, closed and convex subset of R
n, f : R

n → R, g : R
n → R

m,
h : R

n → R
m are continuously differentiable functions.

Definition 2.2 [22] A feasible point z∗ is said to be a weak stationary point of (1) iff
there exist Lagrangian multiplier vectors u∗, v∗ ∈ R

m such that

0 ∈ ∇f (z∗) − ∇g(z∗)u∗ − ∇h(z∗)v∗ + NZ(z∗),

u∗
i = 0, i /∈ Ig(z

∗),

v∗
i = 0, i /∈ Ih(z

∗),

where

Ig(z
∗) := {

i : gi(z
∗) = 0, i = 1, . . . ,m

}
,

Ih(z
∗) := {

i : h(z∗) = 0, i = 1, . . . ,m
}
.

Moreover,

• z∗ is called Clarke (C-) stationary to (1) iff u∗
i v

∗
i ≥ 0 holds for each i ∈ Ig(z

∗) ∩
Ih(z

∗);
• z∗ is called Mordukhvich (M-) stationary to (1) iff min(u∗

i , v
∗
i ) > 0 or u∗

i v
∗
i = 0

holds for each i ∈ Ig(z
∗) ∩ Ih(z

∗);
• z∗ is called Strong (S-) stationary to (1) iff u∗

i ≥ 0 and v∗
i ≥ 0 holds for each

i ∈ Ig(z
∗) ∩ Ih(z

∗).

3 Sensitivity Analysis

We consider the following one stage SMPEC[4]:

min EP

[
f

(
z, ξ(ω)

)]

s.t. z ∈ Z,

0 ≤ EP

[
G

(
z, ξ(ω)

)] ⊥ EP

[
H

(
z, ξ(ω)

)] ≥ 0,

(2)

where Z is a nonempty, closed and convex subset of R
n, f , G and H are, respec-

tively, continuously differentiable functions from R
n ×R

q to R,R
m,R

m, ξ : Ω → Ξ
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is a vector of random variables defined on probability (Ω, F ,P ) with support set
Ξ ⊂ R

q , and EP [·] denotes the expected value with respect to probability measure
P , and ‘⊥’ denotes the perpendicularity of two vectors.

Let P (Ω) denote the set of all Borel probability measures. Assuming that Q ∈
P (Ω) is close to P under some metric (to be defined shortly), we investigate in this
section the following optimization problem:

min EQ

[
f

(
z, ξ(ω)

)]

s.t. z ∈ Z,

0 ≤ EQ

[
G

(
z, ξ(ω)

)] ⊥ EQ

[
H

(
z, ξ(ω)

)] ≥ 0,

(3)

which is regarded as a perturbation of (2). Specifically, we study the relationship
between the perturbed problem (3) and initial problem (2) in terms of optimal values,
optimal solutions and stationary points when Q is close to P . To simplify notation
and discussion, we assume throughout this paper that Z is bounded and the feasible
set of (3) is nonempty. Our results can be easily extended to the case when Z is
unbounded.

Let us start by introducing a distance function for the set P (Ω), which is appro-
priate for our problem. Define the set of functions:

G := {
g(·) = f (z, ·) : z ∈ Z,

} ∪ {
g(·) = Gi(z, ·) : z ∈ Z, i = 1, . . . ,m

}

∪ {
g(·) = Hi(z, ·) : z ∈ Z, i = 1, . . . ,m

}
.

The distance function for the elements in set P (Ω) is defined by

D(P,Q) := sup
g∈G

∣∣EP [g] − EQ[g]∣∣.

This type of distance was introduced by Römisch [13, Sect. 2.2] for the stability anal-
ysis of stochastic programming and was called pseudo metric. It is well-known that
D is non-negative, symmetric and satisfies the triangle inequality; see [13, Sect. 2.1].
Throughout this section, we use the following notation:

F (Q) := {
z ∈ Z : 0 ≤ EQ

[
G

(
z, ξ(ω)

)] ⊥ EQ

[
H

(
z, ξ(ω)

)] ≥ 0
}
,

ϑ(Q) := inf
{
EQ

[
f (z, ξ)

] : z ∈ F (Q)
}
,

Sopt(Q) := {
z ∈ F (Q) : ϑ(Q) = EQ

[
f (z, ξ)

]}
,

PG(Ω) :=
{
Q ∈ P (Ω) : −∞ < inf

g(ξ)∈G
EQ

[
g(ξ)

]
and inf

g(ξ)∈G
EQ

[
g(ξ)

]
< ∞

}
.

It is easy to observe that, for P,Q ∈ PG(Ω), D(P,Q) < ∞.
In what follows, we use Klatte’s stability results [17, 18] to derive the Lipschitz

property of optimal value function and semi-continuity of the set-valued mapping
of optimal solution. A sufficient condition for Klatte’s result is the pseudo-Lipschitz
continuity of the feasible set mapping F (·) at every point of z ∈ F (P ), that is, there
exist a positive number β∗, a neighborhood U∗ of P and a neighborhood Z∗ of z

such that

distV
(

F (Q1) ∩ Z∗, F (Q2)
) ≤ β∗D(Q1,Q2), ∀Q1,Q2 ∈ U∗.
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The property is also known as Aubin property; see [21]. To this end, we make the
following assumptions.

Assumption 3.1 There exists a neighborhood UP of P and there exist positive con-
stants β and δ such that for any Q ∈ UP and z ∈ Z ∩ B(F (Q), δ)

d
(
z, F (Q)

) ≤ β
∥∥min

{
EQ

[
G(z, ξ)

]
,EQ

[
H(z, ξ)

]}∥∥, (4)

where B(S, δ) denotes the δ neighborhood of set S.

Assumption 3.2 There exists a neighborhood UP of P and there exist positive con-
stants β and δ such that for any Q ∈ UP and z ∈ Z ∩ B(F (Q), δ)

d
(
z, F (Q)

)

≤ β
∥∥(−EQ

[
G(z, ξ)

]
,−EQ

[
H(z, ξ)

]
,EQ

[
G(z, ξ)

] ◦ EQ

[
H(z, ξ)

])
+
∥∥, (5)

where (a)+ := max{a,0} for a vector “a” and the maximum is taken componentwise
and “◦” denotes the Hadamard product.

In the literature [23, 24], the inequality (4) is known as natural type error bound
whereas inequality (5) is known as S-type error bound of the complementarity con-
straint. In the case when EQ[G(z, ξ)] := z, EQ[F(z, ξ)] is a Lipschiz continuous,
uniform P-function with the Lipschiz modulus LQ being upper bounded by a pos-
itive constant L, and the constant γQ (see Definition 2.1) being lower bounded by
γ > 0 over UP , Assumption 3.1 holds with β = 1+L

γ
, that is,

d
(
z, F (Q)

) ≤ 1 + L

γ

∥∥min
{
EQ

[
G(z, ξ)

]
,EQ

[
H(z, ξ)

]}∥∥, Q ∈ UP .

See [20, 25, 26] for a more detailed discussion of natural type error bound. S-type
error bound is often related to monotone complementary problems. Let E[G(z, ξ)] :=
z, and H(z, ξ) := A(ξ)z. If for all Q ∈ UP , EQ[A(ξ)] is a semi-definite matrix and
0 ≤ z ⊥ EQ[H(z, ξ)] ≥ 0 has a non-degenerate solution, then there exists a constant
βQ > 0 such that (5) hold. If βQ is upper bounded by β , then Assumption 3.2 holds.
Moreover, if (5) is replaced by the following S-type error bound:

d(z, F (Q))

≤ β
(∥∥(−EQ

[
G(z, ξ)

]
,−EQ

[
H(z, ξ)

]
,EQ

[
G(z, ξ)

] ◦ EQ

[
H(z, ξ)

])
+
∥∥

+
√∥∥(−EQ

[
G(z, ξ)

]
,−EQ

[
H(z, ξ)

]
,EQ

[
G(z, ξ)

] ◦ EQ

[
H(z, ξ)

])
+
∥∥
)
, (6)

then we can abandon the non-degenerate condition. For more information of the S-
type error bound; see [24, 27–30]. We refer readers interested in the topic to mono-
graph [31] and a survey paper by Pang [23] on error bound of variational inequalities
and complementarity problems.
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3.1 Stability of Optimal Value and Optimal Solution

With preparations in the preceding subsection, we are now ready to investigate the
stability of SMPEC (2). The proposition below establishes the Lipschitz continuity
of the feasible set mapping F (Q) under Assumption 3.1 or Assumption 3.2.

Proposition 3.1 Let Assumption 3.1 or Assumption 3.2 hold. Suppose that there exist
a neighborhood ŨP of P and a non-negative function κ(ξ) such that max(‖G(z, ξ)‖,
‖H(z, ξ)‖) ≤ κ(ξ) and EQ[κ(ξ)] < ∞ for Q ∈ ŨP and z ∈ Z. Then the following
assertions hold:

(i) the solution set Sopt(P ) is nonempty and compact;
(ii) the graph of the feasible set mapping F (·) is closed;

(iii) there exist a neighborhood U∗ of P and a positive constant β∗ such that the
feasible set mapping F (Q) is Lipschitz continuous with modulus β∗ on U∗, that
is,

distH
(

F (Q1), F (Q2)
) ≤ β∗D(Q1,Q2), ∀Q1,Q2 ∈ U∗.

Proof We first prove the theorem under Assumption 3.1.
Part (i) follows from the continuity of EP [f (z, ξ)], EP [G(z, ξ)] and EP [H(z, ξ)]

on Z and compactness of Z.
Part (ii). Note that the constraints of (3) can be reformulated as generalized equa-

tions:

0 ∈ ΓQ(z) := −ΨQ(z) + N × Z,

where

ΨQ(z) :=
⎛

⎝
EQ[G(z, ξ)]
EQ[H(z, ξ)]

z

⎞

⎠

and

N := {
(x, y) : 0 ≤ x ⊥ y ≥ 0, x ∈ R

m, y ∈ R
m
}
.

By virtue of [32, Lemma 4.2], we can easily prove that the feasible set mapping F (·),
as the solution set mapping to the generalized equations, is upper semi-continuous
and the compactness of Z restrict the set-valued mapping to be bounded. This implies
the closeness of the graph of F (·).

Part (iii). Let the neighborhood UP and δ be given as in Assumption 3.1. By [32,
Lemma 4.2], there exists a neighborhood U of P such that for Q ∈ U

distH
(

F (Q), F (P )
) ≤ δ/2.

Let U∗ = U ∩ UP ∩ ŨP and Q1,Q2 ∈ U∗. Observe that for any z ∈ F (Q1),

∥∥min
{
EQ1

[
G(z, ξ)

]
,EQ1

[
H(z, ξ)

]}∥∥ = 0.
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By Assumption 3.1, there exists a positive constant β such that for any z ∈ F (Q1)

d
(
z, F (Q2)

)

≤ β
∥∥min

{
EQ2

[
G(z, ξ)

]
,EQ2

[
H(z, ξ)

]}∥∥

= β
∥∥min

{
EQ2

[
G(z, ξ)

]
,EQ2

[
H(z, ξ)

]}∥∥

− β
∥∥min

{
EQ1

[
G(z, ξ)

]
,EQ1

[
H(z, ξ)

]}∥∥

≤ β
∥∥min

{
EQ2

[
G(z, ξ)

]
,EQ2

[
H(z, ξ)

]} − min
{
EQ1

[
G(z, ξ)

]
,EQ1

[
H(z, ξ)

]}∥∥

≤ β
∥∥EQ2

[
G(z, ξ)

] − EQ1

[
G(z, ξ)

]∥∥ + β
∥∥EQ2

[
H(z, ξ)

] − EQ1

[
H(z, ξ)

]∥∥

≤ β
(

max
z∈Z

∥∥EQ2

[
G(z, ξ)

] − EQ1

[
G(z, ξ)

]∥∥ + max
z∈Z

∥∥EQ2

[
H(z, ξ)

]

− EQ1

[
H(z, ξ)

]∥∥
)

≤ 2mβD(Q1,Q2),

where the third inequality follows from the fact that

∣∣min{a2, b2} − min{a1, b1}
∣∣ ≤ |a2 − a1| + |b2 − b1|, ∀a1, b1, a2, b2 ∈ R,

and “m” is the dimension of G(z, ξ). Then distV(F (Q1), F (Q2)) ≤ 2mβD(Q1,Q2).

In the same manner, we can show that for any z ∈ F (Q2),

d
(
z, F (Q1)

) ≤ 2mβD(Q2,Q1),

which yields distV(F (Q2), F (Q1)) ≤ 2mβD(Q1,Q2). Summarizing the discus-
sions above, we have

distH
(

F (Q1), F (Q2)
) = max

{
distV

(
F (Q1), F (Q2)

)
,distV

(
F (Q2), F (Q1)

)}

≤ 2mβD(Q1,Q2).

Part (iii) holds with β∗ := 2mβ .
Next, we prove the theorem under Assumption 3.2. Note that Part (i) and Part (ii)

do not involve Assumption 3.1 or Assumption 3.2, we just need to show Part (iii).
Observe that for any z ∈ F (Q1),

∥∥(−EQ1

[
G(z, ξ)

]
,−EQ1

[
H(z, ξ)

]
,EQ1

[
G(z, ξ)

]
EQ1

[
H(z, ξ)

])
+
∥∥ = 0.

By Assumption 3.2, there exists a positive constant β such that for any z ∈ F (Q1)

d
(
z, F (Q2)

)

≤ β
∥∥(−EQ2

[
G(z, ξ)

]
,−EQ2

[
H(z, ξ)

]
,EQ2

[
G(z, ξ)

] ◦ EQ2

[
H(z, ξ)

])
+
∥∥

= β
∥∥(−EQ2

[
G(z, ξ)

]
,−EQ2

[
H(z, ξ)

]
,EQ2

[
G(z, ξ)

] ◦ EQ2

[
H(z, ξ)

])
+
∥∥

− β
∥∥(−EQ1

[
G(z, ξ)

]
,−EQ1

[
H(z, ξ)

]
,EQ1

[
G(z, ξ)

] ◦ EQ1

[
H(z, ξ)

])
+
∥∥
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≤ β
∥∥(−EQ2

[
G(z, ξ)

]
,−EQ2

[
H(z, ξ)

]
,EQ2

[
G(z, ξ)

] ◦ EQ2

[
H(z, ξ)

])
+

− (−EQ1

[
G(z, ξ)

]
,−EQ1

[
H(z, ξ)

]
,EQ1

[
G(z, ξ)

] ◦ EQ1

[
H(z, ξ)

])
+
∥∥

≤ 2β̂β
(

max
z∈Z

∥∥EQ2

[
G(z, ξ)

] − EQ1

[
G(z, ξ)

]∥∥

+ max
z∈Z

∥∥EQ2

[
H(z, ξ)

] − EQ1

[
H(z, ξ)

]∥∥
)

≤ 4mβ̂βD(Q1,Q2),

where

β̂ = sup
z∈Z,Q∈UP

max
{∥∥EQ

[
G(z, ξ)

]∥∥,
∥∥EQ

[
G(z, ξ)

]∥∥} + 1

and “m” is the dimension of G(z, ξ). Since G(z, ξ) and H(z, ξ) are integrable
bounded uniformly over Z and ŪP , β̂ is bounded. Then, there exists a positive con-
stant β∗ := 4mβ̂β such that

D
(

F (Q1), F (Q2)
) ≤ β∗D(Q1,Q2).

The rest are straightforward. The proof is complete. �

Proposition 3.1(iii) shows that the feasible set mapping of problem (3) is Lipschitz
continuous with respect to probability measure over U∗ under the distance D . Using
this property, we are ready to establish the first main stability result. Moreover, if S

type error bound condition (5) is replaced by (6) it is not difficult to get a similar
result of Proposition 3.1(iii), that is,

distH
(

F (Q1), F (Q2)
) ≤ β∗D̂(Q1,Q2) := β∗√D(Q1,Q2), ∀Q1,Q2 ∈ U∗.

Theorem 3.1 Let the conditions of Proposition 3.1 hold. Suppose also that the Lip-
schitz modulus of f (z, ξ) with respect to z is bounded by an integrable function
κ(ξ) > 0. Then the following assertions hold:

(i) there exists a neighborhood U1
P of P such that the optimal solution set of prob-

lem (3), denoted by Sopt(Q), is not empty for Q ∈ U1
P ;

(ii) the optimal solution set mapping Sopt(·) is upper semi-continuous at point P ;
(iii) there exist a neighborhood U2

P of P and a positive constant L∗ such that the op-
timal value function of problem (3) is continuous at P and satisfies the following
estimation (calmness at point P ):

∣∣ϑ(Q) − ϑ(P )
∣∣ ≤ L∗D(Q,P ), ∀Q ∈ U2

P .

Proof It follows from Proposition 3.1 that there exists a neighborhood UP of P such
that the feasible set mapping F (·) is Lipschitz continuous on UP (which implies the
Aubin property). The rest follows straightforwardly from [18, Theorem 1] ([12, The-
orem 2.3] or [13, Theorem 5] in stochastic programming). The proof is complete. �
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Theorem 3.1 asserts that the optimal solution set mapping Sopt(·) is nonempty near
P and upper semi-continuous at P . In order to quantify this upper semi-continuity
property, we need a growth condition on the objective function in a neighborhood of
the optimal solution set Sopt(P ) to problem (2). Instead of imposing a specific growth
condition, here we consider the following general growth function (see [12, 21]):

Λ(ν) := min
{
EP

[
f (z, ξ)

] − ϑ∗ : d(
z, Sopt(P )

) ≥ ν, z ∈ Z
}

(7)

of problem (2), where ϑ∗ denotes the optimal value of problem (2), and the associated
function,

Λ̃(�) := � + Λ−1(2�), � ≥ 0.

We have the following result.

Corollary 3.1 Let the assumptions of Theorem 3.1 hold. Then there exist a neighbor-
hood UP of P and a positive constant L such that

∅ �= Sopt(Q) ⊆ Sopt(P ) + Λ̃
(
LD(Q,P )

)
B,

for any Q ∈ UP , where B denotes the closed unit ball.

Corollary 3.1 provides a quantitative upper semi-continuity of the set of optimal
solutions; see [12, Theorem 2.4] for a detailed proof and [21, Theorem 7.64] for
earlier discussions about functions Λ(·) and Λ̃(·).

3.2 Stability of Stationary Points

It is well-known in the literature that MPEC problems are generically non-convex due
to their combinatorial nature of the constraints, which means that one may obtain a
stationary point in solving the perturbed SMPEC (3). This motivates us to undertake
stability analysis of stationary points, in addition to that of optimal value and optimal
solutions.

Following a recent work by Lin et al. [19], we can reformulate the first order opti-
mality conditions which characterize the M-stationarity as a constrained generalized
equation:

0 ∈ ΦP (z,α1, α2, β1, β2, β3, β4, u, v) + NZ(z) × 07m+2, (8)

where 0m denotes a m-dimensional zero vector, (z,α1, α2, β1, β2, β3, β4, u, v) ∈ W
and

ΦP (z,α1, α2, β1, β2, β3, β4, u, v)
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=

⎛

⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∇EP [f (z, ξ)] − ∇EP [G(z, ξ)]u − ∇EP [H(z, ξ)]v
α1 − EP [G(z, ξ)]
α2 − EP [H(z, ξ)]

αT
1 α2

u ◦ α1
v ◦ α2

β1 − u ◦ v

βT
3 β4

β2 − β3 − u

β2 − β4 − v

⎞

⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

, (9)

W = {
w |w = (z,α1, α2, β1, β2, β3, β4, u, v), z ∈ Z,α1, α2 ≥ 0;βi ≥ 0

(i = 1,2,3,4)
}
. (10)

This means that w ∈ W is an M-stationary pair iff it is a solution of the stochas-
tic generalized equation (8) and hence studying the stability of the stationary point
amounts to that of the generalized equation.

For studying the stability of stationary points, we need to enlarge the set G. Denote

G∗ := G ∪ {
g(·) = ∇f (z, ·), (∇Gi(z, ·)

)
j
,
(∇Hi(z, ·)

)
j

: z ∈ Z,

1 ≤ i ≤ m,1 ≤ j ≤ n
}

and

D∗(P,Q) := sup
g∈G∗

∣∣EP [g] − EQ[g]∣∣.

We have the following stability result for stationary points.

Theorem 3.2 Let QN be a sequence of probability measures which converge to P in
distance D∗ and wN be the corresponding M-stationary pair. Let w∗ be a limiting
point of sequence {wN }. Then w∗ is an M-stationary pair of (2).

Proof By virtue of [32, Lemma 4.2], it suffices to show that

lim
N→∞ sup

w∈B(w∗)∩W

∥∥ΦQN (w) − ΦP (w)
∥∥ = 0, (11)

where W is defined as in (10) and B(w∗) denotes the unit closed ball centered at w∗.
Observe that
∥∥ΦQN (w) − ΦP (w)

∥∥

≤ ∥∥(∇EQN

[
f (z, ξ)

] − ∇EQN

[
G(z, ξ)

]
u − ∇EQN

[
H(z, ξ)

]
v
)

− (∇EP

[
f (z, ξ)

] − ∇EP

[
G(z, ξ)

]
u − ∇EP

[
H(z, ξ)

]
v
)∥∥

+ ∥∥EQN

[
G(z, ξ)

] − EP

[
G(z, ξ)

]∥∥ + ∥∥EQN

[
H(z, ξ)

] − EP

[
H(z, ξ)

]∥∥

≤ ∥∥∇EQN

[
f (z, ξ)

] − ∇EP

[
f (z, ξ)

]∥∥ + γ ∗∥∥∇EQN

[
G(z, ξ)

] − ∇EP

[
G(z, ξ)

]∥∥
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+ γ ∗∥∥∇EQN

[
H(z, ξ)

] − ∇EP

[
H(z, ξ)

]∥∥

+ ∥∥EQN

[
G(z, ξ)

] − EP

[
G(z, ξ)

]∥∥ + ∥∥EQN

[
H(z, ξ)

] − EP

[
H(z, ξ)

]∥∥, (12)

where

γ ∗ = sup
(u,v)∈Π(u,v)(B(w∗)∩W )

∥∥(u, v)
∥∥. (13)

By the definition of D∗, we have

lim
N→∞ sup

z∈Z

∥∥EQN

[
ψ(z, ξ)

] − EP

[
ψ(z, ξ)

]∥∥ = 0,

lim
N→∞ sup

z∈Z

∥∥∇EQN

[
ψ(z, ξ)

] − ∇EP

[
ψ(z, ξ)

]∥∥ = 0,
(14)

where ψ := f,G or H . Combining (12)–(14), we obtain (11). The proof is com-
plete. �

We make a few comments on Theorem 3.2. First, the theorem does not require
error bound Assumption 3.1 or 3.2 in that the first order optimality condition is estab-
lished through generalized equations (9) and [32, Lemma 4.2] instead of the pseudo-
Lipschitz continuity of feasible solution set mapping as for the optimal values and
optimal solutions. Second, it is possible to derive Lipschitz-like (calmness) property
for the set of M-stationary points in terms of the perturbation of probability Q, as in
Theorem 3.1, in the case when the generalized equations (9) satisfy metric regular-
ity at M-stationary points of the true problem (2). Third, similar stability results can
be derived for C- and S-stationary points by reformulating the first order optimality
conditions characterizing the latter as a system of generalized equations. We omit the
details.

4 Empirical Probability Measure

In this section, we discuss a popular special case when QN is an empirical probability
measure. That is,

QN := 1

N

N∑

k=1

Iξk (ω),

where ξ1, . . . , ξN is an independent and identically distributed sampling of ξ and

Iξk (ω) :=
{

1, if ξ(ω) = ξk,

0, if ξ(ω) �= ξk.

In this section, we consider the case that P is approximated by empirical proba-
bility measure which is also known as sample average approximation:

min f N(z)

s.t. z ∈ Z,

0 ≤ GN(z) ⊥ HN(z) ≥ 0,

(15)
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where

f N(z) := 1

N

N∑

i=1

f
(
z, ξ i

)
, GN(z) := 1

N

N∑

i=1

G
(
z, ξ i

)
,

HN(z) := 1

N

N∑

i=1

H
(
z, ξ i

)
.

It is well-known that QN converges weakly to P w.p.1. In [7], Meng and Xu proved
under some moderate conditions that weak stationary point of sample average ap-
proximated MPEC problems converges to its true counterpart with probability ap-
proaching one at exponential rate as the sample size tends to infinity. In this section,
we derive the exponential rate of convergence for optimal value and M-stationary
points which are of more interest in the literature of MPECs.

4.1 Optimal Value

If f (z, ξ), G(z, ξ), H(z, ξ) are dominated by an integrable function on Z and QN

be the empirical measure, it is easy to show by [33, Proposition 7, Chap. 6] that
D(QN,P ) tends to zero with probability one. Therefore Theorem 3.1 implies imme-
diately almost sure convergence of optimal values and optimal solutions of the SAA
problem to their true counterparts. Our focus here is to establish the exponential rate
of convergence which provides some insight on the quantitative behavior of the SAA
problem as sample size increases. We need the following assumption.

Assumption 4.1 Let θ(z, ξ) denote any element in the collection of functions

{
f (z, ξ),Gi(z, ξ),Hi(z, ξ), i = 1, . . . ,m

}
.

Then θ(z, ξ) possess the following properties:

(a) for every z ∈ Z the moment generating function E[e(θ(z,ξ)−EP [θ(z,ξ)])t ] of the ran-
dom variable θ(z, ξ) − EP [θ(z, ξ)] is finite valued for t close to 0;

(b) there exist a (measurable) function κ1(ξ) and a constant γ1 > 0, such that

∣∣θ(z, ξ) − θ(z′, ξ)
∣∣ ≤ κ1(ξ)‖z − z′‖γ1,

for all ξ ∈ Ξ and z′, z ∈ Z;
(c) the moment generating function Mκ1(t) of κ1(ξ), is finite valued for all t in a

neighborhood of zero.

Assumption 4.1(a) means that the random variables θ(z, ξ) − EP [θ(z, ξ)] does
not have a heavy tail distribution. In particular, it holds if the random variable ξ has
a bounded support set; see [9]. Assumption 4.1(b) requires global Hölder continuity
of θ(z, ξ) in z independent of ξ . Assumption 4.1(c) requires EP [κ1(ξ)] to be finite.
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Theorem 4.1 Let the conditions of Theorem 3.1 and Assumptions 4.1 hold. Then, for
any small positive number ε, there exist positive constants C(ε) and β(ε) independent
of N such that

Prob
{∣∣ϑ

(
QN

) − ϑ(P )
∣∣ ≥ ε

} ≤ C(ε)e−Nβ(ε), (16)

for N sufficiently large.

Proof We first estimate Prob{D(QN,P ) ≥ ε}. By definition,

Prob
{
D

(
QN,P

) ≥ ε
}

≤ Prob
{

sup
z∈Z

(∣∣EQN

[
f (z, ξ)

] − EP

[
f (z, ξ)

]∣∣ + ∥∥EQN

[
G(z, ξ)

] − EP

[
G(z, ξ)

]∥∥

+ ∥∥EQN

[
H(z, ξ)

] − EP

[
H(z, ξ)

]∥∥) ≥ ε
}

≤ Prob
{

sup
z∈Z

∣∣EQN

[
f (z, ξ)

] − EP

[
f (z, ξ)

]∣∣ ≥ ε/3
}

+ Prob
{

sup
z∈Z

∥∥EQN

[
G(z, ξ)

]

− EP

[
G(z, ξ)

]∥∥ ≥ ε/3
}

+ Prob
{

sup
z∈Z

∥∥EQN

[
H(z, ξ)

] − EP

[
H(z, ξ)

]∥∥ ≥ ε/3
}
.

By virtue of [9, Theorem 5.1] and Assumption 4.1, there exist C1(ε/3), β1(ε/3),
C2(ε/3), β2(ε/3) and C3(ε/3), β3(ε/3) such that

Prob
{

sup
z∈Z

∣∣EQN

[
f (z, ξ)

] − EP

[
f (z, ξ)

]∣∣ ≥ ε/3
}

≤ C1(ε/3)e−Nβ1(ε/3),

Prob
{

sup
z∈Z

∥∥EQN

[
G(z, ξ)

] − EP

[
G(z, ξ)

]∥∥ ≥ ε/3
}

≤ C2(ε/3)e−Nβ2(ε/3), (17)

Prob
{

sup
z∈Z

∥∥EQN

[
H(z, ξ)

] − EP

[
H(z, ξ)

]∥∥ ≥ ε/3
}

≤ C3(ε/3)e−Nβ3(ε/3). (18)

Then

Prob
{
D

(
QN,P

) ≥ ε
} ≤ C∗(ε)e−Nβ∗(ε) (19)

holds with C∗(ε) = C1(ε/3) + C2(ε/3) + C3(ε/3) and β∗(ε) = min{β1(ε/3),

β2(ε/3), β3(ε/3)}.
By Theorem 3.1(iii), there exist a neighborhood UP of P and a positive L∗ such

that
∣∣ϑ(Q) − ϑ(P )

∣∣ ≤ L∗D(Q,P ), ∀Q ∈ UP .

Subsequently, there exists a sufficiently large N∗ such that QN ∈ UP and

Prob
{∣∣ϑ

(
QN

) − ϑ(P )
∣∣ ≥ ε

} ≤ Prob
{
D

(
QN,P

) ≥ ε/L∗}
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for N ≥ N∗. Together with (19), (16) holds with C(ε) = C∗(ε/L∗) and β(ε) =
β∗(ε/L∗). The proof is complete. �

4.2 Stationary Points

We say wN = (zN ,αN
1 , αN

2 , βN
1 , βN

2 , βN
3 , βN

4 , uN , vN) ∈ W is an M-stationary pair
of (15) if

0 ∈ ΦN
(
zN ,αN

1 , αN
2 , βN

1 , βN
2 , βN

3 , βN
4 , uN , vN

) + NZ

(
zN

) × 07m+2, (20)

where

ΦN(z,α1, α2, β1, β2, β3, β4, u, v) =

⎛

⎜⎜⎜⎜⎜⎜⎜⎜
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜
⎝

∇f N(z) − ∇GN(z)u − ∇HN(z)v

α1 − GN(z)

α2 − HN(z)

αT
1 α2

u ◦ α1

v ◦ α2

β1 − u ◦ v

βT
3 β4

β2 − β3 − u

β2 − β4 − v

⎞

⎟⎟⎟⎟⎟⎟⎟⎟
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟
⎠

.

Meng and Xu [7] studied the exponential rate convergence of weak stationary point.
Here, we extend their result to M-stationary point. We need the following conditions
on the moment of the underlying functions.

Assumption 4.2 Let θ(z, ξ) denote any element in the collection of functions

{(∇f (z, ξ)
)
j
,
(∇Gi(z, ξ)

)
j
,
(∇Hi(z, ξ)

)
j
, i = 1, . . . ,m, j = 1, . . . , n

}
.

Then θ(z, ξ) possesses the following properties:

(a) for every z ∈ Z the moment generating function E[e(θ(z,ξ)−EP [θ(z,ξ)])t ] of the ran-
dom variable θ(z, ξ) − EP [θ(z, ξ)] is finite valued for t close to 0;

(b) there exist a (measurable) function κ2(ξ) and a constant γ2 > 0, such that
∣∣θ(z, ξ) − θ(z′, ξ)

∣∣ ≤ κ2(ξ)‖z − z′‖γ2,

for all ξ ∈ Ξ and z′, z ∈ Z;
(c) the moment generating function Mκ2(t) of κ2(ξ), is finite valued for all t in a

neighborhood of zero.

Theorem 4.2 Let Assumption 4.1 and Assumption 4.2 hold. Let wN be a sequence of
M-stationary pairs satisfying (20) and w∗ a limiting point of sequence {wN } w.p.1.
Suppose that
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Υ (z,α1, α2, β1, β2, β3, β4, u, v)

:= ΦP (z,α1, α2, β1, β2, β3, β4, u, v) + NZ(z) × 07m+2

is metrically regular at point w∗ for 0. Then for any small positive number ε, there
exist positive constants C(ε) > 0, β(ε) > 0 independent of N such that for N suffi-
ciently large

Prob
{
d
(
wN,SP

) ≥ λε
} ≤ C(ε)e−Nβ(ε), (21)

where λ is the regularity modulus of Υ at w∗ and SP denotes the set of M-stationary
pair of (2).

Proof By Theorem [34, Theorem 4.1] and the metric regularity of Υ ,

d
(
wN,SP

) ≤ λ
∥∥ΦN

(
wN

)
,ΦP

(
wN

)∥∥.

By virtue of the property of ‖ · ‖,

d
(
wN,SP

) ≤ λ
∥∥ΦN

(
wN

) − ΦP

(
wN

)∥∥

≤ λ
∥∥(∇f N

(
zN

) − ∇GN
(
zN

)
uN − ∇HN(z)vN

)

− (
EP

[∇zf
(
zN , ξ

)] − EP

[∇zG
(
zN , ξ

)]
uN − EP

[∇zH
(
zN , ξ

)]
vN

)∥∥

+ λ
∥∥(

GN
(
zN

) − EP

[
G

(
zN , ξ

)]∥∥ + λ
∥∥HN

(
zN

) − EP

[
H

(
zN , ξ

)]∥∥.

Then

Prob
{
d
(
wN,SP

) ≥ λε
}

≤ Prob
{∥∥(∇f N

(
zN

) − ∇GN
(
zN

)
uN − ∇HN

(
zN

)
vN

)

− (
EP

[∇zf
(
zN , ξ

)] − EP

[∇zG
(
zN , ξ

)]
uN − EP

[∇zH
(
zN , ξ

)]
vN

)∥∥ ≥ ε/3
}

+ Prob
{∥∥GN

(
zN

) − EP

[(
GzN, ξ

)]∥∥ ≥ ε/3
}

+ Prob
{∥∥HN

(
zN

) − EP

[
H

(
zN , ξ

)]∥∥ ≥ ε/3
}
. (22)

As shown in the proof of Theorem 4.1, there exist positive constants C2(ε/3), β2(ε/3)

and C3(ε/3), β3(ε/3) such that (17)–(18) hold. In the following, we study the expo-
nential rate convergence of the first term on the right side of (22). Note that

Prob
{∥∥(∇f N

(
zN

) − ∇GN
(
zN

)
uN − ∇HN

(
zN

)
vN

)

− (
EP

[∇zf
(
zN , ξ

)] − EP

[∇zG
(
zN , ξ

)]
uN − EP

[∇zH
(
zN , ξ

)]
vN

)∥∥ ≥ ε/3
}

≤ Prob
{∥∥∇f N

(
zN

) − EP

[∇zf
(
zN , ξ

)]∥∥ ≥ ε/9
}

+ Prob
{∥∥∇GN

(
zN

) − EP

[∇zG
(
zN , ξ

)]∥∥ ≥ ε/9γ ∗}

+ Prob
{∥∥∇HN

(
zN

) − EP

[∇zH
(
zN , ξ

)]∥∥ ≥ ε/9γ ∗}
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≤ Prob
{

sup
z∈Z

∥
∥∇f N(z) − EP

[∇zf (z, ξ)
]∥∥ ≥ ε/9

}

+ Prob
{

sup
z∈Z

∥∥∇GN(z) − EP

[∇zG(z, ξ)
]∥∥ ≥ ε/9γ ∗}

+ Prob
{

sup
z∈Z

∥∥∇HN(z) − EP

[∇zH(z, ξ)
]∥∥ ≥ ε/9γ ∗}, (23)

where γ ∗ is as defined in (13). By virtue of [9, Theorem 5.1], there exist positive
constants C4(ε/9), β4(ε/9), C5(ε/9γ ∗), β5(ε/9γ ∗) and C6(ε/9γ ∗), β6(ε/9γ ∗) such
that

Prob
{

sup
z∈Z

∥∥∇f N(z) − EP

[∇zf (z, ξ)
]∥∥ ≥ ε/9

}
≤ C4(ε/9)e−Nβ4(ε/9),

Prob
{

sup
z∈Z

∥∥∇GN(z) − EP

[∇zG(z, ξ)
]∥∥ ≥ ε/9γ ∗} ≤ C5(ε/9γ ∗)e−Nβ5(ε/9γ ∗),

Prob
{

sup
z∈Z

∥∥∇HN(z) − EP

[∇zH(z, ξ)
]∥∥ ≥ ε/9γ ∗} ≤ C6(ε/9γ ∗)e−Nβ6(ε/9γ ∗).

Combining (22)–(23) and the estimate above, we obtain (21) with

C(ε) = C2(ε/3) + C3(ε/3) + C4(ε/9γ ∗) + C5(ε/9γ ∗) + C6(ε/9γ ∗)

and

β(ε) = min
{
β2(ε/3), β3(ε/3), β4(ε/9γ ∗), β5(ε/9γ ∗), β6(ε/9γ ∗)

}
.

The proof is complete. �

Theorem 4.2 derives the exponential rate of convergence for M-stationary points
obtained from solving the SAA problem. Similar results can be obtained for C- and
S-stationary points. Similar to discussions in [9, 34], it is possible to obtain a precise
estimate of constants C(ε) and β(ε) under some specific circumstance; we leave this
to the interested readers.

5 Conclusions

This paper makes some contributions to the current research in a few aspects. First, it
extends the stability analysis of classical one stage stochastic programs with equality
and inequality constraints [12] to one stage SMPECs; second, it extends the cur-
rent research on SMPECs, which is mostly focusing on Monte Carlo approxima-
tion (sample average approximation or sample path optimization) by providing an
abstract approximation framework which may potentially cover numerical approxi-
mation schemes beyond the sample based approximations; third, it provides stability
results of M-stationary points and exponential rate of convergence of the M-stationary
points under the empirical probability measure approximation, which is usually dif-
ficult to obtain.
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It might be possible to take this work further in a few directions: the stability analy-
sis in Sect. 3 relies heavily on the error bounds in Assumption 3.1 or Assumption 3.2,
which is apparently strong and it might be interesting to explore weaker conditions;
the SMPEC model takes a complementarity form, it can be extended to a SMPEC
with a general equilibrium constraint (e.g., characterized by a stochastic variational
inequality); and finally, it might be interesting to carry out some numerical tests on
the schemes covered by the stability analysis in this paper.
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