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Abstract. This paper presents numerical approximation schemes for a two-stage stochastic program-
ming problem, where the second stage problem has a general nonlinear complementarity constraint. First the
complementarity constraint is approximated by a parameterized system of inequalities with a well-known
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approximated problems, including continuity and local Lipschitz continuity of optimal value functions and
outer semicontinuity and continuity of the set of optimal solutions and stationary points. A particular focus is
given to the case where the probability distribution is approximated by the empirical probability measure
which is also known as sample average approximation.
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1. Introduction. Consider the following two-stage stochastic mathematical pro-
gram with complementarity constraints (SMPCC):

min
x;yð·Þ∈Y

E½fðx; yðωÞ; ξðωÞÞ�

s:t: x ∈ X and for almost everyω ∈ Ω;

gðx; yðωÞ; ξðωÞÞ ≤ 0;

hðx; yðωÞ; ξðωÞÞ ¼ 0;

0 ≤ Gðx; yðωÞ; ξðωÞÞ ⊥ Hðx; yðωÞ; ξðωÞÞ ≥ 0;ð1:1Þ

where X is a nonempty closed convex subset of Rn, f , g, h, G, H are continuously dif-
ferentiable functions from Rn × Rm × Rq to R, Rs, Rr, Rm, Rm, respectively, ξ∶Ω → Ξ is
a vector of random variables defined on probability ðΩ;F ; PÞ with support set Ξ ⊂ Rq,
and E½·� denotes the expected value with respect to probability measureP.⊥ denotes the
perpendicularity of two vectors, and Y is a space of functions yð·Þ∶Ω → Rm such that
E½f ðx; yðωÞ; ξðωÞÞ� is well defined.
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The SMPCCmodel differs from the classical two-stage stochastic program in that it
contains a stochastic complementarity constraint. It also extends deterministic math-
ematical programs with complementarity constraints (MPCC) by including a random
vector ξ. The extension is driven by practical need as well as by theoretical interest. For
instance, in an investment model for a firm, one may use a random vector to represent
market uncertainties and a complementarity problem to describe competition from its
competitors; see [15], [45]. Similar SMPCC models can also be found in engineering de-
sign; see, for instance, [12].

Patriksson andWynter [30] first proposed a two-stage stochastic mathematical pro-
gram with equilibrium constraints (SMPEC) model where the equilibrium constraint is
represented by a general stochastic variational inequality. They investigated a number
of fundamental issues including existence and uniqueness of optimal solutions, differ-
entiability of upper stage objective function, and a numerical method for solving the
problem. In the years since the first SMPEC paper, there have been increasing discus-
sions on SMPECs, most of which have focused on numerical methods. Shapiro [40] first
applied the well-known sample average approximation (SAA) method (also known un-
der different names such as Monte Carlo method, sample path optimization, and sto-
chastic counterpart [31], [34]) to general two-stage SMPECs where the expected value of
random functions are approximated by their sample averages, and he investigated
asymptotic convergence of optimal solutions and optimal values as sample size increases.
Shapiro and Xu [41] presented a detailed analysis of SMPEC structure and demon-
strated the exponential rate of convergence of sharp local minimizers of sample average
approximated problems. Lin, Chen, and Fukushima [25] first investigated SMPCCs and
proposed an implicit smoothing method for solving a discrete SMPCC with a P0-linear
complementarity constraint. Xu andMeng [47] reformulated the SMPCC as a two-stage
stochastic minimization problem with nonsmooth equality constraints and applied the
SAA method to solve it. They obtained an exponential rate of convergence of global
optimal solutions obtained from solving the SAA problem. Moreover, they used a uni-
form law of large numbers for random set-valued mappings to analyze almost sure con-
vergence of generalized KKT points of the sample average approximated SMPCC when
the complementarity constraint is strongly monotone.

Along this direction, Meng and Xu [27] investigated convergence of stationary
points obtained from solving sample average approximated SMPECs where the second
stage problem may have multiple solutions. Specifically they used a nonlinear comple-
mentarity problem (NCP) function which combines Tikhonov regularization and some
smoothing technique to approximate the complementarity constraints with a smooth
nonlinear system of equality constraints. The latter define a unique feasible solution.
The NCP-regularization scheme is restricted to P0 functions, and as the regularization
parameter is driven to zero, the unique feasible solution of the regularized second stage
problem converges to a measurable feasible solution of the true second stage problem
which is not necessarily optimal. The method is applicable to the case when a decision
maker is not able or keen to find an optimal solution of the second stage at each scenario;
see detailed discussions in [27, p 892]. Putting this another way, an optimal solution or a
stationary point obtained under the NCP-regularized SAA scheme does not necessarily
converge to its true counterpart.

In this paper, we are concerned with numerical approximation of the two-stage
SMPCC (1.1). We ask ourselves two fundamental questions: (a) can we approximate
SMPCC (1.1) by an ordinary two-stage stochastic program with equality and/or in-
equality constraints; (b) can we approximate the stochastic program by a deterministic
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nonlinear programming (NLP) problem? Question (a) has been partially answered. For
example, one can use NCP functions such as min-function or Fischer–Burmeister func-
tion to reformulate a complementarity problem as a nonsmooth system of equations and
consequently SMPCC (1.1) as a two-stage stochastic program with nonsmooth equality
constraints; see [47], [27]. Question (b) is classical in stochastic programming. A simple
answer is to use the well-known Monte Carlo sampling method. In the literature on
MPECs, however, the reformulation through NCP functions is not the most popular.
Likewise, in the literature on stochastic programming, there exist discretization/
approximation schemes other than Monte Carlo sampling to deal with the random vari-
ables. This motivates us to consider different schemes to approximate the complemen-
tarity constraints and the probability measure P.

Here we apply a well-known regularization method [42], [38], [17] to tackle the com-
plementarity constraint, and then we consider a sequence of probability measures to
approximate the distribution of ξ with a particular focus on the empirical probability
measure which is known as SAA. The basic idea of the regularization method is to ap-
proximate the complementarity constraint 0 ≤ x ⊥ y ≥ 0 by a system of parameterized
nonlinear inequalities x ≥ 0, y ≥ 0, where the components of x and y satisfy xiyi ≤ t for
some small positive parameter t. The regularization method has been widely applied to
solve deterministic MPCCs. The main advantage of the method is that the regularized
MPCC is an NLP which can be solved by existing NLP solvers such as the sequential
quadratic programming methods [1], [17]. Moreover, the regularized NLP satisfies the
Mangasarian–Fromowitz constraint qualification (MFCQ) under so-called MPEC-
MFCQ of the original problem. It is well known that MFCQ is closely related to the
numerical stability of the problem. In the context of SMPCC, the regularization ap-
proach allows one to approximate SMPCC (1.1) by a parameterized ordinary two-stage
stochastic program which paves the way for the numerical solution of the problem.
However, there are a number of theoretical issues to be resolved in order to justify such
an approximation, and this is indeed one of the motivations of this paper.

We include a brief literature review of theNLP regularization approach for two-stage
SMPCCs. Shapiro and Xu [41] appear to be the first to apply the approach to a two-stage
SMPCC and then use the SAAmethod to solve it. They predicted the convergence of the
regularized SAAmethod for a class of SMPCCswith stronglymonotone complementarity
constraints but did not give details of the convergence analysis. In a conference paper,
Ralph, Xu, and Meng [32] carried out a convergence analysis of the NLP regularized
SAAmethod for solving a class of SMPCCs with monotone complementarity constraints
with a particular focus on optimal values and Clarke stationary points.

Since NLP regularization is a very popular approach for solving deterministic
MPECs, we revisit the topic (the application of the approach to two-stage SMPCCs)
but from a different perspective and on a wider class of problems. We consider a two-
stage SMPCCwith a general complementarity constraint which is not necessarily mono-
tone; we present a detailed stability analysis of the NLP regularized problem as the
regularization parameter tends to zero. Moreover, for a fixed regularization parameter,
we investigate stability of the NLP regularized two-stage SMPEC when the probability
distribution of ξ is approximated by a sequence of probability measures. Finally, we
combine the two stability analyses under an empirical probability measure.

As far as we are concerned, the main contributions of this paper can be summarized
as follows:

(a) Different from [41], [47], [48], we consider a two-stage SMPCC where the second
stage problem may have multiple solutions, and we apply the popular NLP
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regularization method to deal with the complementarity constraint. The reg-
ularization scheme is significantly different from NCP regularization in [27]
which is applicable to a specific class of SMPECs. Under MPEC-MFCQ, in-
stead of MPEC linear independent constraint qualification (MPEC-LICQ)
as in [42, Lemma 2.1], we demonstrate that the regularized second stage pro-
blem satisfies MPEC-MFCQ. Consequently, we present a comprehensive sta-
bility analysis of the NLP regularized SMPEC including Lipschitz continuity of
optimal value functions of both first stage and second stage problems as well as
the outer semicontinuity of the set of optimal solutions and stationary points.
This type of analysis is new in the research of SMPECs, and it addresses a fun-
damental problem: under some moderate conditions, two-stage SMPECs can be
effectively approximated by ordinary two-stage stochastic NLPs. This paves
the way for the application of existing numerical schemes developed for classical
two-stage stochastic NLPs (e.g., [6], 39], [22], [50]) to the NLP regularized two-
stage SMPECs.

(b) We carry out a stability analysis of the NLP regularized two-stage SMPECs.
Differing from the existing research on SMPECs, our analysis is performed un-
der general probability measure approximation including empirical probability
measure, optimal scenarios generation, and many others. Our analysis covers
optimal values and optimal solutions as well as stationary points. In particular,
we establish, under general perturbation of the probability measure, uniform
approximation of the Clarke subdifferential of the expected value of a non-
smooth random function and the expected value of the Clarke subdifferential
of a nonsmooth random function. The result strengthens the earlier results on
subdifferential approximation by Birge and Qi [9] and has potential applica-
tions in the research of general nonsmooth stochastic programming and sto-
chastic equilibrium problems.

(c) We present a combined stability analysis due to NLP regularization and
empirical probability measure and establish exponential convergence of opti-
mal solutions and almost sure convergence of stationary points. This de-
monstrates how our stability analysis could generate concrete asymptotic
convergence results when the probability approximation is restricted to
empirical measure.

2. Preliminaries. In this section, we present some preliminary results in determi-
nistic MPECs, set-valued analysis, and random set-valued mapping.

Throughout this paper, we use the following notation. xTy denotes the scalar pro-
duct of vectors x and y, k · k denotes the Euclidean norm of a vector and a compact set of
vectors. dðx;DÞ represents the distance from point x to set D, that is, dðx;DÞ ≔
infx 0∈Dkx− x 0k. For two compact sets D1 and D2, DðD1; D2Þ ≔ supx∈D1

dðx;D2Þ denotes
the deviation of D1 from D2, and HðD1; D2Þ ≔ max ðDðD1; D2Þ;DðD2; D1ÞÞ denotes the
Hausdorff distance between D1 and D2; D1 þD2 denotes the Minkowski addition of D1

and D2, that is, D1 þ D2 ¼ fxþ y∶x ∈ D1; y ∈ D2g. For a set C , we use convC , clC to
denote the convex hull and closure of setC , respectively. For a real-valued function f ðxÞ,
we use ∇f ðxÞ to denote the gradient of f at x which is a column vector. When f is a
vector-valued function,∇f ðxÞ represents the Jacobian of f at x where the gradient of the
jth component of f forms the jth column of the Jacobian. Finally, for a set
fðx; yÞ ¼ z∶z ∈ Zg, ΠxZ ¼ fx∶∃y such that ðx; yÞ ∈ Zg.
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2.1. Some basics in deterministic MPECs. Consider the following MPCC:

min
z

f ðzÞ s:t: gðzÞ ≤ 0; hðzÞ ¼ 0; 0 ≤ GðzÞ ⊥ HðzÞ ≥ 0;ð2:1Þ

where f∶Rn → R, g∶Rn → Rs, h∶Rn → Rr,G∶Rn → Rm, and H∶Rn → Rm are continu-
ously differentiable and s.t. denotes “subject to.” For a feasible point z�, we define the
following index sets:

Igðz�Þ ≔ fi∶giðz�Þ ¼ 0; i ¼ 1; : : : ; sg;
IGðz�Þ ≔ fi∶Giðz�Þ ¼ 0; i ¼ 1; : : : ;mg;
IH ðz�Þ ≔ fi∶Hiðz�Þ ¼ 0; i ¼ 1; : : : ;mg:

Moreover, we define a family of nonempty index sets J ⊆ f1; : : : ;mg by

J ðz�Þ ≔ fJ∶J ⊆ IGðz�Þ; Jc ⊆ IH ðz�Þg;ð2:2Þ

where Jc ≔ f1; : : : ;mg \ J .We consider the followingNLP corresponding to index set J :

NLPJ : min
z

f ðzÞ
s:t: gðzÞ ≤ 0;

hðzÞ ¼ 0;

GiðzÞ ¼ 0; H iðzÞ ≥ 0; i ∈ J;

GiðzÞ ≥ 0; H iðzÞ ¼ 0; i ∈ Jc:ð2:3Þ
In the literature of MPECs, each of the NLPs correspording to index set J is called an
NLP branch of (2.1), and its feasible set is called a branch of the feasible set of MPEC. It
is obvious that the branches over J ∈ J ðz�Þ form a neighborhood of z� in the feasible set
of (2.1); see [19].

DEFINITION 2.1. MPCC (2.1) is said to satisfy the MPEC-MFCQ at a feasible point
z� if the gradient vectors

f∇hiðz�Þgi¼1; : : : ;r; f∇Giðz�Þgi∈IGðz�Þ; f∇Hiðz�Þgi∈IH ðz�Þ

are linearly independent and there exists a vector d ∈ Rn perpendicular to the vectors
such that

∇giðz�ÞTd < 0 ∀i ∈ Igðz�Þ:

It is said to satisfy the MPEC-LICQ at z� if the gradient vectors

f∇giðz�Þgi∈I gðz�Þ; f∇hiðz�Þgi¼1; · · · ;r; f∇Giðz�Þgi∈IGðz�Þ; f∇Hiðz�Þgi∈IH ðz�Þ

are linearly independent.

2.2. Set-valued mapping and subdifferentials. Let X be a closed subset of Rn.
A set-valued mapping F∶X → 2R

m
is said to be closed at x ∈ X if FðxÞ is a closed set.

The Painlevé–Kuratowski upper limit of F at x̄ is defined as

lim
x→x̄

FðxÞ ≔ fv ∈ Rm∶∃ sequences xk → x̄; vk → v with vk ∈ FðxkÞg:
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F is said to be outer semicontinuous at x̄ ∈ X relative to X ⊂ Rn if limx→x̄FðxÞ ⊆ Fðx̄Þ
or, equivalently, limx→x̄DðFðxÞ; Fðx̄ÞÞ ¼ 0: F is said to be locally bounded at x̄ if there
exists a neighborhood U of x̄ such that

S
x∈U FðxÞ is bounded. If F is locally bounded at

x̄, then the outer semicontinuity of F at x̄ is equivalent to that Fðx̄Þ is closed, and for
every open set OFðx̄Þ, there is a neighborhood U of x̄ such that

S
x∈U FðxÞ ⊂ O; see [35].

DEFINITION 2.2 (see [21]). A set-valued mapping F∶X ⊆ Rn → 2R
m

is said to be
pseudo-Lipschitzian at ðz�; x�Þ, where x� ∈ X and z� ∈ Fðx�Þ, if there exist neighbor-
hoods U of z�, V of x�, and a positive real number σ such that

Fðx 0Þ ∩ U ⊂ Fðx 0 0Þ þ σkx 0 − x 0 0kB ∀x 0; x 0  0 ∈ V;

where B is the closed unit ball in Rm.
Consider now a random set-valued mapping Fð·; ξð·ÞÞ∶X ×Ω → 2R

n
(we are slightly

abusing the notation F), where X is a closed subset of Rn and ξ is a random vector
defined on probability space ðΩ;F ; PÞ. Let x ∈ X be fixed, and consider the measurabil-
ity of set-valued mapping Fðx; ξð·ÞÞ∶Ω → 2R

n
. Let B denote the space of nonempty,

closed subsets of Rn. Then Fðx; ξð·ÞÞ can be viewed as a single-valued mapping from
Ω to B. Using [35, Theorem 14.4], we know that Fðx; ξð·ÞÞ is measurable if and only
if, for every B ∈ B, Fðx; ξð·ÞÞ−1B is F -measurable.

Recall that aðx; ξðωÞÞ ∈ Fðx; ξðωÞÞ is said to be a measurable selection of the ran-
dom set Fðx; ξðωÞÞ if aðx; ξðωÞÞ is measurable. The expectation of Fðx; ξðωÞÞ, denoted by
E½Fðx; ξðωÞÞ�, is defined as the collection of E½aðx; ξðωÞÞ�, where aðx; ξðωÞÞ is an integr-
able selection. The expected value is also known as Aumann’s integral [4].

DEFINITION 2.3. Let f∶Rn → R be a lower semicontinuous function, and let it be fi-
nite at x ∈ Rn. The proximal subdifferential [35, Definition 8.45] of f at x is defined as

∂πfðxÞ ≔ fζ ∈ Rn∶∃σ > 0;δ > 0 s:t: fðyÞ ≥ f ðxÞ þ ζT ðy− xÞ− σky− xk2
∀y ∈ Bðx; δÞg;

the limiting subdifferential (Mordukhovich or basic [28]) of f at x is defined as

∂Mf ðxÞ ≔ lim
x 0→

f
x

∂πfðx 0Þ;

and the singular limiting subdifferential is defined as

∂∞f ðxÞ ≔ fv ∈ Rn∶v ¼ lim
k→∞

akvk with vk ∈ ∂πf ðxkÞ and ak ↓ 0; xk→
f
xg;

where x 0→
f
x signifies that x 0 and f ðx 0Þ converge to x and f ðxÞ, respectively.

It is well known that a function f∶Rn → R is locally Lipschitz continuous near x̄ if
and only if ∂∞f ðx̄Þ ¼ f0g; see, for example, [26, Proposition 2.4].

Let f∶Rn → Rm be a locally Lipschitz continuous function. The Clarke subdiffer-
ential (also known as generalized gradient) of f at x ∈ Rn is defined as

∂f ðxÞ ≔ conv

�
lim

y∈D;y→x
∇fðyÞ

�
;

whereD denotes the set of points at which f is Fréchet differentiable, and∇fðyÞ denotes
the usual gradient of f . It is well known that the Clarke generalized gradient ∂fðxÞ
is a convex compact set, and it is upper semicontinuous; see [13, Propositions 2.1.2
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and 2.1.5]. When f is locally Lipschitz continuous near x, the Clarke subdifferential of f
at x coincides with the convex hull of the limiting subdifferential, that is,

∂f ðxÞ ¼ conv∂Mf ðxÞ;

see [35, Theorem 9.61].

3. NLP regularization and stability analysis. In this section, we apply the
NLP regularization scheme [42] to SMPCC (1.1), and we analyze the stability of the
regularized SMPCC in the sense of continuity and local Lipschitz continuity of optimal
value functions together with outer semicontinuity and continuity of set-valued map-
pings of optimal solutions and stationary points.While our analysis follows general steps
in the stability analysis of parametric programming [20], [21], [10], we need to tackle a
number of new challenges and complications arising from (a) a mix of parameters with
entirely different roles including the first stage decision variable, the random vector,
and the regularization parameter in the second stage problem, and (b) the subtle rela-
tionship between the constraint qualification of the true problems and that of the
regularized problems.

3.1. NLP regularization. In order to apply the NLP regularization scheme, we
first need to reformulate the SMPCC (1.1). Problem (1.1) can be written as

Pϑ: min
x

ϑðxÞ ¼ E½vðx; ξðwÞÞ�
s:t: x ∈ X;ð3:1Þ

as long as E½ðvðx; ξÞÞþ� < ∞ and E½ð−vðx; ξÞÞþ� < ∞, where ðaÞþ ¼ maxð0; aÞ and
vðx; ξÞ denotes the optimal value function of the following second stage problem:

MPCCðx; ξÞ: min
y

fðx; y; ξÞ

s:t: gðx; y; ξÞ ≤ 0;

hðx; y; ξÞ ¼ 0;

0 ≤ Gðx; y; ξÞ ⊥ Hðx; y; ξÞ ≥ 0:ð3:2Þ

The reformulation is well known in stochastic programming; see, for example, [37,
Chapter 1, Proposition 5] and a discussion in [41, section 1] in the context of two-stage
SMPECs. We apply the NLP regularization scheme [42], [38], [17] to the second stage
problemMPCCðx; ξÞ by replacing the complementarity constraint with a parameterized
system of inequalities, that is,

Gðx; y; ξÞ ≥ 0; Hðx; y; ξÞ ≥ 0; Gðx; y; ξÞ ∘ Hðx; y; ξÞ ≤ te;

where t ≥ 0 is a nonnegative parameter, e ∈ Rm is a vector with components 1, and ∘
denotes the Hadamard product. Consequently, we consider the following regularized
second stage problem:
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REGðx; ξ; tÞ: min
y

f ðx; y; ξÞ

s:t: gðx; y; ξÞ ≤ 0;

hðx; y; ξÞ ¼ 0;

Gðx; y; ξÞ ≥ 0;

Hðx; y; ξÞ ≥ 0;

Gðx; y; ξÞ ∘ Hðx; y; ξÞ ≤ te:ð3:3Þ
Following the terminology in deterministic MPECs, we call (3.3) a regularized NLP
approximation of the second stage problem (3.2). Let v̂ðx; ξ; tÞ denote the optimal value
of the regularized problem. Then the corresponding first stage problem can be written as

P ϑ̂: min
x

ϑ̂ðx; tÞ ¼ E½v̂ðx; ξðωÞ; tÞ�
s:t: x ∈ X:ð3:4Þ

Observe that when t ¼ 0,REGðx; ξ; tÞ coincides withMPCCðx; ξÞ, and P ϑ̂ coincides with
Pϑ. The underlying reason for us to consider the regularization scheme here is that the
regularized problem is an ordinary stochastic NLP to which existing numerical methods
in the literature of stochastic programming may be applied. From a numerical perspec-
tive, t often takes a small positive value because REGðx; ξ; tÞ never satisfies the MFCQ
(which is equivalent to numerical stability) at t ¼ 0. Our focus in this and the following
section is to provide a theoretical justification of the NLP regularization approximation
as t → 0. Specifically, we analyze continuity of optimal value functions and the set of
optimal solutions for both the first and the second stage problems, particularly when
t tends to 0. Note that this kind of stability analysis can be found to some extent in
[42], [38], [17] where NLP regularization is applied to deterministic MPCCs with nonmo-
notonic complementarity constraints. Here the SMPCC involves two stages, and at the
second stage the first stage decision vector x and the random variable ξ are both treated
as parameters together with the regularization parameter t. However, the three para-
meters have to be treated in a different way, which means that we cannot directly apply
the stability results established in [42], [38], [17] where t is the only parameter.

Throughout this section, we use the following notation. Fðx; ξÞ and F̂ ðx; ξ; tÞ de-
note, respectively, the feasible sets of the second stage problems (3.2) and (3.3);
Y solðx; ξÞ and Ŷ solðx; ξ; tÞ denote the sets of global optimal solutions; X sol and
X̂ solðtÞ denote the optimal solution sets of the first stage problems (3.1) and (3.4).
We use ϕðtÞ to denote the optimal value of P ϑ̂. Observe that F̂ðx; ξ; 0Þ ¼ Fðx; ξÞ,
Ŷ solðx; ξ; 0Þ ¼ Y solðx; ξÞ, and X̂ solð0Þ ¼ X sol.

In order to avoid technical difficulties in our analysis, we assume throughout this
paper that F ðx; ξÞ is nonempty for all x, ξ, which implies relatively complete recourse of
the second stage problem. A direct consequence of this assumption is that F̂ ðx; ξ; tÞ ≠ ∅,
as the former is a subset of the latter.

3.2. Continuity of optimal value functions and solution mappings.
3.2.1. The second stage problem. We start by investigating the continuity of

optimal value function v̂ðx; ξ; tÞ and solution set mapping Ŷ solðx; ξ; tÞ of the second stage
regularized problem REGðx; ξ; tÞ with respect to x, ξ, and t. We need the following inf-
compactness condition.

Assumption 3.1 (inf-compactness). Let x�∈X . There exist constants δ∈ ð−∞;þ∞Þ,
t� > 0, a compact set Y ⊂ Rm, and a neighborhood U of x� such that
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∅ ≠ fy∶f ðx; y; ξÞ ≤ δ and y ∈ F̂ðx; ξ; tÞg ⊂ Y

for all ðx; ξ; tÞ ∈ U × Ξ× ½0; t��.
We make a few comments on the inf-compactness assumption.
1. Inf-compactness conditions are widely used in the stability analysis of para-

metric programming. The conditions here are slightly different from those in
[10, Proposition 4.4] in that the parameters x, ξ, and t are not treated in a si-
milar fashion. Specifically, x is the decision vector of the first stage problem, and
we need to discuss various topological properties of optimal values and solution
mappings with respect to it. Therefore, we consider it in a neighborhood U of a
considered point x�; t is a regularization parameter, and we are interested in the
case only when it is close to 0. The fundamental reason that we are interested in
a nonzero value of t is that the regularized problem satisfies MFCQ under the
standard MPEC-MFCQ of the true problem when t > 0. Finally, ξ is a realiza-
tion of the random vector ξðωÞ; instead of requiring differentiability of optimal
values of solution set mapping, we need measurability of these quantities with
respect to ξ.

2. Both constants δ and t� depend on x�. The inf-compactness condition implies
that the optimal solution set Ŷ solðx; ξ; tÞ is nonempty and bounded by compact
set Y for all ðx; ξ; tÞ ∈ U × Ξ× ½0; t��.

3. The inf-compactness condition holds when f ðx; ·; ξÞ is uniformly coercive or
strongly convex. Moreover, in the case when Gðx; y; ξÞ ¼ y, the condition is im-
plied by some kinds of monotonicity of Hðx; ·; ξÞ. For instance, if Ξ is bounded
and Hðx; ·; ξÞ is an R0 function for every ðx; ξÞ ∈ X × Ξ; that is, if, for any se-
quence fykg with limk→∞kykk ¼ þ∞, lim inf

k→∞
minfyk1; : : : ; ykmg ∕ kykk ≥ 0, and

lim inf
k→∞

minfH 1ðx; yk; ξÞ; : : : ; Hmðx; yk; ξÞg ∕ kykk ≥ 0;

there exists an index j such that fykjg → þ∞ and fHjðx; yk; ξÞg → þ∞. In such
a case, the feasible set of problem (3.3) is uniformly bounded for t ∈ ½0;þ∞Þ; see
[23] for more details.

Our first technical result is that under Assumption 3.1 the feasible set F̂ðx; ξ; tÞ of
the second stage regularized problem is continuous with respect to ðx; ξ; tÞ as long as it is
restricted to set Y .

PROPOSITION 3.2. Let Assumption 3.1 hold at point x� ∈ X and FY ðx; ξ; tÞ ¼
Y ∩ F̂ðx; ξ; tÞ. Then there exists a neighborhood U of x� and a scalar t� > 0 such that
FY ðx; ξ; tÞ is continuous on U × Ξ× ½0; t��.

Proof. Let U and t� be given as in Assumption 3.1 and

Rðx; y; ξ; tÞ ¼

0
BBB@

hðx; y; ξÞ
gðx; y; ξÞ

−Gðx; y; ξÞ
−Hðx; y; ξÞ

Gðx; y; ξÞ ∘ Hðx; y; ξÞ− te

1
CCCA:

Then FY ðx; ξ; tÞ is the set of solutions to the following generalized equations restricted
to set Y :

0 ∈ Rðx; y; ξ; tÞ þQ;
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whereQ ¼ 0r × Rsþmþmþm
þ and 0r is the r-dimensional 0 vector. Under Assumption 3.1,

FY ðx; ξ; tÞ is nonempty for ðx; ξ; tÞ ∈ U × Ξ× ½0; t��. Moreover, Rðx; y; ξ; tÞ is single
valued and continuous. By Lemma 4.2 in [46],1 FY ðx; ξ; tÞ is Hausdorff continuous
on U × Ξ× ½0; t��. The proof is complete. ▯

Using Proposition 3.2, we can establish the outer semicontinuity of the optimal so-
lution set mapping and continuity of the optimal value function of the second stage
regularized problem REGðx; ξ; tÞ.

THEOREM 3.3 (stability of REGðx; ξ; tÞ). Let Assumption 3.1 hold at point x� ∈ X .
Then there exists a neighborhood U of x� and a scalar t� > 0 such that

(i) the optimal solution set Ŷ solðx; ξ; tÞ of the second stage problemREGðx; ξ; tÞ is
outer semicontinuous on U × Ξ× ½0; t��;

(ii) the optimal value function v̂ðx; ξ; tÞ of the second stage problemREGðx; ξ; tÞ is
continuous on U × Ξ× ½0; t��;

(iii) for any x ∈ U and t ∈ ð0; t��, vðx; ·Þ and v̂ðx; ·; tÞ are continuous on Ξ.
Proof. Let U and t� be given as in Assumption 3.1. Observe first that v̂ðx; ξ; tÞ is

well defined for all ðx; ξ; tÞ ∈ U × Ξ× ½0; t��; that is, v̂ðx; ξ; tÞ takes a finite value. More-
over, the optimal solution set Ŷ solðx; ξ; tÞ ⊂ Y .

Part (i). Let fðxk; ξk; tkÞg be any sequence in U × Ξ× ½0; t�� such that
ðxk; ξk; tkÞ → ðx; ξ; tÞ. Let ŷk ∈ Ŷ solðxk; ξk; tkÞ and ŷ be an accumulation point of se-
quence fŷkg. It suffices to show that ŷ ∈ Ŷ solðx; ξ; tÞ. Assume for a contradiction that
ŷ ∈= Ŷ solðx; ξ; tÞ, that is, v̂ðx; ξ; tÞ < fðx; ŷ; ξÞ: Let y� ∈ Ŷ solðx; ξ; tÞ. Then

v̂ðx; ξ; tÞ ¼ f ðx; y�; ξÞ < f ðx; ŷ; ξÞ:

For the given y�, it follows by Proposition 3.2 that there exists a sequence fykg such that
yk ∈ FY ðxk; ξk; tkÞ and yk → y� as k → ∞. Since f is continuous, there exists k0 such
that for k ≥ k0, fðxk; yk; ξkÞ < f ðxk; ŷk; ξkÞ, which contradicts the fact that
ŷk ∈ Ŷ solðxk; ξk; tkÞ.

Part (ii). Given the outer semicontinuity of Ŷ solðx; ξ; tÞ and the continuity of f , we
can easily use [10, Proposition 4.4] to obtain the continuity of v̂ðx; ξ; tÞ on
U × Ξ× ½0; t��. We omit the details.

Part (iii). The continuity of vðx; ·Þ and v̂ðx; ·; tÞ follows from part (ii). ▯

3.2.2. First stage problem. Next, we consider the first stage regularized problem
P ϑ̂. Under some moderate conditions, we establish the outer semicontinuity of the op-
timal solution set mapping and continuity of the optimal value function of the problem.

THEOREM 3.4 (stability of P ϑ̂). Let X̄ ⊆ X be a compact set and Assumption 3.1 hold
for every x ∈ X̄ . Suppose that there exists a positive constant t̄ such that for all t ∈ ½0; t̄�,
X̂ solðtÞ ∩ X̄ ≠ ∅. Then there exists a positive constant t� < t̄ such that

(i) the optimal solution set mapping X̂ solð·Þ ∩ X̄ is outer semicontinuous
on ½0; t��;

(ii) the optimal value function ϕðtÞ of problem P ϑ̂ is continuous on ½0; t��.
Proof. Part (i). Let x ∈ X̄ . Since Assumption 3.1 holds at x, by Theorem 3.3 there

exists a neighborhood Ux of x and a scalar tx > 0 (depending on x) such that v̂ðx; ξ; tÞ is
continuous onUx × Ξ× ½0; tx�. What we need to prove here is that we can find a positive
scalar t� independent of x such that v̂ðx; ξ; tÞ is continuous on Ux × Ξ× ½0; t�� for all
x ∈ X̄ . Our idea is to use the finite covering theorem: given the fact that we can find

1It is obvious that conclusions of the lemma hold when the normal cone is replaced by any closed set-valued
mapping.
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a neighborhood Ux for every point x and a positive number tx such that v̂ is continuous,
we can find a finite number of such neighborhoods Uxi and positive numbers txi ,
i ¼ 1; : : : ; î, such that the union of the neighborhood U ¼ S

î
i¼1 Uxi covers the compact

set X̄ , and v̂ð·; ·; ·Þ is continuous on U ∩ X̄ × Ξ× ½0; t��, where t� ¼ minîi¼1txi .
Part (ii). Under Assumption 3.1, v̂ðx; ξ; tÞ ≤ δx for some positive constant δx and

from part (i), v̂ð·; ·; ·Þ is continuous onUx × Ξ× ½0; tx�. By [37, Chapter 2, Proposition 1],
ϑðx; tÞ ¼ E½v̂ðx; ξ; tÞ� is continuous on Ux × ½0; tx�. Using the covering theorem as in the

proof of part (i), we can find δ ¼ maxîi¼1δxi such that v̂ðx; ξ; tÞ is bounded by δ and

ϑðx; tÞ ¼ E½v̂ðx; ξ; tÞ� is continuous on X̄ × ½0; t��, where t� is given as in the proof of
part (i). Obviously the level set fx ∈ X∶vðx; tÞ ≤ δg is nonempty, and its interception
with X̄ is also nonempty. By applying [10, Proposition 4.4], we conclude that the opti-
mal value function ϕðtÞ of P ϑ̂ is continuous on ½0; t��. The proof is complete. ▯

3.3. Lipschitz continuity of optimal value functions. We use the classical
quantitative stability results in parametric programming to investigate the local
Lipschitz continuity of the optimal value function v̂ðx; ξ; tÞ of the second stage regular-
ized problem REGðx; ξ; tÞ with respect to x, t and value function vðx; ξÞ of MPCCðx; ξÞ
with respect to x. A sufficient condition is the pseudo-Lipschitz property of the feasible
solution set mapping which is implied by the MFCQ of the problem; see a discussion by
Klatte in [20, p. 3]. To this end, we discuss the MFCQ of the regularized problem
REGðx; ξ; tÞ in Proposition 3.5 under the MPEC-MFCQ of MPCCðx; ξÞ.

PROPOSITION 3.5. Let x� ∈ X , ξ� ∈ Ξ be fixed, and y� ∈ F ðx�; ξ�Þ. Assume that pro-
blem MPCCðx�; ξ�Þ satisfies the MPEC-MFCQ at y�. Then there exist neighborhoods of
y� and ðx�; ξ�Þ, denoted by Uy� and U ðx�;ξ�Þ, respectively, and a scalar t� > 0 such that for
all ðx; ξ; tÞ ∈ U ðx�;ξ�Þ × ð0; t��, the regularized second stage problem REGðx; ξ; tÞ satisfies
the MFCQ at any point y ∈ Uy� ∩ F̂ðx; ξ; tÞ.

Proof. For simplicity of notation, let z ¼ ðx; y; ξÞ and z� ¼ ðx�; y�; ξ�Þ, and through-
out the proof, ∇ denotes the gradient with respect to y. By the definition of MFCQ,
it suffices to show that there exists a neighborhood U of z� and a scalar
t� > 0 such that for any t ∈ ð0; t��, ðx; ξÞ ∈ X × Ξ, and feasible point y of
REGðx; ξ; tÞ with ðx; y; ξÞ ¼ z ∈ U , the gradient vectors ∇hiðzÞ∶i ¼ 1; : : : ; r; are line-
arly independent, and there exists a vector dðzÞ (depending on z) such that

8>>><
>>>:

0 ¼ ∇hiðzÞTdðzÞ; i ¼ 1; : : : ; r;
0 > ∇giðzÞTdðzÞ; i ∈ IgðzÞ;
0 > −∇GiðzÞTdðzÞ; i ∈ IGðzÞ;
0 > −∇HiðzÞTdðzÞ; i ∈ IH ðzÞ;
0 > ðHiðzÞ∇GiðzÞ þGiðzÞ∇HiðzÞÞTdðzÞ; i ∈ IG∘H ðzÞ;

ð3:5Þ

where IG∘H ðzÞ ≔ fijGiðzÞHiðzÞ ¼ t; i ¼ 1; : : : ;mg. In what follows, we construct such a
vector dðzÞ.

First, by assumption the MPEC-MFCQ holds at y� for problem MPCCðx�; ξ�Þ. By
the definition of the MPEC-MFCQ, the gradient vectors

f∇hiðz�Þ; i ¼ 1; : : : ; r;∇Giðz�Þ; i ∈ IGðz�Þ;∇Hiðz�Þ; i ∈ IH ðz�Þg

are linearly independent, and there exists a vector d̄ ∈ Rn which is perpendicular to
these gradient vectors, and
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∇giðz�ÞT d̄ < 0 for i ∈ I gðz�Þ:ð3:6Þ

Second, it is not difficult to show that there exists a neighborhood U 1 of z� and
t� > 0 such that for any z ∈ U 1 and t ∈ ð0; t��, the following relations hold:

8>>><
>>>:

IgðzÞ ⊆ I gðz�Þ;
IGðzÞ ⊆ IGðz�Þ;
IH ðzÞ ⊆ IH ðz�Þ;
IGðzÞ ∩ IG∘H ðzÞ ¼ ∅;
IH ðzÞ ∩ IG∘H ðzÞ ¼ ∅;

and the gradient vectors

∇hiðzÞ; i ¼ 1; : : : ; r; ∇GiðzÞ; i ∈ IGðzÞ; ∇HiðzÞ; i ∈ IH ðzÞ;
HiðzÞ∇GiðzÞ þGiðzÞ∇HiðzÞ; i ∈ IG∘H ðzÞ;

are linearly independent.
Third, the linear independence of the gradient vectors in the second step implies

that, for each fixed γ and any z ∈ U 1, there exists a nonzero vector d̂ðz; γÞ with bounded
norm such that

γ∇hiðzÞT d̄ ¼ ∇hiðzÞT d̂ðz; γÞ; i ¼ 1; : : : ; r;

1 ¼ ∇GiðzÞT d̂ðz; γÞ; i ∈ IGðzÞ;
1 ¼ ∇HiðzÞT d̂ðz; γÞ; i ∈ IH ðzÞ;

−1 ¼ ðHiðzÞ∇GiðzÞ þGiðzÞ∇HiðzÞÞT d̂ðz; γÞ; i ∈ IG∘H ðzÞ:

Indeed, if we use AðzÞT to denote the coefficient matrix and bðz; γÞ to denote the left-
hand side of the linear system of the equations above, then we may choose

d̂ðz; γÞ ¼ AðzÞ½AðzÞTAðzÞ�−1bðz; γÞ:

Denote A#ðzÞ ≔ AðzÞ½AðzÞTAðzÞ�−1. The well-definedness of A#ðzÞ (hence of d̂ðz; γÞ)
follows from the linear independence of the column vectors of AðzÞ as discussed in
the second step. The continuous differentiability of hðzÞ, GðzÞ, and HðzÞ implies that
there exists a positive constant C such that kA#ðzÞk ≤ C for all z ∈ U 1. Note that as z
varies, the number of equations in the above system may change but our conclusion on
the boundedness of A#ðzÞ holds.

Fourth, let dðz; γÞ ¼ γd̄− d̂ðz; γÞ. Then

∇hiðzÞTdðz; γÞ ¼ ∇hiðzÞT ðγd̄− d̂ðz; γÞÞ ¼ 0; i ¼ 1; : : : ; r:ð3:7Þ

Moreover, for any i ∈ IgðzÞ and z ∈ U 1,

∇giðzÞTdðz; γÞ ¼ γ∇giðzÞT d̄−∇giðzÞT d̂ðz; γÞ
¼ γ∇giðzÞT d̄−∇giðzÞT ðA#ðzÞbðz; γÞÞ
¼ γ½∇giðzÞT d̄−∇giðzÞT ðArðzÞ∇hðzÞT d̄Þ�
−∇giðzÞT ðAr−ðzÞð1; 1;−1ÞT Þ;ð3:8Þ
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where ArðzÞ denotes the matrix which takes the first r columns of A#ðzÞ, and Ar−ðzÞ
denotes the other part of A#ðzÞ. Note that ∇hðzÞT d̄ tends to zero, ∇gðzÞT d̄ →
∇gðz�ÞT d̄ < 0 as z → z�, and ∇giðzÞT ðAr−ðzÞð1; 1;−1ÞT Þ is independent of γ and
bounded when z is close to z�. Therefore, there exists a positive scalar γ sufficiently large
and a neighborhood U 2 ⊆ U 1 of z� such that ∇giðzÞTdðzÞ < 0 for all z ∈ U 2. Let γ be
fixed. Since d̄ is perpendicular to ∇Gðz�Þ and ∇Hðz�Þ, we can choose a smaller neigh-
borhood U 3 ⊆ U 2 of z� such that for any z ∈ U 3,�

−∇GiðzÞTdðz; γÞ ¼ −γ∇GiðzÞT d̄− 1 < 0; i ∈ IGðzÞ;
−∇HiðzÞTdðz; γÞ ¼ −γ∇HiðzÞT d̄− 1 < 0; i ∈ IH ðzÞ;

ð3:9Þ

and

ðHiðzÞ∇GiðzÞ þGiðzÞ∇HiðzÞÞTdðz; γÞ ¼ HiðzÞð−γ∇GiðzÞT d̄− 1Þ
þGiðzÞð−γ∇HiðzÞT d̄− 1Þ

< 0; i ∈ IG∘H ðzÞ:ð3:10Þ

Letting U ¼ U 3, Uy� ¼ ΠyU , U ðx�;ξ�Þ ¼ Πðx;ξÞU , and combining (3.7)–(3.10), we obtain
dðzÞ ¼ dðz; γÞ, satisfying (3.5) as desired and hence the conclusion.

COROLLARY 3.6. Assume the conditions of Proposition 3.5. Then there exists a
neighborhood U ðx�;ξ�Þ of ðx�; ξ�Þ and a neighborhood Uy� of y� such that for all
ðx; ξÞ ∈ U ðx�;ξ�Þ, problem MPCCðx; ξÞ satisfies the MPEC-MFCQ at every feasible point
y ∈ Uy� .

Proof. Let z ¼ ðx; y; ξÞ and z� ¼ ðx�; y�; ξ�Þ, and throughout the proof, ∇ denotes
the gradient with respect to y. It is obvious that there exists a neighborhood U 1 of z�

such that

IgðzÞ ⊆ Igðz�Þ; IGðzÞ ⊆ IGðz�Þ; IH ðzÞ ⊆ IH ðz�Þ;

and the matrix AðzÞ with columns

∇hiðzÞ; i ¼ 1; : : : r; ∇GiðzÞ; i ∈ IGðzÞ; ∇HiðzÞ; i ∈ IH ðzÞ;

has full column rank. Let d̄ be a given vector which satisfies the MPEC-MFCQ at point
y�, and let

dðzÞ ¼ ½I − AðzÞðAðzÞTAðzÞÞ−1AðzÞT �d̄:

Since dðzÞ → d̄ as z → z�, there exists a neighborhood U ⊆ U 1 of z� such that

∇gðzÞTdðzÞ < 0; AðzÞTdðzÞ ¼ 0:

The claim holds for Uy� ¼ ΠyU and U ðx�;ξ�Þ ¼ Πðx;ξÞU . ▯
In what follows we establish the local Lipschitz continuity of v̂ðx; ξ; tÞ and vðx; ξÞ

with respect to x and t for all ξ ∈ Ξ. We do so by exploiting the well-known stability
results due to Klatte [20], [21] for v̂ðx; ξ; tÞ and a stability result on parametric MPEC by
Hu and Ralph [19] for vðx; ξÞ. The key argument we want to use from Klatte’s stability
results is that the local Lipschitz continuity of our objective function f ðx; y; ξÞ and the
pseudo-Lipschitzian of the feasible set F̂ðx; ξ; tÞ imply the local Lipschitz continuity of
the optimal value function v̂ðx; ξ; tÞ. As for vðx; ξÞ, Hu and Ralph observed that under
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the MPEC-LICQ, the quantitative stability of the optimal value function is essentially
the same as that in the parametric NLP.

THEOREM 3.7. Let x� ∈ X and Assumption 3.1 hold at point x�. Let ξ ∈ Ξ be fixed and
problem MPCCðx�; ξÞ satisfy MPEC-MFCQ at every point in the optimal solution set
Y solðx�; ξÞ. Then

(i) there exist a neighborhood U of x� and a scalar t� > 0 such that v̂ð·; ξ; ·Þ is
locally Lipschitz continuous on U × ð0; t��;

(ii) there exists a neighborhood U of x� such that vð·; ξÞ is locally Lipschitz con-
tinuous on U .

Proof. Part (i). Let U 1 and t1 > 0 be given as in Assumption 3.1. We first claim
that there exist a neighborhood U ⊆ U 1 of x� and a scalar 0 < t� ≤ t1 such that
REGðx; ξ; tÞ satisfies MFCQ at every point in the optimal solution set Ŷ solðx; ξ; tÞ
for x ∈ U and t ∈ ð0; t��.

Assume for a contradiction that there exist sequences fxkg → x�, ftkg → 0, and
yk ∈ Ŷ solðxk; ξ; tkÞ such that REGðxk; ξ; tkÞ fails to satisfy MFCQ at point yk. Under
Assumption 3.1, the optimal solution set Ŷ solðx; ξ; tÞ is bounded for all x ∈ U and
t ∈ ð0; t��. Moreover, it follows from Theorem 3.3 that the optimal solution set mapping
Ŷ solð·; ·; ·Þ is outer semicontinuous on U × Ξ× ½0; t�� and is contained in Y . Therefore,
the sequence fykgmust have an accumulation point ȳ, and any accumulation point must
be in Y solðx�; ξÞ. Applying Proposition 3.5 at ȳ, there exist neighborhoods of Ux� of x�,
Uȳ of ȳ and t̄ > 0 such that for ðx; tÞ ∈ Ux� × ð0; t̄�, problemREGðx; ξ; tÞ satisfies MFCQ
at every feasible point y ∈ Uȳ. This means that when xk, tk, and yk enter the neighbor-
hood, the MFCQ holds at yk, a contradiction!

Since functions g, h, G, and H are continuously differentiable and MFCQ holds at
every point in Ŷ solðx; ξ; tÞ for ðx; tÞ ∈ U × ð0; t��, by [20, Proposition 3], we have
that F̂ðx; ξ; tÞ is pseudo-Lipschitzian at ðy; x; tÞ, where ðx; tÞ ∈ U × ð0; t�� and
y ∈ Ŷ solðx; ξ; tÞ. By [21, Theorem 1], v̂ðx; ξ; tÞ is locally Lipschitz continuous
at ðx; tÞ ∈ U × ð0; t��.

Part (ii). Following Corollary 3.6 and a similar analysis of part (i), there exists a
neighborhood of U of x� such that MPEC-MFCQ holds for every optimal solution of
problem MPCCðx; ξÞ, where x ∈ U . From [19, Formula (8)], we have that for x near x�,

vðx; ξÞ ¼ min
J∈J ðx�;ξÞ

vJ ðx; ξÞ;ð3:11Þ

where J ðx�; ξÞ ≔ fJ jJ ∈ J ðyÞ; y ∈ Y solðx�; ξÞg and J ðyÞ is defined by (2.2) with
z� ¼ ðx�; y; ξÞ. Denote the optimal solution set mapping of problem NLPJ ðx; ξÞ (see
(2.3)) by YJ ðx; ξÞ. For any J ∈ J ðx�; ξÞ, YJ ðx�; ξÞ ∩ Y solðx�; ξÞ is nonempty, and thus
YJ ðx�; ξÞ ⊆ Y solðx�; ξÞ. The MPEC-MFCQ assumption therefore gives the MFCQ for
NLPJ ðx; ξÞ at each y ∈ YJ ðx; ξÞ. By the proof of part (i), vJ ð·; ξÞ is local Lipschitz con-
tinuous and so is vð·; ξÞ through (3.11). ▯

It is important to note that we are short of claiming the local Lipschitz continuity of
v̂ðx; ξ; tÞ at point t ¼ 0 in Theorem 3.7. This is because the MFCQ established in
Proposition 3.5 is satisfied only for t > 0. We will show the local Lipschitz continuity
in Theorem 4.10, where we can use some estimates of Clarke subdifferentials of the op-
timal value function v̂ for the proof.

4. Stability analysis of stationary points. In this section, we investigate the
stability of stationary points of the regularized first stage problem P ϑ̂ with respect
to parameter t. This complements our discussion on the stability analysis of the optimal
values and optimal solution set mappings in the preceding subsection, and the topic is
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particularly relevant given the nonconvex nature of the regularized problem. We start
our discussion with the second stage problem REGðx; ξ; tÞ, namely, the outer semicon-
tinuity of the set of the stationary points as x, ξ, and t vary.

4.1. Second stage problems. Define the Lagrangian function of the second stage
problem as MPCCðx; ξÞ:

Lðx; y; ξ;α;β; u; vÞ ≔ fðx; y; ξÞ þ gðx; y; ξÞTαþ hðx; y; ξÞTβ−Gðx; y; ξÞTu
− Hðx; y; ξÞTv:

We consider the following KKT conditions of MPCCðx; ξÞ:8>>>>>><
>>>>>>:

0 ¼ ∇yLðx; y; ξ;α;β; u; vÞ;
y ∈ Fðx; ξÞ;
0 ≤ α ⊥ −gðx; y; ξÞ ≥ 0;
0 ¼ ui; i ∈= IGðx; y; ξÞ;
0 ¼ vi; i ∈= IH ðx; y; ξÞ;
0 ≤ uivi; i ∈ IGðx; y; ξÞ ∩ IH ðx; y; ξÞ:

ð4:1Þ

LetWðx; ξÞ denote the set of KKT pairs ðy;α;β; u; vÞ satisfying the above conditions for
given ðx; ξÞ, and denote by Sðx; ξÞ the corresponding set of stationary points, that is,
Sðx; ξÞ ¼ ΠyWðx; ξÞ. For each ðy;α;β; u; vÞ, y is a C-stationary point of problem
MPCCðx; ξÞ, and ðα;β; u; vÞ are the corresponding Lagrange multipliers. When the sta-
tionary points are restricted to global minimizers, we denote the set of KKT pairs by
W�ðx; ξÞ, that is, W�ðx; ξÞ ¼ fðy;α;β; u; vÞ ∈ Wðx; ξÞ; y ∈ Y solðx; ξÞg.

Analogously, we can define the Lagrangian function of REGðx; ξ; tÞ as
L̂ðx; y; ξ; t;α;β; γ; θ; λÞ ≔ f ðx; y; ξÞ þ gðx; y; ξÞTαþ hðx; y; ξÞTβ−Gðx; y; ξÞTγ

− Hðx; y; ξÞTθ þ ðGðx; y; ξÞ ∘ Hðx; y; ξÞ− teÞTλ:
The KKT conditions of REGðx; ξ; tÞ can be written as

8>>>>>><
>>>>>>:

0 ¼ ∇yL̂ðx; y; ξ; t;α;β; γ; θ; λÞ;
0 ≤ −gðx; y; ξÞ ⊥ α ≥ 0;
0 ¼ hðx; y; ξÞ;
0 ≤ Gðx; y; ξÞ ⊥ γ ≥ 0;
0 ≤ Hðx; y; ξÞ ⊥ θ ≥ 0;
0 ≤ te−Gðx; y; ξÞ ∘ Hðx; y; ξÞ ⊥ λ ≥ 0:

ð4:2Þ

Let Ŵðx; ξ; tÞ denote the set of KKT pairs ðy;α;β; γ; θ; λÞ satisfying the above condi-
tions and Ŝðx; ξ; tÞ denote the corresponding set of stationary points, that is,

Ŝðx; ξÞ ¼ ΠyŴðx; ξ; tÞ. When the stationary points are restricted to global minimizers,

we denote the set of KKT pairs by Ŵ�ðx; ξ; tÞ.
Remark 4.1. Under Assumption 3.1 and MPEC-MFCQ, both W�ðx; ξÞ and

Ŵ�ðx; ξ; tÞ are nonempty and bounded.
Assumption 4.2. Let x� ∈ X . There exist constants δ, t� > 0, a compact set

Y ⊂ Rm, and a neighborhood U of x� such that ∅ ≠ F̂ ðx; ξ; tÞ ⊂ Y for all
ðx; ξ; tÞ ∈ U × Ξ× ½0; t��.

Assumption 4.2 implies the inf-compactness condition (Assumption 3.1) in that the
latter only ensures the boundedness of global optimal solutions to REGðx; ξ; tÞ. In the
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stability analysis of the stationary points, we need the former which ensures the set of
stationary points to be bounded. Under Assumption 4.2, we have the following proposi-
tion which describes a relationship between Sðx; ξÞ and Ŝðx; ξ; tÞ.

PROPOSITION 4.3. Let fðxk; ξk; tkÞg ⊂ X × Ξ× ð0;þ∞Þ be a sequence such that
xk → x�, ξk → ξ, and tk ↓ 0. Consider the regularized second stage problem
REGðxk; ξk; tkÞ. Let yk ∈ Ŝðxk; ξk; tkÞ and y� be an accumulation point of sequence fykg.

(i) If problem MPCCðx�; ξÞ satisfies the MPEC-MFCQ at y�, then y� is a
C-stationary point of MPCCðx�; ξÞ.

(ii) If, in addition, Assumption 4.2 holds at point x� and the MPEC-MFCQ holds
at every y ∈ Fðx�; ξÞ, then

lim
xk→x�;ξk→ξ;tk↓0

DðŜðxk; ξk; tkÞ; Sðx�; ξÞÞ ¼ 0:

Proof. Part (i). For the simplicity of notation, we write I gðxk; yk; ξkÞ and
Igðx�; y�; ξÞ as I k

g and I �
g. Similar simplification applies to IG , IH , and IG∘H , where

Ik
G∘H ¼ fi∶Giðxk; yk; ξkÞHiðxk; yk; ξkÞ ¼ tk; i ¼ 1; : : : ;mg:

Since yk is a stationary point of REGðxk; ξk; tkÞ, there exist multipliers αk ∈ Rs, βk ∈ Rr,
γk ∈ Rm, θk ∈ Rm, λk ∈ Rm such that

0 ¼ ∇yf ðxk; yk; ξkÞ þ
X
i∈Ik

g

αk
i∇ygiðxk; yk; ξkÞ þ

Xr
i¼1

βk
i∇yhiðxk; yk; ξkÞ

−
X
i∈Ik

G

γk
i∇yGiðxk; yk; ξkÞ−

X
i∈Ik

H

θki∇yHiðxk; yk; ξkÞ

þ
X

i∈Ik
G∘H

λki∇y½Hiðxk; yk; ξkÞGiðxk; yk; ξkÞ�;ð4:3Þ

8>>><
>>>:

0 ≤ −gðxk; yk; ξkÞ ⊥ αk ≥ 0;
0 ¼ hðxk; yk; ξkÞ;
0 ≤ Gðxk; yk; ξkÞ ⊥ γk ≥ 0;
0 ≤ Hðxk; yk; ξkÞ ⊥ θk ≥ 0;
0 ≤ tke−Gðxk; yk; ξkÞ ∘ Hðxk; yk; ξkÞ ⊥ λk ≥ 0:

ð4:4Þ

Let

ᾱk
i ≔

�
αk
i ; i ∈ I�

g ∩ Ik
g;

0 otherwise;

uk
i ≔

8<
:

γk
i ; i ∈ I�

G ∩ Ik
G;

−λkiHiðxk; yk; ξkÞ; i ∈ I�
G ∩ Ik

G∘H ;

0 otherwise;

vki ≔

8<
:

θki ; i ∈ I�
H ∩ Ik

H ;

−λkiGiðxk; yk; ξkÞ; i ∈ I�
H ∩ Ik

G∘H ;

0 otherwise:
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Note that for k sufficiently large, we have Ik
g ⊆ I�

g, Ik
G ⊆ I �

G, I
k
H ⊆ I �

H , I
k
G ∩ Ik

G∘H ¼ ∅
and Ik

H ∩ I k
G∘H ¼ ∅. Then (4.3) can be rewritten as

0 ¼ ∇yf ðxk; yk; ξkÞ þ∇ygðxk; yk; ξkÞᾱk

þ∇yhðxk; yk; ξkÞβk −∇yGðxk; yk; ξkÞuk −∇yHðxk; yk; ξkÞvk þ Rkðxk; yk; ξkÞ;ð4:5Þ

where

Rkðxk; yk; ξkÞ ¼
X

i∈Ik
G∘H∩ðI �

G
Þc
λkiHiðxk; yk; ξkÞ∇yGiðxk; yk; ξkÞ

þ
X

i∈Ik
G∘H∩ðI �

H
Þc
λkiGiðxk; yk; ξkÞ∇yHiðxk; yk; ξkÞ:

Since MPEC-MFCQ holds at y�, by Proposition 3.5 there exists k0 sufficiently large such
that MFCQ holds at point yk for k ≥ k0. Moreover, the MFCQ implies that αk, βk, γk,
θk, and λk are uniformly bounded (see the proof of [18, Theorem 3.4]). Taking a further
subsequence if necessary, we may assume that the limits

α�
i ¼ lim

k→∞
ᾱk
i ; β�

i ¼ lim
k→∞

βk
i ; u�

i ¼ lim
k→∞

uk
i ; v�i ¼ lim

k→∞
vki

exist. Moreover, ðI�
GÞc ⊆ I �

H and ðI�
H Þc ⊆ I�

G . Consequently, the limit on (4.5) implies

∇yf ðx�; y�; ξÞ þ∇ygðx�; y�; ξÞα� þ∇yhðx�; y�; ξÞβ� −∇yGðx�; y�; ξÞu�

−∇yH ðx�; y�; ξÞv� ¼ 0:

By the definitions of u� and v�, for i ∈ I�
G ∩ I �

H , if i ∈ I k
G∘H ,

u�
i v

�
i ¼ lim

k→∞
ð−λki Hiðxk; yk; ξkÞÞð−λkiGiðxk; yk; ξkÞÞ ≥ 0;

and if i ∈= Ik
G∘H ,

u�
i v

�
i ¼ lim

k→∞
ðγk

i or 0Þðθki or 0Þ ≥ 0;

which indicates that y� is a C -stationary point of problem MPCCðx�; ξÞ.
Part (ii). Under the additional condition, the set of stationary points Sðx; ξ̂Þ and

Ŝðx; ξ̂; tÞ is bounded for ðx; ξ̂Þ close to ðx�; ξÞ and t sufficiently small. By Proposition 3.2,
F̂ðx; ξ; tÞ is continuous on U × Ξ× ½0; t��. Since MPEC-MFCQ holds at every
y ∈ Fðx�; ξÞ, we obtain part (ii) from part (i). The proof is complete. ▯

Note that Proposition 4.3 deals with the Clarke stationary points. If the smallest
eigenvalue of ∇2

yLðxk; yk; ξk;αk;βk; uk; vkÞ is lower bounded (the Hessian could be sin-
gular) independent of k, then we can show similar to the proof of [24, Theorem 3.5] that
the stationary points of REGðxk; ξk; tkÞ converge to an S-stationary point of
MPCCðx�; ξÞ (note that in [24, Theorem 3.5] Lin and Fukushima derived B-stationarity
which is equivalent to S-stationarity under MPEC-LICQ, but under MPEC-MFCQ,
one can easily derive the S-stationarity under the eigenvalue condition). We leave
the details for interested readers as they are beyond the scope of this paper. In what
follows we investigate the stability of the optimal value functions vðx; ξÞ and/or
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v̂ðx; ξ; tÞ in terms of Clarke subdifferentials. The result is crucial for establishing our
main result (Theorem 4.6), and it is also of independent interest.

PROPOSITION 4.4. Suppose that Assumption 3.1 holds at point x� and problem
MPCCðx�; ξÞ satisfies MPEC-MFCQ at every point y in setY solðx�; ξÞ. Then there exists
a neighborhood U of x� and a scalar t� > 0 such that

(i) for any x ∈ U and ξ ∈ Ξ,

∂xvðx; ξÞ ⊆ Φðx; ξÞ;ð4:6Þ

where

Φðx; ξÞ ¼ conv

� [
ðy;α;β;u;vÞ∈W�ðx;ξÞ

∇xLðx; y; ξ;α;β; u; vÞ
�
;ð4:7Þ

(ii) for any x ∈ U , ξ ∈ Ξ, and t ∈ ð0; t��,

∂xv̂ðx; ξ; tÞ ⊆ Φ̂ðx; ξ; tÞ; ∂tv̂ðx; ξ; tÞ ⊆ Λðx; ξ; tÞ;ð4:8Þ

where

Φ̂ðx; ξ; tÞ ¼ conv

� [
ðy;α;β;γ;θ;λÞ∈Ŵ�ðx;ξ;tÞ

∇xL̂ðx; y; ξ; t;α;β; γ; θ; λÞ
�

ð4:9Þ

and Λðx; ξ; tÞ ¼ ΠλŴ
�ðx; ξ; tÞ; the equality in (4.8) holds if the MPEC-MFCQ

is replaced by the MPEC-LICQ;
(iii) Φð·; ·Þ is outer semicontinuous onU × Ξ and Φ̂ð·; ·; ·Þ is outer semicontinuous

on U × Ξ× ð0; t��;
(iv) for every ðx; ξÞ ∈ U × Ξ,

lim
xk→x;ξk→ξ;tk↓0

DðΦ̂ðxk; ξk; tkÞ; Φðx; ξÞÞ ¼ 0:

Proof. By an analysis similar to the proof of Theorem 3.7, there exists a neighbor-
hood U of x� and a scalar t� > 0 such that, for x ∈ U , ξ ∈ Ξ, and t ∈ ð0; t��, REGðx; ξ; tÞ
satisfies MFCQ at every point in the optimal solution set Ŷ solðx; ξ; tÞ, and MPCCðx; ξÞ
satisfies MPEC-MFCQ at every point in the optimal solution set Y solðx; ξÞ.

Part (i). Following an argument similar to the proof of [26, Theorem 4.8], we can
show that for any x ∈ U and ξ ∈ Ξ,

∂Mx vðx; ξÞ ⊆
� [

ðy;α;β;u;vÞ∈W�ðx;ξÞ
∇xLðx; y; ξ;α;β; u; vÞ

�
:ð4:10Þ

Takingtheconvexhullonbothsidesoftheaboveinclusionandusingthefactthatv is locally
Lipschitz continuous with respect to x and conv ∂Mx vðx; ξÞ ¼ ∂xvðx; ξÞ, we obtain (4.6).

Part (ii) follows from [18, Theorem 5.3 and Corollary 5.4].
Part (iii). We prove only the outer semicontinuity of Φ̂, as the proof for Φ is similar.
We first prove the outer semicontinuity of Ŵ�ð·; ·; ·Þ. Let ðxk; ξk; tkÞ be an arbitrary

sequence in U × Ξ× ð0; t�� such that ðxk; ξk; tkÞ → ðx; ξ; tÞ, where t > 0 and
ðyk;αk;βk; γk; θk; λkÞ ∈ Ŵ�ðxk; ξk; tkÞ. Since MFCQ holds at every point of optimal solu-
tion set Ŷ solðxk; ξk; tkÞ for k sufficiently large, by the proof of [18, Theorem 3.4],
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ðyk;αk;βk; γk; θk; λkÞ ∈ Ŵðxk; ξk; tkÞ are bounded. Taking a subsequence if necessary, we
may assume for simplicity of notation that

ðyk;αk;βk; γk; θk; λkÞ → ðy;α;β; γ; θ; λÞ:

Then ðy;α;β; γ; θ; λÞ ∈ Ŵðx; ξ; tÞ as the underlying functions defining the KKT system
are continuous. Moreover, considering a smaller neighborhood U of x� and a smaller
number t� if necessary, we have, through Theorem 3.3 (i), that Ŷ solð·; ·; ·Þ is outer
semicontinuous on U × Ξ× ½0; t��, which implies y ∈ Ŷ solðx; ξ; tÞ, and hence
ðy;α;β; γ; θ; λÞ ∈ Ŵ�ðx; ξ; tÞ, the outer semicontinuity of Ŵ�ð·; ·; ·Þ.

The outer semicontinuity of Φ̂ follows from the fact that it is essentially a composite
mapping of ∇xL̂ and Ŵ� while ∇xL̂ is continuous.

Part (iv). The proof is similar to that of part (iii) except t ¼ 0. Mimicking the proof
of Proposition 4.3 (replacing Ŝðxk; ξk; tkÞ with Ŷ solðxk; ξk; tkÞ), we can prove that

∇xL̂ðxk; yk; ξk; tk;αk;βk; γk; θk; λkÞ →
k→∞

∇xLðx; y�; ξ;α;β; u; vÞ;

where ðyk;αk;βk; γk; θk; λkÞ ∈ Ŵ�ðxk; ξk; tkÞ and ðy�;α;β; u; vÞ ∈ W�ðx; ξÞ. The conclu-
sion follows. ▯

It might be helpful to note that the equality in (4.8) under MPEC-LICQ implies
that the outer bound of the Clarke subdifferentials cannot be improved. Indeed, this
is a key result for establishing the subdifferential consistency in Theorem 4.6. In the
literature on MPECs, Lucet and Ye [26] established a number of estimates for the limit-
ing subdifferentials of optimal value functions of parametric mathematical programs
with variational inequality constraints without MFCQ.When the variational inequality
constraint reduces to a system of equalities, their results recover Gauvin and Dubeau’s
result [18, Theorem 5.3] under MFCQ. However, it seems an open question as to whether
the upper estimates of the limiting subdifferentials of the optimal value functions can be
improved. In our context, it is unclear under which conditions the equality in
(4.10) holds.

Remark 4.5. In the definition of Φ and Φ̂, we use the KKT pairs at the global op-
timal solutions of the second stage problems. It is possible to cover all KKT pairs in the
definitions, that is, to replaceW� and Ŵ� withW and Ŵ. Consequently, we may obtain
larger outer bounds Ψ and Ψ̂, defined as follows for the Clarke subdifferentials of the
optimal value functions:

Ψðx; ξÞ ≔ conv

� [
ðy;α;β;u;vÞ∈Wðx;ξÞ

∇xLðx; y; ξ;α;β; u; vÞ
�

ð4:11Þ

and

Ψ̂ðx; ξ; tÞ ≔ conv

� [
ðy;α;β;γ;θ;λÞ∈Ŵðx;ξ;tÞ

∇xL̂ðx; y; ξ; t;α;β; γ; θ; λÞ
�
:ð4:12Þ

4.2. First stage problems. We now move on to investigate stability of stationary
points of the regularized first stage problem P ϑ̂ at t ¼ 0. Our focus is on the Clarke
stationary points. There are two underlying reasons: (a) the optimal value function
v̂ðx; ξ; tÞ is locally Lipschitz continuous in x and t for all t > 0, and under mild conditions
E½v̂ðx; ξ; tÞ� is also locally Lipschitz continuous, which means that the Clarke generalized

REGULARIZED TWO-STAGE SMPCC 687

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



gradients of both functions are well defined; (b) we need some consistency property of
the subdifferentials of v̂ðx; ξ; tÞ (see (4.16) in Theorem 4.6), and it turns out that the
Clarke subdifferentials can fulfill this under MPEC-LICQ through Proposition 4.4
(ii), while it is an open question as to whether or not the limiting subdifferential can
do the job.

Let us start with the KKT conditions of problem Pϑ:

0 ∈ ∂E½vðx; ξÞ� þN XðxÞ;

where ∂E½vðx; ξÞ� denotes the Clarke generalized gradient of E½vðx; ξÞ� and N XðxÞ is the
normal cone to X at point x. In Theorem 3.7, vðx; ξÞ is proved to be locally Lipschitz
continuous, under MPEC-MFCQ. If the Lipschitz modulus is integrably bounded, then
E½vðx; ξÞ� is also globally Lipschitz continuous, and hence ∂E½vðx; ξÞ� is well defined.

From the computational point of view, it might be easier to calculate the subdiffer-
ential ∂xvðx; ξÞ and its expectation. Consequently, we may consider the following KKT
conditions:

0 ∈ E½∂xvðx; ξÞ� þN XðxÞ:ð4:13Þ

It is well known that ∂E½vðx; ξÞ� ⊆ E½∂xvðx; ξÞ�, and the equality holds when v is Clarke
regular; see, for instance, [13, Theorem 2.8.2], [44], and [46, section 4.2] for recent dis-
cussions related to limiting subdifferentials.

We call (4.13) the weak KKT condition of the first stage problem (3.1). Likewise, we
may consider weak KKT conditions of P ϑ̂:

0 ∈ E½∂xv̂ðx; ξ; tÞ� þN X ðxÞ:ð4:14Þ

Let X sta and X̂ staðtÞ denote, respectively, the set of stationary points satisfying (4.13)
and (4.14). In what follows we establish a relationship between the two sets as t → 0.

THEOREM 4.6. Let Assumption 3.1 hold at point x� and ξ ∈ Ξ.
(i) If problem MPCCðx�; ξÞ satisfies MPEC-MFCQ at every point in Y solðx�; ξÞ,

then

lim
x→x�;t↓0

DðΦ̂ðx; ξ; tÞ; Φðx�; ξÞÞ ¼ 0:ð4:15Þ

(ii) If the MPEC-MFCQ is replaced by the MPEC-LICQ, then

lim
x→x�;t↓0

Dð∂xv̂ðx; ξ; tÞ; ∂xvðx�; ξÞÞ ¼ 0.ð4:16Þ

Moreover, if (a) X is a compact set, (b) Assumption 3.1 holds at every point x
in X and MPEC-LICQ holds at any point in Y solðx; ξÞ for every x ∈ X and
ξ ∈ Ξ, and (c) ∂xv̂ðx; ξ; tÞ is integrably bounded 2 (that is, there exists κðξÞ such
that k∂xv̂ðx; ξ; tÞk ≤ κðξÞ) and the probability measure is nonatomic, then

lim
t↓0

DðX̂ staðtÞ; X staÞ ¼ 0:ð4:17Þ

Proof. Part (i). By Theorem 3.7, there exists a neighborhood U of x� and a positive
scalar t� such that v̂ð·; ξ; ·Þ is locally Lipschitz continuous on U × ð0; t�� and vð·; ξÞ is

2The condition is satisfied under Assumption 4.8.
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locally Lipschitz continuous on U . By Theorem 3.3, any accumulation point y� of fykg
with yk ∈ Ŷ solðxk; ξ; tkÞ is contained inY solðx�; ξÞ. Mimicking the proof of Proposition 4.3
(replacing Ŝðxk; ξ; tkÞ with Ŷ solðxk; ξ; tkÞ), we can prove that

∇xL̂ðxk; yk; ξ; tk;αk;βk; γk; θk; λkÞ →
k→∞

∇xLðx�; y�; ξ;α�;β�; u�; v�Þ;

where ðyk;αk;βk; γk; θk; λkÞ ∈ W�ðxk; ξ; tkÞ and ðy�;α�;β�; u�; v�Þ ∈ W�ðx�; ξÞ.
Part (ii). Let us first prove the subdifferential consistency (4.16). Under MPEC-

LICQ, the application of [18, Corollary 5.4] to the regularized second stage problem
MPECðx�; ξ; tÞ gives

∂xv̂ðx�; ξ; tÞ ¼ Φ̂ðx�; ξ; tÞ:ð4:18Þ

On the other hand, it follows from (4.6) that ∂xvðx�; ξÞ ⊆ Φðx�; ξÞ. In what follows we
show

∂xvðx�; ξÞ ⊇ Φðx�; ξÞ ¼
[

ðy;α;β;u;vÞ∈W�ðx�;ξÞ
f∇xLðx�; y; ξ;α;β; u; vÞg:ð4:19Þ

Under the assumption that MPEC-LICQ holds at every point in optimal solution
set Y solðx�; ξÞ, it follows by virtue of [19, Theorem 2, Formula (7)] that

v 0ðx�; ξ; qÞ ¼ min
ðy;α;β;u;vÞ∈W�ðx�;ξÞ

f∇xLðx�; y; ξ;α;β; u; vÞTqg;

where the directional derivative v 0 is with respect to x. Therefore,

ð−vÞ 0ðx�; ξ; qÞ ¼ max
ðy;α;β;u;vÞ∈W�ðx�;ξÞ

f−∇xLðx�; y; ξ;α;β; u; vÞTqg:

Let

η ∈
[

ðy;α;β;u;vÞ∈W�ðx�;ξÞ
f−∇xLðx�; y; ξ;α;β; u; vÞg:

Then there exists a KKT pair ðy;α;β; u; vÞ ∈ W�ðx�; ξÞ such that η ¼ −∇xLðx�; y;
ξ;α;β; u; vÞ, and for any q ∈ Rn,

ηTq ¼ −∇xLðx�; y; ξ;α;β; u; vÞTq ≤ ð−vÞ 0ðx�; ξ; qÞ ≤ ð−vÞoðx�; ξ; qÞ;

where ð−vÞoðx�; ξ; qÞ denotes the Clarke generalized derivative [13] of −v in x. By the
definition of Clarke generalized gradient [13, p. 27], η ∈ ∂xð−vÞðx�; ξÞ, and by [13,
Proposition 2.3.1], ∂xð−vÞðx�; ξÞ ¼ −∂xvðx�; ξÞ. This shows η ∈ −∂xvðx�; ξÞ, and hence

[
ðy;α;β;u;vÞ∈W�ðx�;ξÞ

f−∇xLðx�; y; ξ;α;β; u; vÞg ⊆ ∂xð−vÞðx�; ξÞ ¼ −∂xvðx�; ξÞ;

which implies (4.19). This shows ∂xvðx�; ξÞ ¼ Φðx�; ξÞ, and through (4.15) and (4.18),
the subdifferential consistency (4.16) is shown.
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Let us now prove (4.17). Since Assumption 3.1 holds at every point x in X and
MPEC-LICQ holds at any point in Y solðx; ξÞ for every x ∈ X and ξ ∈ Ξ, we have from
the subdifferential consistency (4.16) that

lim
x 0→x;t↓0

Dð∂xv̂ðx 0; ξ; tÞ; ∂xvðx; ξÞÞ ¼ 0ð4:20Þ

for every ðx; ξÞ ∈ X × Ξ. Let xðtÞ ∈ X̂ staðtÞ, that is,
0 ∈ E½∂xv̂ðxðtÞ; ξ; tÞ� þN X ðxðtÞÞ:ð4:21Þ

The compactness of X implies the boundedness of X̂ staðtÞ. Therefore, we may assume
without loss of generality that xðtÞ → x̂, where x̂ ∈ X . From (4.21), we have

0 ∈ lim
t→0

ðE½∂xv̂ðxðtÞ; ξ; tÞ� þN XðxðtÞÞÞ ⊆ E
h
lim
t→0

∂xv̂ðxðtÞ; ξ; tÞ
i
þN X ðx̂Þ

⊆ E½∂xvðx̂; ξÞ� þN Xðx̂Þ;

where the first inclusion follows from [5, Proposition 4.1] under the integrable bound-
edness of ∂xv̂ðxðtÞ; ξ; tÞ and the outer semicontinuity of the normal cone N ð·Þ, and the
second inclusion follows from (4.20). This implies that x̂ is a weak KKT point satisfying
(4.13). The proof is complete. ▯

The first-order optimality conditions (4.13)–(4.14) require the derivative informa-
tion of the optimal value function vðx; ξÞ which may be difficult to calculate. Motivated
by the outer bounds of ∂xvðx; ξÞ and ∂xv̂ðx; ξ; tÞ established in Proposition 4.4, we may
consider optimality conditions by replacing ∂xvðx; ξÞ with Φðx; ξÞ in the weak KKT con-
ditions (4.13) and by replacing ∂xv̂ðx; ξ; tÞ with Φ̂ðx; ξ; tÞ in the weak KKT conditions
(4.14). These kinds of optimality conditions are considered by Outrata and Römisch [29,
Theorem 3.5] and more recently by Ralph and Xu [33] for classical two-stage stochastic
programs. We will not go into details in this direction, as this is not the main interest of
this paper. Likewise, we can consider the KKT condition by replacing the subgradients
with Ψ and Ψ̂ as defined in Remark 4.5. We give a formal definition for the latter as we
need them in section 6.

DEFINITION 4.7. We call the stochastic generalized equation

0 ∈ E½Ψðx; ξÞ� þN XðxÞð4:22Þ

the relaxed KKT conditions of the first stage true problem (3.1), and we call

0 ∈ E½Ψ̂ðx; ξ; tÞ� þN XðxÞð4:23Þ

the relaxed KKT conditions of the first stage regularized problem (3.4). A point x� ∈ X

satisfying (4.22) is called a relaxed stationary point of the true problem if for almost
every ξ ∈ Ξ, MPEC-MFCQ holds at any point in the set of stationary points Sðx�; ξÞ.
A point x� ∈ X satisfying (4.23) is called a relaxed stationary point of the regularized
problem if for almost every ξ ∈ Ξ, MFCQ holds at any point in the set of stationary points
Ŝðx�; ξ; tÞ.

Note that the MPEC-MFCQ and the MFCQ are needed in Definition 4.7 in order to
guarantee that the generalized equations are relevant to the first-order optimality con-
ditions, in that under the constraint qualifications and Assumption 3.1, the two optimal
value functions v and v̂ are locally Lipschitz continuous with respect to x on a neighbor-
hood of x�, and the estimates for the Clarke subdifferentials in Proposition 4.4 are valid.
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Note also that in the stochastic programming literature, these types of relaxed KKT
conditions were considered by Ralph and Xu [33] for an ordinary two-stage stochastic
program with equality and inequality constraints and by Xu and Ye in deriving
first-order optimality conditions for a two-stage SMPEC with variational inequality
constraints [48].

Assumption 4.8. For every x ∈ X , there exists an integrable function κðξÞ, a neigh-
borhood Ū of x, and a scalar t̄ > 0 such that E½κðξÞ3� < ∞ and

maxfk∇xfðx; y; ξÞk; k∇xgðx; y; ξÞk; k∇xhðx; y; ξÞk; kGðx; y; ξÞk; kHðx; y; ξÞk;
k∇xGðx; y; ξÞk; k∇xHðx; y; ξÞk; kΠðα;β;u;vÞWðx; ξÞk; kΠðα;β;γ;θ;λÞŴðx; ξ; tÞkg ≤ κðξÞ

for all x ∈ Ū , ξ ∈ Ξ, t ∈ ½0; t̄�, and y ∈ Ŝðx; ξ; tÞ.
Note that Assumption 4.8 holds when the support set Ξ of ξðωÞ is bounded and

∇xf ðx; y; ξÞ, ∇xgðx; y; ξÞ, ∇xhðx; y; ξÞ, ∇xGðx; y; ξÞ, ∇xHðx; y; ξÞ are continuous in ξ.
To see this, we note that both W and Ŵ are outer semicontinuous, and this property
is retained under orthogonal projections Π. It is easy to prove using the finite covering
theorem that a compact outer semicontinuous set-valued mapping is bounded over a
compact set. All other quantities in the curly brackets are continuous functions and
are hence bounded over a compact set. The boundedness of kGðx; y; ξÞk and
kHðx; y; ξÞk can be weakened to the boundedness of the two quantities at a fixed point
x0 ∈ U because the latter together with the boundedness of k∇xGðx; y; ξÞk and
k∇xHðx; y; ξÞk imply the former. Moreover, under Assumption 4.8, we can easily verify
that ∇xL and ∇xL̂ are bounded, respectively, by κðξÞ2 and κðξÞ3 for all x ∈ Ū , ξ ∈ Ξ,
t ∈ ½0; t̄�, and y ∈ Ŝðx; ξ; tÞ.

PROPOSITION 4.9. Suppose that Assumption 4.2 holds at point x and MPEC-MFCQ
holds for MPCCðx; ξÞ at every y ∈ F ðx; ξÞ and ξ ∈ Ξ. Then there exists a neighborhood
U of x and a scalar t� > 0 such that

(i) both Ŵðx; ξ; tÞ and Wðx; tÞ are nonempty for ðx; ξ; tÞ ∈ U × Ξ× ð0; t��,
Ŵð·; ·; ·Þ is outer semicontinuous on U × Ξ× ð0; t�, andWð·; ·Þ is outer semi-
continuous on U × Ξ;

(ii) for every ðx�; ξ�Þ ∈ U × Ξ,

lim
ðx;ξ;tÞ→ðx�;ξ�;0Þ

DðΨ̂ðx; ξ; tÞ; Ψðx�; ξ�ÞÞ ¼ 0;ð4:24Þ

(iii) under Assumption 4.8, E½Ψ̂ðx; ξ; tÞ� and E½Ψðx; ξÞ� are well defined for any
x ∈ U and t ∈ ð0; t�� and if the probability measure is nonatomic, then

lim
x→x�;t↓0

DðE½Ψ̂ðx; ξ; tÞ�; E½Ψðx�; ξÞ�Þ ¼ 0 ∀x ∈ U:ð4:25Þ

Proof. Part (i). By Assumption 4.2, there exists a neighborhood U of x and a scalar
t� > 0 such that the feasible sets Fðx; ξÞ and F̂ðx; ξ; tÞ are bounded for x ∈ U and
t ∈ ð0; t��. Then the sets of stationary points of both MPCCðx; ξÞ and REGðx; ξ; tÞ
are nonempty. Following a proof similar to that in Proposition 4.4 (iii), we can show
that Ŵð·; ·; ·Þ is outer semicontinuous on U × Ξ× ð0; t�� and that Wð·; ·Þ is outer semi-
continuous on U × Ξ.

Part (ii). The proof is similar to that of Proposition 4.4 (iv). We omit the details.
Part (iii). Viewing Ψ̂ as a composition of ∇L̂ and Ŵ, we claim that Ψ̂ is outer semi-

continuous and, through [35, Theorem 14.13], the measurability. The well-definedness
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then follows from the boundedness of Ψ̂ under Assumption 4.8 and the definition of
Aumann’s integral. Finally, we prove (4.25). Notice that Ψ̂ is a closed set-valued
mapping on U × Ξ× ð0; t��, and it is integrably bounded under Assumption 4.8. Note
that the above analysis also holds for Ψ. The conclusion follows via application of [16,
Theorem 2.5] (or [16, Theorem 2.8] and the following remark). The proof is
complete. ▯

Note that Proposition 4.9 (iii) implies that any stationary point satisfying (4.23)
converges to the set of stationary points satisfying (4.22). We will use this in section 6.

4.3. Lipschitz continuity at t � 0. In this subsection, we study the Lipschitz
continuity of v̂ðx; ξ; tÞ at t ¼ 0. We are unable to do this in Theorem 4.4 as it requires
some complex arguments related to singular subdifferentials, limiting subdifferentials,
Clarke subdifferentials of v̂ðx; ξ; tÞ, and their approximations.

THEOREM 4.10. Suppose that Assumption 3.1 holds at point x� and problem
MPCCðx�; ξÞ satisfies MPEC-MFCQ at every point in the optimal solution set
Y solðx�; ξÞ for every ξ ∈ Ξ. Then

(i) there exists a neighborhood U of x� and a scalar t� > 0 such that v̂ð·; ξ; ·Þ is
locally Lipschitz continuous on U × ½0; t�� for each fixed ξ ∈ Ξ;

(ii) if Assumption 4.8 holds at point x�, then there exists a neighborhood U of x�

and a scalar t� such that E½v̂ð·; ξ; ·Þ� is locally Lipschitz continuous
on U × ½0; t��;

(iii) if, in addition, the conditions of Theorem 3.4 are satisfied and Assumption 4.8
holds for all x ∈ X̄ (X̄ is given in Theorem 3.4), then there exists a scalar
t� > 0 such that ϕðtÞ is globally Lipschitz continuous on ½0; t��.

Proof. Part (i). By Theorem 3.7, there exists a close neighborhood U of x� and a
scalar t� > 0 such that v̂ð·; ξ; ·Þ is locally Lipschitz continuous on U × ð0; t�� and vð·; ξÞ is
locally Lipschitz continuous on U . To complete the proof, we only need to show that
v̂ðx; ξ; tÞ is Lipschitz continuous at point ðx; 0Þ for every x ∈ U . By [26, Proposition 2.4],
it suffices to show that ∂∞ðx;tÞv̂ðx; ξ; 0Þ ¼ f0g. From Proposition 4.4 (see (4.8)) and [13,
Proposition 2.3.15], we have

∂ðx;tÞv̂ðx; ξ; tÞ ⊆ Φ̂ðx; ξ; tÞ× ΠλŴ
�ðx; ξ; tÞ:

If we can show the boundedness of Φ̂ðx; ξ; tÞ and ΠλŴ
�ðx; ξ; tÞ for all x ∈ U and

t ∈ ð0; t�Þ, then ∂ðx;tÞv̂ðx; ξ; tÞ is bounded and so is ∂πðx;tÞv̂ðx; ξ; tÞ; subsequently we have
∂∞ðx;tÞv̂ðx; ξ; 0Þ ¼ f0g (see the definition of the singular subdifferential). Note that the
boundedness of Φ̂ðx; ξ; tÞ and ΠλŴ

�ðx; ξ; tÞ is implied by the boundedness of
Ŵ�ðx; ξ; tÞ. Under Assumption 3.1, Ŷ solðx; ξ; tÞ is bounded. Since MPEC-MFCQ holds
at every point in the optimal solution set Y solðx�; ξÞ, by the proof of Theorem 3.7, there
exists a neighborhood U of x� and a scalar t� > 0 such that for x ∈ U and t ∈ ð0; t��,
REGðx; ξ; tÞ satisfies MFCQ at every point in the optimal solution set Ŷ solðx; ξ; tÞ.
Under the MFCQ, the boundedness of Ŵ�ðx; ξ; tÞ follows from the proof of [18,
Theorem 3.4].

Part (ii). The Lipschitz modulus of v̂ð·; ξ; ·Þ at point ðx; tÞ is bounded by
k∂ðx;tÞv̂ðx; ξ; tÞk. By Proposition 4.4 and Assumption 4.8, the Lipschitz modulus is
bounded by integrable function κðξÞ3 for x ∈ U 1 ∩ U 2 and t ∈ ½0;minft1; t2g�, where
U 1, t1 are given as in part (i) and U 2, t2 are given as in Assumption 4.8. From
Proposition 2 of [37, Chapter 2] and v̂ðx; ·; tÞ being continuous on Ξ, E½v̂ðx; ξ; tÞ� is locally
Lipschitz continuous on U × ½0; t��, where U ¼ U 1 ∩ U 2 and t� ¼ minft1; t2g.
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Part (iii). Applying the conclusion in part (i) to every point x in X̄ , we can show
through the finite covering theorem (due to the compactness of X̄) that there exists a
scalar t1 such that v̂ðx; ξ; tÞ is locally Lipschitz continuous on X̄ × ½0; t1�. Moreover, since
Assumption 4.8 holds for every x ∈ X̄ , then v̂ðx; ξ; tÞ is integrably bounded and ϑ̂ðx; tÞ ¼
E½v̂ðx; ξ; tÞ� is globally Lipschitz continuous on X̄ × ½0; t1�. On the other hand, there ex-
ists a scalar t2 > 0 such that for all t ∈ ½0; t2�, X solðtÞ ∩ X̄ ≠ ∅. Let t� ¼ minft1; t2g and
t 0; t 0  0 ∈ ½0; t�� with t 0 < t 0  0. It is easy to verify that

jϕðt 0Þ− ϕðt 0 0Þj ≤ sup
x∈X̄

jϑ̂ðx; t 0Þ− ϑ̂ðx; t 0 0Þj:

By Lebourg’s mean value theorem [13, Theorem 2.3.7] and Proposition 4.4 (ii),

jϑ̂ðx; t 0Þ− ϑ̂ðx; t 0 0Þj ≤ sup
t∈½t 0;t 0 0 �

k∂tϑ̂ðx; tÞkjt 0 − t 0  0j ≤ sup
t∈½t 0;t  0 0�

E½k∂tv̂ðx; ξ; tÞk�jt 0 − t 0 0j

≤ sup
t∈½t 0;t 0 0 �

E½kΠλŴðx; ξ; tÞk�jt 0 − t 0  0j ≤ E½κðξÞ�jt 0 − t 0 0j:

The last inequality is due to Assumption 4.8. The conclusion follows. ▯
Note that Theorem 4.10 plays an essential role in the proof of Theorem 6.1.

5. Stability analysis with respect to the probability measure. The regular-
ization scheme discussed in the preceding section is proposed to deal with complemen-
tarity constraints. In this section, we discuss another main challenge in SMPCC (1.1),
that is, the mathematical expectation operation in the objective. If we can obtain a
closed form of the expected values of E½vðx; ξðωÞÞ� and E½v̂ðx; ξðωÞ; tÞ�, then the resulting
first stage problems are deterministic minimization problems. However, in many prac-
tical instances, this turns out to be very difficult or even impossible.

In this section, we discuss a scheme for approximating the probability measure P.
Specifically, we write E½v̂ðx; ξ; tÞ� as ∫ Ξv̂ðx; ξ; tÞdPðξÞ and then consider a sequence of
probability measures fPνg approximating P. Here Pν is assumed to be numerically more
tractable than P. In practice, there are many schemes to approximate P or E½v̂ðx; ξ; tÞ�.
The most well known examples are empirical probability measure approximation (which
is also known as SAA, to be discussed specifically in section 6) and optimal scenario
generation technique; see sections 4.1–4.2 in the excellent review paper [36] by Römisch
and the references therein. To simplify the discussion, we fix the regularization para-
meter t and the probability measure P is nonatomic throughout this section.

Consider the first stage regularized problem (3.4). Let Ξ be the support set of ξðωÞ
and P be a Borel probability measure on Ξ. Problem (3.4) can be equivalently written as

min
x

ϑ̂Pðx; tÞ ¼
Z
Ξ
v̂ðx; ξ; tÞdPðξÞ s:t: x ∈ X:ð5:1Þ

Let Pν be a sequence of probability measures fPνg approximating P in distribution as
ν → ∞. Instead of solving (5.1) directly, we solve the approximation problem

min
x

ϑ̂Pν
ðx; tÞ ¼

Z
Ξ
v̂ðx; ξ; tÞdPνðξÞ s:t: x ∈ X:ð5:2Þ

We study the perturbation of the optimal value and the set of optimal solutions and
stationary points of (5.2) as Pν → P. In the literature of stochastic programming, this
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kind of perturbation analysis is known as stability and/or sensitivity analysis; see a com-
prehensive review by Römisch [36] and the references therein.

Let ϕPðtÞ, ϕPν
ðtÞ,X�

PðtÞ, andX�
Pν
ðtÞ denote the optimal values and solutions of (5.1)

and (5.2), respectively.
THEOREM 5.1. Let X̄ be a compact subset of X and Assumption 3.1 hold at every

x ∈ X̄ . Suppose that there exists a positive constant t̄ and a positive integer ν̄ such that
X�

PðtÞ ∩ X̄ ≠ ∅ and X�
Pν
ðtÞ ∩ X̄ ≠ ∅ for any t ∈ ½0; t̄� and ν ≥ ν̄. Then there exists a

positive scalar t̂ < t̄ such that, for every fixed t ∈ ½0; t̂�,
(i) limν→∞DðX�

Pν
ðtÞ ∩ X̄ ; X�

PðtÞ ∩ X̄Þ ¼ 0;
(ii) limν→∞ϕPν

ðtÞ ¼ ϕPðtÞ.
Proof. By the covering theorem and Theorem 3.3, there exist positive constants

t̂ < t̄ and δ̂ such that v̂ðx; ξ; tÞ is continuous on X̄ × Ξ× ½0; t̂� and v̂ðx; ξ; tÞ ≤ δ̂. By
[37, Chapter 2, Proposition 1], ϑ̂Pðx; tÞ and ϑ̂Pν

ðx; tÞ, ν ¼ 1; 2; : : : , are continuous on
X̄ × ½0; t̂�, and hence they are bounded on the set. Since PνðξÞ converges to PðξÞ in dis-
tribution by assumption, then

lim
ν→∞

sup
ðx;tÞ∈X̄×½0;t̂�

ðϑ̂Pν
ðx; tÞ− ϑ̂Pðx; tÞÞ ¼ lim

ν→∞
sup

ðx;tÞ∈X̄×½0;t̂�

Z
Ξ
v̂ðx; ξ; tÞdðPνðξÞ− PðξÞÞ ¼ 0.

It is well known that the uniform convergence of ϑ̂Pν
ð·; tÞ to ϑ̂ð·; tÞ over compact set X̄

implies the convergence of its optimal value and optimal solutions; see, for instance,
[46, Lemma 4.1]. ▯

In what follows we investigate the stability of the set of stationary points. It is easy
to verify that if v̂ðx; ξ; tÞ is Lipschitz continuous with respect to x for almost every ξ and t
and its Lipschitz constant is integrably bounded under the probability measure P and
Pν, then ϑ̂Pðx; tÞ and ϑ̂Pν

ðx; tÞ are Lipschitz continuous with respect to x. The KKT
conditions of (5.1) and (5.2) can be written, respectively, as

0 ∈ ∂xϑ̂Pðx; tÞ þN X ðxÞð5:3Þ

and

0 ∈ ∂xϑ̂Pν
ðx; tÞ þN XðxÞ;ð5:4Þ

where ∂ denotes the Clarke subdifferential. Let S�
PðtÞ and S�

Pν
ðtÞ denote the set of sta-

tionary points satisfying (5.3) and (5.4), respectively. Following an argument similar to
that in section 3.2, we may consider weaker KKT conditions of (5.1) and (5.2) defined,
respectively, as

0 ∈
Z
Ξ
∂xv̂ðx; ξ; tÞdPðξÞ þN XðxÞð5:5Þ

and

0 ∈
Z
Ξ
∂xv̂ðx; ξ; tÞdPνðξÞ þN XðxÞ;ð5:6Þ

where ∂xϑ̂ðx; tÞ ⊂ ∫ Ξ∂xv̂ðx; ξ; tÞdPðξÞ and ∂xϑ̂Pν
ðx; tÞ ⊂ ∫ Ξ∂xv̂ðx; ξ; tÞdPνðξÞ: The equal-

ity holds when v is Clarke regular; see, for instance, [13, Theorem 2.8.2], [44], and [46,
section 4.2] for recent discussions related to limiting subdifferentials. Let Sw

PðtÞ
and Sw

Pν
ðtÞ denote the set of stationary points satisfying (5.5) and (5.6), respectively.

694 YONGCHAO LIU, HUIFU XU, AND GUI-HUA LIN

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.



We investigate the approximation of Sw
PðtÞ and S�

PðtÞ by Sw
Pν
ðtÞ and S�

Pν
ðtÞ, respectively,

as ν → ∞. To this end, we need to show, under some moderate conditions, that
∂xϑ̂Pν

ðx; tÞ approximates ∂xϑ̂Pðx; tÞ and that ∫ Ξ∂xv̂ðx; ξ; tÞdPνðξÞ approximates
∫ Ξ∂xv̂ðx; ξ; tÞdPðξÞ uniformly as ν → ∞.

LEMMA 5.2 (approximation of subdifferentials). Let Fðx; ξÞ∶Rn × Ξ → Rm be a con-
tinuous function, fPνg be a sequence of probability measures, and X be a compact subset
of Rn. Assume the following: (a) Fðx; ξÞ is locally Lipschitz continuous with respect to x
for almost every ξ with modulus Lðx; ξÞ which is bounded by a positive constant C and
1
τ
ðFðxþ τh; ξÞ− Fðx; ξÞÞ is uniformly continuous with respect to ξ for x ∈ χ, khk ≤ 1,

and τ sufficiently small; (b) fPνg converges to P in distribution. Then
(i) for every fixed x, ∂EPν

½Fðx; ξÞ� and ∂EP ½Fðx; ξÞ� are well defined, and

lim
ν→∞

sup
x∈X

Hð∂EPν
½Fðx; ξÞ�; ∂EP ½Fðx; ξÞ�Þ ¼ 0;ð5:7Þ

(ii) if ∂xFðx; ξÞ is outer semicontinuous in ξ, then

lim
ν→∞

sup
x∈X

DðEPν
½∂xFðx; ξÞ�; EP ½∂xFðx; ξÞ�Þ ¼ 0;ð5:8Þ

if, in addition, ∂xFðx; ξÞ is Hausdorff continuous in ξ, then

lim
ν→∞

sup
x∈X

HðEPν
½∂xFðx; ξÞ�; EP ½∂xFðx; ξÞ�Þ ¼ 0:ð5:9Þ

Proof. Part (i). For simplicity of notation, let fPν
ðxÞ ¼ EPν

½Fðx; ξÞ� and
fPðxÞ ¼ EP ½Fðx; ξÞ�. Under condition (a), both fPν

ðxÞ and fPðxÞ are globally Lipschitz
continuous; therefore, Clarke’s generalized derivatives of fPν

ðxÞ and fPðxÞ, denoted by
foPν

ðx;hÞ and foPðx; hÞ, respectively, are well defined for any fixed nonzero vector h ∈ Rn,
where

foPν
ðx; hÞ ¼ lim sup

x 0→x;τ↓0

1

τ
ðfPν

ðx 0 þ τhÞ− fPν
ðx 0ÞÞ

and

foPðx; hÞ ¼ lim sup
x 0→x;τ↓0

1

τ
ðfPðx 0 þ τhÞ− fPðx 0ÞÞ:

Our idea is to study the Hausdorff distance Hð∂fPν
ðxÞ; ∂fPðxÞÞ through certain “dis-

tance” of the Clarke generalized derivatives foPν
ðx; hÞ and foPðx; hÞ. Let D1, D2 be

two convex and compact subsets of Rm. Let σðD1; uÞ and σðD2; uÞ denote the support
functions of D1 and D2, respectively. Then

DðD1; D2Þ ¼ max
kuk≤1

ðσðD1; uÞ− σðD2; uÞÞ

and

HðD1; D2Þ ¼ max
kuk≤1

jσðD1; uÞ− σðD2; uÞj:

The above relationships are known as Hömander’s formulas; see [11, Theorem II-18].
Applying the second formula to our setting, we have
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Hð∂fPν
ðxÞ; ∂fPðxÞÞ ¼ sup

khk≤1

jσð∂fPν
ðxÞ; hÞ− σð∂fPν

ðxÞ; hÞj:

Using the relationship between Clarke’s subdifferential and Clarke’s generalized deriva-
tive, we have that foPν

ðx; hÞ ¼ σð∂fPν
ðxÞ; hÞ and foPðx; hÞ ¼ σð∂fPðxÞ; hÞ: Consequently,

Hð∂fPν
ðxÞ; ∂fPðxÞÞ ¼ sup

khk≤1

jfoPðx; hÞ− foPν
ðx; hÞj

¼ sup
khk≤1

����lim sup
x 0→x;τ↓0

1

τ
ðfPðx 0 þ τhÞ− fPðx 0ÞÞ− lim sup

x 0→x;τ↓0

1

τ
ðfPν

ðx 0 þ τhÞ

− fPν
ðx 0ÞÞ

����:
Note that for any bounded sequence fakg and fbkg, we have����lim sup

k→∞
ak − lim sup

k→∞
bk

���� ≤ lim sup
k→∞

jak − bkj:ð5:10Þ

To see this, let fakjg be a subsequence such that lim supk→∞ak ¼ limkj→∞akj . Then

lim sup
k→∞

jak − bkj ≥ lim sup
kj→∞

jakj − bkj j ≥ lim sup
kj→∞

ðakj − bkjÞ

¼ lim sup
k→∞

ak þ lim sup
kj→∞

ð−bkjÞ ≥ lim sup
k→∞

ak þ lim inf
kj→∞

ð−bkjÞ

≥ lim sup
k→∞

ak þ lim inf
k→∞

ð−bkÞ ¼ lim sup
k→∞

ak − lim sup
k→∞

bk:

Since ak and bk are in a symmetric position, we have that

lim sup
k→∞

jak − bkj ≥ lim sup
k→∞

bk − lim sup
k→∞

ak:

This verifies (5.10). Using (5.10), we have

Hð∂fPν
ðxÞ; ∂fPðxÞÞ ≤ sup

khk≤1

lim sup
x 0→x;τ↓0

���� 1τ ðfPðx 0 þ τhÞ− fPðx 0ÞÞ−
1

τ
ðfPν

ðx 0 þ τhÞ− fPν
ðx 0ÞÞ

����
¼ sup

khk≤1

lim sup
x 0→x;τ↓0

����
Z
Ξ

1

τ
ðFðx 0 þ τh; ξÞ− Fðx 0; ξÞÞdðP − PνÞðξÞ

����:

Since Pν converges to P in distribution, and the integrand 1
τ
ðFðx 0 þ τh; ξÞ− Fðx 0; ξÞÞ

is uniformly continuous with respect to ξ and is bounded by L, then by virtue of
[7, Theorem 2.1],

lim
ν→∞

sup
x∈X

sup
khk≤1

lim sup
x 0→x;τ↓0

����
Z
Ξ

1

τ
ðFðx 0 þ τh; ξÞ− Fðx 0; ξÞÞdðP − PνÞðξÞ

���� ¼ 0:ð5:11Þ

Part (ii). We first show that EPν
½∂xFðx; ξÞ� and EP ½∂xFðx; ξÞ� are well defined. The

continuity of Fðx; ξÞ in ξ implies the measurability of Fðx; ξð·ÞÞ and Foðx; ξð·Þ; hÞ
through [4, Theorem 8.2.5]. Since Foðx; ξ; hÞ is the support function of ∂xFðx; ξÞ, by
[4, Theorem 8.2.14], ∂xFðx; ξð·ÞÞ is also measurable. Moreover, the Clarke subdifferential
∂xFðx; ξÞ is compact set-valued and bounded by C (under condition (a)), which implies
that EP ½∂xFðx; ξÞ� is nonempty and compact set-valued and that EP ½k∂xFðx; ξÞk� ≤ C .
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In view of a discussion by Artstein and Vitale [2], EP ½∂xFðx; ξÞ� is well defined. Using the
same argument, we can show the well-definedness of EPν

½∂xFðx; ξÞ�. Note that ∂xFðx; ξÞ
is convex set-valued; we obtain (5.8) through [3, Theorem 4.2], and, (5.9) by virtue of
[3, Theorem 3.1]. The proof is complete. ▯

We make a few comments about Lemma 5.2 because it is prepared not only for
establishing our main result, Theorem 5.3, but also for general interest such as the sta-
bility analysis of stationary points in general nonsmooth stochastic programming. First,
Birge and Qi [9] investigated pointwise approximation of ∂EPν

½Fðx; ξÞ� to ∂EP ½Fðx; ξÞ�
(i.e., for fixed x) under the condition that Pν is a particular class of continuous prob-
ability measures whose distribution function has a piecewise continuous density func-
tion; see [9, Theorem 4.1] for details. Our result (5.7) is stronger than the convergence
result in [9, equation (4.1)] in the sense that the convergence here is uniform and there is
no restriction on the distribution of Pν. Second, Artstein and Wets [3] established a
number of convergence results for the integral of random set-valued mappings when
the probability measure Pν converges weakly to P. Lemma 5.2 (ii) is a direct application
of their results to Clarke subdifferentials.

THEOREM 5.3 (stability of stationary points). Let X be a compact set and
Assumptions 3.1 and 4.8 hold for all x ∈ X . Let fPνg be a sequence of probability mea-
sures converging to P in distribution. Then there exists a constant t� > 0 such that

(i) v̂ðx; ξ; tÞ is continuous on X × Ξ× ½0; t�� and for any fixed ξ ∈ Ξ, v̂ð·; ξ; ·Þ is
Lipschitz continuous on X × ½0; t��;

(ii) if the Lipschitz modulus of v̂ðx; ξ; tÞ, denoted by L̂ðx; ξ; tÞ, is bounded by a con-
stant C and 1

τ
ðv̂ðxþ τh; ξ; tÞ− v̂ðx; ξ; tÞÞ is uniformly continuous with respect

to ξ for any ðx; ξ; tÞ ∈ X × Ξ× ½0; t��, khk ≤ 1, and τ sufficiently small, then

lim
ν→∞

HðS�
Pν
ðtÞ; S�

PðtÞÞ ¼ 0

and if ∂xv̂ðx; ξ; tÞ is outer semicontinuous in ξ, then

lim
ν→∞

DðSw
Pν
ðtÞ; Sw

PðtÞÞ ¼ 0:

Proof. Part (i) follows from Theorems 3.3 and 4.10. Part (ii) follows from
[46, Lemma 4.2] and Lemma 5.2. ▯

Before concluding this section, we point out a popular special case when Pν is an
empirical probability measure. That is,

Pν ≔
1

ν

Xν
k¼1

1ξkðωÞ;

where ξ1; : : : ; ξν is an independent and identically distributed sampling of ξ and

1ξkðωÞ ≔
�
1 if ξðωÞ ¼ ξk;
0 if ξðωÞ ≠ ξk:

It is well known that Pν converges weakly to P with probability one (w.p.1); see, for
instance, [43]. In this case

∂EPν
½Fðx; ξÞ� ¼ ∂

�
1

ν

Xν
k¼1

Fðx; ξkÞ
�

and
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EPν
½∂xFðx; ξÞ� ¼

1

ν

Xν
k¼1

∂xFðx; ξkÞ:

From the calculus of Clarke subdifferential, we know that

∂EPν
½Fðx; ξÞ� ⊆ EPν

½∂xFðx; ξÞ�;

and equality holds when Fð·; ξkÞ, k ¼ 1; : : : ; ν, is Clarke regular at x. Putting this into
the context of Lemma 5.2, we have, from the law of large numbers, that (5.11) holds
w.p.1 as long as 1

τ
ðFðx 0 þ τh; ξÞ− Fðx 0; ξÞÞ is bounded by an integrable function LðξÞ

(independent of x and τ it is uniformly continuous with respect to ξ. Consequently,
we have

lim
ν→∞

sup
x∈X

H

�
∂
�
1

ν

Xν
k¼1

Fðx; ξkÞ
�
; ∂EP ½∂xFðx; ξÞ�

�
¼ 0

w.p.1 and

lim
ν→∞

sup
x∈X

D

�
1

ν

Xν
k¼1

∂xFðx; ξkÞ;EP ½∂xFðx; ξÞ�
�

¼ 0

w.p.1. If, in addition, ∂xFðx; ξÞ is Hausdorff continuous in ξ, then

lim
ν→∞

sup
x∈X

H

�
1

ν

Xν
k¼1

∂xFðx; ξkÞ;EP ½∂xFðx; ξÞ�
�

¼ 0

w.p.1. Let us point out a subtle difference between the convergence results here and
those in Lemma 5.2. The Lipschitz modulus here is integrably bounded which is ob-
viously weaker than condition (a) in the lemma and our convergence results are also
weaker in that the limits hold w.p.1. In view of Theorem 5.3 (ii), the boundedness of
L̂ðx; ξ; tÞ by C may be weakened to CðξÞ w.p.1 and the consequent limits hold w.p.1
rather than deterministically.

6. Sample average approximation. In this section, we discuss SAA of the
regularized two-stage problem. This is a combination of the stability analyses in sec-
tions 3–5, but we have independent interest: we investigate the behavior of optimal so-
lutions and stationary points when the regularization parameter t is driven to zero, and
the probability measure P is approximated by the empirical probability measure
(sample average). By focusing on SAA, we are able to obtain some stronger results which
we cannot do under general probability measures in section 5.

We start by writing the regularized two-stage problem (3.3)–(3.4) in a compact
form:
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min
x;yð·Þ

E½fðx; yðωÞ; ξðωÞÞ�

s:t: x ∈ X; and for a:e: ω ∈ Ω∶

gðx; yðωÞ; ξðωÞÞ ≤ 0;

hðx; yðωÞ; ξðωÞÞ ¼ 0;

−Gðx; yðωÞ; ξðωÞÞ ≤ 0;

−Hðx; yðωÞ; ξðωÞÞ ≤ 0;

Gðx; yðωÞ; ξðωÞÞ ∘ Hðx; yðωÞ; ξðωÞÞ ≤ te:ð6:1Þ

The equivalence between (6.1) and (3.3)–(3.4) is well documented in the stochastic
programming literature (see, e.g., [37, Chapter 1, section 2.4]). Let ξ1; : : : ; ξN be an
independent identically distributed sample. We consider the following SAA of the
regularized problem (6.1):

min
x;y1; : : : ;yN

1

N

XN
i¼1

f ðx; yi; ξiÞ

s:t: x ∈ X; and for i ¼ 1; : : : ; N∶

gðx; yi; ξiÞ ≤ 0;

hðx; yi; ξiÞ ¼ 0;

−Gðx; yi; ξiÞ ≤ 0;

− Hðx; yi; ξiÞ ≤ 0;

Gðx; yi; ξiÞ ∘ Hðx; yi; ξiÞ ≤ tNe;ð6:2Þ

where tN ↓ 0 as N → ∞. Note that the dependence of the regularization parameter on
sample size is numerically important, as it allows one to change the parameter value as
the sampling changes.

If we use v̂ðx; ξi; tÞ, i ¼ 1; : : : ; N , to denote the optimal value of the regularized
second stage problem (3.3) with ξ ¼ ξi and assume that ðx; y1; : : : ; yN Þ is a global
optimal solution, then problem (6.2) can be written in an implicit form, that is,

min
x

1

N

XN
i¼1

v̂ðx; ξi; tN Þ

s:t: x ∈ X;ð6:3Þ

which is the SAA of the first stage (3.4). Here “implicit” is in the sense that (6.3) does not
explicitly involve the underlying functions of the second stage problem. The terminology
is used by Ralph and Xu in [33], where SAA is applied to a classical two-stage stochastic
program.

SAA is a very popular method in stochastic programming; it is known under various
names such asMonte Carlo sampling, sample path optimization, and stochastic counter-
part; see [31], [34], [37] for SAA in general stochastic programming and [8], [40], [47], [27]
for recent application of the method to SMPECs.

The regularized SAA scheme for a two-stage SMPEC problem was first considered
in [41] and with some detailed convergence analysis in a conference paper [32], where
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Gðx; y; ξÞ ¼ y and Hðx; y; ξÞ is uniformly strongly monotone with respect to y. In this
section, we carry out convergence analysis under weaker conditions; that is, the second
stage problem MPECðx; ξÞ satisfies MPEC-MFCQ.

We start with a convergence analysis of first stage optimal solutions. Specifically, by
assuming that fxN ; y1; : : : ; yNg is a global optimal solution to SAA problem (6.2), we
investigate an accumulation point of fxNg as the sample size N increases. From the
numerical perspective, if we obtain an approximate global optimal solution from solving
(6.2) and observe a tendency of convergence of xN as N increases, then we want to know
how the convergent sequence is related to the optimal solution of the true problem (1.1).

THEOREM 6.1. Let fðxN ; y1; : : : ; yN Þg be a sequence of global optimal solutions of
problem (6.2) and x̂ be an accumulation point of fxNg. Let X̄ be a closed subset of
X such that w.p.1 xN ∈ X̄ for N sufficiently large and X̄ contains a global optimal solu-
tion x� of the true first stage problem (3.1). Suppose the following: (a) Assumptions 3.1
and 4.8 are satisfied at every point x in X̄ , (b) problem MPCCðx; ξÞ satisfies MPEC-
MFCQ at every point in the optimal solution set Y solðx; ξÞ for ðx; ξÞ ∈ X̄ × Ξ. Then

(i) w.p.1 x̂ is an optimal solution to the true problem (3.1).
(ii) suppose, in addition, the following: (c) there exists a positive constant t̂ such

that for every x ∈ X̄ and t ∈ ½0; t̂�, the moment generating function
E½eðv̂ðx;ξ;tÞ−E½v̂ðx;ξ;tÞ�Þτ� of the random variable v̂ðx; ξ; tÞ− E½v̂ðx; ξ; tÞ� is finite-
valued for τ close to 0; (d) the moment generating function E½eκðξÞ2τ� of the ran-
dom variable κðξÞ2 is finite-valued for τ close to 0, where κðξÞ is defined as in
Assumption 4.8. Then fxNg converges to x̂ with probability approaching one
exponentially fast with the increase of sample size N ; that is, for every
ϵ > 0, there exist positive constants CðϵÞ and βðϵÞ such that

ProbðdðxN ;X solÞ ≥ ϵÞ ≤ CðϵÞe−βðϵÞNð6:4Þ

for N sufficiently large.
Proof. Part (i). It suffices to show that 1

N

P
N
i¼1 v̂ðx; ξi; tN Þ converges uniformly to

E½vðx; ξÞ� over the compact set X̄ , that is,

lim
N→∞

sup
x∈X̄

���� 1N
XN
i¼1

v̂ðx; ξi; tN Þ− E½vðx; ξÞ�
���� ¼ 0 w:p:1:ð6:5Þ

Indeed, if (6.5) holds, then we can claim, by virtue of [46, Lemma 4.1] or [35,
Theorem 7.33] (as uniform convergence implies epi-convergence), that the set of global
minimizers of the sample average function 1

N

P
N
i¼1 v̂ðx; ξi; tN Þ within X̄ converges to that

of E½vðx; ξÞ� within X̄ w.p.1. This implies that w.p.1 x̂ is a global minimizer of E½vðx; ξÞ�
in X̄ , and hence E½vðx̂; ξÞ� ¼ E½vðx�; ξÞ�. In what follows we prove (6.5).

Since Assumption 3.1 holds at every point x ∈ X̄ , it follows from Theorem 3.7 (ii)
that vð·; ·Þ is continuous on X̄ × Ξ and vð·; ξÞ is locally Lipschitz continuous on X̄ for
every fixed ξ ∈ Ξ. Moreover, by Proposition 4.4 (i),

k∂xvðx; ξÞk ≤ kΦðx; ξÞk:
Under Assumption 4.8,

kΦðx; ξÞk ≤ κðξÞ2 ∀ðx; ξÞ ∈ X̄ × Ξ;

where κðξÞ is as given in Assumption 4.8 and E½κðξÞ2� < ∞. Further, the condition x� ∈
X̄ implies E½vðx�; ξÞ� < ∞. Therefore, for every x ∈ X̄ ,
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jvðx; ξÞj ≤ jvðx�; ξÞj þ κðξÞ2kx− x�k;

and hence E½vðx; ξÞ� is well defined and

E½vðx; ξÞ� ≤ E½jvðx�; ξÞj� þ E½κðξÞ2�kx− x�k < ∞:

This implies, through the classical uniform law of large numbers [37, Lemma A1], that

lim
N→∞

sup
x∈X̄

���� 1N
XN
i¼1

vðx; ξiÞ− E½vðx; ξÞ�
���� ¼ 0 w:p:1:ð6:6Þ

On the other hand, under Assumption 3.1, we know through Theorem 4.10 that v̂ð·; ξ; ·Þ
is locally Lipschitz continuous at ðx; 0Þ for x ∈ X̄ . Moreover, by Proposition 4.4 (ii) and
Assumption 4.8,

k∂tv̂ðx; ξ; tÞk ≤ kΠλŴðx; ξ; tÞk ≤ κðξÞ ∀ ðx; ξÞ ∈ X̄ × Ξ;

where κðξÞ is as given in Assumption 4.8. Consequently, we have

���� 1N
XN
i¼1

v̂ðx; ξi; tN Þ− E½vðx; ξÞ�
���� ≤ 1

N

XN
i¼1

jv̂ðx; ξi; tN Þ− vðx; ξiÞj

þ
���� 1N

XN
i¼1

vðx; ξiÞ− E½vðx; ξÞ�
����

≤
1

N

XN
i¼1

κðξiÞtNþ
���� 1N

XN
i¼1

vðx; ξiÞ− E½vðx; ξÞ�
����:ð6:7Þ

Combining (6.6) and (6.7) together with the fact that

lim
N→∞

1

N

XN
i¼1

κðξiÞ ¼ E½κðξÞ�;

we obtain (6.5).
Part (ii). Let ϵ > 0 be given. By [14, Lemma 3.2] (or [46, Lemma 4.1]), there exists a

δðϵÞ > 0 such that if

lim
N→∞

sup
x∈X̄

���� 1N
XN
i¼1

v̂ðx; ξi; tN Þ− E½vðx; ξÞ�
���� ≤ δðϵÞ;

then dðxN ;X solÞ ≤ kxN − x̂k ≤ ϵ. Under condition (d), there exist positive constants
C 1ðϵÞ, β1ðϵÞ, and N 0 sufficiently large such that for N ≥ N 0,

Prob

�
1

N

XN
i¼1

κðξiÞtN ≥
1

2
δðϵÞ

�
≤ C 1ðϵÞe−β1ðϵÞN :

On the other hand, by virtue of the Lipschitz continuity of vð·; ξÞ together with condi-
tions (c) and (d) of this theorem, we can apply [41, Theorem 5.1] to the sample average
1
N

P
N
i¼1 vðx; ξiÞ; that is, for given δðϵÞ > 0, there exist positive constants C 2ðϵÞ, β2ðϵÞ,

and N 1 ≥ N 0 such that for N ≥ N 1,
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Prob

�
sup
x∈X̄

1

N

����
XN
i¼1

vðx; ξiÞ− E½vðx; ξÞ�
���� ≥ 1

2
δðϵÞ

�
≤ C 2ðϵÞe−β2ðϵÞN :

Combining the above two inequalities with (6.7), we have

Prob

�
lim
N→∞

sup
x∈X̄

���� 1N
XN
i¼1

v̂ðx; ξi; tN Þ− E½vðx; ξÞ�
���� ≥ δðϵÞ

�
≤ C 1ðϵÞe−β1ðϵÞN þ C 2ðϵÞe−β2ðϵÞN :

The conclusion follows by setting CðϵÞ ¼ C 1ðϵÞ þ C2ðϵÞ and setting βðϵÞ ¼
minðβ1ðϵÞ;β2ðϵÞÞ. ▯

We nowmove on to discuss the case when a solution fxN ; y1; : : : ; yNg obtained from
solving the SAA problem (6.2) is a stationary point but not a global optimal solution.
This happens in numerical solution in that MPECs are generically nonconvex and so are
their counterparts via NLP regularization. This motivates us to have a separate
discussion on the convergence of xN .

Consider the KKT conditions of the regularized SAA program (6.2):

0 ∈
1

N

XN
i¼1

∇xL̂ðx; yi; ξi; t;αi;βi; γi; θi; λiÞ þN XðxÞ;ð6:8Þ

and, for i ¼ 1; : : : ; N ,
8>>>>>><
>>>>>>:

0 ¼ ∇yL̂ðx; yi; ξi; t;αi;βi; γi; θi; λiÞ;
0 ≤ −gðx; yi; ξiÞ ⊥ αi ≥ 0;
0 ¼ hðx; yi; ξiÞ;
0 ≤ Gðx; yi; ξiÞ ⊥ γi ≥ 0;
0 ≤ H ðx; yi; ξiÞ ⊥ θi ≥ 0;
0 ≤ tNe−Gðx; yi; ξiÞ ∘ Hðx; yi; ξiÞ ⊥ λi ≥ 0:

ð6:9Þ

We note that ðy1;α1;β1; γ1; θ1; λ1Þ; : : : ; ðyN ;αN ;βN ; γN ; θN ; λN Þ change as N changes.
So it would be more accurate to denote each yi by yi;N and to do similarly with the
other vectors. To keep the notation simple we will take this point as understood.

The KKT conditions (6.9) imply that ðyi;αi;βi; γi; θi; λiÞ is a KKT pair of
REGðx; ξi; tN Þ; that is,

ðyi;αi;βi; γi; θi; λiÞ ∈ Ŵðx; ξi; tN Þ:

By the definition of Ψ̂ðx; ξ; tÞ (see (4.11)),

∇xL̂ðx; yi; ξi; t;αi;βi; γi; θi; λiÞ ∈ Ψ̂ðx; ξi; tÞ:

Combining this with (6.8), we arrive at

0 ∈
1

N

XN
i¼1

Ψ̂ðx; ξi; tN Þ þN X ðxÞ;ð6:10Þ

which implies that (6.10) is an SAA of the relaxed KKT condition (4.23).
THEOREM 6.2. Let fxN ; y1; : : : ; yNg be a stationary point of problem (6.2) and x̂ be an

accumulation point of fxNg. Suppose that Assumptions 4.2 and 4.8 hold at x̂, and suppose
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that problem MPCCðx; ξÞ satisfies MPEC-MFCQ at every point in the feasible set
Fðx̂; ξÞ for every ξ ∈ Ξ and that the probability measure is nonatomic. Then w.p.1 x̂
is a relaxed stationary point of the true problem (3.1);that is, x̂ satisfies (4.22).

Proof. Let

Aðx; ξ; tÞ ≔
�
Ψ̂ðx; ξ; tÞ; t ≠ 0;
Ψðx; ξÞ; t ¼ 0:

By Proposition 4.9, there exists a neighborhood U of x̂ and a scalar t� > 0 such
that Að·; ·; ·Þ is outer semicontinuous on U × Ξ× ½0; t��. Under Assumption 4.8,
Aðx; ξð·Þ; tÞ is measurable and integrably bounded. The conclusion follows by applica-
tion of [49, Theorem 4.3]. The proof is complete. ▯

Theorem 6.2 addresses almost sure convergence of stationary points. It might be
both theoretically and practically interesting to discuss exponential convergence so that
one can estimate the sample size for a prescribed precision. However, this would require
a lot of complicated technical analysis, and such analysis would have significantly in-
creased the length of this paper. We leave this for future research.

Let us now make a few comments on the numerical resolution of SAA problem (6.2).
For a given sample, this is a deterministic NLP. Therefore, theoretically speaking, any
existing NLP solver may be applied to solve it. However, when sample size increases, the
problem size could be very large. Consequently, one may wish to apply some techniques
which exploit the special structure of the problem before plugging it into an NLP solver.
Research like this is perhaps well known in the literature of stochastic programming. Let
us point out some recent development in this direction. Bastin [6] considered a trust-
region-based Schur-complement scheme for solving stochastic NLPs; Shanbhag [39]
proposed a line-search-based decomposition method for solving stochastic MPCCs.
Kulkarni and Shanbhag [22] discussed a novel hybrid algorithm which combines the
SQP-based method and Benders decomposition. Moreover, if (6.1) is a convex program,
the dual method proposed by Zhao [50] may be applicable.
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