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This paper presents an asymptotic analysis of a Monte Carlo method, variously known as sample average approximation
(SAA) or sample path optimization (SPO), for a general two-stage stochastic minimization problem. We study the case when
the second-stage problem may have multiple local optima or stationary points that are not global solutions and SAA is
implemented using a general nonlinear programming solver that is only guaranteed to find stationary points. New optimality
conditions are developed for both the true problem and its SAA problem to accommodate Karush-Kuhn-Tucker points.
Because the optimality conditions are essentially stochastic generalized equations, the asymptotic analysis is carried out for
the generalized equations first and then applied to optimality conditions. For this purpose, we analyze piecewise continuous
(PC0) stochastic mappings to understand when their expectations are piecewise continuous and thereby derive exponential
convergence of SAA. It is shown under moderate conditions that, with probability one, an accumulation point of the SAA
stationary points satisfies a relaxed stationary condition for the true problem and further that, with probability approaching
one exponentially fast with increasing sample size, a stationary point of SAA converges to the set of relaxed stationary points.
These results strengthen or complement existing results where the second-stage problem is often assumed to have a unique
solution and the exponential convergence is focused on how fast a solution of the true problem becomes an approximate
solution of an SAA problem rather than the other way around.
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1. Introduction. In this paper, we study the following stochastic minimization problem:

min
x∈�m1 y4 · 5∈Y

Ɛ6f 4x1 y4�51 �4�557

s.t. x ∈X1

g4x1 y4�51 �4�55≤ 01 a.e. � ∈ì1

h4x1 y4�51 �4�55= 01 a.e. � ∈ì1

(1)

where X is a nonempty, convex subset of �m; f , g, and h are continuously differentiable functions from
�m × �n × �r to �, �s , and �t , respectively; �2 ì → æ ⊂ �r is a vector of random variables defined on
probability space 4ì1F1 P5; Ɛ6 · 7 denotes the expectation with respect to (w.r.t.) the probability distribution P ;
and Y is a suitable space of functions y4 · 52 ì→�n such that Ɛ6f 4x1 y4�51 �4�557 is well-defined.

Problem (1) is a two-stage stochastic programming problem. At the first stage, a decision on x needs to be
made, restricted to the feasible set X, before a realization of the random data �4�5. At the second stage, when
x is fixed and a realization �4�5 = � is known, the following second-stage minimization problem is solved to
calculate second-stage decision vector y:

min
y∈�n

f 4x1 y1 �5

s.t. g4x1 y1 �5≤ 01

h4x1 y1 �5= 00

(2)

When the second-stage problem is nonconvex, the meaning of “solving” may be to find a local minimum or even
a stationary point to allow for a practical computational procedure. To explain this, consider a special case when
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� has a finite distribution with N scenarios, �11 : : : 1 �N , and corresponding probabilities p11 : : : 1 pN . Then, the
two-stage problem can be written as

min
x1 y11 : : : 1yN

N
∑

i=1

pif 4x1 y
i1 �i5

s.t. x ∈X1

g4x1 yi1 �i5≤ 01 i = 11 : : : 1N 1

h4x1 yi1 �i5= 01 i = 11 : : : 1N 0

(3)

Problem (3) is generally nonconvex, and therefore it is numerically difficult to obtain a global minimum.
Throughout this paper, we assume that the probability measure P of our considered space 4ì1F1 P5 is

nonatomic. To ease notation, we will use � to denote either the random vector �4�5 or an element of �r

depending on the context.
The stochastic program (1) has been well-studied and subsumes standard two-stage stochastic programs;

see, for instance, Ruszczyński and Shapiro [40, Chapter 1] and Shapiro [42] and the references therein. Our
interest here is with the sample average approximation (SAA) method, which is also known as the sample path
optimization (SPO) method for solving stochastic optimization problems. Over the past few years, SAA has been
increasingly investigated and recognized as one of the most effective methods for solving stochastic programs;
see recent discussions in King and Wets [24], Plambeck et al. [31], Robinson [37], Shapiro and Homem-de-
Mello [45], Shapiro [43], and references therein. The basic idea of SAA is to replace the true problem by
approximating the expected value with the sample average.

Let �11 : : : 1 �N be an independent identically distribution (i.i.d.) sample of �. The SAA of (1) is

min
x1 y11 : : : 1yN

1
N

N
∑

i=1

f 4x1 yi1 �i5

s.t. x ∈X1

g4x1 yi1 �i5≤ 01 i = 11 : : : 1N 1

h4x1 yi1 �i5= 01 i = 11 : : : 1N 0

(4)

The SAA approach for two stage and multistage stochastic programs has been well-studied; see, for instance,
Römisch and Schultz [39] and Shapiro [42]. In particular, Shapiro [42] has established the exponential conver-
gence of optimal solutions of the two-stage SAA problem by studying an equivalent SAA of the optimal value
function of the second-stage problem, roughly as follows: Let v4x1 �5 denote the global optimal value of the
second-stage problem (2). Assume, for i = 11 : : : 1N , that yi is a global solution of the second-stage problem
corresponding to x and �i so that v4x1 �i5= f 4x1 yi1 �i5. Then, (4) can be rewritten as

min
x

vN 4x5 2=
1
N

N
∑

i=1

v4x1 �i5

s.t. x ∈X0

(5)

This problem is the SAA for the following problem:

min
x

�4x5 2= Ɛ6v4x1 �57

s.t. x ∈X0
(6)

Shapiro [42] and others study convergence of SAA for (6) rather than (1).
We refer to (5) and (6) as implicit programming approaches in that they do not explicitly involve the underlying

functions in the second stage. Incidentally, the implicit programming approach has been used to study the
convergence of stationary points of two-stage stochastic mathematical programs with equilibrium constraints
(SMPEC) where the second-stage parametric MPEC problem has a unique solution (see Shapiro and Xu [46],
Xu and Meng [49], and Meng and Xu [27]).

In this paper, we assume that (4) is directly solved by a nonlinear programming (NLP) code without necessarily
decomposing this problem into two stages, and we study the convergence of its stationary points as the sample
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size increases. The key difference between this work and the existing work is that here, at a stationary point
4xN 1 y11 : : : 1 yN 5 of (4), none of the points yi need to be global or even local optimal solutions of (2) for x = xN

and � = �i. Consequently, we cannot use the implicit programming approach, which relies on the equivalence
between (4) and (5). Our results are therefore of interest when the underlying functions are nonconvex and the
second-stage problem has multiple solutions.

Our approach is to develop a relaxed optimality condition (see (41) in §6) by replacing the subdifferential of
v4x1 �5 with a set-valued mapping constructed from the gradients of the Lagrangian function of the second-stage
problem at stationary points. This set-valued mapping is defined through an earlier sensitivity result established
by Gauvin and Dubeau [14] on approximating the Clarke subdifferential (Clarke [8]) of the optimal value
function of a parametric program. The relaxed optimality condition accommodates accumulation points of a
sequence 8xN 9 of stationary points of (4). In doing so, we explain what convergence of 8xN 9 might mean when
implementing SAA for (1) using standard NLP software.

Two particular cases explored in §6.3 are (1) when the second-stage problem (2) is unconstrained and noncon-
vex and has locally unique stationary points, and (2) when the second-stage problem is a nonconvex parametric
quadratic program.

Observe that the first-order necessary conditions of (5) and (4) (w.r.t. x) are both sample averages of certain
stochastic generalized equations. For simplicity of notation and the potential application of the convergence
results to other areas, we first carry out convergence analysis of the SAA of a class of stochastic generalized
equations and then apply these convergence results to the SAA applied to the true problem (1) in §6. General-
ized equations have been extensively investigated by Robinson and many others for the sensitivity analysis of
deterministic optimization problems and variational inequalities (see Robinson [36], Rockafellar and Wets [38],
Facchinei and Pang [13], and references therein). In particular, King and Rockafellar [23] use generalized equa-
tions as a framework for asymptotic analysis of solutions in statistical estimation and stochastic programming.
More recently, Shapiro [43] studies a class of stochastic generalized equations and establishes some useful con-
vergence results for SAA problems as sample size increases. Note that the underlying functions (excluding the
normal cone) in defining the generalized equations in all of the above-noted references are single valued.

In this paper, we study a class of stochastic generalized equations with the underlying function being random
set valued rather than single valued. This is to accommodate the first-order optimality condition of (5) and its
relaxation (41). Consequently we need the uniform strong law of large numbers for random set-valued mappings
(Shapiro and Xu [47]) to deal with the sample average and metric regularity-type condition to obtain exponential
convergence of 8xN 9.

We now summarize the main contributions of this paper.
(a) We present a detailed discussion of random piecewise continuous set-valued mappings, including random

polyhedral multifunctions,1 and show, under some moderate conditions, that the expectation of such mappings
is piecewise continuous. This result is used to show the uniform exponential convergence of the SAA solution
of stochastic generalized equations. These results complement the asymptotic analysis on stochastic generalized
equations by King and Rockafellar in [23], strengthen the recent convergence results for stochastic generalized
equations by Shapiro [43, §7], and have applications, we believe, in stochastic equilibrium problems such as
nonsmooth stochastic games.

(b) We establish almost sure convergence for the stationary points of a general stochastic minimization prob-
lem where the second-stage problem may have multiple optimal solutions and stationary points. This extends the
recent literature that typically relies on the SAA finding a globally optimal solution of the second-stage problem
(the second stage problem being convex or having a unique locally and globally optimal solution).

(c) Under some moderate conditions, we show that, with probability approaching one exponentially fast with
the increase of sample size, a stationary point of the SAA problem (4) (w.r.t. x) converges to its true counterpart.
This differs from the exponential convergence literature (e.g. Shapiro [43], Römisch and Schultz [39]) where the
focus is on globally optimal solutions. We also allow the solution set of (4)—whether it is defined by stationary
points, local optima, or global optima—to vary discontinuously in x, as suggested in (a).

The rest of the paper is organized as follows. In §2, we present some definitions and results on measurability
and integrability of random sets and Clarke subdifferentials of random functions. We also review some prelimi-
nary results on set-valued mappings. In §3, we establish an exponential convergence result for sample averages
of Hölder continuous set-valued mappings based on the work of Shapiro and Xu [46]. In §4, we investigate the
expectation of random piecewise continuous set-valued mappings and show, under some moderate conditions,

1 For consistency in terminology, we will use the term “polyhedral set-valued mapping” later on, although “polyhedral multifunction” is
more frequently used in the literature.
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that the expected value of such mappings are piecewise continuous. This allows us to establish exponential
convergence of the SAA solution set of a stochastic generalized equation to the true solution set in the piecewise
continuous case. Section 5 derives optimality conditions for the true problem (1). In §6, we apply the results of
the preceding sections to study convergence of the first-stage decision vectors obtained from stationary points
of the SAA problem (4).

2. Preliminaries. In this section, we present some notation and preliminary discussions about the measur-
ability of a random set-valued mapping, implicit function theorem based on Clarke generalized Jacobians and
generalized Karush-Kuhn-Tucker (KKT) conditions.

Throughout this paper, we use the following notations. � denotes the set of positive integers, xT y denotes
the scalar products of two vectors x and y, and � · � denotes the Euclidean norm of either a vector and a
nonempty set of vectors C where �C� 2= supx∈C �x�. For a nonempty, closed set C in finite dimensional space,
let �C� 2= supx∈C �x�. Also, d4x1C5 2= infx′∈C �x − x′�, which is the distance from point x to C. For two
nonempty, compact sets C and D, �4C1D5 2= supx∈C d4x1D5 denotes the deviation from set C to set D (in
some references (see Hess [17]), this is also called excess of C over D), and �4C1D5 denotes the Pompeiu-
Hausdorff distance between the two sets, that is, �4C1D5 2= max4�4C1D51�4D1C550 We use C+D to denote
the Minkowski addition of the two sets, that is, 8x + x′2 x ∈ C1 x′ ∈ D9. We use B4x1�5 to denote the closed
ball with radius � and center x, that is, B4x1�5 2= 8x′2 �x′ − x� ≤ �9. When � is dropped, B4x5 represents a
neighborhood of point x. Finally, we use B to denote the unit ball in a finite dimensional space.

2.1. Set-valued mappings. Let X be a closed subset of �n. A set-valued mapping F 2 X → 2�m
is said to be

closed at x̄ if for xk ⊂X, xk → x̄, yk ∈ F 4xk5, and yk → ȳ implies ȳ ∈ F 4x̄5. F is said to be uniformly compact
near x̄ ∈X if there is a neighborhood B4x̄5 of x̄ such that the closure of

⋃

x∈B4x̄5 F 4x5 is compact. F is said to
be outer semicontinuous (osc for short)2 at x̄ ∈X if, for every � > 0, �> 0, there exists a �> 0 such that

F 4x̄+ �B5∩�B⊂ F 4x̄5+ �B0

The following result was established by Hogan [19].

Proposition 2.1. Let F 2 X → 2�m
be uniformly compact near x̄. Then, F is outer semicontinuous at x̄ if

and only if F is closed.

From Proposition 2.1, we can see that the intersection with �B in the definition of osc of F can be removed
when F is uniformly compact near x̄.

2.2. Clarke subdifferentials and random sets. Let �2 �n → � be a locally Lipschitz continuous
function. Recall that the Clarke subdifferential (Clarke [8]) of � at x ∈ �n is defined as ¡�4x5 2=
conv8limy∈D� 1 y→x ï�4y591 where D� denotes the set of points at which � is Fréchet differentiable, ï�4y5
denotes the usual gradient of �, and “conv” denotes the convex hull of a set.

In this paper, for any fixed �, we will be mainly concerned with the Clarke subdifferential w.r.t x of the
random function �4x1�5, denoted by ¡x�4x1�5, and the subdifferential mapping x 7→ ¡x�4x1�5. For fixed x,
the subdifferential is a random set. We need to deal with the expectation of subdifferentials, which is related to
the measurability of random sets. In what follows, we make some preparations for this.

Let x be fixed, and consider the measurability of a general set-valued mapping A4x1 �4 · 552 ì → 2�n
. Here,

� is a random vector defined on probability space 4ì1F1 P5. Let " denote the space of nonempty, closed
subsets of �n. Then, A4x1 �4 · 55 can be viewed as a single valued mapping from ì to ". Using Rockafellar and
Wets [38, Theorem 14.4], we know that A4x1 �4 · 55 is measurable if and only if for every B ∈", A4x1 �4 · 55−1B
is F-measurable.

Proposition 2.2 (Xu and Zhang [50], Proposition 2.1). Let �4x1�5 be a locally Lipschitz continuous
function in both x and �. The Clarke subdifferential ¡x�4x1�5 is measurable.

2 In some reference books, the outer semicontinuity of a set-valued mapping is defined through the outer limit of set convergence in the
sense of Painlevé-Kuratowski (see, for instance, Rockafellar and Wets [38, Definition 5.4]). Here, the outer semicontinuity is in the sense of
Berge [4, p. 109]. The relation between the two definitions are given in Rockafellar and Wets [38, Proposition 5.12]. Note, also, that in some
references, outer (inner) semicontinuity is also called upper (lower) semicontinuity (see, e.g., Aubin and Frankowska [2]). In this paper, we
follow the terminology of Rockafellar and Wets [38]. See commentary at the end of Chapter 4 in Rockafellar and Wets [38] about this, and
also see Rockafellar and Wets [38, Chapters 4 and 5] for comprehensive treatment of set-valued convergence and set-valued mappings.
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We now define the expected value of ¡x�4x1�5. Because we will also need to consider the expected value
of the set of Lagrange multipliers of the second-stage problem, we consider the definition of a general random
set-valued mapping A4x1 �4�552 X ×ì→ 2�n

.
By a selection of the random set A4x1 �4�55, we refer to a random vector A4x1�4�55 ∈ A4x1 �4�55,

which means A4x1�4�55 is measurable. Note that such selections exist (see Artstein and Vitale [1] and
references therein). The expectation of A4x1 �4�55, denoted by Ɛ6A1 4x1 �57, is defined as the collection of
Ɛ6A4x1 �4�557, where A4x1�4�55 is an integrable selection and Ɛ6A4x1 �57 is known as Aumann’s integral
(Aumann [3], Hess [17]) of the set-valued mapping A4x1 �4�55. We regard Ɛ6A4x1 �57 as well-defined if
Ɛ6A4x1 �57 ∈" is nonempty. A sufficient condition of the well-definedness of the expectation is Ɛ6�A4x1 �5�7 2=
Ɛ6�401A4x1 �557 < �; see Artstein and Vitale [1]. In such a case, A is sometimes called integrably bounded
(see Aumann [3], Hess [17], and Papageorgiou [30]).

3. Sample average approximation of stochastic generalized equation. Generalized equations provide a
unified framework for the first-order necessary condition in optimization and equilibrium conditions in game
theory (Robinson [36], Rockafellar and Wets [38]). In this section, we consider a class of stochastic generalized
equations and its SAA. This is to pave the way for studying the convergence of SAA stationary points of the
true optimization problem (1) in §§5 and 6.

Let â2 �n ×æ→ 2�m
be a closed set-valued mapping, and let �2 ì→æ⊂�r be a vector of random variables

defined on probability space 4ì1F1 P5. Through Rockafellar and Wets [38, Theorem 5.7(a) and Corollary 14.14],
â4x1 �4 · 552 ì→ 2�m

is measurable. We consider the following stochastic generalized equation:

0 ∈ Ɛ6â4x1 �57+NX4x51 (7)

where X is a closed subset of �n (here, we are slightly abusing the notation as X is used to denote the feasible
set of problem (1)) and NX4x5 denotes a normal cone to X at x. We assume that NX4x5 is closed and NX4 · 5
is outer semicontinuous, but we tacitly leave the normal cone to be unspecified in this section in order to allow
the results to be used in various applications (although, in §§5 and 6, we will need it to be the Clarke normal
cone).

When â is single valued, (7) reduces to a class of stochastic variational inequality (SVI) model (King and
Rockafellar [23], Gürkan et al. [16]). Our interest here is in the case when â is set valued. This corresponds
to first-order necessary conditions for stochastic nonsmooth optimization problems and equilibrium conditions
for nonsmooth Nash games where a player’s utility functions may be nonsmooth and, consequently, the first-
order necessary conditions that characterize a player’s optimal decision may involve generalized subdifferentials.
Similar applications can also be found in stochastic equilibrium problems with equilibrium constraints (DeMiguel
and Xu [11]). We will not discuss details of these applications as our main interest in this paper is to apply
the framework of the stochastic generalized equation (7) to the first-order necessary optimality conditions of the
stochastic optimization problem (1). Throughout this section, we make a blanket assumption that Ɛ6â4x1 �57 is
well-defined (a sufficient condition is that â4x1 �5 is integrably bounded) and (7) has a nonempty solution set.

Let �11 : : : 1 �N be an i.i.d. sample of � and âN 4x5 2= 41/N5
∑N

i=1 â4x1 �
i50 The SAA of (7) is defined as

0 ∈ âN 4x5+NX4x50 (8)

Shapiro [43, §7] presents an excellent analysis on the asymptotic behavior of SAA for this problem when â is
single valued. Earlier analysis in this regard can also be tracked back to work by King and Rockafellar [23].
Here, we focus on the case when â is multivalued (set valued). It is convenient at this point to make the
following assumption.

Assumption 3.1. There exist positive constants N0 and K (both independent of �) such that for N ≥ N 0,
w.p.1 problem (8) has a solution xN with �xN� ≤K.3

This assumption consists two parts: existence of a solution xN to (8) and boundedness of 8xN 9. Shapiro
[43, §7] investigates this issue when â is single valued and Ɛ6â4x1 �57 is continuously differentiable. Specifically,
if (7) is strongly regular in the sense of Robinson [34] at a solution point x∗ of (7) and âN 4x5 converges uniformly

3 Our analysis in this section and §§5 and 6 can be carried out by replacing KB with some unspecified compact subset X of X that contains
8xN 9N≥N0 . The latter might give a smaller set than KB when solution set of (7) is far away from the origin. We opt for KB only for the
simplicity and clarity of presentation. Moreover, the reason we consider xN for those N ≥ N 0 is because here we consider the asymptotic
analysis.
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to Ɛ6â4x57 in a neighborhood of x∗, then w.p.1 (8) has a unique solution xN in the neighborhood and xN → x∗

w.p.1 as N → �; see Shapiro [43, Proposition 19] for details. When â4x1 �5 is set valued, the issue becomes
much more complicated. However, when applied to convergence analysis in §§5 and 6, this assumption is easily
justified when the feasible set X is bounded in addition to being nonempty and closed. At that point, we may
consider the generalized Equations (8) and (7) to be stationary conditions of optimization problems (5) and (6),
respectively. In this situation, existence follows from existence of global minima of the optimization problems,
which is standard given continuity of their respective objective functions. This does not require the algorithm for
implementing SAA to find a global minimum of (5); any stationary point will do because boundedness follows
from boundedness of X. When X is unbounded, sufficient conditions for the existence of a solution to (8) may
be derived from the property of the underlying functions. We will not discuss this in detail as it is not our main
focus. In the case when a solution xN exists and with probability 8xN 9 has a bounded subsequence, then we
may carry out our convergence analysis by focusing on the subsequence. We omit this for simplicity and clarity
of presentation.

Our first convergence result is concerned with almost sure convergence of 8xN 9 but does not address the
rate of convergence. The result follows easily from a similar argument in the proof of Shapiro and Xu [47,
Theorem 7].

Theorem 3.1. Let X∗ denote the solution set of the generalized equation (7). Let Assumption 3.1 hold.
Suppose that (a) â4x1 �5 is outer semicontinuous in x on KB for almost all (a.a.) �, and (b) there exists an
integrable function �4�5 > 0 such that �â4x1 �5� ≤ �4�5 for all x in KB and a.a. �. Then, d4xN 1X∗5→ 0 w.p.1
as N → �.

3.1. Exponential convergence. From a numerical perspective, we cannot take sample size to infinity; there-
fore, it would be more interesting to know how close xN is to the solution set X∗ of the true problem when N
is large. To do so, we need to relate the distance from xN to X∗ to that between âN 4x5 and Ɛ6â4x1 �57.

Assumption 3.2. There exist constants K, �, �, and integer N ∗ (independent of �) such that, w.p.1 xN ∈

KB, and

d4xN 1X∗5≤ sup
x∈KB

��4âN 4x51Ɛ6â4x1 �575
� (9)

for N ≥N ∗.

In the following proposition, we give sufficient conditions for this assumption.

Proposition 3.1. If (a) X∗ is nonempty and Assumption 3.1 holds with K and N 0 given there, and (b) there
exist positive constants � and � such that, for all x ∈KB,

d4x1X∗5≤ �d401Ɛ6â4x1 �57+NX4x55
�1 (10)

then (9) holds for N ≥N 0.

Proof. Under Assumption 3.1, xN ∈ KB w.p.1 for any N ≥ N ∗ = N 0. Applying inequality (10) to xN and
because 0 ∈ âN 4x

N 5+NX4x
N 5,

d4xN 1X∗5 ≤ �d401Ɛ6â4xN 1 �57+NX4x
N 55�

≤ ��4âN 4x
N 51Ɛ6â4xN 1 �575� ≤ � sup

x∈KB
4�4âN 4x51Ɛ6â4x1 �575

�1

which gives (9). �
The condition (10) provides an error bound for the set of solutions of the stochastic generalized equation (7).

This condition, when � = 1, is a kind of global calmness of the inverse set-valued mapping 4Ɛ6â4x1 �57 +

NX4x55
−1 at zero. Calmness, in turn, is implied by the metric regularity of Ɛ6â4x1 �57+NX4x5, which is equiv-

alent to the Aubin property or pseudo-Lipschitz continuity (in Aubin’s own terminology; see, for example, [2])
of the inverse set-valued mapping; see Dontchev et al. [12], Ioffe [22], and references therein for discussions in
this regard.

Our focus here is on the rate of convergence of 8xN 9 to X∗ under Assumptions 3.1 and 3.2 using the con-
stants K and N ∗ given there. That is, we will show d4xN 1X∗5→ 0 with probability approaching one exponen-
tially fast. To do so, it is sufficient to show exponential convergence of supx∈KB�4âN 4x51Ɛ6â4x1 �5751 namely,
for any � > 0, there exist constants c4�5 > 0 and �4�5 > 0 independent of N such that

Prob
{

sup
x∈KB

�4âN 4x51Ɛ6â4x1 �575≥ �
}

≤ c4�5e−�4�5N (11)
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for N ≥N ∗. Equation (11) then gives, through (9),

Prob8d4xN 1X∗5≥ �9≤ c̄4�5e−�̄4�5N 1 (12)

where c̄4�5= c44�/�51/�5 and �̄4�5= �44�/�51/�5.
We need a number of intermediate results. The support function of a nonempty set A in �m is the function

that maps u ∈�m to �4u1A5= supa∈A u
T a.

Lemma 3.1 (Castaing and Valadier [7], Theorem II-18). Let A1B be nonempty, compact, and convex
subsets of �m with support functions �4u1A5 and �4u1B5. Then,

�4A1B5= max
�u�≤1

4�4u1A5−�4u1B55

and
�4A1B5= max

�u�≤1
��4u1A5−�4u1B5�0

Assume from here to the end of this subsection that â4x1 �5 is a nonempty, closed, and convex set for every
� ∈æ and x ∈KB.

By Lemma 3.1, (11) is implied by

Prob
{

sup
x∈KB1�u�≤1

��4u1âN 4x55−�4u1Ɛ6â4x1 �575� ≥ �
}

≤ c4�5e−�4�5N 0

In what follows, under some moderate conditions, we will show the inequality above. For this purpose, we need
some preparation.

Let �4x1�52 �n × æ → � be a real-valued function where � is a vector of random variables with support
set æ. Let �11 : : : 1 �N be an i.i.d. sample of the random vector �4�5, and consider the corresponding sample
average function �N 4x5 2= 1/N

∑N
j=1 �4x1�

j50 Let �4x5 = Ɛ6�4x1 �570 We will use a uniform exponential rate
of convergence result of Shapiro and Xu [46, Theorem 5.1] to describe the convergence of �N 4x5 to �4x5 over
a compact set X⊂�n. We denote by Mx4t5 2= Ɛ8et6�4x1 �5−�4x579 the moment-generating function of the random
variable �4x1�4�55−�4x5. We assume:

Condition 1 (C1). For every x ∈X, the moment-generating function Mx4t5 is finite valued for t near 0.
Condition 2 (C2). �4·1 �5 is Hölder continuous on X, that is, there exists a (measurable) function �2 æ→�+

and constant � > 0 such that
��4x′1 �5−�4x1�5� ≤ �4�5�x′

− x�� (13)

for all � ∈æ and x ∈X.
Condition 3 (C3). For every x ∈ X, the moment-generating function M�x

4t5 of �x4�5 is finite valued for t
near 0.

It is known (Shapiro and Xu [46]) that the (C1) and (C3) hold when � has a finite support set.

Lemma 3.2 (Shapiro and Xu [46], Theorem 5.1). Suppose that (C1)–(C3) hold and the set X is compact.
Then, for any � > 0, there exist positive constants c4�5 and �4�5, independent of N , such that

Prob
{

sup
x∈X

��N 4x5−�4x5� ≥ �
}

≤ c4�5e−N�4�50 (14)

We are now ready to present the main result of this section. We give a kind of uniform exponential outer
semiconvergence of âN 4x5 to Ɛ6â4x1 �57 over a compact set KB and show the exponential convergence of xN to
X∗ where xN solves 0 ∈ âN 4x5+NX4x5. To this end, we apply Lemma 3.2 to the support function �4u1â4x1 �55.
Recall Pompeiu-Hausdorff distance �4C1D5 between the two sets.

Theorem 3.2 (Exponential Convergence). Let â4x1 �52 X×æ→ 2�m
be defined as in (7). Suppose that

(a) Assumption 3.1 holds; (b) â4·1 �5 is Hölder continuous on KB, that is, there exist a constant � > 0 and
integrable function �12 æ→�+ such that for every x ∈KB,

�4â4x′1 �51 â4x1 �55≤ �14�5�x
′
− x�� (15)

for all x′ ∈KB all � ∈æ; and (c) there exists an integrable function �24�5 > 0 such that �â4x1 �5� ≤ �24�5 for
x ∈X and almost everywhere (a.e.) �, and for �4�5 2= �14�5+�24�5, the moment-generating function of �4�5,
Ɛ6et�4�57, is finite valued for t near 0. Then,
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(i) for sufficiently small � > 0, there exist positive constants c4�5 and �4�5, independent of N , and N ∗ > 0
such that (11) holds for N ≥N ∗;

(ii) if, in addition, Assumption 3.2 holds, then d4xN 1X∗5 → 0 exponentially quickly; there are positive con-
stants c̄4�5 and �̄4�5, independent of N , and N ∗ > 0 such that (12) holds w.p.1 for N ≥N ∗.

Proof. The thrust of the proof of Theorem 3.2, part (i) is to apply Lemma 3.2 to the function �4u1x1 �5 2=
�4u1â4x1 �55 with sample average �N 4u1 x5, expected value �4u1x5, variables 4u1 x5 on the compact set X =

B×KB, and N ∗ taken to be the constant N 0 given in Assumption 3.1. To this end, we verify the hypotheses
of Lemma 3.2. Observe first that �4u1x1 �5 is Lipschitz continuous w.r.t. u with Lipschitz modulus �â4x1 �5�.
The latter is bounded by �24�5 under condition (c) of Theorem 3.2. On the other hand, for fixed �, (15) implies

��4u1x′1 �5−�4u1x1 �5� ≤ �14�5�x
′
− x��

for �u� ≤ 1. This shows

��4u′1 x′1 �5−�4u1x1 �5� ≤ �4�54�u′
− u� +�x′

− x��5

for all � ∈ æ̃, where �4�5= �14�5+�24�5 for 4u1 x5 ∈B×KB, 4u′1 x′5 close to 4u1 x5, which verifies (C2).
Note that (C3) follows from the second part of (c). To verify (C1), we note that �4u1x′1 �5− Ɛ6�4u1x1 �57

is bounded by �4�5+ Ɛ6�4�57. Therefore, (c) implies (C1). By Lemma 3.2, for any � > 0, there exist positive
constants c4�5 and �4�5, independent of N , such that

Prob
{

sup
4u1 x5∈B×KB

��N 4u1 x5−�4u1x5� ≥ �

}

≤ c4�5e−N�4�50 (16)

Observe that Ɛ6�4u1â4x1 �557= �4u1Ɛ6â4x1 �575. This is proved by Papageorgiou [30, Proposition 3.4]. Using
this relationship, we have �4u1x5 = �4u1Ɛ6â4x1 �5750 Note that �N 4u1 x5 = �4u1âN 4x55 (see, e.g., Hess
[17, p. 621]). Then, by Lemma 3.1,

sup
4u1 x5∈B×KB

��N 4u1 x5−�4u1x5� ≥ sup
x∈KB

sup
�u�≤1

��4u1âN 4x55−�4u1Ɛ6â4x1 �575�

= sup
x∈KB

�4âN 4x51Ɛ6â4x1 �5750

Combining this with (16), we obtain (11).
The proof of Theorem 3.2, part (ii) now follows from the bounds (9) and (11) by taking N ∗ as the maximum

of N 0 and the constant N ∗ appearing in Assumption 3.2. �
Theorem 3.2 studies the case when the set-valued mapping â4x1 �5 is continuous in x for every � and hence

its expectation F is continuous. In practical applications such as first-order optimality conditions for nonsmooth
stochastic programming, â4x1 �5 is often not continuous. Taking this even further, our interest is in the situation
when F is not continuous. To illustrate this, let us consider the following examples. (Further examples of
continuous and discontinous stochastic set-valued mappings relating to the stochastic program (1) will appear
in §§6.3.1 and 6.3.2.)

Example 3.1. Let â4x1 �5 be the subdifferential mapping of function �x− ��. That is,

â4x1 �5= â14x1 �5 2=















819 if x > �1

8−19 if x < �1

6−1117 if x = �1

where x ∈� and � is a random variable satisfying uniform distribution on 6−1117. Let X =� and KB= 6−1117.
It is easy to observe that, for every fixed �, â14·1 �5 is continuous on 6−1117 except at point x = � at which
â14·1 �5 is osc.

Let us now consider the case when â is the Clarke subdifferential of function �x�4� − x5, that is,

â4x1 �5= â24x1 �5 2=











8� − 2x9 if x > 01

8−� + 2x9 if x < 01

�6−1117 if x = 01
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where x ∈� and � is a random variable satisfying uniform distribution on 6−1117. Let KB= 6−1117. It is easy
to observe that, for every � 6= 0, â4·1 �5 is continuous on KB except at x = 0.

If we look at the expected values of the above two random set-valued mappings, it is not difficult to calcu-
late that

Ɛ6â14x1 �57=
∫ x

−1
4−15

1
2
d� +

∫ 1

x

1
2
d� = 8−x91

which is continuous, and

Ɛ6â24x1 �57=















8−2x9 if 6−11051

82x9 if x ∈ 401171

6−1/211/27 if x = 01

which is only outer semicontinuous.
The next section will provide tools for tackling a stochastic generalized equation 0 ∈ F 4x5+NX4x5, where

F 4 · 5 = Ɛ6â4·1 �57 and â is discontinuous but has a piecewise continuous structure. The results of §4.3, in
particular, will apply to both examples â1 and â2.

4. Piecewise continuity of expectations and related exponential convergence of SAA. In this section,
we aim to extend the exponential convergence result Theorem 3.2 by relaxing the key assumption on the
continuity of F 4x5= Ɛ6â4x1 �57 to piecewise continuity. Stochastic polyhedral set-valued mappings yield many
of the properties needed for this extension to hold as shown in Proposition 4.2. Although polyhedral set-valued
mappings are piecewise continuous, the fact that the expectation of a stochastic polyhedral set-valued mapping
need not be polyhdedral (Remark 4.1) may help to explain why the development of this section is required.

The extension of Theorem 3.2 to piecewise continuous set-valued mappings requires a number of technical
preparations. These are given in §§4.1 and 4.2 and the main (extended) convergence results are described in
§4.3 (Theorem 4.1).

Throughout this section, we consider the expectation F 4x5 = Ɛ6â4x1 �57 of

â4x1 �5=

̂
⋃

j=1

âj4x1 �51 (17)

which is the union of finitely many continuous set-valued mappings âj . Other conditions on â are detailed in
Definition 4.1.

Recall that �2 ì → æ ⊂ �r is a vector of random variables defined on probability space 4ì1F1 P5, where
the probability measure P is nonatomic. The expectation Ɛ6�4�57 of a measurable function �2 �r →�s will be
written as

∫

�4�5d�P 4�5, where the measure induced by P on �r is defined by �P 48� ∈ T 95 2= P48�2 �4�5 ∈

T 95 for any Lebesgue measurable set T in �r . Here and throughout this section, unless otherwise specified, the
support set of � is æ; a.e. means almost everywhere in æ with respect �P or, equivalently, with probability 1;
for a.a. � means for almost all � ∈æ (w.r.t. �P ); integrals are taken over æ; and full measure describes a subset
æ′ of æ such that �4�5 lies in æ′ w.p.1 or �P 48� ∈æ′95= 1.

4.1. Stochastic piecewise continuous set-valued mappings. Stochastic piecewise continuous set-valued
mappings â are, roughly speaking, those that are defined as the union of finitely many continuous set-valued
mappings as described in §4 (and part i of Definition 4.1). We further require a kind of regularity of the domains
of each of the continuous set-valued mappings (part ii of the definition).

Stochastic piecewise continuity is relative to a fixed compact set of �m, denoted by X, which is intended
to be the set of interest with regard to the evaluation of F 4x5 = Ɛ6â4x1 �57. For instance, in §4.3 (where we
will extend our main convergence result Theorem 3.2 to Theorem 4.2), we take X 2= KB (here, K is given
in Assumption 3.1) because this is the compact set where we carry out our convergence analysis and where
we require piecewise continuity of F 4x5. Another possibility occurs when the solution set X∗ of the stochastic
generalized equation 0 ∈ F 4x5 + NX4x5 is compact. Then, we may choose X to be a compact neighborhood
of X∗ relative to X because, under Assumption 3.1, we can easily use Xu and Zhang [51, Theorem 4.1] to show
that xN ∈X w.p.1 for N sufficiently large.

Recall that the domain of a set-valued mapping, denoted by the prefix dom, is the set of points for which it
takes nonempty values.

Definition 4.1. Let X be a nonempty, compact set in �m. We say â is a stochastic piecewise continuous or
stochastic PC0 set-valued mapping on X if it has the form (17) for some positive integer ̂ and if the following
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conditions hold:
(i) (a) for each j , âj 2 �j → 2�s

is a set-valued mapping that is (Pompeiu-Hausdorff) continuous;
(b) there is an integrable function �2 æ→� such that �â4x1 �5� ≤ �4�5 for each x near X and a.a. �; and

(ii) (a) each �j is the closure of its interior �j such that
⋃̂

j=1 �j is a neighborhood of X×æ and �11 : : : 1�̂

are pairwise disjoint.
The sections of �j and �j w.r.t. x are the following set-valued mappings:

Tj4x5= 8�2 4x1 �5 ∈�j9 and Sj4x5= 8�2 4x1 �5 ∈�j90

These sections satisfy additional conditions in (ii):
(b) the domain of Tj is closed; and
(c) if the sequence 8xk9⊂ dom Sj converges to x, then, for a.a. � ∈ Tj4x5 and sufficiently large k (depend-

ing on �), we have that � ∈ Tj4x
k5.

Part ii(c) of the definition is a kind of lower semicontinuity or inner continuity of Tj . It holds most obviously
if each âj is a function whose domain �j is sufficiently regular, e.g., as illustrated in §6.3.1. It also holds when
the sets �j are simple such as the polyhedral case that we will develop in §4.3 and in §6.3.2.

Now, F 4x5= Ɛ6â4x1 �57 is well-defined by the stochastic PC0 property i and the measurability of each (closed)
set �j (property ii(a)). Disjointness of the sets �j gives the identity

â4x1 �5= âj4x1 �51 ∀ 4x1 �5 ∈�j1

as we now show: Any element 4x1 �5 of �j has a neighborhood W contained in �j . Thus, for k 6= j , W does
not intersect �k = int�k, which implies 4x1 �5 6∈ cl�k =�k. We will use this identity later without reference.

We develop notation relating to these “active pieces” of â . As each �j is open, the Lebesgue measure �j\�j

is zero. By Fubini’s theorem, for a.a. x ∈ dom Tj , �P 4Tj4x5\Sj4x55 = 0 and indeed a.a. � (∈ æ5 belong to the
open set

⋃

j �j4x5. Let
Dâ = 8x2 �P 4Tj4x5\Sj4x55= 0 for each j90

As there are only finitely many indices j , a.a. x ∈ dom â lie in Dâ . We also mention that clDâ is a neighborhood
of X.

Associated with x ∈Dâ is an index set J = 8j2 Sj4x5 6= �9 such that the family Sj4x5, j ∈ J consists of open,
nonempty, and pairwise disjoint sets whose union has full measure (in æ). The definition of Dâ therefore yields,
for any x ∈Dâ and associated J , that

(a) �P 4Tj4x55 > 0 for every j ∈ J ;
(b)

⋃

j∈J Tj4x5 has full measure in æ; and
(c) for distinct j1 k ∈ J , Tj4x5∩ Tk4x5 has measure zero.

This leads to our next point of notation. For any nonempty index set J ⊂ 811 : : : 1 ̂9, let

XJ 2= 8x ∈ dom â2 (b) and (c) above hold91

â J 4x1 �5 2=

{

âj4x1 �5 if x ∈XJ , j ∈ J , and � ∈ Tj4x51

� if x 6∈XJ .

For each x ∈XJ , it is clear that â J 4x1 �5 is (well-defined, nonempty, and) continuous for a.a. �. Its expectation
is the set-valued mapping

F J 4x5 2=

{

Ɛ6â J 4x1 �57 if x ∈XJ 1

� otherwise.

These definitions attempt to identify a family of set-valued mappings—F J 4x5 for certain index sets J—from
which F 4x5 is selected and which are continuous (and, in particular, nonempty for each x ∈X). These properties
of the mappings F J are shown next.

4.2. The expectation of a stochastic PC0 mapping is piecewise continuous. Throughout this subsection,
â and X are assumed to be as in Definition 4.1, and cl S and int S denote the closure and interior of a set S,
respectively.
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Observe that Dâ ⊂
⋃

J⊂811 : : : 1̂9XJ ; hence, dom â =
⋃

J⊂811 : : : 1̂9 clXJ . Because there are only finitely many
possible index sets J , there is a family J of these such that XJ has interior for each J ∈J and

⋃

J∈J intXJ has
full measure in a neighborhood of X. Hence, we define

J 2= 8J ⊂ 811 : : : 1 ̂92 intXJ 6= �91

X̄J 2= cl intXJ 1 ∀ J ∈J
(18)

and observe that dom â =
⋃

J∈J X̄J .

Proposition 4.1. For J ∈J,
(i) XJ contains X̄J ; and

(ii) F J = Ɛ6â J 4·1 �57 is a continuous set-valued mapping on X̄J .

Proof. Much of the proof is based on elementary details that we provide in the appendix. We sketch the
main argument: If j ∈ J , x ∈ X̄J , and 8xk9 is a sequence in 4intXJ 5∩Dâ that converges to x, then Fj4x

k5→ Fj4x5.
This uses the indicator function 	4Tj4x51 �5, defined to be 1 if � ∈ Tj4x5 and 0 otherwise. Property ii(c) of
Definition 4.1 (stochastic piecewise continuity) can be used to show that 	4Tj4x

k51 �5 converges to 	4Tj4x51 �5
for a.a. �. Together with continuity of âj , we get, via Lebesgue’s dominated convergence theorem,

Fj4x
k5=

∫

âJ 4x
k1 �5	4Tj4x

k51 �5d�P 4�5→

∫

âJ 4x1 �5	4Tj4x51 �5d�P 4�5= Fj4x50 �

We are now ready to link the mappings F J 4x5= Ɛ6â J 4x1 �57 to F 4x5= Ɛ6â4x1 �57 using the following family
of index sets:

J4x5= 8J ∈J2 x ∈ X̄J 90 (19)

Our focus is on x such that x ∈ X̄J ∩ X̄K for at least two index sets J and K in J.
The first main technical result of §4—Theorem 4.1—says that F is piecewise continuous. Recall that â is the

stochastic set-valued mapping satisfying piecewise properties i and ii (Definition 4.1), and F is its expectation.
Also recall the notations J and X̄J from (18) and J4x5 from (19). The next result says that F is piecewise
continuous or PC0, i.e., outer semicontinuous such that, for each x, its set value F 4x5 coincides with that of
one of finitely many continuous set-valued mappings at x. This reduces to the usual definition of piecewise
continuity when F is a function rather than a set-valued mapping.

Theorem 4.1 (Expectation of Stochastic PC0 Mapping Is PC0). (i) For each x ∈ dom â (a closed
neighborhood of X), J4x5 is a nonempty subset of J such that

F 4x5= Ɛ

[

⋃

J∈J4x5

â J 4x1 �5

]

3

(ii) Given � 6= J̄⊂J, the set-valued mapping Ɛ6
⋃

J∈J̄ â
J 4x1 �57 is continuous on

⋂

J∈J̄ X̄J ; and
(iii) F is outer semicontinuous.

Proof. Part (i). Let x ∈ dom â . It suffices to show that

⋃

j

âj4x1 �5=
⋃

J∈J4x5

â J 4x1 �5 a.e.1

where the first set defines â4x1 �5. Clearly
⋃

j âj4x1 �5 contains
⋃

J∈J4x5 â
J 4x1 �5 a.e. by definition of J4x5.

The converse requires several facts relating to an arbitrary index j and point x ∈ dom Tj . First, we have seen
from the proof of Proposition 4.1 that x is the limit of a sequence 8xk9 ⊂ dom Sj . Indeed, we can assume
8xk9⊂ 4dom Sj5∩Dâ because �j and hence dom Sj has interior. Assume further that, by taking a subsequence
if necessary, J = 8l2 Sl4x

k5 6= �9 is unchanged for all k. Thus, J lies in J4x5 by definition of the latter and also
j ∈ J . By construction, âj4x1 �5= â J 4x1 �5 for a.a. � ∈ Tj4x5 as needed.

Part (ii). By definition, â J 4·1 �5, J ∈ J̄ is continuous on
⋂

J∈J̄ X̄J for a.a. � ∈æ and continuity is preserved for
the union of finitely many set-valued mappings

⋃

J∈J̄ â
J 4·1 �5. Because â4x1 �5 is integrably bounded by �4�5,

then �â J 4x1 �5� ≤ �4�5. By Aumann [3, Corollary 5.2], Ɛ6
⋃

J∈J̄ â
J 4x1 �57 is continuous on the same set.

Part (iii). The outer semicontinuity of F 4x5 follows from this property of â4x1 �5 and Aumann [3, Corol-
lary 5.2]. The proof is complete. �
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In hindsight, we see that the underlying idea of Theorem 4.1 is to partition X into a finite number of sets
where, in each set the “active set” of pieces F J that define F remains constant. Continuity of F J yields continuity
of F in each of these sets and extends to continuity on the closure of these sets, giving the piecewise continuity
property of F .

Remark 4.1. It is no surprise that, if F is a polyhedral set-valued mapping, i.e., its graph is the union
of finitely many closed and convex polyhedra, then whatever the structure of â = Ɛ6F 4·1 �57, F is piecewise
continuous. This can be shown formally by decomposing F into the union of polyhedral convex set-valued
mappings, each of which is continuous by Rockafellar and Wets [38, Example 9.35]. (A similar argument appears
in our proof of Proposition 4.2 in the next section.) Note that polyhedrality of â is not generally implied by
polyhedrality of F (a difficulty that arises because of nonlinearity of the probability density function).

Let p4�5 = 1/�2 for æ = 611�5 so that
∫ �

1 p4�5d� = 1, i.e., p is a probability distribution on æ. Now, take
f 4x1 �5= min8x1 �9, a piecewise affine function. For x ≥ 1, the expectation of f 4x1 �5 is

∫ x

1
4�/�25d� + x

∫ �

x
41/�25d� = 6ln4x5− ln4157+ x60 − 4−1/x57= ln4x5+ 11

which is not piecewise affine.

4.3. Fast convergence of SAA for piecewise continuous generalized equations. We are now ready to
present the main result of §4. We extend the exponentially fast convergence of Theorem 3.2 for SAA applied
to the generalized equation (7)—here, 0 ∈ F 4x5 + NX4x5 with F = Ɛ6â4·1 �57—to piecewise continuous F as
described by Theorem 4.1. As in §3, X∗ denotes the solution set of 0 ∈ F 4x5+NX4x5 while xN denotes any
solution of the SAA (8), i.e., 0 ∈ âN 4x

N 5+NX4x
N 5. The case when â is a polyhedral set-valued mapping is of

special interest (see Proposition 4.2).

Theorem 4.2. Let X be a closed, nonempty set in �m. Suppose that (a) Assumptions 3.1 and 3.2 hold;
(b) â is a stochastic PC0 set-valued mapping on KB; (c) â4·1 �5 is piecewise Hölder continuous on KB, i.e.,
there exist � > 0 and a function �12 æ→�+ such that, for each j ,

�4âj4x
′1 �51 âj4x1 �55≤ �14�5�x

′
− x��

for all x1x′ ∈ dom4�j5∩KB, and � ∈ æ; and (d) �1 is integrable, there is an integrable function �24�5 such
that, for each j , �âj4x1 �5� ≤ �24�5 for 4x1 �5 ∈ �j , and the moment-generating function of �14�5 + �24�5 is
finite valued near zero. Then, 8xN 9 converges exponentially quickly to X∗ as described in Theorem 3.2(ii).

Proof. We outline the proof, details of which are found in the appendix. Let X be the set KB. First, from
Theorem 4.1, X can be covered by nonempty sets of the form

⋂

J∈J̄ X̄
J for some nonempty J ⊂ J̄. On each

set, the expectation of â4x1 �5 is continuous. Next, we can apply Theorem 3.2 to show an exponential rate of
convergence of SAA applied to â4x1 �5 on each of these sets. Because there are only finitely many of these, the
result follows. �

We finish this section by studying polyhedral set-valued mappings (also known as polyhedral multifunctions),
namely, set-valued mappings whose graphs are the union of finitely many closed, convex polyhedra. The fol-
lowing result shows that a polyhedral convex set-valued mapping is stochastic piecewise continuous and also
Hölder continuous, the latter from Rockafellar and Wets [38, Example 9.57], as needed in Theorem 4.2. This
will be useful in applications in §6.

Proposition 4.2. Let X be a nonempty, compact set in �m and â2 �m+r → 2�s
be a polyhedral set-valued

mapping. If (a) dom â is both the closure of its interior and a neighborhood of X × æ, and (b) there is an
integrable function �2 æ→� such that �â4x1 �5� ≤ �4�5 for x near X and a.a. �, then â is stochastic PC0 and
piecewise Lipschitz (take � = 1 in part (c) of Theorem 4.2) on X.

Proof. We start by writing â4x1 �5 =
⋃̂

j=1 âj4x1 �5, where the graph of each âj is convex in addition to
being nonempty, closed, and polyhedral. For brevity, we omit details of two claims that can be shown by
elementary arguments. We may assume without loss of generality that, first, int dom âj 6= � for each j = 11 : : : 1 ̂
and, second, the convex polyhedral set-valued mappings âj may be chosen such that their domains �j = dom âj
have nonempty but pairwise disjoint interiors �j . Thus, stochastic PC0 property ii(a) (i.e., property ii(a) in
Definition 4.1) holds. Details appear in the appendix.

Looking at stochastic PC0 property i, it is only left to observe that the submappings of each âJ are continuous,
which is a consequence of being polyhedral convex set-valued mappings (see Rockafellar and Wets [38, Example
9.35]). In fact, we have Lipschitz continuity of each âj (see Robinson [35] and Rockafellar and Wets [38,
Example 9.57]). Polyhedrality of each �j also gives stochastic PC0 property ii(b).
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For stochastic PC0 property ii(c), fix x̄. Because Tj4x̄5 is convex, its measure equals the measure of its interior
(which is zero if the interior is empty). Thus, instead of “a.a. � ∈ Tj4x̄5,” we consider “� ∈ int Tj4x̄5.” If xk → x̄
and Sj4x

k5 6= �, then, because �j is polyhedral, Tj4x
k5 → Tj4x5. It follows for � ∈ int Tj4x̄5 and large k that

� ∈ int Tj4x
k5. �

Proposition 4.2 applies direction to the two examples â1 and â2 at the end of §3, each of which is a polyhedral
set-valued mapping.

5. Optimality conditions. This section lays the groundwork for convergence analysis of stationary points
of the SAA problem (4) in the §6. We do so in two parts: In the first part, we derive the stationary conditions for
the true implicit program (6) in terms of ¡xv4x1 �5, the Clarke generalized gradient w.r.t. x of the second-stage
global optimal value function; see (27) and Proposition 5.1. In the second part, we apply classical sensitivity
analysis to v4x1 �5 to approximate ¡xv4x1 �5 by a set-valued mapping constructed from the gradients w.r.t. x
of the Lagrangian function at the global minima of the second stage problem; see Lemma 5.2. This paves the
way for §6.2, where we introduce relaxed optimality conditions (Equation (41)) by enlarging the set of global
optimal solutions to include all stationary points.

5.1. First-order necessary conditions for the true implicit program (6). The integrand function in the
true implicit program (6) is the optimal value function of the second-stage problem (2). We therefore start our
discussion from the latter.

Observe that the second-stage problem is a parametric minimization problem, where x and � can be treated as
parameters. Gauvin and Dubeau [14] present a thorough discussion on optimal value function (called marginal
function) of a general class of parametric maximization problems. In particular, they show that the Clarke
subdifferential of the optimal value function is contained by the set of gradients of the Lagrangian function at
solution points. Bonnans and Shapiro [6] take this further to present a comprehensive sensitivity analysis on a
general class of nonsmooth parametric optimization problems in Banach space in terms of directional derivatives
of Lagrangian function. More recently, Hu and Ralph [21] use the approach for the sensitivity analysis of
MPECs. Here, we apply the results of Gauvin and Dubeau [14] results to our second-stage problem (2). First,
we define the Lagrangian of (2) by

L4x1 y1 �1�1�5 2= f 4x1 y1 �5+�T h4x1 y1 �5+�T g4x1 y1 �51

where � ∈ �t , � ∈ �s
+

. The first-order necessary optimality conditions of the second-stage problem (2) (also
known as the KKT conditions) can be written as

0 = ïyL4x1 y1 �1�1�51 (20)

0 ≤�⊥ −g4x1 y1 �5≥ 01 (21)

0 = h4x1 y1 �50 (22)

A point y∗ satisfying (20)–(22) is called a KKT point and the corresponding vectors �∗ and �∗ are called
Lagrange multipliers. Following the notation of Gauvin and Dubeau [14], we use S4x1 �5 to denote the feasible
solution set of (2) as follows:

S4x1 �5 2= 8y ∈�n2 g4x1 y1 �5≤ 01 h4x1 y1 �5= 093 (23)

P4x1 �5 to denote the set of global optimal solutions

P4x1 �5 2= 8y ∈ S4x1 �52 v4x1 �5= f 4x1 y1 �593 (24)

and W4x1 y1 �5 to denote the set of Lagrange multipliers 4�1�5 corresponding to a stationary point y of the
second-stage problem

W4x1 y1 �5 2= 84�1�52 (20)–(22) hold90 (25)

For fixed x1�, let Q4x1�5 denote the set of the stationary points of the second-stage problem (2):

Q4x1�5 2= 8y2 there exist multipliers such that (20)–(22) hold90 (26)

To simplify discussion, we subsequently assume that the feasible set of the second-stage problem S4x1 �5 is
nonempty for any x ∈X and � ∈æ.
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Definition 5.1. A feasible point y ∈ S4x1 �5 is said to be Mangasarian-Fromovitz (M-F) regular if (a) there
exists a vector d ∈�n such that ïygi4x1 y1 �5

Td < 0 for i ∈ I4x1 y1 �5 2= 8i2 gi4x1 y1 �5= 09, and (b) the Jacobian
matrix ïyh4x1 y1 �5 has full row rank.

By Gauvin and Tolle [15, Theorem 2.2], if y is a local minimizer of second-stage problem (2), then this
regularity condition is known to be necessary and sufficient to ensure that W4x1 y1 �5 is nonempty and compact.
If y is a stationary point, i.e., W4x1 y1 �5 is nonempty, then M-F regularity is equivalent to boundedness of
W4x1 y1 �5; see Nocedal and Wright [28, p. 353]. Lemma 5.1 next is an application of Gauvin and Dubeau [14,
Theorem 5.1] to our second-stage problem (2).

Lemma 5.1. Suppose that, for almost every � ∈æ, S4x1 �5 is nonempty and uniformly compact for x near x∗.
Suppose further that M-F regularity holds at y∗ ∈ P4x∗1 �5 for almost every � ∈ æ. Then, the optimal value
function v4x1 �5 is Lipschitz continuous in x near x∗ for almost every �.

Note that the uniform nonemptiness assumption on S4x1 �5 implies a relatively complete recourse of the
second-stage problem, that is, Ɛ6v4x1 �57 < � for all x ∈ X. The compactness assumption implies that the set
8y2 h4x1 y1 �5= 01 g4x1 y1 �5≤ 09 is compact.

We now consider the first-order necessary optimality condition of the first-stage problem (6). Here, we assume
that the expected value of v4x1 �5 is well-defined. A sufficient condition for this is that �v4x1 �5� is bounded by
an integrable function. Lemma 5.1 implies that the Clarke subdifferential ¡xv4x1 �5 is well-defined for almost
every � ∈ æ. Moreover, if the Lipschitz module of v4x1 �5 in x is bounded by an integrable function, then the
above result further implies that �4x5 is locally Lipschitz continuous and, hence, ¡�4x5 is well-defined. Using
the Clarke subdifferentials, we can write down the first-order necessary condition of the first-stage problem as

0 ∈ ¡�4x5+NX4x5 (27)

here and, later on, NX4x5 denotes Clarke’s normal cone to X at x (see Clarke [8, p. 11] for the definition). It
is well-known that Clarke’s normal cone is a closed convex set and NX4 · 5 is outer semicontinuous. Because
the feasible set X here is convex, the normal cone coincides with usual normal cone in convex analysis. A
feasible solution x ∈ X satisfying (27) is known as the Clarke stationary point. From a numerical perspective,
the optimality condition (27) is not very useful because the subdifferential of the expected value function is
usually difficult to obtain. A more numerically motivated condition will be in terms of Ɛ6¡xv4x1 �57. We need
the following result:

Proposition 5.1. Let the conditions of Lemma 5.1 hold. If the Lipschitz modulus of v4x1 �5 in x is bounded
by an integrable function, then ¡�4x5 ⊂ Ɛ6¡xv4x1 �570 Equality holds when v is Clarke regular (Clarke [8,
Definition 2.3.4]) at x for almost every � ∈æ.

The result is essentially Clarke’s Theorem 2.7.2 in Clarke [8], given that the probability space here is assumed
to be nonatomic. Note that by Clarke [8, Proposition 2.3.1 and Remark 2.3.5], the equality also holds when
−v is Clarke regular at x for almost every �. Using Proposition 5.1, we may consider a necessary optimality
condition for the true implicit problem (6) as follows:

0 ∈ Ɛ6¡xv4x1 �57+NX4x50 (28)

The two optimality conditions coincide under Clarke regularity as described in Proposition 5.1, for example,
when v4x1 �5 is continuously differentiable in x for a.a. �.

5.2. Weak first-order necessary conditions for the true implicit program. To analyze convergence of
SAA, the stationary condition (28) may only be useful if the second-stage global optimal value function v4x1 �5
can be computed (making the SAA (4) equivalent to the implicit SAA (5)). We propose an alternative that may
be useful in the absence of global second-stage optimality, namely, a relaxed optimality condition that is specified
via second-stage stationary points. In such a case, ¡xv4x1 �5 is not useful because v4x1 �5 is not supposed to be
calculated. In Lemma 5.2 next, we will construct an approximation ë4x1�5 to the set ¡xv4x1 �5.

Lemma 5.2. Let x ∈ X. Suppose that, for every � ∈ æ, S4x1 �5 is nonempty and uniformly compact for x′

near x and M-F regularity holds at y ∈ P4x1 �5. Then,

¡xv4x1 �5⊂ë4x1�51 (29)
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where

ë4x1�5 2= conv
{

⋃

y∈P4x1 �5

⋃

4�1�5∈W4x1 y1 �5

ïxL4x1 y1 �3�1�5

}

(30)

and conv denotes the convex hull. If M-F regularity is replaced by a linear independence constraint qualification,
then ¡xv4x1 �5=ë4x1�5.

Note that the condition in Lemma 5.2 is a bit stronger than those in Lemma 5.1 because we require (29)
to hold for every � rather than almost every �. The result follows from an argument parallel to the proofs of
Gauvin and Dubeau [14, Theorem 5.2 and Corollary 5.4] in that the upper Dini directional derivative of v4x1 �5
in x is bounded (for all unit directions) by the support function of ë4x′1 �5 for all x′ close to x. Therefore,
the Clarke generalized directional derivative of v at x is bounded by the support function of ë4x1�5. We omit
details of the proof.

Using Lemma 5.2, we may consider a weak optimality condition obtained by replacing ¡xv4x1 �5 with ë4x1�5
in (28), that is,

0 ∈ Ɛ6ë4x1 �57+NX4x50 (31)

Because ¡xv4x1 �5 ⊂ ë4x1�5, the optimality condition (31) is generally weaker than its counterpart (28). This
can be illustrated by thinking of a second-stage problem with many local minima and few global minima, where
the SAA iterates may converge (statistically) to a set that is much larger than the set of “true” stationary points
of (6). However, a clear benefit in adopting the former is that it does not require the derivative information of
v4x1 �5 as in (28).

Assumption 5.1. Let X∗ be the solution set of (31) and X∗ be bounded. For a compact neighborhood B4X∗5
of X∗ relative to X, there exists an integrable function �24�5 > 0 (depending on B4X∗5) such that Ɛ6�24�5

27 <�

and
max8�ïxf 4x1 �5�1�ïxg4x1 y1 �5�1�ïxh4x1 y1 �5�1�W4x1 y1 �5�9≤ �24�5 (32)

for all x ∈ B4X∗5, � ∈æ, and y ∈ P4x1 �5.

Note that the assumption on the boundedness of W4x1 y1 �5 by �24�5 may be satisfied under some conditions
on the derivatives of the underlying functions. We give a specific condition that is a kind of linear independence
constraint qualification, uniform w.r.t. x: Let � 6= I ⊂ 811 : : : 1 r9, 4x1 �5 ∈X×æ, and y ∈ P4x1 �5 be such that
I = 8i2 gi4x1 y1 �5 = 09, the index set of active constraints of g4x1 �5. Denote 4x1 y1 �5 by z and consider the
matrix M4z5= 6ïygI4z5 ïyh4z57

>. Let J be an index set such that the square submatrix M4z5JJ has maximum
rank. If this rank equals the number of rows of M4z5, i.e., M4z5 has full rank, and if the inverse of M4z5JJ is
norm bounded by c�24�5 for some constant c > 0 (that is, independent of x and I), then Assumption 5.1 holds.
Note also that, under Assumption 5.1, Ɛ6W4x1 y1 �57 is well-defined.

To establish the following necessary optimality condition, we assume uniform compactness of the set of
second-stage global solutions S4x1 �5 and M-F regularity at these solutions to ensure that ë has good local
properties. We use Assumption 5.1 to ensure its integrability.

Theorem 5.1 (Weak First-Order Necessary Conditions). Let x∗ be an optimal solution to the true
implicit programming problem (1). Assume that (a) for every � ∈ æ, S4x1 �5 is nonempty, S4x1 �5 is uniformly
compact for x near x∗, M-F regularity holds at y ∈ P4x∗1 �5; and (b) for every � ∈ æ, S4x∗1 � ′5 is uniformly
compact for � ′ near �. Under Assumption 5.1,

0 ∈ Ɛ6ë4x∗1 �57+NX4x
∗50 (33)

We attach a proof in the appendix. It is essentially a verification of the well-definedness of Aumann’s [3]
integral Ɛ6ë4x∗1 �57 through measurability and the bounded integrability of the set-valued mapping ë4x1�5.

During the revision of this paper, we noticed that Outrata and Römisch [29] recently derive some first-order
optimality conditions similar to Theorem 5.1 for a class of two-stage nonsmooth stochastic minimization prob-
lems. The feasible set of their second-stage problem is an abstract measurable set and their optimality conditions
are represented in terms of Mordukhovich’s subdifferentials and coderivatives (of set-valued mappings); see
Outrata and Römisch [29, Theorem 3.5] for details. Despite the differences in the problem settings, we believe
that, under the nonatomic probability conditions, there is no essential difference between Theorem 5.1 and
Outrata and Römisch [29, Theorem 3.5].

To conclude this section, let us comment that the aim of Theorem 5.1 is to derive the weak first-order necessary
conditions for (6) in terms of the derivative information of the underlying function at the global optimal solutions
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to the second-stage problem (2). This is sensible in the cases when the second-stage problem is convex (w.r.t. y)
or the second-stage problem has a unique optimal solution. In the next section, we will consider the case that
P4x1 �5 is replaced by the set of stationary points Q4x1�5 and, consequently, the weak optimality condition is
replaced by the relaxed optimality condition (41).

6. Convergence of stationary points. In this section, we analyze the convergence of stationary points of the
SAA problem (4) by applying the results of §§3–5. Specifically, we relax the requirement of global optimality
by enlarging the second-stage global solution set P4x1 �5 (Equation (24)) to the corresponding set of stationary
points Q4x1�5 (Equation (26)). By extension, we relax the stationary condition (33) to (41) by enlarging ë4x1�5

from (30) to the set-valued mapping ê4x1�5 defined in (39)–(40). Our main result is Theorem 6.2 on the
exponential rate of convergence of 8xN 9 (in §6.3).

Before proceeding, we briefly discuss the tractability of each SAA subproblem (4). One way is to solve it
through (5), that is, for given x, we solve N second-stage problems for yi, i = 11 : : : 1N . This is known as a
two-stage decomposition method, which is popular in dealing with large-scale stochastic programs. Higle and
Sen [18] and Rusczyński and Shapiro [40, Chapter 3] present comprehensive reviews of various decomposition
methods for solving two-stage stochastic programs.

Another way to solve the SAA problem is to treat it as a standard nonlinear program and solve for
x1 y11 : : : 1 yN simultaneously. A concern is that, when the sample size N is large, the SAA problem size may
be too large to be solved effectively in computation. However, SAA methods have been shown to converge
quickly, i.e., for N “not too large” in many cases (see Linderoth et al. [26], where sample sizes of 50 to 5,000
are used for various two-stage problems problems with 1 to 121 first-stage variables and 5 to 1,259 second
stage variables). This underlies the hope that SAA will be practical for many problems when implemented by
large-scale NLP codes.

6.1. KKT conditions of SAA problem (4). Our interest is in solving the SAA problem directly by an NLP
code that may find a stationary point that is not a local or global solution. Thus, we cannot use the implicit
program (5) for our convergence analysis. We formulate the KKT condition of the SAA problem (4) next,
multiplying by 1/N on both sides in order to display sample averages of various functions:

0 ∈
1
N

N
∑

i=1

[

ïxf 4x1 y
i1 �i5+ïxh4x1 y

i1 �i5T�i
+ïxg4x1 y

i1 �i5T�i
]

+NX4x5 (34)

and, for i = 11 : : : 1N ,

0 =
1
N
ïyf 4x1 y

i1 �i5+
1
N
ïyh4x1 y

i1 �i5T�i
+

1
N
ïyg4x1 y

i1 �i5T�i1

0 ≤
1
N
g4x1 yi1 �i5⊥�i

≥ 01

0 =
1
N
h4x1 yi1 �i50

Removing the factor 1/N in last three equations, we have (34) and, for i = 11 : : : 1N ,

0 = ïyf 4x1 y
i1 �i5+ïyh4x1 y

i1 �i5T�i
+ïyg4x1 y

i1 �i5T�i1 (35)

0 ≤ g4x1 yi1 �i5⊥�i
≥ 01 (36)

0 = h4x1 yi1 �i50 (37)

An 4N +15-tuple 4xN 1 y11 : : : 1 yN 5 is said to be a stationary point of the SAA problem (4) if it satisfies (34)–(37)
for some multipliers 4�11�151 : : : 1 4�N 1�N 5.

A minor point on notation is that 4y11�11�151 : : : 1 4yN 1�N 1�N 5 will change as N changes, that is, it would
be more accurate to denote each yi by yi1N (and do so similarly with the other vectors). To keep the notation
simple, we will take this point as understood.
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6.2. Reduced (implicit) KKT conditions of SAA problem (4). We now begin to study the convergence
of xN as N tends to infinity. Specifically, we show that accumulation points are stationary for the true problem (1),
where the meaning of “stationary” is developed in (41) (to follow). The difficulty for the convergence analysis
here is that when N tends to infinity, so does the number of second-stage systems (see (34)–(37)). This motivates
us to consider eliminating yi, i = 11 : : : 1N from the KKT conditions and focus on the convergence of xN . In
other words, we consider a reduced or implicit KKT condition for the SAA problem (4).

Observe that a point yi satisfying (35)–(37) is a stationary point of the second-stage problem

min
y∈�n

f 4xN 1 y1 �i5

s.t. g4xN 1 y1 �i5≤ 01

h4xN 1 y1 �i5= 00

(38)

Note that if (38) is a convex program or has a unique optimal solution, then yi is the optimal solution to (38).
Here, we consider the general case. Let

ê̂4x1 �5 2=

{

⋃

y∈Q4x1�5

⋃

4�1�5∈W4x1 y1 �5

ïxL4x1 y1 �3�1�5

}

1 (39)

where Q4x1�5 is the set of stationary points defined by (26), W4x1 y1 �5 is the set of corresponding multipliers
defined by (25), and

ê4x1�5 2= conv ê̂4x1 �51 (40)

that is, ê4x1�5 is the convex hull of the collection of gradient vectors ïxL4x1 y1 �3�1�5 at KKT points of the
second-stage problem (2). By definition, it is easy to observe that

¡xv4x1 �5⊂ë4x1�5⊂ê4x1�50

Consequently, we may weaken the optimality condition (31) to provide a relaxed optimality condition for the
true implicit program (6):

0 ∈ Ɛ6ê4x1 �57+NX4x50 (41)

It is relaxed in that the set of stationary points used to define the expectation is a relaxation of the set of globally
optimal points used in (31). In fact, the optimality condition is both reduced (to x only) and relaxed.

Suppose 4xN 1 y11 : : : 1 yN 5 is a stationary point of SAA problem (4). Then, following from the definition of
mapping ê and KKT conditions (34)–(37), we can easily show that x = xN solves the following generalized
equation:

0 ∈
1
N

N
∑

i=1

ê4x1�i5+NX4x50 (42)

This is the (reduced and) relaxed optimality condition for the SAA (4). In §6.4 (Theorem 6.2), we will show that
w.p.1 every accumulation point of the sequence 8xN 9 satisfies (41). Lemma 6.1 prepares us for this. Although
(31) is sharper than the optimality condition (41), we cannot use it unless the SAA iterate 4xN 1 y11 : : : 1 yN 5 is
sure to be globally optimal.

Assumption 6.1. Let ê4x1�5 be defined as in (40).
(a) For any x ∈ X and a.a. � ∈ æ, S4·1 ·5 is nonempty and uniformly compact near 4x1 �5; M-F regularity

holds at each stationary point y ∈Q4x1�5 for a.a. �; and Q4·1 ·5 is nonempty and uniformly compact near 4x1 �5.
(b) For every K > 0, there exists an integrable function �34�5 > 0 (depending on K) such that Ɛ6�34�5

27 <�

and
max

{

�ïxf 4x1 �5�1�ïxg4x1 y1 �5�1�ïxh4x1 y1 �5�1�W4x1 y1 �5�
}

≤ �34�5 (43)

for all x ∈KB, � ∈æ, and y ∈Q4x1�5.

Assumption 6.1(b) covers Assumption 5.1 as P4x1 �5 ⊂ Q4x1�5. It holds trivially if æ is bounded; for each
K > 0, the union of Q4x1�5 for 4x1 �5 ∈KB×æ is bounded and the functions and gradients appearing in (43)
are continuous.
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Lemma 6.1. Let Assumption 6.1 hold. Then,
(i) ê4x1�4 · 552 ì→ 2�m

is a random set-valued mapping; and
(ii) there exists an integrable function �4�5 such that �ê4x1�5� ≤ �4�51 and ê4x1�5 is outer semicontinuous

in x on KB.

Proof. Part (i). The proof is similar to that of Theorem 5.1.
Part (ii). It is easy to demonstrate that there exists a constant C > 0 such that �ïxL4x1 y1 �3�1�5� ≤

C4�34�5+�34�5
25. Obviously, �4�5 2=C4�34�5+�34�5

25 is integrable under the condition that Ɛ6�34�5
27 <�.

The outer semicontinuity comes from Proposition 2.1 and uniform local compactness of ê4x1�5 at every point
in B4X∗5. �

Next, we investigate the convergence of the stationary sequence 8xN 9 as N tends to infinity. We do so by
investigating how the relaxed SAA optimality condition (42) approximates (41).

Remark 6.1. The introduction of the mapping ê4x1�5 and the optimality conditions (42) and (41) are
motivated by the necessity to accommodate the stationary points of the SAA problem (4). If we are guaranteed
that each yi is locally optimal for the second-stage problem, then clearly the first-order optimality condition (41)
can be tightened. Furthermore, if a global solution y4x1 �5 of the second-stage problem can always be found (for
example, (38) has a nonempty, compact feasible set and only one stationary point), then the tighter optimality
condition of §5 applies.

6.3. Convergence of sequence 8xN 9. We proceed to the main result of §6. Let X# denote its solution set
of (41), that is,

X# 2= 8x ∈X2 0 ∈ Ɛ6ê4x1 �57+NX4x590 (44)

We replicate Assumption 3.1 and Theorems 3.1 and 3.2 in the context here.

Assumption 6.2. There are positive constants N 0 and K (independent of �) such that for N ≥ N 0, w.p.1
the SAA method finds a stationary point 4xN 1 y11 : : : 1 yN 5 of (4) such that xN ∈KB.

As discussed after Assumption 3.1, though the assumption holds almost automatically if X is bounded,
sufficient conditions for the unbounded case is an open question. Next, we have an application of Theorem 3.1
where Assumption 6.2 replaces Assumption 3.1 and Lemma 6.1 is used to provide the necessary properties of
ê4x1�5.

Theorem 6.1. Let Assumptions 6.1 and 6.2 hold and let X# be defined by (44). Then, w.p.1, d4xN 1X#5→ 0
as N → �.

Note that the above almost sure convergence result follows essentially from uniform semiconvergence of
êN 4x5 to Ɛ6ê4x1 �57 (see Theorem 3.1). Therefore, we mention a few references regarding uniform convergence
of sample average random set-valued mappings. Shapiro [41] considers uniform convergence of sample average
of the Clarke subdifferential of a random function. By assuming a.e. differentiability of the random function
at every point, Shapiro [41] shows that the expected value function is continuously differentiable and that the
sample average of the Clarke subgradients converge uniformly to the gradient of its true counterpart. Shapiro
and Xu [46] use this result to establish the convergence of the SAA stationary sequence for an SMPEC. See
Propositions 4.1(c) and 4.2 in Shapiro and Xu [46]. In the case when the expected value function is not
continuously differentiable, a uniform strong law of large numbers for random set-valued mappings has recently
been developed (Xu and Meng [49], Shapiro and Xu [47]) and applied to analyze the convergence of stationary
points of SAA problems for a two-stage stochastic minimization problem with nonsmooth equality constraints
(Xu and Meng [49]). In all of these papers, the second-stage problem is assumed to have a unique feasible
solution for every x and �. Meng and Xu extend Xu and Meng [49] by considering a case when the second-stage
problem has multiple solutions but they alter their model slightly by replacing the optimal solution at the second
stage with an arbitrary feasible point.

We now move on to discuss exponential convergence.

Assumption 6.3. Let K > 0 be given and X# be defined by (44). Let X# be nonempty, and let there exist
positive constants �, �, and N ∗ such that for N ≥N ∗, w.p.1 the SAA solution 4xN 1 y11 : : : 1 yN 5 satisfies

d4xN 1X#5≤ � sup
x∈KB

�4êN 4x51 Ɛ6ê4x1 �575�0 (45)

Note that calmness of Ɛ6ê4x1 �57+NX4x5 is sufficient for (45); see Proposition 3.1 and subsequent discus-
sions. The main result follows; it is an application of Theorem 4.2, i.e., an extension of Theorem 3.2.
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Theorem 6.2. Let Assumptions 6.1, 6.2, and 6.3 hold. Suppose also that (a) ê̂ is stochastic PC0 on KB
(see Definition 4.1); (b) ê̂ is piecewise Hölder continuous on KB w.r.t. the bound �14�5 (condition (c) of
Theorem 4.2); (c) �1 is integrable and the integrable bound �4�5 on �ê̂4x1 �5� given by Lemma 6.1(ii) is such
that the moment-generating function of �14�5 + �4�5 is finite valued near zero. Then, for any small positive
number �, there exist positive constants c4�5 and �4�5, independent of N , and N ∗ > 0 such that the following
holds w.p.1 for N ≥N ∗:

Prob8d4xN 1X#5≥ �9≤ c4�5e−�4�5N 0 (46)

Theorem 6.2 presents an exponential convergence if ê4x1�5 is stochastic PC0 and piecewise Hölder continu-
ous in a neighborhood of x∗. Over the past few years, various exponential convergence results have been estab-
lished for SAA but the focuses are mainly on globally optimal solutions and globally optimal values. (See, for
instance, Kaniovski et al. [25], Römisch and Schultz [39], Shapiro and Homem-de-Mello [45], Shapiro [43, 42],
Shapiro and Xu [46], and the references therein). The novelty of Theorem 6.2 as far as we are concerned is that
it is the first time that exponential convergence is established for stationary points of SAA problems.

In the next two subsections, we contrast the domain of application of Theorem 3.2 with that of Theorem 6.2
by looking at some special subclasses of the stochastic program (1).

6.3.1. Application when the second stage is unconstrained. We take an extremely simple version of (1)
in which the second-stage problem is unconstrained:

min
x∈�m1 y4 · 5∈Y

Ɛ6f 4x1 y4�51 �4�557

s.t. x ∈X1
(47)

where Y is a suitable space of functions y4 · 52 ì → �n such that Ɛ6f 4x1 y4�51 �4�557 is well-defined. Specif-
ically, we will allow f 4x1 ·1 �5 to have multiple but locally unique stationary points (hence, to be nonconvex).
We will show that Theorem 3.2, which relies on continuity of the various set-valued mappings, can be applied
under various assumptions to follow.

The set of second-stage stationary points for each first-stage decision x and second-stage scenario � is
Q4x1�5 = 8y2 ïyf 4x1 y1 �5 = 09. The mapping ê from (40) used to define the relaxed optimality condition
0 ∈ Ɛ6ê4x1 �57+NX4x5 is

ê4x1�5 2= conv8ïxf 4x1 y1 �52 y ∈Q4x1�590

Let X# be the solution set of the relaxed optimality condition as in (44).
The SAA subproblem, given samples �11 : : : 1 �N , is to find xN solving (42), that is,

0 ∈ conv8ïxf 4x
N 1 yNi 1 �

i52 i = 11 : : : 1N 9+NX4x
N 51

where yNi ∈Q4xN 1 �i5 for each i.
Given 4x1 y1 �5, denote the Hessian matrix of f w.r.t. y by H4x1�1 y5:

H4x1�1 y5 2= ï 2
yyf 4x1 y1 �50

We assume that:
(a) X and æ are nonempty and compact sets in �m and �r , respectively.
(b) f 4x1 y1 �5 is twice differentiable w.r.t. 4x1 y5 such that its second derivatives ï 2

xyf 4x1 y1 �5 and H4x1 y1 �5
are continuous in a neighborhood of X ×�n ×æ.

(c) f 4x1 ·1 �5 and �ïyf 4x1 ·1 �5� are coercive uniformly w.r.t. 4x1 �5 ∈ X ×æ and that, for each ã> 0, there
is R> 0 such that f 4x1 y1 �5≥ã and �ïyf 4x1 y1 �5� ≥ � for all 4x1 �5 ∈X ×æ and y with �y� ≥R.

(d) For each 4x1 �5 ∈X×æ, H4x1 y1 �5 is invertible for all4 y ∈Q4x1�5 such that H4x1 y1 �5−1 is bounded in
norm by a integrable function �4�5 that is independent of x ∈X.

4 It would be simpler to require invertibility of H4x1 y1 �5 for a.a. � and all y (even nonstationary points), but with condition (c), it can be
shown that this would imply convexity w.r.t. y.
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For 4x1 �5 ∈X ×æ, coercivity (condition (c)) yields a global minimum of f 4x1 ·1 �5 and hence nonemptiness
of Q4x1�5. Uniform coercivity of ïyf 4x1 ·1 �5 (condition (c)) together with compactness of X×æ (condition (a))
yields boundedness of the graph of Q4 · 5 restricted to X × æ, denoted G = 84x1 �1 y52 4x1 �5 ∈ X × æ1 y ∈

Q4x1�59. G is also closed and hence compact because if 84xk1 �k1 yk59 is a sequence in G that converges to
4x̄1 �̄1 ȳ5, then ȳ ∈Q4x̄1 ȳ5 by continuity of ïyf 4 · 5 (condition (b)).

We further claim that Q4·1 �5 is a Lipschitz continuous set-valued mapping on X uniformly w.r.t. � ∈æ, and
we show this in five steps.

Step 1. Fix 4x̄1 �̄5 ∈X×æ and ȳ ∈Q4x̄1 �̄5. By invertibility of H4x̄1 ȳ1 �̄5 (condition (d)), the implicit function
theorem says there are bounded neighborhoods U of 4x̄1 �̄5 and V of ȳ, and a function y4 · 52 U → V with
the following two properties: (i) y4x̄1 �̄5 = ȳ and Q4x1�5 ∩ V = 8y4x1 �59 for each 4x1 �5 ∈ U , and (ii) y4 · 5
is continuous in 4x1 �5 and partially differentiable w.r.t. x such that ïxy4 · 5 is continuous. For some integrable
�̂4�5, �ïxy4x1 �5� ≤ �̂4�5 for 4x1 �5 ∈U ; hence, y4·1 �5 has Lipschitz continuity given by �y4x11 �5−y4x21 �5� ≤

�̂4�5�x1 − x2� for x11 x2 with 4x11 �5, 4x21 �5 ∈ U . We refer to y4 · 5 as a stationary point function because
y4x1 �5 ∈Q4x1�5 for 4x1 �5 ∈U .

Step 2. Because each 4x̄1 �̄1 ȳ5 ∈ G is associated with an open set U × V and function y4 · 52 U → V as
described in Step 1 and G is also compact, we may cover G with a finite number ̂ of these neighborhoods.
For indices j = 11 : : : 1 ̂, we label these neighborhoods as Uj × Vj , and their associated functions as yj4 · 5.
Note that, for any indices j11 j2, if there exists 4x1 �5 ∈Uj1

∩Uj2
with yj1

4x1 �5 ∈ Vj2
, then these stationary point

functions coincide on Uj1
∩Uj2

. Thus, we can combine them: Q4x1�5∩ 4Vj1
∪Vj2

5 is a function on Uj1
∪Uj2

that
coincides with yj1

4 · 5 on Uj1
and yj2

4 · 5 on Uj2
and is differentiable w.r.t. x with the associated derivative being

continuous and bounded on Uj1
∪Uj2

. We can inductively combine such “overlapping” neighborhoods until there
is no further overlapping. Thus, without loss of generality, we may assume that if j1 and j2 are distinct indices,
then yj1

4x1 �5 6∈ Vj2
for each 4x1 �5 ∈Uj1

∩Uj2
.

Step 3. Next, we claim that each Uj is closed relative to X ×æ.5 To see closedness, take a limit point 4x̄1 �̄5
of a sequence 84xk1 �k59 in UJ ∩ 4X ×æ5. Let yk = yj4x

k1 �k5 so that the sequence 84xk1 �k1 yk59 lies in G. As
noted earlier, there is a limit point ȳ of 8yk9 with 4x̄1 �̄1 ȳ5 ∈G. Thus, by Step 2, ȳ = yj2

4x̄1 �̄5 for some index j20
Hence, on an appropriate subsequence, each 4xk1 �k5 lies in Uj2

and each yk lies in Vj2
. Step 2, therefore, gives

j2 = j . Thus, 4x̄1 �̄5 ∈ Ûj and Ûj is closed.
Step 4. For a given 4x̄1 �̄5 ∈ X ×æ, we show that the list of stationary functions with 4x̄1 �̄5 in their domains

is locally constant. Take indices j1 and j2 such that 4x̄1 �̄5 ∈ Uj1
\Uj2

. Openness of Uj1
implies that 4x1 �5 ∈ Uj1

for all 4x1 �5 in X ×æ near 4x̄1 �̄5. Closedness of Uj2
relative to X ×æ implies that 4x1 �5 6∈Uj2

for all 4x1 �5 in
X ×æ near 4x̄1 �̄5. In other words, any 4x̄1 �̄5 ∈ X ×æ has a neighborhood U such that the set of indices J =

8j2 4x̄1 ȳ5 ∈Uj9 coincides with 8j2 4x1 �5 ∈Uj9 for all 4x1 �5 ∈U . Thus, for 4x1 �5 ∈U , Q4x1�5= 8yj4x1 �52 j ∈ J 90

Step 5. Take 4x̄1 �̄5 ∈X×æ, the neighborhood U , and index set J as in Step 4. We may assume without loss
of generality that U is a Cartesian product of UX ⊂X and Uæ ⊂æ. The Lipschitz property of y4 · 5 from earlier
gives a constant �> 0, which is independent of 4x̄1 �̄5, U , and j ∈ J such that, for any x11 x2 ∈UX and � ∈Uæ,
�yj4x11 �5− yj4x21 �5� ≤ �̂4�5�x1 − x2�0 Obviously, in light of Step 4, this implies the same Lipschitz property
for Q4 · 5 on U :

�H4Q4x11 �51Q4x21 �55≤ �̂4�5�x1 − x2� for all x11 x2 ∈UX1 � ∈Uæ0

We leave it to the reader to see that a set-valued mapping that is Lipschitz on each neighborhood of an open
cover of a compact set is Lipschitz on that compact set. The same argument yields Lipschitz continuity of
Q4·1 �5 on X such that â4x1 �5 = Q4x1�5 fulfills the Hölder criterion of Theorem 3.2 with �14�5 = �̂4�5 and
� = 1.

We conclude that Theorem 3.2 delivers exponential convergence of SAA solutions 8xN 9 to the relaxed solution
set X# if, in addition to (a)–(d) earlier, Assumption 3.1 holds. (Of course, we can obtain a similar outcome in
the more general setting of Theorem 6.2.)

6.3.2. Application when the second stage is a nonconvex quadratic program. Let us now look at a class
of stochastic programs with fixed recourse

min
x∈X1y4 · 5

Ɛ6p4x1 �4�557+ Ɛ6q4x1 y4�51 �4�557

s.t. y4�5≥ 01 H 1x+H 2�4�5+My4�5= h1 a.e. � ∈ì1
(48)

5 That is, Uj is open and Uj ∩X×æ is closed and thus Uj would contain X×æ if the latter set were connected. In this case, Q4x1�5 would
be a list of ̂ functions, each with a Lipschitz continuity property in x. Hence, Lipschitz continuity of Q4·1 �5 would follow. The remaining
Steps 4 and 5 deal with the possibility that X ×æ is unconnected.
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where p2 �n ×�r →� is continuously differentiable, q2 �n ×�m ×�r →� is a (possibly nonconvex) quadratic
function, �2 ì→æ is a random vector as above, æ⊂�r , X ⊂�n, H 1 ∈�q×n, H 2 ∈�q×r are constant matrices,
h ∈�q is a constant vector, and M ∈�q×m is a constant matrix.

This is a two-stage stochastic program with fixed recourse: At the first stage, a decision on x needs to be
made before realization of �. In making this decision, it is assumed that, at the second stage, if x is given and
� is realized, then y4�5 2= y4x1 �5 will be determined by finding a stationary point of a possibly nonconvex
quadratic program (QP):

min
y

q4x1 y1 �5

s.t. y ≥ 01

H 1x+H 2� +My = h0

(49)

In order to satisfy many of the hypotheses entailed in Theorem 6.2, especially Assumptions 6.1 and 6.2, we
introduce further conditions:6

(a) X and æ are compact, convex polyhedra with nonempty interiors.
(b) M has full row rank and there exists y > 0 with My = 0.
(c) The constant matrix B = ï 2

y q4x1 y1 �5, which defines the pure quadratic part of q w.r.t. y, is such that
0 6= y ≥ 0 and My = 0 implies y>By > 0.

We sketch the implications of these conditions and leave the details to readers. Part (b) is sufficient, for any
4x1 �5, for the Mangasarian-Fromowitz constraint qualification (MFCQ) to hold at each feasible point y of the
second-stage problem (49) and also for complete recourse (feasibility of the second-stage problem). It implies a
perhaps more commonly known sufficient condition for completeness from Birge and Louveaux [5, p. 92]: there
exists y ≥ 0 such that My = t for any t ∈�q . Part (c) implies boundedness of the set of second-stage stationary
points Q4x1�5, uniformly for 4x1 �5 in any bounded set such as X×æ. Thus, (a)–(c) give Assumption 6.1, where
uniform boundedness of the second-stage feasible set S4x1 �5 can be assured by introducing a ball constraint
�y� ≤ � of sufficiently large radius � that it is never binding at stationary points.

Existence of stationary points of both (49) and the SAA of the underlying problem (48) follows from Wolfe’s
theorem for QPs because, in both cases, the QPs have nonempty feasible sets and are bounded below (using
part (c)). Thus, Assumption 6.2 also holds and Theorem 6.1 says that the set of solutions X# of the relaxed
optimality conditions is nonempty and bounded.

With the introduction of multipliers � ∈ �q and � ∈ �m, the Lagrangian function of the second-stage prob-
lem is

L4x1 y1 �3�1�5= q4x1 y1 �5+ 4H 1x+H 2� +My−h5>�− y>�1

and the associated KKT conditions are

0 = ïyL4x1 y1 �3�1�51 (50)

0 = H 1x+H 2� +My−h1 (51)

0 ≤ �⊥ y ≥ 00 (52)

This system is piecewise linear because of linearity of ïyL; hence, the set of its solutions 4x1 y1 �1�1�5 is
polyhedral. Likewise, linearity of ïxL give polyhedrality of

ê̂4x1 �5= 8ïxL4x1 y1 �3�1�52 x ≥ 01 Ax = b1 � ∈æ14x1 y1 �1�1�591

which satisfies (50)–(52).
From previous discussions, ê̂4x1 �5 is nonempty for any 4x1 �5 ∈�n ×�r , i.e., dom ê̂ =�n+r . Proposition 4.2

and Theorem 4.1 yield that ê̂ is piecewise continuous. Thus, the exponential convergence result Theorem 6.2
can be applied if, in addition, (45) is valid for constants �, �, and large enough N . (Theorem 3.2, however,
cannot be used here because of the discontinuity of ê̂.)

Suppose, in addition to the earlier assumptions, p4x1 �5 is convex in x and q is independent of x and is convex
in y. Let v4x1 �5 = p4x1 �5+ q4x1 y4x1 �51 �5 and �4x5 = Ɛ6v4x1 �57. Then, we can show that �4x5 is convex
and

¡�4x5= Ɛ6¡xv4x1 �57= Ɛ6ë4x1 �57= Ɛ6ê4x1 �57= Ɛ6ê̂4x1 �570

Because a stationary point of �4x5 is a global minimizer, X# is the set of global optimal solutions of the true
problem. Note that, if v4·1 �5− p4·1 �5 is strongly convex on X#, then we can easily show that (45) holds and,

6 Of course, these conditions can be significantly weakened. We consider them only for the simplicity and clarity of presentation.
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hence, show the exponential convergence of xN to X# (a singleton). This recovers Römisch and Schultz [39,
Proposition 3.2].

6.4. Further remarks. Note that, in some cases, NLP solvers can provide solutions that satisfy some kind
of second-order necessary conditions in addition to first-order necessary (i.e., KKT) conditions. Consequently,
one may obtain a local optimal solution in solving the SAA problems (4). In such a case, we may employ
tighter optimality conditions than (41) and (42) by replacing Q4x1�5 with the set of points for which first- and
second-order necessary conditions hold. This will allow us to strengthen the convergence result Theorem 6.2
with a correspondingly smaller set X#.

Another issue concerning practical implementation of (4) is the validation of an approximate solution xN

solved from (4), that is, to evaluate the quality of this candidate solution by looking at how close xN is to its
true counterpart with certain confidence. Let us use x̄ instead of xN to denote the current approximate solution.
We would like to evaluate the quality of this candidate solution. Note that, if we are guaranteed to obtain global
optimal optimum in solving (4), then validation analysis can be carried out through (5) and (6) (see the estimation
of the optimality gap in Shapiro [43, §4.1]). Here, we treat the candidate solution as a stationary point obtained
from solving (4). We give a brief discussion about this to distinguish the mathematical treatments of the cases
when the mapping ê4x̄1 �5 to be integrated is single or set valued. Assume that x̄ is close to X# and that ê4x̄1 �5
is a singleton in a neighborhood of x̄ for all � ∈æ (e.g., the second-stage problem has a unique stationary point
that is the optimal solution). In this case, v4·1 �5 is differentiable near x̄ and ï�4x̄5= Ɛ6ïxv4x̄1 �57= Ɛ6ê4x̄1 �57
under some regularity conditions. Consequently, êN 4x5 = 41/N5

∑N
i=1 ïxv4x1 �

i5 is an unbiased estimator of
Ɛ6ê4x1 �57. Shapiro and Homem-de-Mello [44, §4] present a complete discussion on statistical validation of the
sample average gradients and hence the KKT conditions. The approach can be applied to �4êN 4x̄51Ɛ6ê4x̄1 �575
in our case and, subsequently, through (45) to obtain an estimation of the error bound of the approximate
stationary point. In the case when ê4x̄1 �5 is set valued, it is difficult to validate êN 4x̄5. Shapiro [43, §4.2]
and Linderoth et al. [26, §§5.3–5.4] present some discussions on validation of subgradients of some random
functions through sample average subgradients. Similar ideas may be used to build a subset of êN 4x̄5 as in
Linderoth et al. [26]. We omit the details as they are beyond the focus of this paper.
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Appendix
Proof of Proposition 4.1. We begin by showing a kind of continuity of the set-valued mapping Tj4x5

on dom Tj , for an arbitrary index j . First, observe that, because �j = cl�j , cl4dom Tj5 = cl4dom Sj5; hence,
dom Tj = cl4dom Sj5 and dom Tj is closed (stochastic PC0 property ii(b)). Define the indicator function:

	4Tj4x51 �5 2=

{

1 if � ∈ Tj4x51

0 otherwise.

Now, take a convergent sequence 8xk9⊂ dom Sj with limit x. Because dom Tj is closed, we have Tj4x5 6= �. For
a.a. � ∈ Tj4x5, we have � ∈ Tj4x

k5 for large k from stochastic PC0 property ii(c). If � 6∈ Tj4x5, then 4x1 �5 6∈�j ,
which, by openness of the complement of �j , implies � 6∈ Tj4x

k5 for large k. This shows that 	4Tj4x
k51 �5

converges to 	4Tj4x51 �5 for a.a. �.
Proof of Proposition 4.1. Part (i). Let x ∈ X̄J = cl4intXJ 5 and note that 4intXJ 5 ∩ Dâ is dense in X̄J

because a.a. points of X lie in Dâ . Hence, there exists 8xk9⊂ 4intXJ 5∩Dâ converging to x. Applying the above
to each j ∈ J gives a.e. convergence of sk4�5=

∑

j∈J 	4Tj4x
k51 �5 to s4�5=

∑

j∈J 	4Tj4x51 �5. By hypothesis, each
sk4�5= 1 a.e.; therefore, s4�5 has the same property. This implies both that

⋃

j∈J Tj4x5 has full measure and that
�P 4Tj4x5∩ Tl4x55= 0 for distinct j1 l ∈ J , i.e., x ∈XJ .

Part (ii). The properties of J imply that F J 4x5=
∑

j∈J Fj4x5 for x∈XJ , where Fj4x5 2=
∫

Tj 4x5
âj4x1�5d�P 4�50

Because the closure of 4intXJ 5 ∩ Dâ is X̄J , it is sufficient to take x ∈ X̄J , 8xk9 ⊂ 4intXJ 5 ∩ Dâ that converges
to x, and take j ∈ J and show that Fj4x

k5→ Fj4x5. We have Fj4x
k5=

∫

âJ 4x
k1 �5	4Tj4x

k51 �5d�P 4�50 Therefore,
continuity of âj on �j together with a.e. convergence 	4Tj4x

k51 �5→ 	4Tj4x51 �5 gives, via Lebesgue’s dominated
convergence theorem,

Fj4x
k5→

∫

âJ 4x1 �5	4Tj4x51 �5d�P 4�5= Fj4x50 �
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Proof of Theorem 4.2. We apply Theorem 4.1 with X = KB. For each x̄ near KB, there is a nonempty
subset J̄=J4x̄5 of J with the following properties: x̄ ∈

⋂

J∈J̄ X̄
J ,

â4x̄1 �5=
⋃

J∈J̄

â J 4x̄1 �5 a.e. (53)

(from the proof of Theorem 4.1), and x → Ɛ6
⋃

J∈J̄ â
J 4x1 �57 continuous on

⋂

J∈J̄ X̄
J . Theorem 3.2 can now

be applied to
⋃

J∈J̄ â
J 4x1 �5 with KB replaced by

⋂

J∈J̄ X̄
J . The SAA of Ɛ6

⋃

J∈J̄ â
J 4x1 �57 given N samples

�11 : : : 1 �N is
⋃

J∈J̄ â
J
N 4x5, where â J

N 4x5 is 41/N5
∑N

i=1 â
J 4x1 �i5, the SAA of Ɛ6â J 4x1 �57. By virtue of part (i)

of Theorem 3.2, for small � > 0, there exist constants cJ̄4�5 > 0 and �J̄4�5 > 0 independent of N such that, for
N sufficiently large,

Prob
{

sup
x∈
⋂

J∈J̄ X̄J

�

(

⋃

J∈J̄

â J
N 4x51 Ɛ

[

⋃

J∈J̄

â J 4x1 �5

])

≥ �

}

≤ cJ̄4�5e−�J̄4�5N 0 (54)

Let us call a subfamily J̄ of J essential if both it and
⋂

J∈J̄ X̄
J are nonempty. Then, because X is covered by

nonempty sets of the type
⋂

J∈J̄ X̄
J ,

sup
x∈KB

�4âN 4x51 F 4x55≤ max
essentialJ̄

sup
x∈
⋂

J∈J̄ X̄J

�

(

⋃

J∈J̄

â J
N 4x51 Ɛ

[

⋃

J∈J̄

â J 4x1 �5

])

w.p.1. This gives, via (54), that

Prob
{

sup
x∈KB

�4âN 4x51 F 4x55≥ �

}

≤
∑

essential J̄

cJ̄4�5e−�J̄4�5N 0

Part (i) of Theorem 3.2, in our setting, follows. Part (ii) of Theorem 3.2 also holds under Assumption 3.2. �
Claims from proof of Proposition 4.2. Write â4x1 �5=

⋃̂
j=1 âj4x1 �5, i.e., (17), where the graph of each âj

is convex in addition to being nonempty, closed, and polyhedral.
Claim 1. We may assume without loss of generality that int dom âj 6= � for each j = 11 : : : 1 ̂. Clearly, as a

polyhedral set, dom â satisfies cl int dom â =
⋃̂

j=1 cl int dom âj , which means we can drop âj if its domain does
not have interior. For a.a. �, â4x1 �5 is the union of âj4x1 �5 for j such that int dom âj 6= �.

Claim 2. We assume without loss of generality that the convex polyhedral set-valued mappings âj may be
chosen such that their domains �j = dom âj have nonempty but pairwise disjoint interiors �j , i.e., stochastic
PC0 property ii(a) holds. To show Claim 2, take any nonempty subset J of 811 : : : 1 ̂9 and let J c denote its
complement and �J 2=

⋂

j∈J �j\
⋃

j∈J c �j . Let J0 be the family of such index sets J , where �J 6= �. The closed
sets �J = cl�J , J ∈J0 have nonempty and disjoint interiors. We take for granted that such a set �J is polyhedral;
hence, even if nonconvex, it is the union of finitely many (closed) polyhedral convex sets called “subdomains”
of �J whose interiors are nonempty and disjoint. Denote by âJ the restriction of â to �J . We conclude the
argument by observing that âJ can be decomposed into a family of polyhedral convex “submappings” by
restricting it to each of those polyhedral convex subdomains of �J . �

Proof of Theorem 5.1. Under condition (a), it follows from Lemma 5.2 that (29) holds at x = x∗. Hence,
0 ∈ Ɛ6ë4x∗1 �57+NX4x

∗5 by the usual nonsmooth optimality conditions (27) and Proposition 5.1, and it suffices
to show the well-definedness of Ɛ6ë4x∗1 �57. Let

ë̂ 4x1 �5 2=
⋃

y∈P4x1 �5

⋃

4�1�5∈W4x1 y1 �5

ïxL4x1 y1 �3�1�50

By the property of Aumann’s integral (Hess [17, Theorem 5.4(d)]), it suffices to show that Ɛ6ë̂ 4x∗1 �57 is
well-defined.

Let �k ∈ æ and �k → �. There exist bounded sequences defined by yk ∈ P4x∗1 �k5, 4�k1�k5 ∈ W4x∗1 yk1 �k5
and

�k
= ïxL4x

∗1 yk1 �k3�k1�k5 ∈ ë̂ 4x∗1 �k51

where boundedness of multipliers follows from M-F regularity (see Gauvin and Tolle [15, Theorem 2.2]). Let
4ȳ1 �̄1 �̄1 �̄5 be an accumulation point of 84yk1�k1�k1�k59. It is clear, by continuity of all functions, that ȳ is a
global minimizer of the lower-level problem at 4x∗1 �5, i.e., ȳ belongs to P4x∗1 �5. On the other hand, it follows
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from KKT conditions (20)–(22) that 4�̄1 �̄5 must satisfy the second-stage KKT conditions with 4x∗1 ȳ1 �̄5. This
shows the closedness of ë̂ 4x1 �5.

Next, we show the uniform compactness near �. Under Assumption 5.1, ïxL4x1 y1 �
′3�1�5 is bounded by

�24�
′5+ c�24�

′52 for all � ′ ∈æ, where c is some positive constant. Therefore, ë̂ 4x∗1 � ′5 is bounded. By Propo-
sition 2.1, the mapping ë̂ 4x∗1 ·52 æ → 2�s+t

is outer semicontinuous on æ. Hence, by Aubin and Frankowska
[2, Proposition 8.2.1], ë̂ 4x∗1 �4 · 552 ì→ 2�s+t

is measurable. Moreover, because Ɛ6�24�5+ c�24�5
27 <� under

Assumption 5.1, then Ɛ6ë4x∗1 �57 is well-defined. The proof is complete. �
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