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Shapiro and Xu (2008) [17] investigated uniform large deviation of a class of Hölder
continuous random functions. It is shown under some standard moment conditions that
with probability approaching one at exponential rate with the increase of sample size,
the sample average approximation of the random function converges to its expected value
uniformly over a compact set. This note extends the result to a class of discontinuous
functions whose expected values are continuous and the Hölder continuity may be violated
for some negligible random realizations. The extension entails the application of the
exponential convergence result to a substantially larger class of practically interesting
functions in stochastic optimization.
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1. Introduction

Over the past decade, a number of new stochastic programming models have been proposed to deal with optimal
decision making problems which involve not only uncertain data but also some specific structures such as dominance con-
straints, equilibrium constraints or hierarchical relationships between decision variables. Typical examples include stochastic
mathematical programs with second order dominance constraints [7] and stochastic mathematical programs with equilib-
rium constraints (SMPEC) [10,17]. These problems are intrinsically nonsmooth and/or nonconvex and therefore one often
obtains a stationary point instead of an optimal solution when a numerical method is applied to solve them. One of the
most extensively studied methods for such problems is sample average approximation (SAA) method which is also known
as sample path optimization, stochastic counterpart or Monte Carlo method [13,16]. The main benefit of SAA is that one
may avoid computation of the expected values which are sometimes numerically intractable. The research of SAA often in-
volves asymptotic behavior and/or asymptotic convergence of statistical estimators of optimal values and optimal solutions
as sample size increases, see [11,16] for a comprehensive review.

In [17, Theorem 5.1], Shapiro and Xu studied large deviation of a class of Hölder continuous random functions. It is
shown under some standard moment conditions that with probability approaching one at exponential rate with the in-
crease of sample size, sample average approximation of a random function converges to its expected value uniformly over a
compact set. The result is subsequently used to analyze the exponential rate of convergence of sample average approxima-
tion of sharp local minimizers of a two stage SMPEC. A number of generalizations have been made over the past few years
primarily driven by the need to investigate the rate of convergence of stationary points rather than optimal solutions of
an SAA problem particularly when the underlying functions are nonsmooth. For instance, in an early version of [12], Ralph
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and Xu investigated the uniform exponential rate of convergence for a class of random functions which are merely upper
semicontinuous and pointwise calm from above, and applied the generalized result to analyze the convergence of stationary
points of a two-stage stochastic program. The result is further consolidated in [19] to accommodate non-independent and
identically distributed sampling.

In all these generalized results, a key assumption is that the Hölder continuity or calmness holds at a point for all
realization of the random variables. Unfortunately this turns out to be rather restrictive for some practically interesting
problems. For instance, the Clarke generalized derivative of a piecewise smooth function may not satisfy such a condition.
This motivates us to investigate a possible relaxation of the assumption from “all” to “almost every” realization.

This note is written to give details of such relaxation and a new exponential rate of convergence result which extends
[19, Theorem 3.1]. The new result is then applied to establish uniform exponential rate of convergence of the Clarke sub-
differential of a piecewise smooth random function which is fundamental to many nonsmooth stochastic programming
problems.

2. Existing results

Consider a real valued function φ(x, ξ) : Rn × Ξ → R. Let ξ : Ω → Ξ ⊂ Rr be a vector of random variables defined on
probability space (Ω, F , P ). Let

ψ(x) := E
[
φ(x, ξ)

]
where E[·] denotes the expectation with respect to the probability measure P . Let ξ1, . . . , ξ N be an independent and
identically distributed (iid) sampling of random vector ξ(ω) and consider the corresponding sample average function

φN(x) := 1

N

N∑
j=1

φ
(
x, ξ j).

We discuss the uniform convergence of φN(x) to ψ(x) over a compact set X ⊂ Rn through large deviation theorem [5]. Let

Mx(t) := E
{

et[φ(x,ξ)−ψ(x)]}
denote the moment generating function of the random variable φ(x, ξ(ω)) − ψ(x).

Shapiro and Xu [17] considered the following conditions:

(C1) For every x ∈ X the moment generating function Mx(t) is finite valued for all t in a neighborhood of zero.
(C2) There exist an integrable function κ : Ξ → R+ and constant γ > 0 such that∣∣φ(

x′, ξ
) − φ(x, ξ)

∣∣ � κ(ξ)
∥∥x′ − x

∥∥γ
(2.1)

for all ξ ∈ Ξ and all x′, x ∈ X .
(C3) The moment generating function Mκ (t) of κ(ξ(ω)) is finite valued for all t in a neighborhood of zero.

Under these conditions, Shapiro and Xu [17] derived the following convergence result.

Theorem 2.1. (See [17, Theorem 5.1].) Suppose that conditions (C1)–(C3) hold and the set X is compact. Then for any ε > 0 there exist
positive constants C = C(ε) and β = β(ε), independent of N, such that

Prob
{

sup
x∈X

∣∣φ̂N(x) − ψ(x)
∣∣ � ε

}
� C(ε)e−Nβ(ε). (2.2)

Note that condition (C2) requires φ(·, ξ) to be globally Hölder continuous uniformly over X for all ξ ∈ Ξ . It is possible
to relax the continuity condition so that one can derive exponential convergence for some discontinuous functions.

Definition 2.1 (H-calmness). Let φ : Rn × Ξ → R be a real valued function and ξ : Ω → Ξ ⊂ Rk a random vector defined on
probability space (Ω, F , P ), let X ⊂ Rn be a closed subset of Rn and x ∈ X be fixed. φ is said to be

(a) H-calm at x from above with modulus κx(ξ) and order γx if φ(x, ξ) is finite and there exist a (measurable) function
κx : Ξ → R+ , positive numbers γx and δx such that

φ
(
x′, ξ

) − φ(x, ξ) � κx(ξ)
∥∥x′ − x

∥∥γx (2.3)

for all x′ ∈ X with ‖x′ − x‖ � δx and all ξ ∈ Ξ ;
(b) H-calm at x from below with modulus κx(ξ) and order γx if φ(x, ξ) is finite and there exist a (measurable) function

κx : Ξ → R+ , positive numbers γx and δx such that

φ
(
x′, ξ

) − φ(x, ξ) � −κx(ξ)
∥∥x′ − x

∥∥γx (2.4)

for all x′ ∈ X with ‖x′ − x‖ � δx and all ξ ∈ Ξ ;
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(c) H-calm at x with modulus κx(ξ) and order γx if φ(x, ξ) is finite and there exist a (measurable) function κx : Ξ → R+ ,
positive numbers γx and δx such that∣∣φ(

x′, ξ
) − φ(x, ξ)

∣∣ � κx(ξ)
∥∥x′ − x

∥∥γx (2.5)

for all x′ ∈ X with ‖x′ − x‖ � δx and all ξ ∈ Ξ .

φ is said to be H-calm from above, H-calm from below, H-calm on set X if the respective properties stated above hold at every
point of X . When γ = 1, φ is said to be calm from above, calm from below and calm respectively.

The following convergence results are summarized from Lemma 3.1 in an earlier version of [12] and [19, Theorem 3.1].

Theorem 2.2. Let φ : Rn ×Ξ → R be a real valued function and X a compact subset of Rn. Assume: (a) condition (C1) holds; (b) ψ(x)
is Hölder continuous on X . Then the following statements hold.

(i) If φ(·, ξ) is H-calm from above on X with modulus κ(ξ) and order γ and the moment generating function E[eκ(ξ)t] is finite
valued for t close to 0, then for every ε > 0, there exist positive constants c(ε) and β(ε), independent of N, such that

Prob
{

sup
x∈X

(
ψN(x) − ψ(x)

)
� ε

}
� c(ε)e−Nβ(ε). (2.6)

(ii) If φ(·, ξ) is H-calm from below on X with modulus κ(ξ) and order γ and the moment generating function E[eκ(ξ)t] is finite
valued for t close to 0, then for every ε > 0, there exist positive constants c(ε) and β(ε), independent of N, such that

Prob
{

inf
x∈X

(
ψN(x) − ψ(x)

)
� −ε

}
� c(ε)e−Nβ(ε). (2.7)

(iii) If φ(·, ξ) is H-calm on X with modulus κ(ξ) and order γ and the moment generating function E[eκ(ξ)t] is finite valued for t close
to 0, then for every ε > 0, there exist positive constants c(ε) and β(ε), independent of N, such that

Prob
{

sup
x∈X

∣∣ψN(x) − ψ(x)
∣∣ � ε

}
� c(ε)e−Nβ(ε). (2.8)

The H-calmness weakens the condition on continuity of random function φ(x, ξ). However the requirements for the
calmness to hold for all ξ and the expected value to be continuous seem to be too strong. Consider a simple random
function

φ
(
x, ξ(ω)

) :=
{

1, for x � ξ,

0, for x < ξ,
(2.9)

where x ∈ R and ξ is a random variable with continuous distribution with support Ξ . It is easy to observe that calmness
is violated in a neighborhood of the x = ξ line. However some numerical experiments show that the sample average ap-
proximation of this function converges to its expected value uniformly over a compact set. This motivates us to consider
a weaker condition, namely to allow the calmness to be violated for some negligible subset of Ξ . We will give a precise
description of this in the next section.

3. Almost calmness and the extended exponential convergence results

In this section, we weaken the calmness condition and derive the uniform exponential convergence of random functions
under the weakened conditions. Let us start with a definition corresponding to Definition 2.1.

Definition 3.1 (Almost H-clamness). Let φ : Rn × Ξ → R be a real valued function and ξ : Ω → Ξ ⊂ Rk a random vector
defined on probability space (Ω, F , P ). Let X ⊂ Rn be a closed subset of Rn and x ∈ X be fixed. φ is said to be

(a) almost H-clam at x from above with modulus κx(ξ) and order γx if for any ε > 0, there exist an integrable function
κx : Ξ → R+ , positive numbers γx , δx(ε), C and an open set 
x(ε) ⊂ Ξ such that

Prob
(
ξ ∈ 
x(ε)

)
� Cε (3.10)

and

φ
(
x′, ξ

) − φ(x, ξ) � κx(ξ)
∥∥x′ − x

∥∥γx (3.11)

for all ξ ∈ Ξ\
x(ε) and all x′ ∈ B(x, δx(ε)) ∩ X , here and later on B(x, δ) denotes the δ-neighborhood of x;
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(b) almost H-clam at x from below with modulus κx(ξ) and order γx if for any ε > 0, there exist an integrable function
κx : Ξ → R+ , positive numbers γx , δx(ε) and an open set 
x(ε) ⊂ Ξ such that (3.10) holds and

φ
(
x′, ξ

) − φ(x, ξ) � −κx(ξ)
∥∥x′ − x

∥∥γx (3.12)

for all ξ ∈ Ξ\
x(ε) and all x′ ∈ B(x, δx(ε)) ∩ X ;
(c) almost H-clam at x with modulus κx(ξ) and order γx if for any ε > 0, there exist an integrable function κx : Ξ → R+ ,

positive numbers γx , δx(ε) and an open set 
x(ε) ⊂ Ξ such that (3.10) holds and∣∣φ(
x′, ξ

) − φ(x, ξ)
∣∣ � κx(ξ)

∥∥x′ − x
∥∥γx (3.13)

for all ξ ∈ Ξ\
x(ε) and all x′ ∈ B(x, δx(ε)) ∩ X .

φ is said to be almost H-clam from above, almost H-clam from below, almost H-clam on set X if the respective properties
stated above hold at every point x of X . φ is said to be almost H-clam from above, almost H-clam from below, almost
H-clam uniformly over set X if there exist κ(ξ), δ(ε), γ , all of which being independent of x, such that the respective
properties stated above hold at every point x of X . When γ = 1, φ is said to be almost clam from above, almost clam from
below, almost clam respectively.

The key idea in the preceding definition is to allow calmness condition to be violated for some random realization
with negligible probability. Consider the function defined in (2.9). Let κ and γ be any positive numbers. Then the function
is almost calm at any point x ∈ R with modulus κ and order γ . Indeed for any ε > 0, there exist δ = 1

2 ε and 
x(ε) =
(x − 1

2 ε, x + 1
2 ε)∩Ξ , such that the (3.13) holds for all ξ ∈ Ξ\
x(ε) and x′ ∈ (x − 1

2 ε, x + 1
2 ε)∩ X , where x can be any point

in X and Ξ denotes the support of ξ . Indeed the function is uniformly almost calm over R as the constants κ , γ and δ(ε)

are independent of x.
The following result is from the Gärtner–Ellis theorem, see for instance [4,5].

Lemma 3.1 (Pointwise exponential convergence). Let φ : Rn × Ξ → R be a real valued function and ξ : Ω → Ξ ⊂ Rk a random
vector defined on probability space (Ω, F , P ). Let X ⊂ Rn be a subset of Rn and x ∈ X . If the moment generating function

Mx(t) := E
[
et(φ(x,ξ)−ψ(x))]

is finite for t close to 0, then for every fixed x ∈ X and small positive number ε > 0

Prob
{
ψN(x) − ψ(x) � −ε

}
� e−N Ix(−ε)

and

Prob
{
ψN(x) − ψ(x) � ε

}
� e−N Ix(ε)

for N sufficiently large, where

Ix(z) := sup
t∈R

{
zt − log Mx(t)

}
and both I(−ε) and I(ε) are positive.

Let ξ : Ω → Ξ be a random variable and 
 ⊂ Ξ be an open set. Let

η
(
ξ(ω)

) :=
{

1, if ξ(ω) ∈ 
,

0, if ξ(ω) /∈ 
.
(3.14)

Then η(ξ(ω)) is a random variable (depending on 
) and E[η(ξ(ω))] = Prob{ξ(ω) ∈ 
}. The following proposition states
pointwise exponential convergence of random function φ(x, ξ)η(ξ).

Proposition 3.1. Let φ(x, ξ) be defined as in Lemma 3.1 and η : Ω → {0,1} be defined by (3.14). Assume that the moment generating
function of φ(x, ξ) is finite valued for t close to 0. Then the following assertions hold.

(i) The moment generating function of φ(x, ξ)η(ξ) is finite valued for t close to 0.
(ii) Let ψ̃(x) = E[φ(x, ξ)η(ξ)],

φ̃N(x) = 1

N

N∑
k=1

φ
(
x, ξk)ηk,

where ηk = η(ξk), for k = 1, . . . , N. Let

M̃x(t) := E
[
et(φ(x,ξ)η(ξ)−ψ̃(x))]
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and

Ĩx(z) := sup
t∈R

{
zt − log M̃x(t)

}
.

Then for every small ε > 0, one has

Prob
{
φ̃N(x) − ψ̃(x) � −ε

}
� e−N Ĩx(−ε) (3.15)

and

Prob
{
φ̃N(x) − ψ̃(x) � ε

}
� e−N Ĩx(ε) (3.16)

for N sufficiently large, where

min
(

Ĩ x(−ε), Ĩ x(ε)
)
> 0.

Proof. Part (i). Using conditional expectation, we have

M̃x(t) = E
[
et(φ(x,ξ)η(ξ)−ψ̃(x))]

= E
[
et(φ(x,ξ)η(ξ)−ψ̃(x))

∣∣ η(ξ) = 1
]

Prob
(
η(ξ) = 1

) + E
[
et(φ(x,ξ)η(ξ)−ψ̃(x))

∣∣ η(ξ) = 0
]

Prob
(
η(ξ) = 0

)
= e−ψ̃(x)t(E[

eφ(x,ξ)t] Prob(ξ ∈ 
) + Prob(ξ /∈ 
)
)

= e(ψ(x)−ψ̃(x))t(E[
e(φ(x,ξ)−ψ(x))t] Prob(ξ ∈ 
) + e−ψ(x)t Prob(ξ /∈ 
)

)
< ∞

for t close to 0.
Part (ii). The conclusion follows from part (i) and Lemma 3.1. �
We are now ready to state the main results in this section.

Theorem 3.1. Let φ : Rn × Ξ → R be a real valued lower semicontinuous function and ξ : Ω → Ξ ⊂ Rk a random vector defined
on probability space (Ω, F , P ). Let X ⊂ Rn be a compact subset of Rn. Assume: (a) condition (C1) in Section 2 holds, (b) ψ(x) is
continuous on X , (c) there exists a positive number L such that |φ(x, ξ)| � L. Then the following statements hold.

(i) If φ(·, ξ) is almost H-clam from above on X with modulus κ(ξ) and order γ , and the moment generating function E[eκ(ξ)t] is
finite valued for t close to 0, then for every ε > 0, there exist positive constants c(ε) and β(ε), independent of N, such that

Prob
{

sup
x∈X

(
ψN(x) − ψ(x)

)
� ε

}
� c(ε)e−Nβ(ε). (3.17)

(ii) If φ(·, ξ) is almost H-clam from below on X with modulus κ(ξ) and order γ , and the moment generating function E[eκ(ξ)t] is
finite valued for t close to 0, then for every ε > 0, there exist positive constants c(ε) and β(ε), independent of N, such that

Prob
{

inf
x∈X

(
ψN(x) − ψ(x)

)
� −ε

}
� c(ε)e−Nβ(ε). (3.18)

(iii) If φ(·, ξ) is almost H-clam on X with modulus κ(ξ) and order γ , and the moment generating function E[eκ(ξ)t] is finite valued
for t close to 0, then for every ε > 0, there exist positive constants c(ε) and β(ε), independent of N, such that

Prob
{

sup
x∈X

∣∣ψN(x) − ψ(x)
∣∣ � ε

}
� c(ε)e−Nβ(ε). (3.19)

Proof. We only prove part (i) as part (ii) can be proved in a similar way, while part (iii) is a combination of part (i) and
part (ii).

For given ε > 0 and fixed each x ∈ X , it follows by Lemma 3.1 that there exists N0 > 0 such that for N > N0,

Prob
{
ψN(x) − ψ(x) � ε

}
� e−N Ix(ε), (3.20)

where Ix(ε) is positive. Let ν > 0 and {x̄i}, i ∈ {1, . . . , M}, be a ν-net of X with M = [O (1)D/ν]n , where D := supx,x′∈X ‖x −
x′‖, that is, for any x ∈ X , there exists an index i(x) ∈ {1, . . . , M} such that ‖x − x̄i(x)‖ � ν . Since ψ(x) is assumed to be
continuous on X which is a compact set, we can choose the ν-net through the finite covering theorem such that∣∣ψ(x) − ψ(x̄i(x))

∣∣ � ε

4
(3.21)
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for any x ∈ X . On the other hand, since φ(x, ξ) is almost H-clam from above on X , then for every x ∈ X , there exist an
open set 
x(ε) ⊂ Ξ and positive number δx such that

Prob
{
ξ ∈ 
x(ε)

}
� ε

16L
(3.22)

and

φ
(
x′, ξ

) − φ(x, ξ) � κ(ξ)
∥∥x′ − x

∥∥γ

for all ξ /∈ 
x(ε) and ‖x′ − x‖ � δx . Through the finite covering theorem, this implies that our ν-net can be chosen properly
so that

φ(x, ξ) − φ(x̄i(x), ξ) � κ(ξ)‖x − x̄i(x)‖γ (3.23)

for all ξ /∈ 
x̄i(x) (ε). Let

ψ̃N(x) := 1

N

∑
ξk∈
x̄i(x)

(ε)

φ
(
x, ξk), ψ̄N(x) := 1

N

∑
ξk /∈
x̄i(x)

(ε)

φ
(
x, ξk).

By (3.23), we have that

ψ̄N(x) − ψ̄N(x̄i(x)) � 1

N

∑
ξk /∈
x̄i(x)

(ε)

κ
(
ξk)νγ � κNνγ (3.24)

where κN := 1
N

∑N
k=1 κ(ξk). Since E[eκ(ξ)t] is finite valued for t close to 0, by Cramér’s large deviation theorem [5], we have

that for any L′ > E[κ(ξ(ω))], there exists a positive constant λ such that

Prob
{
κN � L′} � e−Nλ

and hence

Prob

{
κNνγ � ε

4

}
� e−Nλ (3.25)

for some λ > 0 (by setting ε
4νγ � E[κ(ξ(ω))]). On the other hand, by using notation η defined by (3.14) and condition (c)

of this theorem, we have

ψ̃N(x) − ψ̃N(x̄i(x)) = 1

N

∑
ξk∈
x̄i(x)

(ε)

(
φ
(
x, ξk) − φ

(
x̄i(x), ξ

k)) = 1

N

N∑
k=1

(
φ
(
x, ξk) − φ

(
x̄i(x), ξ

k))ηk

� 1

N

N∑
k=1

2Lηk, (3.26)

where

ηk :=
{

1, if ξk ∈ 
x̄i(x) (ε),

0, if ξk /∈ 
x̄i(x) (ε).

Applying Proposition 3.1(ii) to Lη(ξ), we have

Prob

{
1

N

N∑
k=1

Lηk − E
[
Lη(ξ)

]
� ε

16

}
� e−N Ĩ(ε/16),

where Ĩ(z) is the rate function of Lη(ξ), and by Proposition 3.1(ii), Ĩ(−ε/16) > 0 and Ĩ(ε/16) > 0. On the other hand,
by (3.22),

E
[
2Lη(ξ)

]
� 2L Prob

(
ξ ∈ 
x̄i(x) (ε)

)
� ε

8
.

A combination of the above two inequalities yields

Prob

{
1

N

N∑
k=1

2Lηk � ε

4

}
� e−N Ĩ(ε/16) (3.27)

for N sufficiently large.
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Let Zi := ψN (x̄i) − ψ(x̄i), i = 1, . . . , M . The event {max1�i�M Zi � ε} is equal to the union of the events {Zi � ε}, i =
1, . . . , M , and hence

Prob
{

max
1�i�M

Zi � ε
}

�
M∑

i=1

Prob{Zi � ε}.

Together with (3.20), this implies that

Prob
{

max
1�i�M

Zi � ε
}

�
M∑

i=1

e−N Ix̄i
(ε)

. (3.28)

Combining (3.21), (3.24) and (3.26), we obtain

ψN(x) − ψ(x) = ψN(x) − ψN(x̄i(x)) + ψN(x̄i(x)) − ψ(x̄i(x)) + ψ(x̄i(x)) − ψ(x)

� ψ̄N(x) − ψ̄N(x̄i(x)) + ψ̃N(x) − ψ̃N(x̄i(x)) + ψN(x̄i(x)) − ψ(x̄i(x)) + ε

4

� κNνγ + 1

N

N∑
k=1

2Lηk + ψN(x̄i(x)) − ψ(x̄i(x)) + ε

4
.

Therefore

Prob
{

sup
x∈X

(
ψN(x) − ψ(x)

)
� ε

}

� Prob

{
κNνγ + 1

N

N∑
k=1

2Lηk + max
1�i�M

(
ψN(x̄i) − ψ(x̄i)

)
� 3ε

4

}
.

By (3.25), (3.27) and (3.28), we have

Prob
{

sup
x∈X

(
ψN(x) − ψ(x)

)
� ε

}
� e−Nλ + Prob

{
1

N

N∑
k=1

2Lηk � ε

4

}
+ Prob

{
max

1�i�M

(
ψN(x̄i) − ψ(x̄i)

)
� ε

4

}

� e−Nλ + e−N Ĩ(ε/16) +
M∑

i=1

e−N Ix̄i
( ε

4 )
,

which implies (3.17) as the above choice of ν-net does not depend on the sample (although it depends on ε), and I x̄i (
ε
4 )

are positive, for i = 1, . . . , M . The proof is complete. �
It is important to note that Theorem 3.1 requires ψ(x) to be continuous. It is unclear whether or not it can be weakened

to piecewise continuous. In [12], Ralph and Xu investigated sample average approximation of stochastic generalized equa-
tions where the underlying functions are set-valued and stochastic piecewise Hausdorff continuous. Under the condition
that the expected value of the set-valued mapping is piecewise continuous, they derived piecewise uniform exponential
convergence of sample average approximated set-valued mapping to its true counterpart, see [12, Section 4]. It will be
interesting to incorporate Theorem 3.1 with those developed in [12, Section 4], we leave this for our future work.

Remark 3.1. Similarly to the discussions in [17], we may estimate the sample size. To this end, we assume that there exists
a constant σ > 0 such that for all x ∈ X ,

E
[
e(φ(x,ξ)−E[φ(x,ξ)])t] � exp

{
σ 2t2/2

}
, ∀t ∈ R (3.29)

and

E
[
e(Lη(ξ)−E[Lη(ξ)])t] � exp

{
σ 2t2/2

}
, ∀t ∈ R, (3.30)

where L and η(ξ) are defined as in Theorem 3.1. Note that equality in (3.29) and (3.30) holds if random variables φ(x, ξ) −
E[φ(x, ξ)] and Lη(ξ) − E[Lη(ξ)] satisfy normal distribution with variance σ 2, see a discussion in [17]. From Theorem 3.1,

Prob
{

sup
x∈X

(
ψN(x) − ψ(x)

)
� ε

}
� e−Nλ + e−N Ĩ(ε/16) +

M∑
i=1

e−N Ix̄i
( ε

4 )
, (3.31)
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where Ĩ is the rate function of Lη(ξ) and I x̄i is the rate function of φ(x̄i, ξ). By (3.29) and (3.30), it is easy to derive through
the definition of the rate function that

Ĩ

(
ε

16

)
� ε2

512σ 2

and

I x̄i

(
ε

4

)
� ε2

32σ 2
.

Substituting the estimates into (3.31), we have

Prob
{

sup
x∈X

(
ψN(x) − ψ(x)

)
� ε

}
� e−Nλ + e

− Nε2

512σ2 + Me
− Nε2

32σ2 . (3.32)

Let ε be sufficiently small such that λ � ε2

512σ 2 and β ∈ (0,1). By (3.32), it is easy to verify that

Prob
{

sup
x∈X

(
ψN(x) − ψ(x)

)
� ε

}
� β (3.33)

for

N � 512σ 2

ε2

[
ln(M + 2) + ln

(
1

β

)]
.

In what follows, we estimate M . From the proof of Theorem 3.1, M � (O (1)D(
4E[κ(ξ)]

ε )
1
γ )n , which means that (3.33) holds

for

N � O (1)σ 2

ε2

[
n ln

(
O (1)D

(
4E[κ(ξ)]

ε

) 1
γ
)

+ ln

(
1

β

)]
.

4. Application

In this section, we apply the theory derived in the preceding section to study sample average approximation of Clarke
subdifferentials. We focus on a particular function defined as follows:

g(x, ξ) := max
(

f
(
x, ξ(ω)

)
,0

)
, (4.34)

where f : Rn × Rq → R is Lipschitz continuous and differentiable w.r.t. x for every ξ and ξ : Ω → Ξ is a vector of random
variables defined on probability (Ω, F , P ) with support Ξ ⊂ Rq . The reason that we consider this particular random func-
tion is that nonsmoothness in many practical stochastic optimization problems arises from max operations, see for instance
[4,6,8].

Let F : Rn → Rm be a locally Lipschitz continuous function. The Clarke subdifferential (also known as generalized gradient)
of F at x ∈ Rn is defined as

∂ F (x) := conv
{

lim
y∈D F , y→x

∇ F (y)
}
,

where D F denotes the set of points near x at which F is Fréchet differentiable, ∇ F (y) denotes the usual gradient of F and
“conv” denotes the convex hull of a set. The Clarke’s generalized directional derivative of F at x for a given direction h ∈ Rn

is defined as:

F o(x;h) = lim sup
x′→x, τ↓0

1

τ

(
F
(
x′ + τh

) − F
(
x′)).

It is well known that the Clarke generalized gradient ∂ F (x) is a convex compact set and as a set-valued mapping ∂ F (·) is
upper semicontinuous in the sense of Berge, that is, for any ε > 0, there exists a δ > 0 such that

∂ F (x + δB) ⊂ ∂ F (x) + εB
where B denotes the unit ball in an appropriate space. Moreover, Clarke generalized directional derivative is the support of
Clarke subdifferential, that is

F o(x;h) = sup
ζ∈∂ F (x)

ζ T h.

See Chapter 2 in [3] for details.
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In what follows, we investigate the conditions under which: (a) E[go
x(x, ξ ;h)] is continuous, (b) go

x(x, ξ ;h) is almost
calm. Note that since f is assumed to be Lipschitz continuous w.r.t. x for each ξ , then g(·, ξ) is also Lipschitz continuous
and hence go

x(x, ξ) is well defined for each x.
Let x ∈ Rn . Define the set

Θ(x) := {
ξ : f (x, ξ) = 0

}
.

Obviously Θ(x) contains the set of points ξ such that g(·, ξ) is not differentiable at x.

Proposition 4.1. Consider function (4.34). Let X ⊂ Rn be a compact subset of Rn. Assume:

(a) f (x, ξ) is twice continuously differentiable w.r.t. x for almost every ξ ∈ Ξ ;
(b) ∇x f (·,·) is locally Lipschitz continuous with an integrable modulus κ(ξ);
(c) the Lebesgue measure of Θ(x) on Ξ is 0;
(d) for any ε > 0 and any fixed x ∈ X , there exists an open set Θε(x) (depending on both x and ε) such that Θ(x) ⊂ Θε(x) and

μ(Θε(x) ∩ Ξ) � ε , where μ denotes the Lebesgue measure on Ξ .

Then

(i) E[go
x(x, ξ ;h)] is a continuous function for every h ∈ Rn;

(ii) if Ξ is a compact set, then go
x(x, ξ ;h) is almost H-clam with modulus κ(ξ) and order 1 on X ;

(iii) if Ξ is bounded, then the moment generation function Mx(t) := E[e(go
x (x,ξ ;h)−E[go

x (x,ξ ;h)])t ] is finite valued for t close to 0.

Proof. Part (i). This is a well-known result. Indeed, in this case E[g(x, ξ)] is continuously differentiable, see for instance
[8, Theorem 1].

Part (ii). For any fixed ε > 0 and x̄ ∈ X , by condition (d), there exists an open subset Θε(x̄) such that Θ(x̄) ⊂ Θε(x̄) and
μ(Θε(x̄) ∩ Ξ) � ε . Let ξ̄ /∈ Θε(x̄). Then f (x̄, ξ̄ ) 
= 0. We only consider the case that f (x̄, ξ̄ ) > 0 as the case when f (x̄, ξ̄ ) < 0
can be dealt with in the same way. Under condition (b), we can find a δ-neighborhood of (x̄, ξ̄ ) (depending on x̄ and ξ̄ ),
denoted by B((x̄, ξ̄ ), δx̄,ξ̄ ), such that for all (x, ξ) ∈ B((x̄, ξ̄ ), δx̄,ξ̄ ) ∩ X × Ξ , f (x, ξ) > 0 and

∣∣go
x(x, ξ ;h) − go

x(x̄, ξ ;h)
∣∣ = ∣∣∇x f (x, ξ)T h − ∇x f (x̄, ξ)T h

∣∣ � κ(ξ)‖x − x̄‖. (4.35)

Since Ξ\Θε(x̄) is compact, we claim through the finite covering theorem that there exists a unified δx̄ > 0 such that (4.35)
holds for all x ∈ B(x̄, δx̄) and all ξ ∈ Ξ\Θε(x̄). This shows that go

x(x, ξ ;h) is almost H-calm with modulus κ(ξ) and order 1
over X .

Part (iii) is obvious when Ξ is a bounded set. �
Remark 4.1. It might be interesting to ask how strong condition (d) is in the preceding proposition. We claim that verifiable
sufficient conditions are: (a) Θ(x) is compact and (b)

∇ξ f (x, ξ) 
= 0 (4.36)

for ξ ∈ Θ(x). To see this, let ξ̄ ∈ Θ(x). Then f (x, ξ̄ ) = 0 and by assumption, ∇ξ f (x, ξ̄ ) 
= 0. Note that ξ is an r-dimensional

vector in Rr . Let us write ξ = (ξ1, . . . , ξr)
T . Assume without loss of generality that ∂ f (x,ξ̄ )

∂ξ1

= 0. By the classical implicit

function theorem, there exist a neighborhood of point (x, ξ̄ ), denoted by B((x, ξ̄ ), δx,ξ̄ ), and a unique implicit function

ξ1(x, ξ−1), where ξ−1 = (ξ2, . . . , ξr)
T , such that ξ1(x, ξ̄−1) = ξ̄1 and

f
(
x′, ξ1

(
x′, ξ−1

)
, ξ−1

) = 0

for (x′, ξ−1) close to (x, ξ̄−1).
Let x′ = x be fixed. We consider the implicit function q(ξ−1) := ξ1(x, ξ−1) defined on Ξ . The graph of the function is an

r − 1 manifold on Rr on Ξ . We claim that there exists a finite number of such manifolds in Ξ . Assume for a contradiction
that there exists an infinite number of such manifolds, e.g., {ξk

1 (x, ·)}. Let ξk := (ξk
1 (x, ξk−1), ξ

k−1) be a point on the k-th

manifold. Since Ξ is compact, by taking a subsequence if necessary, we may assume that {ξk
1 (x, ξk−1)} → ξ∗

1 (x, ξ∗−1), which
means that in a neighborhood of ξ∗ = (ξ∗

1 , ξ∗−1), there exists an infinite number of manifolds. This is impossible under
condition (4.36) as by the implicit function theorem there exists only a unique such manifold in the neighborhood.

The discussion above shows that the Lebesgue measure of Θ(x) on Ξ is zero as the Lebesgue measure of each manifold
relative to Ξ is 0. Moreover, there exists an open set Θε(x) such that Θ(x) ⊂ Θε(x) and μ(Θε(x)) → 0 as ε ↓ 0.
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We now move on to investigate sample average approximation of E[∂x g(x, ξ)], where ∂x g(x, ξ) denotes the Clarke sub-
differential of g w.r.t. x and the expected value of the random set-valued mapping is in the sense of Aumann [1], that
is,

E
[
∂x g(x, ξ)

] :=
{∫

Ξ

ζ P (dξ): ζ is a Bochner’s integrable selection from ∂x g(x, ξ)

}
.

Let ξ1, . . . , ξ N be iid sampling of ξ . We consider the sample average approximation

G N(x) := 1

N

N∑
i=1

g
(
x, ξ i) = 1

N

N∑
i=1

max
(

f
(
x, ξ i),0

)
. (4.37)

It is well known that if g(x, ξ) is integrably bounded and Lipschitz continuous w.r.t. x, then G N (x) converges to E[g(x, ξ)]
uniformly over any compact set as N → ∞, see [14, Lemma A1]. Here we are interested in the approximation of subdiffer-
entials. Let

AG N(x) := 1

N

N∑
i=1

∂x g
(
x, ξ i).

It is well known that ∂G N (x) ⊂ AG N (x) and equality holds when g(·, ξ i) is Clarke regular at x for i = 1, . . . , N .
For the simplicity of notation, let G(x) := E[g(x, ξ(ω))]. Let d(x, C) := infx′∈C ‖x − x′‖ which is the distance from point x

to C . For two nonempty compact sets C and D, D(C, D) := supx∈C d(x, D) denotes the deviation from set C to set D
(also known as excess of C over D), and H(C, D) denotes the Pompeiu–Hausdorff distance between the two sets, that
is, H(C, D) := max(D(C, D),D(D, C)). We use C + D to denote the Minkowski addition of the two sets, that is, {x + x′:
x ∈ C, x′ ∈ D}. We are now ready to present the uniform exponential rate of convergence of ∂G N (x).

Theorem 4.1. Let f (x, ξ) and g(x, ξ) be defined as in (4.34). Let X be a compact subset of Rn. Then the following assertions hold.

(i) If conditions (a)–(b) of Proposition 4.1 hold, then

lim
N→∞ sup

x∈X
H

(AG N(x), ∂G(x)
) = 0. (4.38)

If, in addition, condition (c) holds, then G(x) is continuously differentiable and ∂G(x) = ∇G(x) = E[∂x g(x, ξ)]. Moreover

lim
N→∞ sup

x∈X
H

(
∂G N(x),∇G(x)

) = 0. (4.39)

(ii) If f (x, ξ) satisfies conditions (a), (b) and (d) of Proposition 4.1 and Ξ is bounded, then for every small positive number ε > 0,
there exist ĉ > 0 and β̂(ε) > 0, independent of N, such that

Prob
{

sup
x∈X

D
(
∂G N(x), ∂G(x)

)
� ε

}
� ĉ(ε)e−β̂(ε)N (4.40)

for N sufficiently large.

Proof. Observe first that under conditions (a)–(b), both go
x(x, ξ ; u) and E[∂x g(x, ξ)] are well defined. Moreover, g(x, ξ) is

Clarke regular (see [3, Definition 2.3.4]). By [3, Theorem 2.7.2], go
x(x; u) = E[go

x(x, ξ ; u)] for all u ∈ Rn , which implies

∂G(x) = E
[
∂x g(x, ξ)

]
. (4.41)

Part (i). By [18, Theorem 4],

lim
N→∞ sup

x∈X
H

(AG N(x),E
[
∂x g(x, ξ)

]) = 0. (4.42)

Combining (4.41) with (4.42), we immediately obtain (4.38).
When condition (c) holds, it follows by [8, Theorem 1] that G(x) is continuously differentiable and ∂G(x) = ∇G(x) =

E[∂x g(x, ξ)]. Consequently (4.39) follows from [15, Proposition 2.2]. See also [17, Proposition 4.1].
Part (ii). Let σ(A, u) denote the support function of set A. By [9, Proposition 3.4],

E
[
σ

(
∂x g(x, ξ), u

)] = σ
(
E

[
∂x g(x, ξ)

]
, u

)
. (4.43)

Moreover, using the well-known Hörmander’s formulae [2, Theorem II-18], we have

D
(AG N(x), ∂G(x)

) = max
‖u‖�1

(
σ

(AG N(x), u
) − σ

(
∂G(x), u

))
.
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Since ∂G N (x) ⊂ AG N (x) and σ(∂x g(x, ξ i), u) = go
x(x, ξ i; u), then

σ
(
∂G N(x), u

)
� 1

N

N∑
i=1

σ
(
∂x g

(
x, ξ i), u

) = 1

N

N∑
i=1

go
x

(
x, ξ i; u

)
.

Consequently, we have

sup
x∈X

D
(
∂G N(x),E

[
∂x g(x, ξ)

])
� sup

x∈X
D

(AG N(x),E
[
∂x g(x, ξ)

])

� sup
x∈X

max
‖u‖�1

1

N

N∑
i=1

[
go

x

(
x, ξ i; u

) − E
[

go
x(x, ξ ; u)

]]
. (4.44)

By Proposition 4.1, go
x(x, ξ ; u) is almost H-clamness with modulus κ(ξ) and order 1, E[go

x(x, ξ ; u)] is a continuous func-
tion for every u ∈ Rn . Moreover, since Ξ is a compact set, the moment generating functions of go

x(x, ξ ; u) − E[go
x(x, ξ ; u)]

and κ(ξ), denoted by Mx(t) and Mκ (t) respectively, are finite valued for t close to 0. Further, it is easy to verify that
|go

x(x, ξ ; u)| � ‖∇x f (x, ξ)‖. Since X and Ξ are compact and ∇x f (·,·) is continuous by assumption, then ‖∇x f (x, ξ)‖ is
bounded by a positive number L. By Theorem 3.1, for any ε > 0, there exist positive constants ĉ(ε) and β̂(ε) (independent
of N) such that

Prob

{
sup
x∈X

max
‖u‖�1

1

N

N∑
i=1

[
go

x

(
x, ξ i; u

) − E
[

go
x(x, ξ ; u)

]]
� ε

}
� ĉ(ε)e−β̂(ε)N . (4.45)

Combining (4.41), (4.44) and (4.45), we obtain (4.40). �
The uniform exponential convergence of the subdifferentials established in Theorem 4.1 can be easily applied to derive

exponential rate of convergence of stationary points in nonsmooth stochastic optimization where nonsmoothness arises
from max or min functions, see [19].
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