
J Optim Theory Appl
DOI 10.1007/s10957-011-9859-6

Stochastic Multiobjective Optimization: Sample
Average Approximation and Applications

Jörg Fliege · Huifu Xu

Received: 13 September 2010 / Accepted: 25 April 2011
© Springer Science+Business Media, LLC 2011

Abstract We investigate one stage stochastic multiobjective optimization problems
where the objectives are the expected values of random functions. Assuming that the
closed form of the expected values is difficult to obtain, we apply the well known
Sample Average Approximation (SAA) method to solve it. We propose a smooth-
ing infinity norm scalarization approach to solve the SAA problem and analyse the
convergence of efficient solution of the SAA problem to the original problem as sam-
ple sizes increase. Under some moderate conditions, we show that, with probability
approaching one exponentially fast with the increase of sample size, an ε-optimal
solution to the SAA problem becomes an ε-optimal solution to its true counterpart.
Moreover, under second order growth conditions, we show that an efficient point
of the smoothed problem approximates an efficient solution of the true problem at
a linear rate. Finally, we describe some numerical experiments on some stochastic
multiobjective optimization problems and report preliminary results.

Keywords Stochastic multiobjective programming · Sample average
approximation · Scalarization · Efficient solution · Exponential convergence

1 Introduction

Multiobjective optimization (MOP) problems have become one of the main subject
areas in optimization and Operational Research since its foundation by Pareto and
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Edgeworth for its significant applications in economics, most notably in welfare and
utility theory, management and engineering. Like single objective optimization, MOP
problems in practice often involve some stochastic data and this motivates one to
consider stochastic MOP problems. Earlier research on stochastic multiobjective op-
timization problems can be found in [1–3]. For more comprehensive references in the
area, see [4] and also [5, 6] for recent developments in MOP.

Analogous to single objective optimization, stochastic multiobjective optimization
models may take various forms depending on the context of how a decision is made.
For instance, if a decision is made after uncertainty is realised, then one may for-
mulate it as a distribution problem. If a decision is made under some probabilistic
constraints, then it becomes a chance constrained MOP problem. In this paper, we
consider a stochastic MOP problem with deterministic constraints where a decision
is made to minimize the expected value of several objective functions that depend
not only on the decision variables but also on some random variables. Caballero et
al. [4] investigated this model and compared it, in terms of efficient solution sets,
with the expected value standard-deviation model where the objective involves not
only the expected values but also the standard deviation. The efficient solution sets of
the latter model have also been studied by White; see Chap. 8 of [7].

Finding efficient solution sets of a stochastic MOP problem often involves two
phases [2]: transforming a stochastic MOP problem into an equivalent deterministic
MOP problem and then solving the latter by some MOP approach. This is called a
multiobjective approach by Abdelaziz [11]. Alternatively, one may change the order
by transforming a stochastic MOP problem into a single objective stochastic MOP
problem and solving the latter by any stochastic programming approach, and this is
known as a stochastic approach [11]. Caballero et al. [12] observed that as far as
stochastic MOP is concerned, both approaches give rise to efficient solution sets that
are identical.

Our focus in this paper is on numerical methods for solving the stochastic MOP
problem at hand, i.e. we are interested in approximating the whole set of efficient
points, the solution set. One of the main issues to be dealt with is the mathematical
expectation in the objective function. Of course, this depends on the availability of
information on the random variables and on the properties of the objective functions.
If we know the distribution of the random variables, we can integrate out the expected
value explicitly. Then, the problem becomes a deterministic MOP and no discretiza-
tion procedures are required. Throughout this paper, we consider a more interesting
case in that the expected values cannot be calculated in a closed form so that we will
have to approximate it through some discretization.

A popular numerical method in single objective stochastic programming is the
Monte Carlo method where the expected value is approximated by its sample av-
erage (sample average approximation, SAA). Over the past years, SAA has been
increasingly investigated and recognised as one of the most effective methods for
solving single objective stochastic programs; see the discussions in [13–19] and the
references therein.

In this paper, we apply this well known method to stochastic MOP. One of our
objectives here is to investigate the approximation of the sample averaged problem to
the original problem in terms of efficient solutions as the sample size increases. We
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do so by adopting a well-known max-norm scalarization approach, that is, using a
diagonally scaled infinity norm to transform the problem of approximating the sample
averaged MOP problem into a family of single-objective optimization problems. To
tackle the nonsmoothness resulted from the max-norm, we use a smoothing technique
proposed by Peng [20] to smooth the objective function and estimate the error bound
of the approximation in terms of a smoothing parameter.

The novel contributions of our paper are as follows:

1. We provide a new family of scalarization techniques for multiobjective problems
that, under appropriate assumptions on the objective functions, result in a family
of smooth scalar problems whose smoothness can be controlled by a positive real
valued smoothing parameter (Lemma 3.1). Consider the set of all solutions of all
scalar problems thus constructed. Then, all those solutions are efficient and, in
the convex case, the set of all those solutions is a good approximation to the set
of efficient points of the original problem as it lies between the set of properly
efficient points and the set of efficient points of the original problem (Lemma 3.1
and Theorem 3.1).

2. Consider the set-valued mapping that maps the smoothing parameter onto the set
of all solutions of all scalar problems as above. Under appropriate conditions, this
mapping is continuous at zero, and the value of the mapping at zero is the set of all
solutions of the classical weighted max-scalarization technique (Theorem 3.2 and
Corollary 3.3). Moreover, the deviation between the values of the map for positive
smoothing parameters and the value of the map at zero shrinks linearly with the
smoothing parameter (Theorem 5.1).

3. Consider again the set of all solutions of all scalar problems constructed by the
new scalarization technique, but this time with the actual objective function re-
placed by a sample average. We consider the deviation from this set to the set of
almost-optimal points of the original problem. We show that the probability of
this deviation being greater than zero converges to zero exponentially fast in the
number of samples (Theorem 4.1 and Theorem 5.2).

The rest of this paper is organised as follows. In Sect. 2, we establish the necessary
notation, introduce the problem under consideration and introduce some established
results on multiobjective optimization and scalarization, to be used later on. Section 3
is concerned with the above mentioned smoothing technique for the max-norm, lead-
ing to a new scalarization technique for multiobjective optimization problems. In
Sect. 4, we discuss a sample average approximation (SAA) technique for stochastic
multiobjective optimization problems and establish that, under suitable conditions,
exponential rate of convergence of optimal solutions obtained from solving SAA
problems to their true counterparts. Section 5 considers a smoothing technique for
a standard nonsmooth scalarization method for multiobjective optimization and show
that, under a certain growth condition, the rate of convergence of the optimal solu-
tions of the smoothed problem to their nonsmooth counterparts is linear. Finally, in
Sect. 6, we provide some preliminary numerical results.
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2 Preliminaries

2.1 Notation

Throughout this paper, we use the following notation. Let R be the set of real num-
bers, R+ the set of nonnegative real numbers and R++ the set of positive real num-
bers. Denote by R

n the n-dimensional real vector space and let

R
n+ := {

x ∈ R
n | ∀i = 1, . . . , n : xi ≥ 0

}
,

R
n++ := {

x ∈ R
n | ∀i = 1, . . . , n : xi > 0

}

be the cones of componentwise nonnegative and strictly positive vectors, respectively.
For a set S ⊆ R

n, we denote by cl(S) its closure.
We denote the standard inner product between two vectors x and y by 〈x, y〉, while

‖ · ‖ denotes the Euclidean norm of a vector and of a compact set of vectors. If D is
a compact set of vectors, then

‖D‖ := max
x∈D

‖x‖.

Moreover, d(x,D) := infy∈D ‖x −y‖ denotes the distance from point x to set D. For
two compact sets D1 and D2,

D(D1,D2) := sup
x∈D1

d(x,D2)

denotes the deviation from set D1 to set D2 (in some references [21] it is also called
excess of D1 over D2). Finally, for a closed convex set D ⊆ R

m and x ∈ D, we use
NC(x) to denote the normal cone of D at x, that is,

ND(x) := {
z ∈ R

m : 〈z, y − x〉 ≤ 0, ∀y ∈ D
}

if x ∈ D and ND(x) := ∅ if x /∈ D.

2.2 Problem Statement

Consider a random vector ξ : Θ → Ξ ⊂ R
k defined on some probability space

(Θ, F ,P ), a nonempty set of decision variables X ∈ R
m and a vector-valued ob-

jective function f : R
m × R

k → R
n, taking as arguments x ∈ X and ξ(θ) ∈ R

k . Each
coordinate function fi (i = 1, . . . , n) corresponds to one objective to be minimized.
For x ∈ X, denote by E[f (x, ξ(θ))] the expected value of f (x, ξ(θ)) with expecta-
tion being taken componentwise. Given some order relation � on the image space R

n

of the objective, we define the stochastic MOP problem to be considered by

min� F(x) := E
[
f

(
x, ξ(θ)

)]
s.t. x ∈ X. (1)

We will clarify the precise meaning of the min
� operator after having defined a proper

(partial) order of the image space of F(X) below. We call (1) a one stage stochastic
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MOP problem as there is only a single level of decisions to be made before the ran-
dom variable ξ is realised. To simplify notation, we will from now on use ξ to denote
either the random vector ξ(θ) or an element of R

k , depending on the context.
In this paper, we are interested in finding the solution set of the MOP problem with

objective function F and a given set of feasible points X ⊆ R
m. As usual in multiob-

jective optimization, we choose a partial order relation � on the image space R
n of

our objective function (often, v � w if and only if vi ≤ wi for i = 1, . . . , n) and are
interested in finding all efficient points, i.e. the set

E
(
F(X),�

) := {
F(x) | �y ∈ X : F(y) � F(x) and F(y) 
= F(x)

}
(2)

or a good approximation to it, as well as, of course, the corresponding feasible preim-
ages in the decision space X. In contrast to single-objective optimization, it is not
sufficient to represent this set by just one point x ∈ X. Instead, the whole set needs to
be approximated [8–10].

Let ξ1, . . . , ξN be an identically independent distributed (iid) sample of random
variable ξ . Then, one uses the sample average

f̂ N (x) := 1

N

N∑

j=1

f
(
x, ξj

)
(3)

to approximate the expected value E[f (x, ξ)] and consequently solves the following
Sample Average Approximation (SAA) problem

min� f̂ N (x) s.t. x ∈ X, (4)

by finding the following efficient solution set

E
(
f̂ N (X),�

) := {
f̂ N (x) | �y ∈ X : f̂ N (y) � f̂ N (x) and f̂ N (y) 
= f̂ N (x)

}
(5)

or at least an approximation to it. We call (1) the true problem which is to find
the set E (F (X),�) (along with corresponding feasible preimages in the decision
space X), and (4) the sample average approximation problem which is to find the set
E (f̂ N (X),�) (along with corresponding feasible preimages in the decision space X).

2.3 Efficient Points and Scalarizations

Effectively, we consider multiobjective functions

F, f̂ N : X −→ R
n

defined as in (1) and (3) and have to deal with the fact that there is no canonical
order in R

n, the image space of our functions, inducing minimal points. We do this
as follows. For the rest of this section, let us consider the function F only; everything
that follows holds also for the function f̂ N . First, define

S := F(X)
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as the image set of our multiobjective problem. Next, let � be an arbitrary order
relation on R

n. A vector v ∈ R
n is called minimal or a minimizer w.r.t. � in S iff

v ∈ S and for all w ∈ S one has v�w or v = w. Such a vector v and its corresponding
preimage x = F−1(v) would constitute a solution to our multiobjective optimization
problem. It is well known that minimal points in the sense defined above usually do
not exist. Also, it is not necessarily advisable to use a total order for �; see [22] for
details.

A weaker concept, the concept of domination is therefore needed. A point v dom-
inates a point w, if v � w and v 
= w holds. A point v is nondominated in S, if v ∈ S

and there does not exist a point u ∈ S with u � v and u 
= v. The concept of nondom-
inated points is the proper generalization of minimal points. Therefore, we define the
set of nondominated or efficient points of the set S by

E (S,�) := {v ∈ S | �u ∈ S : u � v and u 
= v}.
The set of solutions of our given multiobjective problem is then E (S,�), together
with the corresponding set of preimages F−1(E (S,�)). Identifying (or approximat-
ing) E (S,�) as well as F−1(E (S,�)) amounts to solving the multiobjective opti-
mization problem at hand.

In what follows, we review briefly standard strategy to compute nondominated
elements w.r.t. �. First, we need a technical definition, generalizing the concept of
ordinary monotonicity.

Definition 2.1 (Monotonicity) Let S ⊆ R
n be a set and s : S → R be a function. The

function s is called �-monotonically increasing in S iff u � v implies s(u) ≤ s(v)

for all u,v ∈ S. The function s is called strictly �-monotonically increasing in S iff
u � v,u 
= v implies s(u) < s(v) for all u,v ∈ S.

Functions monotone with respect to an arbitrary binary relation � are also called
consistent with respect to �; see [7, Chap. 1], or order-preserving; see [23, Chap. 7]
for an overview. These functions play an important role in multicriteria optimization,
as it will be seen in Theorem 2.2 below.

Let C ⊆ R
n be an arbitrary set and define the order

u �C v :⇐⇒ v − u ∈ C. (6)

The next theorem is well known; see, e.g. [22, 29].

Theorem 2.1 Let C ⊂ R
n be a set and let �C be the binary relation defined by C as

in (6). Then, the following statements hold:

(i) The relation �C is translation-invariant in the following sense. For all u,v,w ∈
R

n with u �C v it follows that (u + w) �C (v + w) holds.
(ii) If 0 ∈ C then �C is reflexive.

(iii) If C + C ⊆ C then �C is transitive.
(iv) The set C is a cone if and only if the relation �C is scale-invariant in the follow-

ing sense. For all u,v ∈ R
n with u �C v and all λ > 0 it follows that λu �C λv

holds.
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(v) If C is a cone containing no lines, i.e. C ∩ −C ⊆ {0} (such a cone is also called
pointed), then �C is anti-symmetric.

(vi) The order �C is total if and only if C ∪ −C = R
n.

(vii) The set C is closed if and only if the relation �C is “continuous at 0” in
the following sense. For all v ∈ R

n and all sequences (v(i))i∈N in R
n with

limi→+∞ v(i) = v and 0 �C v(i) for all i ∈ N it follows that 0 �C v holds.

According to this result, it is clear that one will usually use a convex pointed
cone C to induce the relation �C , unless there are compelling reasons for another
choice. The next theorem links binary relations induced by cones and the correspond-
ing efficient points with monotone functions in the sense of Definition 2.1.

Theorem 2.2 Let C ⊆ R
n be a cone with 0 ∈ C and {0} 
= C 
= R

n, and let S ⊆ R
n

be a set. Let s : S → R be a �C -monotone increasing function, and let v ∈ S be a
minimum of s over S. If v is unique or if s is strictly �C -monotone in S, then v is
nondominated in S with respect to �C , i.e. v ∈ E (S,�C).

The proofs can be found in Vogel [24, Chap. 2] or in Göpfert and Nehse [29,
Sect. 2.20].

2.4 Linear Scalarizations

The simplest and most widely used �C -monotone functions are the linear forms in
int(C∗), where C∗ is the dual cone of C defined by

C∗ = {
ω | ∀v ∈ C : 〈ω,v〉 ≥ 0

}
.

Other nonlinear C-monotone functions have only recently attracted some attention,
mainly for numerical reasons [9]. It turns out that in the case of convex cones and
sets, only these linear forms need to be considered, at least in theory. More precisely,
we need the linear forms from the quasi-interior of C∗, i.e. from the set C◦ := {ω ∈
R

n | ∀v ∈ C \ {0} : 〈ω,v〉 > 0}. With this, it turns out that basically “all” efficient
points can be found by minimizing linear functionals 〈ω, ·〉 over S, as the following
theorem shows.

Theorem 2.3 Let C,S ⊆ R
n and define

P (S,C) :=
⋃

ω∈C◦
arg min

{〈ω,v〉 | v ∈ S
}
. (7)

Then, the following statements hold:

(i) Let C be a convex cone with 0 ∈ C and {0} 
= C 
= R
n. Then

P (S,C) ⊆ E (S,�C).

(ii) Let C be a closed convex cone with 0 ∈ C such that C contains no lines. Let S be
closed and convex. Then

E (S,�C) ⊆ cl
(

P (S,C)
)
.
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Proofs can be found in various textbooks and original articles; see, e.g. [29,
Sect. 2.22], [25, p. 74], or [26]. The first proof of Part (ii) is due to Arrow, Barankin,
and Blackwell [27]. Note that the arg min-operator in (7) is understood to work glob-
ally, i.e. only global optima are returned.

2.5 Norm Scalarizations

We can also generate all efficient points by minimizing certain norms instead of linear
functionals, as the next theorem shows.

Theorem 2.4 Let C ⊆ R
n+ be closed convex cone with C◦ 
= ∅ and let S ⊆ R

n be a
set such that there exists a u ∈ R

n with S ⊆ u − C. Then, v ∈ E (S,�C) if and only
if there exists a norm ||| · ||| that is �C -monotone increasing such that v is unique
minimum of the function s(x) := |||x − u|||.

For the proof, see Theorem 5.3 of Jahn [28, p. 117]. While the proof is construc-
tive, the use of such norms in a numerical algorithm, however, turns out not to be an
easy exercise.

All this leaves us with the question what cone one should use. The most natural
choices are, of course, R

n+ and R
n++. With these particular cones, we define two

relations on R
n:

v � w :⇐⇒ v �R
n+ w,

v ≺ w :⇐⇒ v �R
n++ w.

Of course, if v ≺ w, then v � w. As above, if v � w, we say that v dominates the
vector w; but if v ≺ w, we say that v strictly dominates the vector w. In multiob-
jective optimization, we are often concerned with finding the set E (S,�) or an ap-
proximation to it. Less often, we are concerned with finding E (S,≺), since this set
often contains many more elements than E (S,�). The set E (S,≺) is called the set of
weakly efficient points.

Note that � is reflexive, while ≺ is not. Neither of the two orders is total, but both
are translation-invariant, scale-invariant, transitive and anti-symmetric. The cones
used to induce these two relations are self-dual, i.e. C∗ = C holds, and we also have
(Rn+)◦ = R

n++; as such, linear monotone functionals are trivial to find. Note also that,
if S is polyhedral, we have

E (S,�) = P
(
S,R

n+
)
,

see again [29, Sect. 2.22].
Let us now consider particular norms. We start with the max-norm, for which the

following result holds.

Theorem 2.5 Let S ⊆ R
n be a set such that there exists a u ∈ R

n with S ⊆
int(u + R

n+). Then

E (S,≺) ⊆
⋃

ω∈R
n++

arg min
{∥∥diag(ω)(v − u)

∥∥∞
∣∣v ∈ S

}
,
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where the arg min operator on the right hand side of the equation is understood to
return global minima only. Moreover,

E (S,≺) =
⋃

ω∈R
n++

{
v ∈ S | v is the unique minimizer of

∥∥diag(ω)(· − u)
∥∥∞

}
.

We omit the proof as the results are straightforward.
Note that we do not need convexity assumptions for Theorem 2.5. A standard

example [28, p. 298] shows the advantages of using a norm scalarization instead of
linear scalarizations in the nonconvex case. Moreover, according to this result, it is not
necessary to vary the parameter u. Instead, it is sufficient to choose ui := infs∈S si −1
(i = 1, . . . , n) or any other suitable lower bound on the minimal values of the Fi

available. As such, the assumption of Theorem 2.5 (namely, that such a u exists)
relates to the well-posedness of problem (1) in the sense that we assume that each Fi

(i = 1, . . . , n) is bounded from below.
The max-norm is a nonsmooth function and this may cause some inconvenience

in a numerical algorithm for solving the scalarized problem. A natural alternative is
to consider the p-norms which are smooth and for which ‖ · ‖p → ‖ · ‖∞ holds for
p → ∞.

Let Q be a positive definite diagonal matrix. Then, the function

s(v) := ‖Qv‖p

is �-monotonically increasing on R
n+ (but not on the whole space R

n). Moreover,
a result similar to Theorems 2.3 and 2.5 holds, when employing p-norms instead of
the max-norm and varying the parameter p over [1,+∞[; see Theorem 3.4.8 of [25].
Unfortunately, for any finite value of p, Remark 3.4.3 of [25] shows that the closure
of the efficient set based on a p-norm may not necessarily be contained in E (S,�),
that is, the situation

cl

( ⋃

ω∈R
n++

arg min
{∥∥diag(ω)(v − u)

∥
∥

p

∣
∣v ∈ S

})
� E (S,�),

can occur, where “cl(S)” denotes the closure of a set. As such, using a fixed p-norm
with p < ∞ is unsuitable for our problem. This motivates us to consider a smoothing
approach for the infinity norm in the next subsection.

3 Smoothing Max-Norm Scalarization

The discussions in the preceding section motivate us to consider a smoothing max-
norm scalarization scheme for solving the problem (1). In this section, we explain the
technical details about this scheme.
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3.1 Reformulations of the True Problem

Let us start by reformulating the true problem as a parameterized single objective
minimization problem. The appropriate understanding of “reformulation” should be
that an efficient solution point of the true problem is a global minimizer of the refor-
mulated single objective problem under some circumstances and vice versa.

Applying Theorem 2.3, we see that we can find the efficient solution set of the true
problem (1), under suitable assumptions, by solving the following single objective
optimization problem

min
x

〈
ω,F(x)

〉
s.t. x ∈ X. (8)

Let

P
(
F(X),�) :=

⋃

ω∈(Rn+)◦
arg min

{〈ω,v〉 | v ∈ F(X)
}
. (9)

We will not use this reformulation in our numerical resolution but will need to refer
to this problem when we discuss the approximation of efficient sets.

Likewise, by applying Theorem 2.5, we can reformulate (1) as the following max-
norm scalarized minimization problem

min
x

∥∥diag(ω)
(
F(x) − u

)∥∥∞ s.t. x ∈ X. (10)

Let

M
(
F(X),0

) :=
⋃

ω∈R
n++

arg min
{∥∥diag(ω)(v − u)

∥∥∞
∣∣v ∈ F(X)

}
. (11)

(The meaning of the parameter 0 will become clear in Sect. 3.2 below.) The refor-
mulation above means that we can use set M(F (X),0) to approximate the efficient
solution E (F (X),�) of the true problem (1) under some appropriate conditions.

Note that there are no convexity assumptions in Theorem 2.5, so using the corre-
sponding approach is more suitable for nonconvex problems or for problems where
convexity has not been established. Moreover, we see that, again under suitable as-
sumptions, we can compute the whole set of efficient points (or a very close approx-
imation to it) by varying the parameter ω ∈ R

n++; see Theorems 2.3 and 2.5.

3.2 Smoothing Max-Norm Scalarization

We consider now another scalarization technique, which leads to smooth problems
while mimicking the behaviour of the max-norm scalarization introduced in Theo-
rem 2.5. Consider the function p defined by

p(y, t) := t log

(
n∑

i=1

eyi/t

)

, (12)
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where t > 0 is a parameter and p(y,0) := 0. This function was introduced by
Peng [20] as a smooth approximation of the max function used in numerical methods
for solving variational inequality problems.

Using this function, we can introduce a smoothing max-norm scalarization of (10)
as follows:

min
x

p
(
diag(ω)

(
F(x) − u

)
, t

)
s.t. x ∈ X. (13)

We denote the union of all optimal solution sets over all admissible parameters ω by

M
(
F(X), t

) :=
⋃

ω∈R
n++

arg min
{
p
(
diag(ω)

(
F(x) − u

)
, t

) ∣∣x ∈ X
}

(14)

and approximate M(F (X),0) (and hence the efficient solution set E (F (X),�) of
the true problem (1)) by M(F (X), t) as t is driven to zero. To this end, we need to
investigate the properties of the smoothing function p(y, t). We summarize these in
next lemma.

Lemma 3.1 Let p(y, t) be defined as in (12) and h(y) := maxn
j=1 yj . Furthermore,

define the set I(y) := {i ∈ {1,2, . . . , n} | h(y) = yi}. Then

(i) For fixed y ∈ R
n, limt→0 ep(y,t) = maxn

j=1 eyj and limt→0 p(y, t) = h(y).
(ii) Let C ⊆ R

n+ be a cone and let t > 0 be given. Then, p(·, t) is strictly �C -
monotonically increasing.

(iii) For any fixed t > 0, the function p(·, t) is continuously differentiable and strictly
convex in y.

(iv) Let λi(y, t) := ∂p(y, t)/∂yi , then

λi(y, t) = eyi/t

∑n
i=1 eyi/t

∈ (0,1)

and
∑n

i=1 λi(y, t) = 1.
(v) Let t > 0 be a fixed number and S ⊂ R

n be a closed convex set.1 Let a u ∈ R
n

be given such that S ⊆ u + R
n++. Consider the set-valued mapping

ψ : ω �→ arg min
v∈S

p
(
diag(ω)(v − u), t

)
.

Then, ψ(ω) is a singleton for all ω ∈ R
n++, and the corresponding function is

continuous.
(vi) Let t > 0 be fixed and S ⊂ R

n be a closed subset in R
n. Assume that there is

u ∈ R
n such that S ⊆ u + R

n++. Define

M(S, t) :=
⋃

ω∈R
n++

arg min
v∈S

p
(
diag(ω)(v − u), t

)
. (15)

Then, M(S, t) ⊆ E (S,�).

1Here and in (vi), we use a general set S to keep the statements general, although our focus later on will
be on S = F(X).
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(vii) For any y ∈ R
n+ and t > 0,

0 ≤ p(y, t) − ‖y‖∞ ≤ t logn.

Proof Part (i). This follows by noting that for t > 0, we have exp(p(y, t)) =
(
∑n

i=1(e
yi )1/t )t . The rest is straightforward.

Part (ii). Let C ⊆ R
n+ be a cone and let u,v ∈ R

n be given with u 
= v and u �C v,
i.e. v − u ∈ C ⊆ R

n+. As a consequence, ui ≤ vi and therefore eui/t ≤ evi/t for i =
1, . . . , n, but euj /t < evj /t for one j ∈ {1, . . . , n}. From this, the result follows.

Parts (iii) and (iv). See [20, Lemma 2.1].
Part (v). This follows from the strict convexity of p(·, t) and Proposition 4.32

of [31].
Part (vi). Let v ∈ M(S, t), i.e. v minimizes q(v, t) := p(diag(ω)(v −u), t) over S

for some given u ∈ R
n, ω ∈ R

n++ and t > 0. According to parts (ii) and (iii), p(·, t)
is strictly �-monotonically increasing and strictly convex, and therefore q(·, t) is
strictly �-monotonically increasing and strictly convex. Through Theorem 2.2, w ∈
E (S,�). The conclusion follows.

Part (vii). The assertion was made by Peng [20, equation (2.2)] for p(y, t) −
max(yi) where the components of y are not restricted to be nonnegative. Here we
provide a proof for completeness and for the fact that the conclusion may not hold
when some components of y are negative.

The first inequality is straightforward. We only prove the second. Let I0 denote
the index set such that

‖y‖∞ = yi0, i0 ∈ I0.

Then

p(y, t) = log

(
eyi0

(
|I0| +

∑

i 
=i0

e
yi−yi0

t

)t)

where |I0| denotes the cardinality of I0. Since yi < yi0 , then e
yi−yi0

t < 1, which im-
plies

p(y, t) ≤ ‖y‖∞ + t logn,

where n is the dimension of vector y. Equality holds when |I0| = n. �

Note also that part (vi) of the preceding lemma holds for arbitrary t > 0. Espe-
cially, we have the following corollary in the case when S is convex.

Theorem 3.1 Let t > 0 be fixed and S ⊂ R
n be a closed convex set. Let there be

given an u ∈ R
n such that S ⊆ u + R

n++. Then

P (S,�) ⊆ M(S, t) ⊆ E (S,�) ⊆ cl
(

P (S,�)
)
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where P (S,�) := P (S,R
n+). Moreover, if the set Ω ⊆ R

n++ is a dense subset of R
n++,

then
⋃

ω∈Ω

arg min
v∈S

p
(
diag(ω)(v − u), t

)

is dense in E (S,�).

Proof Let w ∈ P (S,�). Then, there exists an ω ∈ R
n++ such that −ω ∈ NS(w).

For t > 0, define � ∈ R
n++ implicitly as the unique solution to the equations �i :=

ωi/e
�i(wi−ui)/t for i = 1, . . . , n. Consider the function q(v) := p(diag(�)(v − u), t)

and note that

∂q(w)

∂wi

= �ie
�i(wi−ui)/t

∑n
j=1 e�j (wj −uj )/t

.

With this, −∇q(w) = −ω/
∑n

j=1 e�j (wj −uj )/t ∈ NS(w), and therefore w is the
unique minimizer of q over S and as such an element of M(S, t). The density re-
sult follows immediately from Lemma 3.1(v). �

According to this result, scalarizing a multiobjective problem with image set S

has, under the stated assumptions, two advantages:

1. It is not necessary to use small parameter values t ≈ 0 when solving convex mul-
tiobjective optimization problems with this scalarization technique. In this case,
each member w ∈ M(S, t) is the unique minimizer of a strictly convex objective
function of the form p(diag(ω)(· − u), t).

2. A sufficiently good discretization of the parameter space R
n++ (or of a base gen-

erating this cone) by parameter vectors ω will result in a good approximation of
E (S,�), a much sought-after situation in multiobjective optimization [9].

For the general case, we have the following result.

Theorem 3.2 Extend the definition of the mapping M by setting

M(S,0) :=
⋃

ω∈R
n++

arg min
{∥∥diag(ω)(v − u)

∥∥∞
∣∣v ∈ S

}
. (16)

Then the mapping M(S, ·) is upper semicontinuous at t = 0.
Furthermore, let S ⊆ u + R

n++ be compact. For each ω ∈ R
n++ and t ≥ 0

sufficiently small (including t = 0 in which case we refer to the max-norm), if
‖diag(ω)(· − u)‖1/t has a unique minimizer in S, then the mapping M(S, ·) is con-
tinuous at t = 0.

Proof Let u ∈ R
n be given with S ⊆ u + R

n++. Without loss of generality, u = 0.
Consider the coordinate transformation z = g(y) := (ey1 , . . . , eyn) (y ∈ R

n). Due
to [24, Satz 2.1], we have E (S,�) = g−1(E (g(S),�)) for all orders � with u � v ⇔
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g(u) � g(v). The latter is clearly the case for � =� and � =≺, and we see that we
only need to consider problems in the z-coordinates. Let Z = g(S),

G(Z, t) :=
⋃

ω∈R
n++

arg min
{∥∥diag(ω)z

∥∥
1/t

∣∣ z ∈ Z
}

for t > 0 and

G(Z,0) :=
⋃

ω∈R
n++

arg min
{∥∥diag(ω)z

∥
∥∞

∣
∣ z ∈ Z

}
.

By exploiting the monotonicity of the logarithm, we see that

g−1(G(Z, t)
) = M(S, t).

Therefore, it suffices to consider the semicontinuity of the mapping G .
Let ω ∈ R

n++ be given. Observe that for any z ∈ Z, ‖diag(ω)z‖1/t converges to
‖diag(ω)z‖∞ which implies pointwise convergence on Z. Moreover, ‖diag(ω)z‖1/t

is globally Lipschitz continuous, which implies that the function is equi-continuous
on Z. Through [30, Theorem 7.10], the two properties imply that ‖diag(ω) · ‖1/t

epiconverges to ‖diag(ω) · ‖∞ on R
n and through [31, Proposition 4.6] the upper

semicontinuity of its solution set as t tends to 0.
To prove the continuity under the additional conditions, it suffices to show lower

semicontinuity of G(Z, ·) at t = 0. We proceed as follows. Let ω ∈ R
n++ and t > 0 be

given, let z(ω, t) be the unique minimizer of ‖diag(ω) · ‖1/t in Z and let v(ω, t) :=
‖diag(ω)z(ω, t)‖1/t . For z ∈ Z, we introduce a domination structure D(z,ω, t) in the
sense of [32] by

D(z,ω, t) := −z + {
ẑ ∈ R

n | v(ω, t) ≥ ∥
∥diag(ω)ẑ

∥
∥

1/t

}
.

This domination structure induces a binary relation �t : for all z, ẑ ∈ R
n we have

z �t ẑ if and only if ẑ ∈ z + D(z,ω, t). By definition, the set of efficient points of Z

with respect to this domination structure is

E (Z,�t ) = {
ẑ ∈ Z | �z ∈ Z : z 
= ẑ and ẑ ∈ z + D(z,ω, t)

}
.

We clearly have E (Z,�t ) = {z(ω, t)} and

Z ⊆ {
z ∈ R

n
∣∣ ∥∥diag(ω)z(ω, t)

∥∥
1/t

≤ ∥∥diag(ω)z
∥∥

1/t

}
,

i.e. the set E (Z,�t ) is externally stable in the sense of Definition 3.2.6 (p. 59) of [25].
Moreover, D(·,ω, ·) is an upper semicontinuous mapping. As a consequence, the
mapping t �→ E (Z,�t ) is lower semicontinuous for all ω ∈ R

n++; see Theorem 4.3.2
(p. 112) of [25]. From this, the result follows. �

Note that it suffices to assume that S is convex and closed in order to ensure that
the functions ‖diag(ω)(· − u)‖1/t have unique minimizers in S.
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In case E (S,�) = E (S,≺) holds, upper semicontinuity can also be shown by in-
voking Theorem 2.5 as well as Part 6 of Lemma 3.1.

Note that the function p essentially introduces a coordinate transformation in R
n

first before mapping vectors to real numbers: each single coordinate is transformed
with the help of the strictly monotone and strictly convex functions gi : vi �→
eωi(vi−ui)/t before the actual scalarization takes place, i.e. before these new coor-
dinates are summed up. Accordingly, each face of g(S) has at most one point with
E (g(S),�) in common, a highly desirable property for numerical algorithms; see
Theorem 3.2 of [9] and the accompanying discussion.

Corollary 3.1 Let X be closed and convex and let the function F(x) := E[f (x, ξ)]
be convex and continuous on X. Furthermore, let t > 0 be fixed and u ∈ R

n be given
with ui < Fi(x) for all x ∈ X (i = 1, . . . , n). Then

P
(
F(X),�) ⊆ M

(
F(X), t

) ⊆ E
(
F(X),�) ⊆ cl

(
P

(
F(X),�))

where P (F (X),�) is defined as in (9). Moreover, if the set Ω ⊆ R
n++ is a dense

subset of R
n++, then

⋃

ω∈Ω

arg min
F(x)∈F(X)

p
(
diag(ω)

(
F(x) − u

)
, t

)

is dense in E (F (X),�).

Corollary 3.2 Corollary 3.1 holds if F is replaced by f̂ N throughout.

Clearly, the sets P (F (X),�) and cl(P (F (X),�)) are indistinguishable from each
other in floating-point arithmetic. As such, under the conditions of the last corollar-
ies, the sets M(F (X), t) and E (F (X),�) are indistinguishable from each other in
floating-point arithmetic. In other words, M(F (X), t) is a perfect approximation of
the set that we want to approximate, and it is sufficient to use a sufficiently dense
discretization of the parameter space.

Corollary 3.3 Let M(F (X), t) and M(F (X),0) be defined by (14) and (11), re-
spectively. Then M(F (X), t) is upper semicontinuous at t = 0. Furthermore, let X

be compact and F be continuous, and let u ∈ R
n be given with ui < Fi(x) for all

x ∈ X (i = 1, . . . , n). For each ω ∈ R
n++ and each t ≥ 0 sufficiently small (including

t = 0), assume that the problem

min
∥∥F(x) − u

∥∥
1/t

s.t. x ∈ X (17)

has a unique solution. Then, the mapping M(F (X), t) is continuous at t = 0.

Corollary 3.4 Corollary 3.3 holds if F is replaced by f̂ N throughout.
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4 Sample Average Approximation

In this section, we move on to consider the following problem

min
∥∥diag(ω)

(
f̂ N (x) − u

)∥∥∞ s.t. x ∈ X, (18)

where ω ∈ R
n++ is arbitrary and we assume that u ∈ R

n has been chosen in such a
way that u < f (x, ξ) for all (x, ξ) ∈ X × Ξ holds. Let

M
(
f̂ N (X),0

) :=
⋃

ω∈R
n++

arg min
{∥∥diag(ω)(v − u)

∥∥∞
∣∣v ∈ f̂ N (X)

}
. (19)

Of course, it is not necessary in the definition of M(f̂ N (X),0) to take the union over
all ω ∈ R

n++. It suffices to take the union over all ω ∈ R
n++ with ‖ω‖ ≤ 1, and we will

do so if this simplifies the derivation.
Obviously, (18) is the single-objective max-norm scalarization of the sample av-

erage approximation problem (4). In this section, we investigate approximation of
M(F (X),0) by M(f̂ N (X),0) as the sample size N increases.

Assume now that we can solve (18) and obtain a global optimal solution xN(ω).
First, we investigate the convergence of {xN(ω)} as the sample size N increases. For
this, we need the following intermediate result.

Lemma 4.1 Consider a general constrained minimization problem

minφ(x) s.t. x ∈ X (20)

where φ : R
m → R is continuous and X ⊆ R

m is closed, and a perturbed program

minψ(x) s.t. x ∈ X (21)

where ψ : R
m → R is continuous and |ψ(x)−φ(x)| ≤ δ, ∀x ∈ X. Let x∗ be a global

minimizer of φ over X, and x̃ a global minimizer of ψ over X. Then

(i) |φ(x∗) − ψ(x̃)| ≤ supx∈X |ψ(x) − φ(x)| ≤ δ.

(ii) A global minimizer of ψ is a δ-global minimizer of φ and vice versa, that is,
|φ(x∗) − φ(x̃)| ≤ 2δ and |ψ(x∗) − ψ(x̃)| ≤ 2δ.

The result is well-known, see, for instance, [17]. Note that, strictly speaking, x∗ is
a 2δ-global minimizer of ψ . However, by convention, we call it a δ-global minimizer.

Let f (x, ξ) be defined as in (1). We denote by

Mx(t) := E
{
et‖f (x,ξ)−E[f (x,ξ)]‖}

the moment generating function of the random variable ‖f (x, ξ) − E[f (x, ξ)]‖. Let
us make the following assumptions.
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Assumption 4.1

(a) For every x ∈ X, the moment generating function Mx(t) is finite valued for all t

in a neighbourhood of zero.
(b) There exists an integrable function κ : Ξ → R+ and a constant γ > 0 such that

∥∥F(y, ξ) − F(x, ξ)
∥∥ ≤ κ(ξ)‖y − x‖γ (22)

for all ξ ∈ Ξ and all x, y ∈ X.
(c) The moment generating function Mκ(t) of κ(ξ) is finite valued for all t in a

neighbourhood of zero.

Assumptions 4.1(a) and (c) mean that the probability distributions of the random
variable ‖f (x, ξ)‖ and the random variable κ(ξ) die exponentially fast in the tails. In
particular, it holds if the random variables have a distribution supported on a bounded
subset of R.

Lemma 4.2 Let Assumption 4.1 hold and X be a compact set. Then for any ε > 0
there exist positive constants c(ε) and β(ε), independent of N , such that

Prob
{

sup
x∈X

∥∥f̂ N (x) − E
[
f (x, ξ)

]∥∥ ≥ ε
}

≤ c(ε)e−Nβ(ε) (23)

for N sufficiently large.

Proof The lemma is a simple generalization of [33, Theorem 5.1] where f is a real
valued function. The conclusion follows by applying [33, Theorem 5.1] to each com-
ponent function of f̂ N here. �

Theorem 4.1 Let Assumption 4.1 hold and X be a compact set. Let M(f̂ N (X),0)

be defined as in (19). Let ε > 0 be a fixed scalar and v(ω) denote the optimal value
of minimization problem (10). Define

Mε
(
F(X),0

) :=
⋃

ω∈R
n++

‖ω‖≤1

{
x ∈ X : ∥∥diag(ω)

(
F(x) − u

)∥∥∞ ≤ v(ω) + 2ε
}
.

Then

(i) With probability approaching one exponentially fast with the increase of sample
size N , the optimal value of (18) converges to that of (10) uniformly with respect
to ω;

(ii) For any ε > 0, there exist constants ĉ > 0 and β̂ > 0 (dependent of ε) such that

Prob
(
D

(
M

(
f̂ N (X),0

)
, Mε

(
F(X),0

))
> 0

) ≤ ĉe−β̂N (24)

for N sufficiently large.
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Proof Observe first that, by the marginal map theorem [34, Theorem 8.2.11], the set
M(f̂ N (X),0) is measurable. For fixed ω ∈ R

n++, let x∗(ω) denote a global opti-
mal solution of (10) and xN(ω) denote an optimal solution of (18). Without loss of
generality, assume ‖ω‖ = 1.

Part (i). By definition, v(ω) = ‖diag(ω)(F (x∗(ω)) − u)‖∞, and by Lemma 4.1

∣∣v(ω) − ∥∥diag(ω)
(
f̂ N

(
xN(ω)

) − u
)∥∥∞

∣∣

≤ sup
x∈X

∣∣∥∥diag(ω)
(
F(x) − u

)∥∥∞ − ∥∥diag(ω)
(
f̂ N (x) − u

)∥∥∞
∣∣

≤ ‖ω‖ sup
x∈X

∥∥f̂ N (x) − F(x)
∥∥

= sup
x∈X

∥∥f̂ N (x) − F(x)
∥∥. (25)

Under Assumption 4.1, it follows from Lemma 4.2 and the discussion above that (23)
holds. The conclusion follows.

Part (ii). Observe that

D
(

M
(
f̂ N (X),0

)
, Mε

(
F(X),0

))
> 0 (26)

implies

sup
ω∈R

n++
‖ω‖≤1

sup
x∈X

∣∣∥∥diag(ω)
(
F(x) − u

)∥∥∞ − ∥∥diag(ω)
(
f̂ N (x) − u

)∥∥∞
∣∣ ≥ ε. (27)

To see this, let ω ∈ R
n++, ‖ω‖ = 1 and xN(ω) ∈ M(f̂ N (X),0) be such that xN(ω) is

a solution to minx∈X ‖diag(ω)(f̂ N (x) − u)‖∞ and

D
(

M
(
f̂ N (X),0

)
, Mε

(
F(X),0

)) = d
(
xN(ω), Mε

(
F(X),0

))
> 0.

The existence of xN(ω) is guaranteed as M(f̂ N (X),0) is a nonempty compact set.
Obviously, (26) implies that xN(ω) /∈ Mε(F (X),0) and, through the definition of
Mε(F (X),0),

∥∥diag(ω)
(
F

(
xN(ω)

) − u
)∥∥∞ > v(ω) + 2ε.

In view of Lemma 4.1(ii), this implies

sup
x∈X

∣∣∥∥diag(ω)
(
F(x) − u

)∥∥∞ − ∥∥diag(ω)
(
f̂ N (x) − u

)∥∥∞
∣∣ ≥ ε,
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and hence (27). Using the relationship between (26) and (27), we have

Prob
{
D

(
M

(
f̂ N (X),0

)
, Mε

(
F(X),0

))
> 0

}

≤ Prob
{

sup
ω∈R

n++,

‖ω‖≤1

sup
x∈X

∣∣∥∥diag(ω)
(
F(x) − u

)∥∥∞ − ∥∥diag(ω)
(
f̂ N (x) − u

)∥∥∞
∣∣ ≥ ε

}

≤ Prob
{

sup
x∈X

∥∥f̂ N (x) − F(x)
∥∥ ≥ ε

}
,

where the last inequality is due to (25). The rest follows from Lemma 4.2. �

5 Smoothing Approximation

The problem under consideration in (18) is a nonsmooth minimization problem. Al-
gorithms which can be used to solve such a problem include, e.g. the well-known
bundle methods [35, 36], particularly when f (x, ξ) is convex in x. Here, however,
we will consider a smoothing method based on (12), for the following reasons:

1. The nonsmoothness in (18) is only caused by the max-operator of the norm, so it
should be advantageous to exploit this particular structure.

2. The function p from (12) is strictly �C -monotonically increasing for a large set
of cones C (see Part 3 of Lemma 3.1) and its usage comes as such naturally in a
multiobjective framework.

3. In the convex case, Part 6 of Lemma 3.1 ensures us that it is not necessary to use
large smoothing parameter that would have a detrimental effect on the numerical
stability of the solution process.

Consider the same parameters ω ∈ R
n++, u ∈ R

n as used in (18). Using the smooth-
ing function introduced in (12), we consider a smooth approximation of problem (18),
namely

minp
(
diag(ω)

(
f̂ N (x) − u

)
, t

)
s.t. x ∈ X, (28)

and its true counterpart defined in (13).
From Lemma 3.1, both objective functions for these two problems are continu-

ously differentiable for t > 0 if F,f (·, ξ) ∈ C1 for all ξ . Moreover, they are convex
in x if f (·, ξ) is convex for all ξ . In what follows, we investigate how the global
optimal solution of (13) approximates that of (10) as t tends to 0.

Lemma 5.1 Consider problems (20) and (21) as defined in Lemma 4.1. Let X∗
φ de-

note the set of optimal solutions to (20) and X∗
ψ the set of optimal solutions to (21).

Then for any ε > 0, there exists a δ > 0 (depending on ε) such that

D
(
X∗

ψ,X∗
φ

) ≤ ε, (29)

when

sup
x∈X

∣∣ψ(x) − φ(x)
∣∣ ≤ δ.
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If, in addition, there exists ν > 0 such that

φ(x) ≥ min
x∈X

φ(x) + αd
(
x,X∗

φ

)ν
, for all x ∈ X, (30)

then

D
(
X∗

ψ,X∗
φ

) ≤
(

3

α
sup
x∈X

∣∣ψ(x) − φ(x)
∣∣
) 1

ν

. (31)

Proof The result is a minor extension of [37, Lemma 3.2] which deals with the case
when X∗

φ is a singleton. Here we provide a proof for completeness. Let ε be a fixed
small positive number and φ∗ the optimal value of (20). Define

R(ε) := inf
{x∈X,d(x,X∗

φ)≥ε}
φ(x) − φ∗.

Then R(ε) > 0. Let δ := R(ε)/3 and ψ be such that supx∈X |ψ(x)−φ(x)| ≤ δ. Then
for any x ∈ X with d(x,X∗

φ) ≥ ε and any fixed x∗ ∈ X∗
φ ,

ψ(x) − ψ(x∗) ≥ φ(x) − φ(x∗) − 2δ ≥ R(ε)/3 > 0,

which implies that x is not an optimal solution to (21). This is equivalent to
d(x,X∗

φ) < ε for all x ∈ X∗
ψ , that is, D(X∗

ψ,X∗
φ) ≤ ε.

Let us now consider the case when condition (30) holds. In such a case, it is easy
to derive that R(ε) = αεν . Therefore, (31) follows by setting

ε :=
(

3

α
sup
x∈X

∣∣ψ(x) − φ(x)
∣∣
) 1

ν

in the first part of the proof. �

Note that in the case when ν = 2, (30) is known as a second order growth con-
dition. The terminology was introduced by Shapiro [38] for the stability analysis of
stochastic programming and has been widely used afterwards; see [31, 39, 40] and
the references therein.

We are now ready to state the main result of this section, Theorem 5.1, which
describes the deviation of a solution to the smoothed problem (13) from the solution
set of (10).

Theorem 5.1 Let ω be fixed and X∗(ω) and X(ω, t) denote the set of opti-
mal solutions of (10) and (13), respectively. Let F(x) := E[f (x, ξ)] and I(x) :=
{i | ωiFi(x) = maxj ωjFj (x)}. Assume: (a) fi(x, ξ), i = 1, . . . , n, is convex in x,
(b) maxi (ωiFi(x)) satisfies the growth condition, that is, there exist positive con-
stants α and ν independent of ω such that

max
i

(
ωiFi(x)

) ≥ min
x∈X

max
i

(
ωiFi(x)

) + αd
(
x,X∗(ω)

)ν
, for all x ∈ X. (32)

Then we have the following:
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(i) For any t > 0,

D
(
X(ω, t),X∗(ω)

) ≤
(

3

α
t logn

) 1
ν

. (33)

(ii) Let M(F (X),0) be defined as in (11) and M(F (X), t) in (14). Then

D
(

M
(
F(X), t

)
, M

(
F(X),0

)) ≤
(

3

α
t logn

) 1
ν

.

Proof Part (ii) follows from Part (i) and the definition of sets M(F (X),0) and
M(F (X), t). So we only prove Part (i).

Under the growth condition (32), it follows from Lemma 5.1 that

D
(
X(ω, t),X∗(ω)

)

≤
(

3

α
sup
x∈X

∣∣p
(
diag(ω)

(
F(x) − u

)
, t

) − ∥∥diag(ω)
(
F(x) − u

)∥∥∞
∣∣
) 1

ν

. (34)

By Lemma 3.1(vii),

∣
∣p

(
diag(ω)

(
F(x) − u

)
, t

) − ∥
∥diag(ω)

(
F(x) − u

)∥∥∞
∣
∣ ≤ t logn.

This gives (33). The proof is complete. �

Finally, we study the approximation of (28) to (13) as sample size N increases.
We have the following.

Theorem 5.2 Let t > 0 and

M
(
f̂ N (X), t

) :=
⋃

ω∈R
n++

arg min
{
p
(
diag(ω)(v − u), t

) ∣∣v ∈ f̂ N (X)
}

(35)

and

Mε
(
F(X), t

) :=
⋃

ω∈R
n++

{
x ∈ X : p(

diag(ω)
(
F(x) − u

)
, t

) ≤ v(ω, t) + 2ε
}
,

where ε is a fixed positive scalar and v(ω, t) denotes the optimal value of mini-
mization problem (13). Assume the conditions of Lemma 4.2. Then with probability
approaching one exponentially fast with the increase of sample size N , the optimal
value of (28) converges to that of (13) uniformly with respect to ω, that is, for any
ε > 0, there exist constants ĉ(t) > 0 and β̂(t) > 0 (dependent of ε) such that

Prob
(
D

(
M

(
f̂ N (X), t

)
, Mε

(
F(X), t

))
> 0

) ≤ ĉ(t)e−β̂(t)N (36)

for N sufficiently large.
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The proof is similar to that of Theorem 4.1 by replacing ‖ · ‖∞ with p(·, t) and
using Lemma 3.1. We omit the details. Note that if we want to obtain a rate of con-
vergence of the solution set of (28) to that of (13), we need some growth condi-
tion of p(diag(ω)F (x), t) for fixed t and it is unclear whether this is implied by the
growth condition (32). The analysis is similar to that of Theorem 5.1 by exploiting
Lemma 5.1. Again, we omit the details.

6 Numerical Results

In this section, we illustrate the characteristics of the model (1) by discussing
several potential applications to it. We describe the corresponding numerical ex-
periments on these problems and report some preliminary numerical test results.
Optimization of the sampled average functions took place within MATLAB Ver-
sion 7.2.0.294 (R2006a) using routine ucSolve with standard parameter settings
from the TOMLAB Version 6.0 package.

6.1 A Multiobjective Stochastic Location Problem

For a ∈ R
m and a random vector ξ ∈ R

m, consider the unconstrained bi-objective
optimization problem with decision variables x ∈ R

m and objective function

f (x, ξ) :=
(‖x − a‖

‖x − ξ‖
)

. (37)

We consider the simple case of ξ = (ξ1,0, . . . ,0)T with ξ1 uniformly distributed on
[0, c] (c > 0 constant). It is easy to see that with b := (c/2,0, . . . ,0)T , E (g(Rm),

�)) = g(conv{a, b}), i.e. the set of optimal decisions is the line segment joining a

and b.
Let us choose a = (−1, . . . ,−1)T . This is a convex optimization problem, so it is

sufficient to use a smoothing parameter t = 1. Denote by k the number of equidistant

Fig. 1 (a) Approximation of the efficient set for problem (37) computed with parameters k = 100,
N = 10, and 10 random starting points per weight vector; (b) corresponding preimages
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Fig. 2 Sample size N versus
deviation between the computed
approximation of the set of
efficient points and the set of
efficient points on a
double-logarithmic scale

Fig. 3 (a) Approximation of the efficient set for problem (37) computed with parameters k = 100,
N = 100, and 10 random starting points per weight vector; (b) corresponding preimages

weight vectors used from the set conv{(0,1)T , (1,0)T }. For m = 2 and c = 2, Fig. 1
depicts the approximation of the efficient set, as well as the corresponding preimages,
by 1000 points calculated with k = 100 different weights, 10 random starting points
per weight vector, and sample size N = 10. As it can be seen, the quality of the
approximation is already quite high, except for the extreme ends of the curve. The
general shape of the solution set conv{(−1,−1)T , (1,0)T } is clearly discernible, as
is the influence of the random variable on the first coordinate of b = (1,0)T .

Figure 2 shows the deviation between the computed approximation of the set of
efficient points and the set of efficient points between N = 10 and N = 104. As it can
be seen, the regime of exponential convergence holds over the depicted values of N ;
see Theorem 5.2.

Let us now increase the sample size to N = 100, while keeping all other compu-
tational parameters fixed. Figures 3 visualizes the corresponding results. As it can
be seen, the quality of the approximation of the optimal decision set has sharply im-
proved, although effects of the random variable are still visible. In contrast to this, the
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quality of the approximation of the set of efficient points has only slightly improved,
doubtless due to the fact that the quality was already quite high for the case N = 10.
Further experiments with m � 2 have shown that this effect appears to be relatively
independent of the dimension of the underlying decision space.

6.2 A Multiobjective Stochastic Energy Generation Problem

Some methods for multiobjective optimization only work for two criteria [41–43].
Here, we show that our proposed method is also applicable to problems with more
than two criteria by considering a game-theoretic problem modified from [44, Ex-
ample 6.3]: in an electricity market, several electricity generators compete with each
other in dispatching electricity. For a total production level Q ≥ 0, the inverse demand
function (which is a price) of generator i is given by pi(Q, ξi), where ξi is a random
variable. Denote by qi the electricity production of generator i and let ci(qi) be the
cost for generator i to produce this amount. Then, every generator wants to maximize
his own profit. In [44], this problem has been treated as a noncollaborative stochastic
Nash game. Here, however, we treat the problem as a stochastic collaborative game,
i.e. we consider the multiobjective stochastic problem with objective

f (q, ξ) :=

⎛

⎜⎜
⎝

...

ci(qi) − qipi(
∑

j qj , ξi)

...

⎞

⎟⎟
⎠ (38)

for q ∈ R
m+. The connections between collaborative games and MOPs have been

well investigated; see, e.g. [28, Chap. 10]. Following [44], we use, for m generators,
a random variable ξ ∈ R

m where each ξi follows a truncated normal distribution with
support [−5,5], mean value 0, and standard deviation 1 (i = 1, . . . ,m). With this,
we choose pi(Q, ξ) = ai + ξi − biQ and ci(qi) = αiq

2
i + βiqi , where ai, bi, αi, βi

are given constants (i = 1, . . . ,m). Note that price functions for different generators
may be different. This reflects the fact that, in practice, consumers are willing to pay
different prices depending on the nature of how power is generated. We consider
the case of m = 3 generators and constants ai = 25.0,26.5,24.0, bi = 1.2,1.3,1.5,
αi = 5.0,2.0,3.0, and βi = 1.0,1.5,1.2.

With t = 0.1, a sample size of N = 50 and 500 randomly generated weight vectors
ω ∈ R

3++ with ω1 + ω2 + ω3 = 1, the corresponding approximation to the set of
efficient points is depicted in Fig. 4, while the corresponding preimages are shown in
Fig. 5.

Although the objective functions of the problem are not convex, it appears that the
set of efficient points corresponds to a subset of a surface of a convex set. As such,
Corollary 3.1 ensures that good approximations of the set of efficient points can be
constructed for arbitrary t .

6.3 A Nonconvex Academic Testcase

Finally, we consider a nonconvex problem in order to show the behaviour of the
approximation scheme proposed on such a seemingly more difficult test case. Fol-
lowing [45], we define a stochastic bi-objective problem with two variables 0 ≤ x1,
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Fig. 4 Approximation of the set of efficient points of problem (38), as seen from two different viewpoints.
The triangles of the surface shown correspond to the Delaunay triangulation of the first two coordinates of
the points computed

Fig. 5 Preimages of the approximated efficient points of problem (38) in the decision space, as seen from
two different viewpoints

x2 ≤ 5, a normally distributed random variable ξ and parametrized objective func-
tions

f (x1, x2) :=
(

cos( 2π
360 ((a1 + 10ξ) sin(2πx1) + h(x2)))g(x1)

sin( 2π
360 ((a1 + 10(1 − ξ)) sin(2πx1) + h(x2)))g(x1)

)
, (39)

where g(x) := 1+d cos(2πx) and h(x) := ac +a2 sin(2πx2). Parameters where cho-
sen as follows: ac = 45, a1 = 35, a2 = 20, and d = 0.5.

For this problem, we set t = 0.1 for the smoothing parameter, used a sample size
of N = 10, and used weights ω1 = k/101, ω2 = 1 − ω1 for k = 1, . . . ,100. The
resulting approximation to the set of efficient points is depicted in Fig. 6. Note that,
with parameter settings as above, E[f (x)] is exactly the objective function described
by (7.1)–(7.3) in [45]. We can therefore compare Fig. 6 with Fig. 7.1 of [45, p. 110]
(also displayed on the title page of [45]) and observe that central parts of the set
of efficient points are well approximated, even in the nonconvex region of this set.
Note that two branches of locally efficient points are also approximated, which is an
artifact of the local optimization solver in use.
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Fig. 6 Approximation of the set
of efficient points of
problem (39)

7 Concluding Remarks

In this paper, we have proposed a smoothing sample average approximation (SAA)
method for solving a class of stochastic multiobjective optimization problems where
the underlying objective functions are expected values of some random functions.
Under some moderate conditions, we have derived the exponential rate of conver-
gence of the SAA problem to its true counterpart in terms of efficient solutions and
linear approximation rate in terms of a smoothing parameter. Our preliminary numer-
ical tests show that the method works well. The SAA approach is highly applicable
to real life problems where one cannot obtain a closed form of the expected value of
a random functions or numerically too expensive to calculate the expected values.

It is possible to extend this work in a number of ways. One is to consider a stochas-
tic multiobjective optimization problem where the objective functions may not appear
in a unified form (of the expected of a random function). For instance, in finance, one
objective could be the expected profit whereas another could be the variance which
represents risks. In such a case, the variance cannot be presented as the expected value
of a random function as in (1) and hence our technical results cannot be applied di-
rectly to this kind of problem. However, through simple analysis, one can easily find
a nonlinear form of sample average approximation to the variance and subsequently
derive the exponential rate of convergence by following our discussions in Sects. 3–5.
We leave this to interested readers.

Another interesting class of stochastic multiobjective optimization problems are
those in which the objective functions take the form of the probability of a stochastic
constraint. Our conjecture is that we may represent the probability of a stochastic
constraint in the form of an expected value of an indicator function and approximate
the latter through sample averaging. It is unclear whether it is possible to derive ex-
ponential rate of convergence as the functions under the expectation are no longer
continuous. It would be interesting to analyse convergence of this type of sample
average approximation; this is the subject of future research.
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