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This article presents a two-stage stochastic equilibrium problem with
equilibrium constraints (SEPEC) model. Some source problems which
motivate the model are discussed. Monte Carlo sampling method is applied
to solve the SEPEC. Convergence analysis on the statistical estimators of
Nash equilibria and Nash stationary points are presented.
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AMS Subject Classifications: 90C15; 91A15; 90C33

1. Introduction

In our earlier work [46], we discussed a one-stage stochastic Nash equilibrium model
and investigated sample average approximation (SAA) of Nash equilibrium and
Nash stationary points. We noted that the model may cover two-stage stochastic
Nash equilibrium problem and included an application of a two-stage stochastic
equilibrium program with equilibrium constraint (SEPEC) model to study
competition of generators in the electricity wholesale markets with network
constraints. However, the work does not explore the unique structure and
characteristics of the SEPEC model. On the other hand, the SEPEC model, as a
natural extension of deterministic equilibrium program with equilibrium constraints
(EPEC) models, has a number of potential applications in a wide domain of
engineering design, management and economics. This motivates us to write this
article in an attempt to provide an independent discussion of the model and yet not
overlap with our earlier work.

Let us start with some literature review. Over the past few years, deterministic
EPEC and SEPEC have been developed as a new subject in optimization primarily
driven by a number of practical applications particularly in deregulated electricity
industry. For instances, Hobbs et al. [15] investigated an oligopolistic electricity
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market with several dominant generators located in an electric power network. They
developed a deterministic mathematical program with equilibrium constraints
(MPEC) model to study a dominant generator’s optimization problem: the first-level
variables consist of the generator’s bids and the second-level problem is the
independent system operator (ISO)’s single commodity spatial price equilibrium
problem including transmission constraints. Moreover, in a game theoretic context,
the problem with multiple dominant generators are described as a Nash game with
equilibrium constraints which each generator solves an MPEC. Hu and Ralph [16]
used EPEC to model bilevel games in a restructured electricity market where each
player’s decision making is a bilevel optimization problem; Yao et al. [48] seem first
to use SEPEC to model generator’s strategic behaviours in a spot market with two
settlement system and network constraints in USA where the stochastic model is
used to reflect a day-head demand uncertainty and the second-stage equilibrium
constraint is used to describe the ISO’s optimal decision on generators’ dispatch and
power flow in the network. Henrion and Römisch [13] considered a spot market
competition model where generators submit their cost functions (which do not
necessarily reflect true costs) to an ISO and the ISO determine the dispatch and flow
of power by minimizing the total costs subject to transmission network constraints.
They developed an SEPEC model where each generator’s decision-making problem
is formulated as a two-stage MPEC. The equilibrium constraints describe the
dispatch and power flow at the second-stage when market demand is realized.
A remarkable contribution of this work is that the authors presented a detailed
characterization of first-order optimality conditions of the stochastic MPEC
(SMPEC) in terms of Mordukhovich’s coderivatives and hence M-stationarity of
the problem. Surowiec [39] took it further in his PhD dissertation to explore the
structural properties and explicit stationarity conditions of SEPEC models and made
a number of interesting observations relating to the numerical solution of the
problem and the two-stage stochastic games. Recently, Ehrenmann and Neuhoff [9]
compared two market designs, the integrated market design and the coordinated
transmission auction for electricity trade and transmissions. From the mathematical
perspective, the authors showed that the integrated market design is an instance of
an EPEC where generators know that their output decisions will influence the
allocation of transmission rights by the ISO, and the model can be represented by a
Stackelberg model. In a slightly different direction, Zhang et al. [49] developed a
two-stage SEPEC model to study generator’s competition in electricity forward and
spot markets and their interactions.

Apart from applications in electricity markets, there emerges a trend of using
EPEC and SEPEC to characterize two-stage games in some general oligopoly
markets where a set of strategic firms or agents (called leaders) compete in a
non-cooperative manner to optimize their expected objective function anticipating
the reaction of the remaining nonstrategic firms or investors (called followers). Pang
and Fukushima [25] recently proposed an iterative penalty method for solving a
generalized Nash equilibrium where each player solves an MPEC, and introduced a
class of remedial models for the multi-leader–follower games for the oligopolistic
competition models in electric power markets. For a typical two-stage competition
in the stochastic environment, DeMiguel and Xu [5] developed a stochastic
multiple–leader Stackelberg–Nash–Cournot (SMS) model for a homogeneous
product (or service) supply market. They discussed the existence and uniqueness of
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the SMS equilibrium and proposed a numerical procedure to solve the problem.

More broadly, for the transportation systems, EPEC models have been applied to

analyse the competition behaviours of strategic users in the traffic network by Yang,

Xiao and Huang [47]. In a recent work, Koh [18] investigated the potential for

implicit collusions between users in the traffic network, and obtained an EPEC

model where players’ decision problems are constrained by a variational inequality.

EPEC models have also been used for a game-theoretic analysis of the implications

of overlay networks traffic of internet service providers (ISP) in Wang et al. [41].

Along with the increasing interests of modelling issues on EPEC, there

synchronically emerges a volume of literature on employing the mathematical

programming and game-theoretic analysis to investigate the behaviours of players

and the properties of equilibrium in EPEC models. One of the natural questions

arising from the EPEC problems is on the existence of Nash equilibrium of these

two-stage problems, where related results have been well-established for some cases

with particularly structured objective functions, see [5,25,40,49] for a set of two-stage

equilibrium problems. However, it is well-known that, for some general cases,

EPECs may not have any global Nash equilibrium. Instead, several alternatives of

global Nash equilibrium are introduced for describing players’ strategic behaviours

within a local feasible set. Hu and Ralph [16] introduced a set of new concepts as

local Nash equilibria and Nash stationary points for EPEC for a bilevel

noncooperative game-theoretic model of electricity markets with locational marginal

prices. On the other hand, within the framework of Mordukhovich coderivatives,

Mordukhovich [22,23] first investigated the necessary optimality conditions of

M-stationary points for EPECs. Moreover, Outrata [24] addressed a set of necessary

conditions on the stationary points and the local equilibria of EPEC models in the

term of coderivatives.
In this article, we are concerned with the numerical methods for solving a general

two-stage SEPEC. We apply the well-known Monte Carlo sampling method to the

SEPEC and analyse in detail asymptotic convergence of statistical estimators

of Nash equilibria and Nash stationary points obtained from solving the SAA

problems. The rest of this article is organized as follows. In the following section,

we present a detailed discussion on a general SMPEC model. In Section 3, we present

some source problems which motivate the SEPEC model. In Section 4, we apply the

SAA of our problem and carry out convergence analysis of the estimators of Nash

equilibria and Nash-Clarke-stationary points. Some concluding remarks are given

in Section 5.
Throughout this article, we will use the following notation. All vectors

are thought as column vectors and T denotes the transpose operation. For x,

y2 IRs, xTy denotes the scalar products of two vectors x and y and

kxk denotes the Euclidean norm. When D� IRs is a nonempty compact set of

vectors, we use the notation k�k to denote kDk :¼maxx2Dkxk. Moreover, d(x,D) :¼

infx02Dkx� x0k denotes the distance from point x to set D. For two compact sets

D1 and D2,

DðD1,D2Þ :¼ sup
x2D1

d ðx,D2Þ

Optimization 3
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denotes the deviation from set D1 to set D2 (in some references, e.g., [14] it is also
called excess of D1 over D2), and H(D1,D2) denotes the Hausdorff distance between
the two sets, that is,

HðD1,D2Þ :¼ max DðD1,D2Þ,DðD2,D1Þð Þ:

Moreover, we use D1þD2 to denote the Minkowski addition of D1 and D2, that is,
D1þD2¼ {xþ y : x2D1, y2D2}. We also use B(x, �) to denote the closed ball with
radius � and centre x, that is B(x, �) :¼ {x0 : kx0 � xk� �}. When � is dropped, B(x)
represents a neighbourhood of point x. We also use B to denote the unit ball in a
finite-dimensional space.

2. The model

Let Xi, i¼ 1, 2, . . . ,M, be a nonempty, closed and convex subset of IRmi and
X�i :¼X1� � � � �Xi�1�Xiþ1� � � � �XM denote the Cartesian product of the
sets except Xi. Let X¼Xi�X�i. We consider the following SEPECs: find
x :¼ (x1, x2, . . . , xM)2X and y(�) such that for i¼ 1, 2, . . . ,M, (xi, y(�)) solves the
following problem:

min
xi2Xi,yð�Þ

E½ fiðxi, x�i, yð!Þ, �ð!ÞÞ�

s.t. 02Hðx, yð!Þ, �ð!ÞÞ þ N Qð yð!ÞÞ, a.e. !2�,
ð1Þ

where x�i2X�i, fi : IRm1 � � � � � IRmM � IRk � IRd! IR is a Lipschitz continuous
function but not necessarily continuously differentiable, � : �!�� IRd is a random
vector defined on probability space (�, F , P) with support set �, and E[�] denotes the
mathematical expectation with respect to (w.r.t.) the distribution of �.
The equilibrium constraint in (1) is represented by a parametric variational
inequality problem (VIP), where y(�) is the prime variable, and x and �(!) are
treated as parameters, H : IRm

� IRk
� IRd

! IRk is a vector-valued continuous
function, Q is a nonempty, convex and closed subset of IRk, and NQ( y) is the normal
cone to Q at y, which is defined in as follows:

N Qð yÞ :¼
�2 IRk : �T �y� yð Þ � 0 8 �y2Q
� �

, if y2Q
;, if y =2 Q.

�
ð2Þ

Problem (1) is a two-stage SEPEC: at the first-stage, decision maker/player i,
i2 {1, . . . ,M}, chooses an optimal value xi2Xi that maximizes the expected value of
fi under Nash conjecture (for fixed x�i2X�i). At the second-stage for a given x and a
realization of the random vector �, decision maker i finds an optimal y(x, �) that
solves the following optimization problem,

min
y2Q

fiðxi, x�i, y, �Þ

s.t. 02Hðx, y, �Þ þ N Qð yÞ:
ð3Þ

To ease the notation, in some parts of this article we will write �(!) as � and the
context will make it clear when � should be interpreted as a deterministic vector.
Let us use vi(xi,x�i, �) to denote the optimal value function of the second-stage
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problem (3). Then, under some moderate conditions, (1) can be written in an implicit
form as

min
xi2Xi

E viðxi, x�i, �ð!ÞÞ½ �, ð4Þ

where ‘implicit’ means that (4) does not include details of the second-stage problem.

2.1. A discussion of the SEPEC model

Let Y(x, �) denote the set of solutions to the VIP

02Hðx, y, �Þ þ N Qð yÞ: ð5Þ

Then we can rewrite the second-stage optimization problem (3) as

min
y2Yðx,�Þ

fiðxi, x�i, y, �Þ: ð6Þ

At this point, it might be helpful to give a practical interpretation of problem (6):
here, an optimal (in term of ‘miny2Y(x,�)’) equilibrium from Y(x, �) is not up to
decision maker i to choose. The mathematical formulation (6) only represents
decision maker i’s optimistic attitude towards a possible equilibrium outcome at
scenario �, in other words, decision maker i anticipates a best equilibrium
outcome which minimizes its objective function fi(xi, x�i, y, �) at scenario �. To
properly define vi(xi, x�i, �) mathematically, we let vi(xi, x�i, �)¼þ1 if the
corresponding equilibrium at the second-stage does not exist, i.e. the corresponding
variational inequality constraint in (3) does not have any solution. Then, given that
the rivals’ decisions are fixed at x�i, decision maker i’s expected profit at the
first-stage can be formulated as

#̂iðxi, x�iÞ :¼E viðxi, x�i, �Þ½ �,

or equivalently

#̂iðxi, x�iÞ ¼ E min
yð!Þ2Yðx,�ð!ÞÞ

fiðxi,x�i, yð!Þ, �ð!ÞÞ

� �
: ð7Þ

If all decision makers are optimistic, then the SEPEC problem can be formulated as
follows:

min
xi2Xi

E min
y2Yðx,�ð!ÞÞ

fiðxi, x�i, y, �ð!ÞÞ

� �
: ð8Þ

Under some moderate conditions, (8) coincides with (1), see Proposition 5 in
[32, Chapter 1].

Let us now consider an opposite case when decision maker i is pessimistic. In
such a case, his second-stage decision problem can be formulated as

max
y2Yðx,�Þ

fiðxi, x�i, y, �Þ, ð9Þ

which means that, in making his decision for minimizing E[ fi(xi, x�i, y, �)] at the
first-stage, decision maker i expects a worst second-stage equilibrium outcome

Optimization 5
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y2Y(x, �) which maximizes fi(xi, x�i, y, �). Denote by �viðxi, x�i, �Þ the optimal value
function of decision problem (9). Then decision maker i’s expected objective function
can be written as

�#iðxi,x�iÞ :¼ E �viðxi,x�i, �ð!ÞÞ½ �, ð10Þ

where �viðxi, x�i, �Þ ¼ þ1 if Y(x, �)¼;. If all decision makers are pessimistic and try
to hedge against a worst possible equilibrium at the second-stage, then the SEPEC
model becomes: find x¼ (x1, . . . , xM)T and y(�) such that for i¼ 1, 2, . . . ,M, (xi, y(�))
solves the following problem:

min
xi 2Xi

E max
y2Yðx,�Þ

fiðxi, x�i, y, �Þ

� �
, ð11Þ

where each decision maker solves a min-max problem.
There could be other cases when some decision makers are optimistic while others

are pessimistic or some decision makers do not really have an extreme view about the
future equilibrium. In this article, we will simplify the discussion by considering
the case when the equilibrium problem has a unique solution and subsequently the
minimization process in (7) can be dropped.

2.2. Uniqueness of the second-stage equilibrium

In the remainder of this section, we discuss sufficient conditions for the existence and
uniqueness of the Nash equilibrium problem (represented by VIP (5)) at the
second-stage and the Lipschitz continuity of the optimal value functions vi(x, �)
at the second-stage. These conditions are needed in deriving the first-order
equilibrium conditions of the SEPEC problem (1) and its SAA (30) in Section 4.

To this end, let us look at the solution set Y(x, �) of VIP (5):

02Hðx, y, �Þ þ N Qð yÞ, ð12Þ

and decision maker i’s objective function fi(xi, x�i, y(x, �), �) at every scenario �2�

for i¼ 1, 2, . . . ,M. It is well-known that the uniqueness of the solution to VIP (5) is
guaranteed by the strict monotonicity of mapping H(x, y, �) for any x2X and a.e.
�2�, which is equivalent to the strict concavity of function Ri( yi, y�i, x, �) w.r.t.
yi for any fixed y�i and i¼ 1, 2, . . . ,M. The assumption below presents the sufficient
conditions as such.

ASSUMPTION 2.1 For i¼ 1, 2, . . . ,M and almost every �2�,

(a) H(x, y, �) is a Lipschitz continuous function of (x, �) on X�� with a Lipschitz
constant independent of y.

(b) H(x, �, �) is uniformly strongly monotone on set Q, that is, for any given x and
�2�, there exists a constant c4 0 such that

ðHðx, y0, �Þ �Hðx, y, �ÞÞTð y0 � yÞ � ck y0 � yk2 8y0, y2K: ð13Þ

(c) fi(�, x�i, �, �) is Lipschitz continuous on Xi�Q with modulus �i(�), that is, for all
i¼ 1, 2, . . . ,M,

j fiðx
0
i, x�i, y

0, �Þ � fiðxi, x�i, y, �Þj � �ið�Þ kx
0
i � xik þ k y

0 � yk
� �

,

where E[�i(�)]51.

6 D. Zhang and H. Xu
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Under Assumption 2.1(b), it follows by virtue of [10, Theorem 2.3.3] that VIP (5)
has a unique solution for every given x and �. Moreover, under Assumption 2.1(a) and
(b) we can show the Lipschitzness of vi(�,x�i, �) which will be used in the asymptotic
analysis of sample average approximate Nash equilibrium in Proposition 4.1.

LEMMA 2.1 Under Assumption 2.1, for every fixed x�i2X�i and a.e. �2�,
vi(�, x�i, �) is Lipschitz continuous on Xi with modulus �0ið�Þ, where E½�0ið�Þ�51.

Proof Under Assumption 2.1(b), it follows from [10, Theorem 2.3.3(c)] that the
variational inequality

02Hðx, y, �Þ þ N Qð yÞ

has a unique solution y(x, �) which is Lipschitz continuous on X with a constant
modulus. Moreover, under Assumption 2.1(c), Fi(xi, x�i, �, �) is Lipschitz continuous
on Q with modulus �i(�), where E[�i(�)]51. Consequently, for i¼ 1, 2, . . . ,M, there
exists a �0ið�Þ such that vi(�, x�i, �) is Lipschitz continuous on Xi with modulus �0ið�Þ,
where E½�0ið�Þ�51. g

3. Source problems

A number of applications of two-stage stochastic equilibrium problem with
equilibrium constraints arise from a diversity of sources. In this section, we list a
few examples.

3.1. Stochastic bilevel games

It is well-known that bilevel programming is closely related to MPEC through KKT
conditions at the second-stage. It is therefore no surprise that stochastic bilevel
games provide rich problem sources for the SEPEC. Consider a two-stage stochastic
Nash game which consists two sets of players: a set of M players who compete at the
first-stage and a set of K players who compete at the second-stage where the
decisions of players at the first-stage are disclosed and exterior uncertainty (such as
market demand) is realized. Mathematically, we can formulate this kind of game
as follows:

min
xi 2Xi,yð�Þ

E fiðxi, x�i, yðx, �Þ, �Þ½ �

yj ðx, �Þ solves min
yj 2Qj

Rj ð yj, y�j, x, �Þ, for j ¼ 1, . . . ,K, a.e. � 2�:

8<
: ð14Þ

The stochastic multiple leader–followers game investigated by DeMiguel and Xu [5]
is a typical example of this kind of two-stage stochastic bilevel game.

Assuming that for j¼ 1, 2, . . . ,K, function Rj : IRkj � IRk�kj � IRm ��! IR is
continuously differentiable w.r.t. yj on a nonempty convex and closed subset
Qj � IRkj , Q�j :¼Q1� � � � �Qj�1�Qjþ1� � � � �QK, and k ¼

PK
j¼1 kj, then we can

characterize the optimality condition of each player at the second-stage through
a generalized equation and combining them gives

02ryRðx, y, �Þ þ N Qð yÞ, ð15Þ

Optimization 7
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where ryRðx, y, �Þ :¼ ðry1R1ð y1, y�1, x, �Þ, . . . ,ryKRKð yK, y�K, x, �ÞÞ
T. Under some

convexity conditions of the objective functions, it is well-known that a solution
y*(x, �) is a Nash equilibrium at the second-stage if and only if it is a solution to the

generalized equation (15). Consequently we can reformulate the stochastic bilevel

game (14) as the following two-stage SEPEC:

min
xi2Xi

E fiðxi, x�i, yðx, �Þ, �Þ½ �

s.t. 02ryRðx, yðx, �Þ, �Þ þ N Qð yðx, �ÞÞ, a.e. �2�:

Note that the two-stage stochastic bilevel game model (14) may cover the capacity

expansion model considered by Gürkan and Pang [11] where game at the first-stage
is viewed as a competition on a long-term capacity investment at present and at the

second-stage as a short-term competition in future once the capacity expansion is
completed and exterior uncertainty is realized. In this case players at two-stages may

be identical. Note also that (14) can also be used to model competition in

forward-spot electricity markets where players compete at the first-stage in the
forward market for long-term contracts and then compete for dispatch at spot

markets on daily basis, see [49].

3.2. Capital tax competition

The enforcement of an effective taxation on savings income has been a long-standing
issue both in policy and in academic debates, see [7,8]. Along with the globalization

of the capital market, the tax can be easily evaded if the residence country is unable
to monitor the investors’ foreign interest incomes, where the countries are linked

through perfect capital mobility. These capital links between countries may result in

a very complex investment network. Even for a two country economy the flows of
real and financial capital might induce a complex system of transactions under the

different tax structures of both countries. In this section, we consider a capital tax
competition between the national tax authorities in two countries, denoted by i and j,

respectively.
The analysis of this capital tax competition employs a two-stage stochastic

equilibrium model. At the first-stage, we assume that each tax authority of country, i
or j, has three different tax instruments. We give the tax instruments set by tax

authority of country i (tax authority i) for example:

(a) The first tax instrument is a wage tax rate twi at which it taxes wage income

wili. Note that, in most of practical capital markets, wage rate wi and labour
supply li may be affected by the different amount of total investment level in

country i, and hence we can rewrite them as wi(s
i) and li(s

i), where si denotes

the amount of capital invested in country i. Here, we set si being the sum of sii,
the amount of capital invested in country i by residents at home (i.e. country

i), and sij invested by the investors from abroad (i.e. country j). Moreover, the
wage rate in a country is usually set for a long-term and hence independent of

the global economic scenario �. On the other hand, the labour supply level

fluctuates along with the change of economic environment and hence we
assume that it is a function of scenario �, denoted by li(s

i, �).

8 D. Zhang and H. Xu
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(b) The second tax instrument the authority might choose is on the capital
income of residents where we denote its rate by tri . By assuming the perfect
information sharing between the tax authorities of the two countries, then
the tax base can be formulated as

Rð�Þsi ¼ Rð�Þðsii þ sjiÞ, ð16Þ

where R(�) is the global return rate to the investment, that is, the return for
every unit capital invested in either countries, and is varied by the random
shock � in the capital market. Since in this section, we focus our investigation
on the taxation problem, we generally assume that the global return rate for
the investment in each country are the same. In (16), si is the amount of
capital invested by residents at country i and is the sum of sii and sji where s

j
i

denotes the amount of capital invested by the residents at country i into the
market in country j.

(c) Third, a government may tax the capital income generated at home on a
source basis, tsi , where the tax base can be calculated as

Rð�Þsi ¼ Rð�Þðsii þ sij Þ, ð17Þ

which includes the return of the investment by the residents at country i and
from abroad, i.e. country j. Similarly as in country i, we denote the tax
instruments set by the tax authority j as twj , t

r
j and tsj , respectively.

Differing from the discussion in [7,8], in the model, we first consider the strategic
behaviours of the representative investor in each country. The representative investor
(or consumer) in country i maximizes a well-behaved utility function #i(ci1, ci2, li, �),
where ci1 and ci2 are the consumption levels before and after the investment period.
Denote the endowment obtained by the investor by ei. After the realization of
uncertainty � in the capital market, the investor in country i needs to decide the
proportion of ei to be consumed, ci1, or saved, si ¼ sii þ sji, where si¼ ei� ci1. Because
the decision on ci1 is made after knowing �, consumption level ci1 is affected by the
uncertainty in the capital market and hence can be taken as a random function of �,
which is implied by the fact that the consumption level of investors i at country i
fluctuates as a response to different economic situations in the capital market.
Moreover, ci2 denotes the consumption level after the return of the investment and
can be formulated as

ci2ðs
i
i, s

j
i, s

i
j, �; t

r
i , t

s
i , t

s
j Þ ¼ wi sið Þli sii þ sij, �

	 

þ 1þ Rð�Þ 1� tri � tsi

� �� �
sii

þ 1þ Rð�Þ 1� tri � tsj

	 
h i
sji, ð18Þ

where the three terms on the right-hand side of (18) are the wage income, the post-tax
income from the home investment and the post-tax income from the abroad
investment, respectively. Note that, in (18), tri þ tsi and tri þ tsj are the effective tax
paid by the presentative investor at country i on its capital income from country i
and country j, respectively. By incorporating ci1 and ci2 into the investor’s utility
function, for a realized market scenario �, the decision problem of the representative
investor in country i is to choose the amounts of siið�Þ and sjið�Þ to maximize their
utility function. Assuming that the realization of the uncertainty in the capital

Optimization 9
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market is � and the investor in country j rationally fix their optimal investment at
ðsjj ð�Þ, s

i
j ð�ÞÞ, the representative investor in country i determines its investment policy

by solving the following problem,

max
si
i
2Si

i
,sj
i
2Sj

i

#i ei � sii � sji, ci2ðs
i
i, s

j
i, s

i
j, �; t

r
i , t

s
i , t

s
j Þ, li sii þ sij, �

	 

, �

	 

, ð19Þ

where Si
i :¼ ½0, �sii� and Sj

i :¼ ½0, �sji�, and �sii and �sji are the upper bounds of investments
sii and sji. By assuming the convexities of functions li(�, �) and #i(ci1, ci2, li, �), we can
show the existence and uniqueness of the investment equilibrium of the investors’
competition in the capital market at almost every scenario �.

Consequently, the second-stage equilibrium problem is: for tax instruments ti and
tj fixed at the first-stage and the realization �, find an equilibrium (si, sj) solves the
following parametric equilibrium problem,

max
sk2Sk

#k ek � sk, ck2ðs
k
k, s

k0

k , s
k
k0 , �; t

r
k, t

s
k, t

s
k0 Þ, lk sk, �

� �
, �

� �
, ð20Þ

where sk 2Sk ¼ Sk
k � Sk0

k , k¼ i, j and k0 6¼ k2 {i, j}. In (20), t :¼ (ti, tj) and � are treated
as parameters. Therefore, the competition between the representative investors at
country i and j can be taken as a Cournot-type game, and the equilibrium to problem
(20) is a function of t and � which can be specified as sk(t, �) for k¼ i and j. Then, we
can rewrite (19) as the following general equation form,

02Hðsðt, �Þ, t, �Þ þ N Sðsðt, �ÞÞ, ð21Þ

where s(t, �)¼ (si(t, �), sj(t, �)), and feasible set S :¼Si�Sj.
Assuming the perfect information sharing between the two countries, we have

that each national authority determines its tax rates by aiming at the maximization
of its expected utility function which consists of two parts: one is the expected return
of its representative investor in the capital market, and the other is the production
capacity of country i, denoted by gi, which is seen as a function of the total tax
revenue in the country. Consequently, at the first-stage, given that tax authority j0s
optimal tax policy is rationally fixed at t	j , the decision problem of tax authority i can
be formulated as

max
ti

E �i½ ðti, t
	
j , siðti, t

	
j , �Þ, sj ðti, t

	
j , �Þ, �Þ�,

s.t. twi 2 ½0, �twi �, t
r
i 2 ½0, �tri �, t

s
i 2 ½0, �tsi �:

ð22Þ

where the objective function �iðti, t
	
j , si, sj, �Þ of tax authority i is defined as

�i ti, tj, si, sj, �
� �

:¼ #i ei � si, ci2ðs
i
i, s

j
i, s

i
j, �; t

r
i , t

s
i , t

s
j Þ, li s

i, �
� �

, �
	 


þ u gi ti, tj, si, sj, �
� �� �

, ð23Þ

u(�) is the utility function of the production capacity gi, and the production capacity
gi is a function of the tax revenues as follows:

gi ti, tj, si, sj, �
� �

¼ twi wið�Þli sii þ sij, �
	 


þ tsi þ tri
� �

Rð�Þsii þ triRð�Þs
j
i þ tsiRð�Þs

i
j:

Moreover, in decision problem (24), variables si(ti, tj, �) and sj(ti, tj, �) are solved from
general equation (21) for any fixed ti, tj and the realization �. By inclusively taking
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the investors’ reactions at the second-stage into consideration, tax authority i’s
decision problem can be written as,

max
ti

E �i½ ðti, t
	
j , siðti, tj, �Þ, sj ðti, tj, �Þ, �Þ�,

s.t. twi 2 ½0, �twi �, t
r
i 2 ½0, �tri �, t

s
i 2 ½0, �tsi �,

02Hðsðt, �Þ, t, �Þ þ N Sðsðt, �ÞÞ, a.e. �2�,

ð24Þ

which implies that the capital tax competition can be formulated as an SEPECmodel.

3.3. Oligopolistic transit market

In this section, we look at a two-stage stochastic equilibrium problem for a urban
transit systems. Over the past twenty years, the deregulation of urban transit systems
has become an appealing alternative to centralized municipal transit policy. In a
recent article [50], a deterministic network equilibrium model with a two-stage
framework for a deregulated transit system is proposed to describe the fare
competition between transit operators where every operator takes into account
passengers’ responses in making its decision. At the first-stage, by assuming that its
rivals rationally choose their optimal decisions on their fare structures, each of the
transit operators can determine its own fare structure in order to maximize its
expected revenue, where in the urban transit system, the transit operators’ revenues
depends on the number of passengers using their lines. Then, at the second-stage,
every passenger reacts to the transit operators’ fares in the urban transit system.

Stochastic network equilibrium models are widely applied for predicting traffic
patterns in the transportation networks at the second-stage, in which the traffic flow
in the transportation network is characterized by stochastic user equilibrium for every
possible scenario. In this two-stage model, the interaction between the transit
operators and the passengers is described in the form of Stackelberg game, that is, at
the first-stage, in making the decision, every operator takes the passengers’ reaction
to its fare plan at every traffic scenario into account. On the other hand, the
competition between the transit operators can be seen as a Cournot game where each
operator makes its decision regarding that its rivals’ fares are fixed.

In the problem, the urban transit network is denoted by a directed traffic network
as G¼ (N,A) where N is the set of nodes (or transfer stations) and A is the set of links
(or route sections). At the first-stage, the transit competition is portrayed asM player
(transit operator) noncooperative game of deciding the fares for a set of transfer lines
connecting origin–destination (OD) pairs w for w2W where W is the set of all OD
pairs, and Rw is the set of all routes joining OD pair w. In the first-stage equilibrium,
transit operator i makes its decision on the fare of the route connecting OD w2W,
denoted by piw ¼ f p

i
rgr2Rw

, so as to maximize its expected profit, where the expectation
is taken w.r.t. the distribution of the traffic uncertainty �2�. Inmaking the decision at
the first-stage, each operator predictively takes into account the passenger flow in
every route of the traffic network at every possible scenario �, where the flows are
determined by solving a stochastic user equilibrium model at the second-stage.

In the second-stage problem, with each fixed transit fare structure and a realized
traffic uncertainty �, the stochastic user equilibrium condition can be mathematically
expressed to determine the flow on every route r serving an OD pair w2W for r2Rw:
Denote by yr(�) the traffic flow on path r at traffic scenario �. Given that the
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realization of traffic uncertainty is � and operator i’s fare for route r is pir for all

r2Rw and w2W, the user (passenger)’s travel cost function on path r can be

written as

urð y, pw, �Þ ¼ drð pwÞ þ Crð y, pw, �Þ þ �0 trð y, �Þ � �wð Þ
2, ð25Þ

where y :¼ {yr}r2Rw
, pw :¼ ð p1w, . . . , pMw Þ

T, piw ¼ f p
i
rgr2Rw

. In (25), dr( pw) represents the

composite of attributes such as the travel fare for a certain distance which is

independent of time/flow, Cr( y, pw, �) denotes the stochastic travel cost on path r

which is implicitly determined by the flows on all arc r which may depends on the
volume of the passenger flow between OD pair w, the fares of all operators, and

changes for different traffic scenario. tr( y, �) denotes the stochastic travel time on

path r and �w denote the expected travel time between OD pair w. Furthermore, in

(25), �0 is the penalty coefficient when the actual travel time on w deviates the

scheduled time �w. Then, by assuming the total population travelling between OD

pair w is qw being a deterministic parameter, the feasible set of the traffic flow across

the whole network can be expressed as

Q ¼ y :
X
r2Rw

yr ¼ qw 8w, yr � 0, 8r

( )
,

which is a convex set. Moreover, at the second-stage, the stochastic user equilibrium

is defined as the state when no passenger believes that he can reduce his perceived

travel cost by changing route unilaterally. Hence, we can write this equilibrium

condition as following VIP: find y* such that

y	 uð y, p, �Þ � uð y	, p, �Þð Þ ¼ 0 8y2Q, w2W
y	 � 0, uð y, p, �Þ � uð y	, p, �Þ � 0,

�
ð26Þ

for almost every �2� and fixed fare p ¼ f piw, i ¼ 1, 2, . . . ,M, w2W g, where

y	 uð y, p, �Þ � uð y	, p, �Þð Þ :¼
X
r2Rw

y	r urð y, p, �Þ � urð y
	, p, �Þð Þ,

and the fare p and the traffic scenario � are treated as parameters. VIP (26) can be
equivalently rewritten in the following parametric generalized equation:

02Hð p, y, �Þ þ N Qð yÞ, a.e. �2�, ð27Þ

for a vector-valued function H( p, y( p, �), �) and feasible set Q of y. Usually,

functions Cr( y, pj, �) and tr( y, �) are assumed to be continuously differentiable for

every �, and hence the cost function ur( y, pj, �) is a continuously differentiable

function of y and H( p, y, �) is also a continuous single-valued mapping. Hence,

solution y to parametric problem (27) can be written as y( p, �) which is a function of

fare p and traffic scenario �.
Let us step back to the operators’ problems at the first-stage, in which every

operator makes its decision on the fare charged at each route to maximize its

expected revenue. From the discussion on stochastic user equilibrium, we have that
passenger flow yr( p, �) on path r can be implicitly solved by (26) or (27), and is a

continuous function of p for every scenario �. Then, we assume that the proportion

that passengers choose operator i’s service on path r2Rw for travelling between OD
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pair w is a function of fwð y, p
i
w, p
�i
w Þ where p�iw are the fare structures provided by

operator i’s rivals between OD pair w. In [50], these proportions are calculated
according to the well-used logit-type model, and in a more general case, we might
assume that fwð yð p, �Þ, p

i
w, p
�i
w , �Þ is a continuously differentiable function of y, piw and

p�iw for all OD pair w, where this proportion only reflects a passenger’s attitude
towards each operator’s fare. Consequently, with this proportion, we can estimate
the number of passengers using operator i’s service as viw ¼ fwð yð p, �Þ, p

i
w, p
�i
w , �Þqw.

Then operator i’s expected revenue function can be written as

Rið p
i, p�iÞ ¼ E

X
w2W

fw yð piw, p
�i
w , �Þ, piw, p

�i
w , �

� �
qwp

i
w

" #
, ð28Þ

where pi ¼ f piwg and p�i ¼ f p�iw g for all w2W, and E[�] is taken w.r.t. the distribution
of the traffic uncertainty �. It should be noted that the operating cost does not appear
in the expression due to the assumption of fixed service frequency. Thus, the
two-stage equilibrium problem is: find p¼ ( p1, . . . , pM) and y(�) such that for
i¼ 1, 2, . . . ,M, ( pi, y(�)) solves the following problem:

min
piw 2 0, �piw½ �, yð�Þ

E

X
w2W

fw yð piw, p
�i
w , �Þ, piw, p

�i
w , �

� �
qwp

i
w

" #

s.t. 02Hð p, yð p, �Þ, �Þ þ N Qð yð p, �ÞÞ, a.e. �2�,

ð29Þ

where �piw is the ceiling of operator i’s fare piw on its route between OD w. From
problem (29), we have that the competition in the oligopolistic transit market can be
modelled by an SEPEC problem. In [50], a deterministic version of EPEC model is
proposed for investigating the competition in a deregulated transit network market.

Apart from the applications of the two-stage SEPEC models discussed in this
section, there are some potential applications in transportation and economics
[13,16,22,29], internet service problems [41] and airline revenue management
problems [17].

4. Sample average approximation

In this section, we discuss a numerical method for solving the SEPEC problem (1).
If the random vector � has a finite discrete distribution and the distribution is known,
then the problem can be easily formulated as a deterministic EPEC for which existing
numerical methods may be readily applied to solve it [19,37]. To cover a broader
spectrum of practical applications, here we assume that � satisfies a general
distribution which could be continuous, and it is impossible to obtain a closed form
of E[ fi(xi,x�i, y, �)] either because it is computationally too expensive or the
distribution function is unknown. However, it might be possible to obtain samples of
� from past data or computer simulation, and a particular numerical scheme we are
looking at here is the SAA. Let �1, . . . , �N be an independent and identically
distributed (iid) sampling of the random vector �(!). We consider the following SAA
of problem: find xN :¼ ðxN1 , x

N
2 , . . . , xNMÞ

T
2X1 � X2 � � � � � XM such that

min
xi2Xi

1

N

XN
n¼1

fiðxi, x
N
�i, y

n, �nÞ ð30Þ

Optimization 13
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where yn, n¼ 1, 2, . . . ,N, is a solution of the following VIP for fixed xi and xn�i:

02H xi, x
N
�i

� �
, yn, �n

� �
þN Qð y

nÞ ð31Þ

Hðx, y, �Þ :¼ H1ðx, y, �Þ, . . . ,HKðx, y, �Þð Þ
T

and

N Qð yÞ :¼ N Q1
ð y1Þ � � � � � N QK

ð yKÞ:

We refer to (1) as the true (SEPEC) problem and (30) as the SAA problem. Since (31)
has a unique solution, we may use the notation of the optimal value function in (4)
to reformulate (30)–(31) as follows: find ðxN1 , . . . , xNMÞ

T such that xi solves

min
xi2Xi

#̂Ni ðxi, x�iÞ :¼
1

N

XN
n¼1

viðxi, x
N
�i, �

nÞ: ð32Þ

We call (32) the SAA of the implicit Nash SEPEC (4).
SAA is a very popular method in stochastic programming, it is known under

various names such as Monte Carlo sampling, sample path optimization and
stochastic counterpart, see [28,31,35] for SAA in general stochastic programming
and [5,20,46] for recent applications of the method to stochastic equilibrium
problems. Our focus in this section is on the convergence of SAA problems described
above to their true counterparts. Specifically, if we obtain a Nash equilibrium or a
Nash stationary point (to be defined shortly), denoted by xN, from solving (30),
we investigate the convergence of xN as sample size N increases.

PROPOSITION 4.1 (Convergence of Nash equilibrium estimators) Let {xN} be a
sequence of Nash equilibria obtained from solving (30) and Assumption 2.1 holds. Then
with probability one an accumulation point of {xN} is a Nash equilibrium of the true
problem (1).

The results depend on the Lipschitz continuity of vi (established in Lemma 2.1)
rather than the details of the second-stage equilibrium. Therefore the proposition
follows straightforwardly from [46, Theorem 4.2(b)]. We omit the details.

4.1. Nash stationary points

It is well-known that the optimal value function of a parametric mathematical
program with equilibrium constraints (MPEC) is often nonconvex. In our context,
this means that viðxi,x

N
�i, �

nÞ may be nonconvex in xi for fixed xN�i and �n, and
consequently we may obtain a local Nash equilibrium or a Nash stationary point
from solving the SAA problem (30). The concept of stationary points are important
in optimization as it provides some information of optimality. This is particularly so
in MPECs where obtaining a global optimal solution is often difficult and
consequently various of stationary points are investigated [13,49]. The concept of
Nash stationary point is relatively new: it was introduced by Hu and Ralph [16].

We start with the definition. Based on Assumption 2.1, we have that the optimal
value function vi is usually not continuously differentiable, and the concept of the
generalized gradient is needed to characterize the first-order optimality conditions.
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Here we use the Clarke generalized gradient for the analysis which is popular and

mathematically easy to handle. The Clarke generalized gradient of the optimal value

function vi(x, y, �) w.r.t. x coincides with the usual gradient at the points where

vi(�, y, �) is strictly differentiable.
Let v : IRn

! IRm be a locally Lipschitz continuous function. Recall that Clarke

generalized derivative of v at point x in direction d is defined as

voðx, d Þ :¼ lim sup
y!x,t#0

vð yþ td Þ � vð yÞ

t
:

v is said to be Clarke regular at x if the usual one sided directional derivative,

denoted by v0(x, d ), exists for all d2 IRn and vo(x, d )¼ v0(x, d ). The Clarke

generalized gradient (also known as Clarke subdifferential) is defined as

@vðxÞ :¼ f� : �Td � voðx, d Þg,

see [4, Chapter 2].
In Lemma 2.1, we have shown that under some appropriate conditions

vi(xi, x�i, �), i¼ 1, . . . ,M, is Lipschitz continuous w.r.t. xi with integrable Lipschitz

modulus. This implies that E[vi(xi, x�i, �)] is also Lipschitz continuous w.r.t. xi and

hence @xiE½viðxi, x�i, �Þ� is well-defined, see [32]. We characterize the first-order

equilibrium condition of (1) at a Nash equilibrium in terms of the Clarke generalized

gradients as follows:

02 @xiE½viðxi, x�i, �Þ� þ N Xi
ðxiÞ, i ¼ 1, . . . ,M: ð33Þ

Here and later on, the addition of the sets is in the sense of Minkowski. We call a

point x* satisfying (33) a stochastic Nash-C-stationary point. Under some standard

constraint qualifications, a Nash equilibrium is a Nash-C-stationary point.

Conversely if vi is convex, then a Nash-C-stationary point is also a Nash equilibrium.
Let us now consider the first-order necessary equilibrium condition for the SAA

problem (30) in terms of Clarke generalized gradient:

02 @xi#
N
i ðxi, x�iÞ þ N Xi

ðxiÞ, i ¼ 1, . . . ,M, ð34Þ

where

@xi#
N
i ðxi, x�iÞ :¼ @xi

1

N

XN
n¼1

viðxi, x�i, �
nÞ

 !
:

We call a point �xN satisfying (34) SAA Nash-C-stationary point. Our objective here is

to investigate the convergence SAA Nash-C-stationary point to its true counterpart.
For the simplicity of notation, we denote throughout this section the following.

A#ðxÞ :¼ @x1E½v1ðx, �Þ� � � � � � @xME½vMðx, �Þ� ð35Þ

and

GXðxÞ :¼ N X1
ðx1Þ � � � � � N XM

ðxMÞ: ð36Þ

The first-order equilibrium condition (33) can be written as

02A#ðxÞ þ GXðxÞ: ð37Þ

Optimization 15
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Likewise, the first-order equilibrium condition (34) can be written as

02A#NðxÞ þ GXðxÞ, ð38Þ

where

A#NðxÞ :¼ @x1
1

N

XN
n¼1

v1ðx, �
nÞ

 !
� � � � � @xM

1

N

XN
n¼1

vMðx, �
nÞ

 !
: ð39Þ

Let f �xNg be a sequence of stationary points satisfying optimality condition of the

SAA problem (34) with sample size N. In what follows, we investigate

the convergence of the sequence as sample size N increases. First, we need the

following technical results.

LEMMA 4.1 Let F(x, �) : IRm
��! IR be a continuous function, and X be a compact

subset. Assume that F(x, �) is locally Lipschitz continuous w.r.t. x for almost every �
with modulus L(x, �) which is bounded by a positive constant C and
1
� ðFðxþ �h, �Þ � Fðx, �ÞÞ is uniformly continuous in � for � sufficiently small, khk� 1

and x2X . Then

lim
N!1

sup
x2X

H @
1

N

XN
n¼1

Fðx, �nÞ

 !
, @E½Fðx, �Þ�

 !
¼ 0: ð40Þ

Proof The assertion is a special case of a recently established result [21, Lemma 5.1].

We include a proof for completeness. For the simplicity of the notation, let

PN :¼
1

N

XN
n¼1

1�nð!Þ,

where

1�nð!Þ :¼
1, if �ð!Þ ¼ �n,

0, if �ð!Þ 6¼ �n:

�

Then EPN
½Fðx, �Þ� ¼ 1

N

PN
n¼1 Fðx, �

nÞ and hence

@EPN
½Fðx, �Þ� ¼ @

1

N

XN
n¼1

Fðx, �nÞ

 !
:

Let fPN
ðxÞ ¼ EPN

½Fðx, �Þ� and fP(x)¼E[F(x, �)]. Under condition (a), both fPN
ðxÞ and

fP(x) are globally Lipschitz continuous, therefore the Clarke’s generalized derivatives

of fPN
ðxÞ and fP(x), denoted by foPN

ðx; hÞ and foPðx; hÞ, respectively, are well-defined

for every fixed nonzero vector h2 IRm, where

foPN
ðx; hÞ ¼ lim sup

x0!x, �#0

1

�
fPN
ðx0 þ �hÞ � fPN

ðx0Þ
� �

and

foPðx; hÞ ¼ lim sup
x0!x, �#0

1

�
fPðx

0 þ �hÞ � fPðx
0Þð Þ:
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Our idea is to study the Hausdorff distance Hð@fPN
ðxÞ, @fPðxÞÞ through certain

‘distance’ of the Clarke generalized derivatives foPN
ðx; hÞ and foPðx; hÞ. Let D1, D2 be

two convex and compact subsets of IRm. Let 	(D1, u) and 	(D2, u) denote the support

functions of D1 and D2 respectively, where 	(Di, u) is defined as for i¼ 1 and 2

	ðDi, uÞ ¼ sup
x2Di

uTx,

for every fixed u2 IRm. Then

DðD1,D2Þ ¼ max
kuk�1
ð	ðD1, uÞ � 	ðD2, uÞÞ

and

HðD1,D2Þ ¼ max
kuk�1
j	ðD1, uÞ � 	ðD2, uÞj:

The above relationships are known as Hörmander’s formulae, see [3, Theorem II-18].

Applying the second formula to our setting, we have

Hð@fPN
ðxÞ, @fPðxÞÞ ¼ sup

khk�1



	ð@fPN
ðxÞ, hÞ � 	ð@fPN

ðxÞ, hÞ


:

Using the relationship between Clarke’s subdifferential and Clarke’s generalized

derivative, we have that foPN
ðx; hÞ ¼ 	ð@fPN

ðxÞ, hÞ and foPðx; hÞ ¼ 	ð@fPðxÞ, hÞ:
Consequently,

H @fPN
ðxÞ, @fPðxÞ

� �
¼ sup
khk�1



 foPðx; hÞ � foPN
ðx; hÞ




¼ sup
khk�1





 lim sup
x0!x, �#0

1

�
fPðx

0 þ �hÞ � fPðx
0Þð Þ � lim sup

x0!x, �#0

1

�
fPN
ðx0 þ �hÞ � fPN

ðx0Þ
� �



:

Note that for any bounded sequence {an} and {bn}, we have

lim sup
n!1

an � lim sup
n!1

bn










 � lim sup

n!1
jan � bnj: ð41Þ

To see this, let fanjg be a subsequence such that lim supn!1 an ¼ limnj!1 anj . Then

lim sup
n!1

jan � bnj � lim sup
nj!1

janj � bnj j

� lim sup
nj!1

ðanj � bnj Þ

¼ lim sup
n!1

an þ lim sup
nj!1

ð�bnjÞ

� lim sup
n!1

an þ lim inf
nj!1

ð�bnjÞ

� lim sup
n!1

an þ lim inf
n!1

ð�bnÞ

¼ lim sup
n!1

an � lim sup
n!1

bn:
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Since an and bn are in a symmetric position, we have that

lim sup
n!1

jan � bnj � lim sup
n!1

bn � lim sup
n!1

an:

This verifies (41). Using (41), we have

Hð@fPN
ðxÞ, @fPðxÞÞ � sup

khk�1

lim sup
x0!x, �#0





 1� fPðx
0 þ �hÞ � fPðx

0Þð Þ �
1

�
fPN
ðx0 þ �hÞ � fPN

ðx0Þ
� �





¼ sup
khk�1

lim sup
x0!x, �#0






Z

�

1

�
Fðx0 þ �h, �Þ � Fðx0, �Þð Þd ðP�PNÞð�Þ





:
Since PN converges to P in distribution, and the integrand 1

� ðFðx
0 þ �h, �Þ � Fðx0, �ÞÞ

is uniformly continuous w.r.t � and it is bounded by L, by virtue of [2, Theorem 2.1]

lim
N!1

sup
x2X

sup
khk�1

lim sup
x0!x, �#0






Z

�

1

�
ðFðx0 þ �h, �Þ � Fðx0, �ÞÞd ðP� PNÞð�Þ





 ¼ 0:

This completes the proof. g

Let 
 : IRn
��! IR be a real-valued function and � : �!�� IRk a random

vector defined on probability space (�,F ,P), let X be a subset of IRn and x2X .

Recall that 
 is said to be almost H-clam at x from above with modulus �(�) and order

� if for any �4 0, there exist a (measurable) function � : �! IRþ, positive numbers

�, � and an open set ���� such that

Probð�2��Þ � � ð42Þ

and


ðx0, �Þ � 
ðx, �Þ � �ð�Þjjx0 � xjj� ,

for all �2�\D� and all x0 2Bðx, �Þ \ X . The notion of almost H-calm is recently

introduced by Sun and Xu [38]. It is an effective extension of H-calmness which is

introduced in our earlier work [46] to cover a larger class of practically interesting

random functions.
Using Lemma 4.1 and the concept of almost H-calmness, we are ready to present

one of the main results in this section which state the uniform and exponential

convergence of the subdifferentials of underlying functions in defining the Nash

equilibrium conditions.

THEOREM 4.1 Let {xN} be a sequence of SAA Nash-C-stationary points. Assume: (a)

w.p.1 {xN} is contained in a compact subset X of X, (b) Assumption 2.1 holds, (c) the

Lipschitz modulus of vi(xi, x�i, �) w.r.t. xi, i¼ 1, . . . ,M, is bounded by a positive

constant C. Then

(i) w.p.1

lim
N!1

sup
x2X

HðA#NðxÞ,A#ðxÞÞ ¼ 0: ð43Þ

(ii) Assume in addition that for every �2� and x�i2X�i: (d) the Clarke

generalized directional derivative ðviÞ
o
xi
ðx, �n; uÞ is almost H-calm from above

w.r.t. (x, u) and E½ðviÞ
o
xi
ðx, �n; uÞ� is continuous, (e) vi(xi, x�i, �) is Clarke

18 D. Zhang and H. Xu
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regular w.r.t. xi for a.e. �2�, ( f ) the support set of � is bounded. Then for

every small positive number �4 0, there exist ĉð�Þ4 0 and 
̂ð�Þ4 0,

independent of N, such that

sup
x2X

DðA#NðxÞ,A#ðxÞÞ � �

� �
� ĉð�Þe�
̂ð�ÞN, ð44Þ

for N sufficiently large.

Proof Part (i). Observe that

HðA#NðxÞ,A#ðxÞÞ �
XM
i¼1

HðA#Ni ðxÞ,A#iðxÞÞ,

where A#Ni ðxÞ ¼ @xið
1
N

PN
n¼1 viðx, �

nÞÞ and A#iðxÞ ¼ @xiE½viðx, �Þ�: Under conditions

(a)–(c), it follows by Lemma 4.1 that

lim
N!1

sup
x2X

HðA#Ni ðxÞ,A#iðxÞÞ ¼ 0

w.p.1 for i¼ 1, . . . ,M, which immediately yields (43).

Part (ii). Following the proof in [26, Proposition 3.4], we have

E 	 Avðx, �Þ, uð Þ½ � ¼ 	 E Avðx, �Þ½ �, uð Þ: ð45Þ

On the other hand, it is easy to verify the following inequality

DðA#NðxÞ,A#ðxÞÞ �
XM
i¼1

DðA#Ni ðxÞ,A#iðxÞÞ:

By Hörmander’s formulae [3, Theorem II-18],

DðA#Ni ðxÞ,A#iðxÞÞ ¼ max
kuk�1
½	ðA#Ni ðxÞ, uÞ � 	ðA#iðxÞ, uÞ�:

Since

A#Ni ðxÞ �
1

N

XN
n¼1

@xiviðx, �
nÞ,

and 	ð@xiviðx, �
nÞ, uÞ ¼ ðviÞ

o
xi
ðx, �n; uÞ, then

	ðA#Ni ðxÞ, uÞ �
1

N

XN
n¼1

	ð@xiviðx, �
nÞ, uÞ ¼

1

N

XN
n¼1

ðviÞ
o
xi
ðx, �n; uÞ,

Moreover, under conditions (e), it follows from [4, Theorem 2.7.2]

	ðA#iðxÞ, uÞ ¼ ð#iÞ
o
xi
ðx; uÞ ¼ E ðviÞ

o
xi
ðx, �; uÞ

h i
:

Consequently, we have

sup
x2X

DðA#NðxÞ,A#ðxÞÞ � sup
x2X

XM
i¼1

DðA#Ni ðxÞ,A#iðxÞÞ

� sup
x2X

max
kuk�1

1

N

XN
n¼1

ðviÞ
o
xi
ðx, �n; uÞ � E ðviÞ

o
xi
ðx, �; uÞ

h i !
:
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In what follows, we show the uniform exponential convergence of the right-hand side

of the above inequality. Observe that

kðviÞ
o
xi
ðx, �; uiÞk � k@xiviðx, �Þk � �ið�Þ:

Under condition (d), there exist positive measurable functions ai(�), �i(�), positive
constants � and � and set ���� such that

ðviÞ
o
xi
ðx0, �; u0iÞ � ðviÞ

o
xi
ðx, �; uiÞ � aið�Þkx

0 � xk� þ �ið�Þku
0
i � uik,

for all � 2�� and ðx
0, u0iÞ 2Bððx, uiÞ, �Þ, where

lim
�!0

Probð�2��Þ ¼ 0:

Let zi :¼ (x, ui) and Zi :¼ X � fui 2 IR
mi : kuik � 1g. The inequalities above shows

that ðviÞ
o
xi
ð�, �n; �Þ is almost H-calm from above on set Zi. Moreover, under condition

(f), the moment generating function MxðtÞ :¼ Efet½aið�Þþ�ið�Þ�g is finite valued for t close

to 0. By virtue of [38, Theorem 3.1], we have that for any �i4 0, there exist positive

constants ĉið�iÞ and 
̂ið�iÞ, independent of N such that

Prob sup
ðx,uÞ 2Zi

1

N

XN
n¼1

ðviÞ
o
xi
ðx, �n; uÞ � E ðviÞ

o
xi
ðx, �n; uÞ

h i
� �i

 !( )
� ĉið�iÞe

�N
̂ið�iÞ,

for i¼ 1, 2, . . . ,M. For any �4 0, let �i4 0 be such that
PM

i¼1 �i 5 �. Let ĉð�Þ ¼
MmaxMi¼1 ĉið�iÞ and 
̂ð�Þ ¼ minMi¼1 
̂ið�iÞ. Then

Prob sup
x2X

max
kuk�1

XM
i¼1

1

N

XN
n¼1

ðviÞ
o
xi
ðx, �n; uÞ

h i
� E ðviÞ

o
xi
ðx, �; uÞ

h i
� �

( )
� ĉð�Þe�
̂ð�ÞN,

ð46Þ

for N sufficiently large. g

In what follows, we translate the uniform convergence of the subdifferential in

Theorem 4.1 into the convergence of Nash-C-stationary points. We need a

perturbation theorem on generalized equation.
Consider the following generalized equation

02GðxÞ þ N CðxÞ, ð47Þ

where GðxÞ : C ! 2IR
m

is a closed set-valued mapping, C is a closed convex subset of

IRm. Let ~GðxÞ be a perturbation of G(x) and we consider the perturbed equation

02 ~GðxÞ þ N CðxÞ: ð48Þ

Recall that a set-valued mapping F is said to be outer semicontinuous (osc for brevity)

at �x2 IRn if limx! �x FðxÞ 
 Fð �xÞ or equivalently limx! �x DðFðxÞ,Fð �xÞÞ ¼ 0, where

lim
x! �x

FðxÞ :¼ fv2Rm : 9 sequences xk ! �x, vk ! v with vk 2FðxkÞg:

The following lemma states that when Dð ~GðxÞÞ,GðxÞÞ is sufficiently small uniformly

w.r.t x, then the solution set of (48) is close to the solution set of (47).
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LEMMA 4.2 [43] LetW be a compact subset of C. Let X * denote the set of solutions to
(47) inW and Y* denote the set of solutions to (48) inW. Assume that X * and Y* are
nonempty. Then for any �4 0 there exists a �4 0 such that if supx2CDð ~GðxÞ,GðxÞÞ5 �
and G is osc inW, then D(Y*,X *)5 �.

THEOREM 4.2 Let {xN} be a sequence of Nash-C-stationary points satisfying (34).
If conditions (a)–(c) of Theorem 4.1 hold, then w.p.1, an accumulation point of {xN} is a
Nash-C-stationary point of the true problem which satisfies the first-order necessary
equilibrium condition (33). If, in addition, conditions (d)–(f) of Theorem 4.1 are
satisfied, then for every small positive number �4 0, there exist ĉð�Þ4 0 and 
̂ð�Þ4 0,
independent of N, such that

Prob d ðxN,X	Þ � �
� �

� ĉð�Þe�
̂ð�ÞN, ð49Þ

for N sufficiently large, where X * denotes the set of Nash-C-stationary point of the true
problem.

Proof The conclusion follows straightforwardly from Theorem 4.1 and Lemma 4.2.
We omit the details. g

Remark 4.1 The convergence results established here are stronger than those in our
previous work [46]. To see this, recall that in [46] we considered the so-called weak
Nash equilibrium conditions for a one-stage stochastic Nash equilibrium problem:

02E½@xiviðxi, x�i, �Þ� þ N Xi
ðxiÞ, i ¼ 1, . . . ,M, ð50Þ

where vi is player i’s objective function and E½@xiviðxi, x�i, �Þ� denotes Aumann’s
integral of Clarke subdifferential @xiviðxi, x�i, �Þ [1]. Condition (50) is weaker than
(33) in that

@xiE½viðxi, x�i, �Þ� � E½@xiviðxi, x�i, �Þ�,

see [4, Theorem 2.7.2]. The corresponding first-order optimality conditions for the
SAA problem considered there are:

02
1

N

XN
n¼1

@xiviðxi, x�i, �
nÞ

 !
þN Xi

ðxiÞ, i ¼ 1, . . . ,M: ð51Þ

Since

@xi
1

N

XN
n¼1

viðxi, x�i, �
nÞ

 !
�

1

N

XN
n¼1

@xiviðxi, x�i, �
nÞ

 !
,

condition (51) is also weaker than (34). Roughly speaking, the convergence results
established in [46] are about weak Nash-C-stationary point defined through (51) to
its true counterpart defined through (50), whereas the convergence results in
Theorem 4.2 are for normal SAA Nash-C-stationary point defined by (51) to its true
counterpart which satisfies (33).

5. Concluding remarks

In this article, we discuss a two-stage stochastic equilibrium problem with
equilibrium constraints model and present a few source problems to motivate
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the model. The model may be extended by including some terms either in the
objective or in the constraints which reflect risks such as variance, conditional value
at risk [30], chance constraints [27] or certain dominance constraints [6]. To solve the
two-stage stochastic equilibrium model, we propose to apply the well-known SAA
method. The exponential rate of convergence means that the sample size will not be
very large to obtain a reasonably reliable solution. In the case when the distribution
of � is finite and known, SAA is not needed. The true problem may be solved
through decomposition method or stochastic approximation method, see [33,42] for
stochastic bilevel programs. More recently, by applying the decomposition-based
splitting algorithm to a mixed-linear complementarity problem, Shanbhag et al. [34]
provided computational evidence to show the convergence of the algorithm for
stochastic bilevel programs with a discrete distribution.

Note also that the first-order optimality conditions in this article are
characterized in terms of Clarke generalized gradient. It is possible to derive these
conditions in terms of Mordukhovich limiting subdifferentials and through
sensitivity analysis of two-stage SMPECs [44], the conditions in terms of the
underlying functions in the equilibrium constraints. Indeed this has been done in
[12,13,39] for some SEPEC models where the random variables have finite
distribution. In our case, the limiting subdifferential approach can be applied to
our SAA problem which can be viewed as SMPEC with finite distribution. The
convergence results however will not be improved in that Aumann’s integral
convexifies the integrand, which means that the expected value of the limiting
subdifferential of a Lipschitz function coincides with that of Clarke’s. Finally, we
note that the EPEC model is often nonconvex and therefore it would be practically
interesting but challenging to identify a Nash equilibrium from a set of obtained
Nash stationary points. The M-stationarity approach developed in [12,13,39] might
provide a promising avenue towards this.
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