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a b s t r a c t

Inspired by the successful applications of the stochastic optimization with second order stochastic dom-
inance (SSD) model in portfolio optimization, we study new numerical methods for a general SSD model
where the underlying functions are not necessarily linear. Specifically, we penalize the SSD constraints to
the objective under Slater’s constraint qualification and then apply the well known stochastic approxima-
tion (SA) method and the level function method to solve the penalized problem. Both methods are iter-
ative: the former requires to calculate an approximate subgradient of the objective function of the
penalized problem at each iterate while the latter requires to calculate a subgradient. Under some mod-
erate conditions, we show that w.p.1 the sequence of approximated solutions generated by the SA
method converges to an optimal solution of the true problem. As for the level function method, the con-
vergence is deterministic and in some cases we are able to estimate the number of iterations for a given
precision. Both methods are applied to portfolio optimization problem where the return functions are not
necessarily linear and some numerical test results are reported.

� 2011 Elsevier B.V. All rights reserved.

1. Introduction

The notion of stochastic dominance as a constraint for optimiza-
tion problems was introduced by Dentcheva and Ruszczýnski [4].
The concept of stochastic dominance is fundamental when com-
paring two random variables, it allows one to define preference
among random variables. This concept has been playing an impor-
tant role in portfolio optimization. Let g(x,n) be a concave function,
with decision vector x and random variable n. It is said that g(x,n)
stochastically dominates g(y,n) in the first order, denoted by
g(x,n) � (1)g(y,n), if

Fðgðx; nÞ;gÞ 6 Fðgðy; nÞ;gÞ; 8g 2 R; ð1:1Þ

where F(g(x,n);g) and F(g(y,n);g) are the cumulative distribution
functions of g(x,n) and g(y,n), respectively. Similarly, g(x,n) stochas-
tically dominates g(y,n) in the second order, denoted by
g(x,n) � (2)g(y,n), ifZ g

�1
Fðgðx; nÞ; aÞda 6

Z g

�1
Fðgðy; nÞ;aÞda; 8g 2 R: ð1:2Þ

The concept of stochastic dominance is widely used in economics
and finance because of its relation to models of risk-averse prefer-
ences [15].

In this paper, we consider the following optimization problem
with second order stochastic dominance constraints:

max
x

E½f ðx; nÞ�;

s:t: gðx; nÞ�ð2Þgðy; nÞ;
x 2 X;

ð1:3Þ

where f : Rn � Rk ! R; g : Rn � Rk ! R are concave continuous
functions both in x and n, x 2 X is a decision vector with X being a
nonempty convex subset of Rn; y 2 X is a predefined vector, and
n : X! N � Rk is a random vector defined on probability space
ðX;F ; PÞ with support N; E½�� denotes the expected value w.r.t. the
probability distribution of n.

Dentcheva and Ruszczyński analyzed several aspects of the sto-
chastic dominance model including optimality and duality [5,6], as
well as numerical methods [4]. Roman et al. [29] proposed a multi-
objective portfolio selection model with second order stochastic
dominance constraints, and Fábián [14] developed an efficient
method to solve this model based on a cutting plane scheme. In
a more recent development, Dentcheva and Ruszczyński [7] intro-
duced concept of positive linear multivariate stochastic dominance
and obtained necessary conditions of optimality for non-convex
problems. Furthermore, Homem-de-Mello and Mehrota [20] pro-
posed a sample average cutting-surface algorithm for optimization
problems with multidimensional polyhedral linear second-order
stochastic dominance constraints.
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It is well known [25,33] that the second order dominance con-
straints in (1.3) can be reformulated as

E ðg� gðx; nÞÞþ
� �

6 E½ðg� gðy; nÞÞþ�; 8g 2 R; ð1:4Þ

where (g � g(x,n))+ = max(g � g(x,n),0). Consequently, problem
(1.3) can be formulated as a stochastic semi-infinite programming
problem:

min
x

�E½f ðx; nÞ�;

s:t: Gðx;gÞ :¼ E½ðg� gðx; nÞÞþ� � E½ðg� gðy; nÞÞþ� 6 0; 8g 2 R;

x 2 X:

ð1:5Þ

To overcome serious technical difficulties associated with the dom-
inance constraint, a so-called relaxed form of the program is
proposed:

min
x

�E½f ðx; nÞ�;

s:t: Gðx;gÞ 6 0; 8g 2 ½a; b�;
x 2 X;

ð1:6Þ

where [a,b] is a closed interval in R. Dentcheva and Ruszczyński [4]
showed that, if n has uniformly bounded distribution, problem (1.6)
is equivalent to problem (1.5) for some appropriate interval [a,b].
However, under general conditions, (1.6) is a relaxation of (1.5) in
the sense that (1.6) has a larger set of feasible solutions and subse-
quently its optimal value gives a lower bound for the problem (1.5).
Furthermore, the relaxed problem (1.6) is more likely to satisfy the
Slater condition which is closely related to numerical stability.

This paper is concerned with numerical methods for solving
(1.6). Specifically, we apply two well known methods: the stochas-
tic approximation (SA) method and the level function methods to
solve (1.6). The stochastic approximation (SA) method can be
traced back to the pioneering work of Robbins and Monro [27].
Since then the SA algorithm has become widely used in stochastic
optimization (see, [1,9–12,17,13], and reference therein). In this
paper, we focus on a stochastic quasi-gradient method (SQG)
which generalizes the SA method. The SQG method is a stochastic
algorithmic procedure for solving general constrained optimiza-
tion problems with non-differentiable, non-convex functions. Pol-
jak [26] proposed techniques for investigating the local
convergence of stochastic optimization processes and proved some
results concerning differentiable optimization. A formal investiga-
tion of the asymptotic rate of convergence of SQG procedures was
also carried out by Poljak [26].

The SQG method uses a quasi-subgradient of the objective func-
tion at each iteration. However, it might be helpful to use the sub-
gradient information at the previous iterate. This motivates us to
resort to the level function method from non-smooth optimization
proposed by Lemarechal et al. [18] and extended by Xu [34]. The
basic idea of the method is to use a subgradient to construct a lin-
ear level function which characterizes the level set of the objective
function at the iterate and then treat the minimizer of the maxi-
mum of the linear functions as the next iterate.

As far as we are concerned, the main contribution of this paper
can be summarized as follows:

� We exploit a recently developed exact penalization scheme for
stochastic programming models with SSD constraints and apply
the stochastic approximation method and the level function
method to solve the penalized problem. The SA method requires
to calculate only one approximate subgradient per iteration and
can be applied to the case when the underlying functions are
highly nonlinear and/or non-smooth, and the distribution of
the random variable may be unknown. The level function

method requires to calculate a subgradient instead of an
approximate subgradient of the objective function at each iter-
ate and therefore it applies to the problem with known distribu-
tion of the random variable or the sample average
approximated problems. The corresponding numerical scheme
provides an alternative approach to the existing cutting plane
methods for SSD models [14,20]. A clear advantage of the
method is that we can estimate the number of iterations needed
for a specified precision.
� We apply the penalization scheme and the numerical methods

to some portfolio problems where the underlying return func-
tions are not necessarily linear and present some test results.
Moreover, we use real world test data to set up both backtest
and out-of-sample test for investigating the performance of
the portfolio based on SSD model in comparison with the
Markowitz model.

The rest of the paper is organized as follows. In Section 2, we dis-
cuss preliminaries needed throughout the paper. In Section 3 we
discuss the stochastic quasi-gradient algorithm and analyze the
convergence of optimal solutions. In Section 4, we discuss the level
method and its complexity. Finally in Section 5, we apply the pro-
posed methods to portfolio optimization problems and report some
numerical test results.

2. Preliminaries and exact penalization

In this section, we consider an exact penalization of problem
(1.5). We start by discussing preliminaries needed.

Throughout this paper, we use the following notation. Let xTy
denotes the scalar products of two vectors x and y, and let k�k de-
notes the Euclidean norm.

For a real valued smooth function h(x), we use rh(x) to denote
the gradient of h at x. Let ‘‘conv’’ denotes the convex hull of a set.

Let v : Rn ! Rm be a locally Lipschitz continuous function. Re-
call that Clarke generalized derivative of v at point x in direction d
is defined as

voðx; dÞ :¼ lim sup
y!x;t#0

vðyþ tdÞ � vðyÞ
t

:

The function v is said to be Clarke regular at x if the usual one sided
directional derivative, denoted by v0(x,d), exists for all d 2 Rn and
vo(x,d) = v0(x,d). The Clarke generalized gradient (also known as
Clarke subdifferential) is defined as

@xvðxÞ :¼ f : fT d 6 voðx;dÞ
� �

;

see [3, Chapter 2].

Proposition 2.1. Let G(x,g) be defined as in (1.5). Assume that g(x,n)
is continuous w.r.t x and n is Lipschitz continuous w.r.t. x with
integrably bounded Lipschitz modulus j(n). Let T = [a,b]

Pðx;gÞ :¼maxðGðx;gÞ;0Þ ð2:1Þ

and

#ðxÞ :¼ max
g2T

Pðx;gÞ: ð2:2Þ

For any fixed x 2 X, let T⁄(x) denote the set of �g 2 T such that
Pðx; �gÞ ¼maxg2T Pðx;gÞ. Then

@xPðx;gÞ ¼
f0g; if Gðx;gÞ < 0;
convf0; @xGðx;gÞg; if Gðx;gÞ ¼ 0;
@xGðx;gÞ; if Gðx;gÞ > 0:

8><
>: ð2:3Þ

Moreover, #(x) is Lipschitz continuous with modulus E½jðnÞ� and
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@x#ðxÞ ¼ conv
[

g2T	ðxÞ
@xPðx;gÞ

8<
:

9=
;: ð2:4Þ

Proof. Since g(x,n) is concave, then G(x,g) is convex in x and hence
it is Clarke regular, see [3, Proposition 2.3.6]. By [3, Proposition
2.3.12],

@x½Gðx;gÞ�þ ¼
f0g; if Gðx;gÞ < 0;
convf0; @xGðx;gÞg; if Gðx;gÞ ¼ 0;
@xGðx;gÞ; if Gðx;gÞ > 0:

8><
>: ð2:5Þ

The verification of Lipschitzness of #(x) is straightforward. Applying
the Levin–Valadier theorem (see [30, Section 2, Theorem 51]) to
#(x), we obtain (2.4). h

The focus of this paper is on numerical methods for solving the
relaxed SSD problem (1.6). There are three issues to deal with: (a)
the expectation of random functions in both the objective and con-
straints, (b) the infinite number of constraints, (c) the non-smooth-
ness resulting from the max functions.

Our first step is to use an exact penalty function to move the
infinite number of constraints to the objective, The penalty func-
tion method is well known [16] and has recently been used by
Liu and Xu [22] for (1.6). Specifically, they considered the following
problem:

min
x

uðx;qÞ ¼ �E½f ðx; nÞ� þ q#ðxÞ;

s:t: x 2 X;
ð2:6Þ

where q > 0 is a penalty parameter. Liu and Xu established the
equivalence between problem (1.5) and penalized problem (2.6)
in the sense of optimal solutions under some moderate conditions.
Penalty methods for stochastic programs have also been discussed
by Branda [2] and Dupačová et al. [8].

Theorem 2.1. [22, Theorem 2.3]. Assume that problem (1.6) satis-
fies the Slater condition, that is, there exists a positive number d and a
point �x 2 X such that

max
g2T

Gð�x;gÞ < �d: ð2:7Þ

Assume also that X is a compact set, and f(�,n) and g(�,n) are locally
Lipschitz continuous w.r.t. x and their Lipschitz modulus are bounded
by an integrable function j(n) > 0. Then there exists a positive constant
q̂ such that for any q > q̂, the set of optimal solutions of the problems
(1.5) and (2.6) coincide.

The proof is provided in the Appendix A.

Remark 2.1. Under the conditions of Theorem 2.1, problem (2.6) is
a convex minimization problem with the objective function u(x,q)
being Lipschitz continuous. The optimality condition of the prob-
lem can be written as

0 2 �E½rf ðx; nÞ� þ q@x#ðxÞ þ 0N XðxÞ; ð2:8Þ

where N XðxÞ denotes the normal cone to X at point x in the sense of
convex analysis [28]. Let PX(x) = argminy2Xkx � yk denote the
orthogonal projection of x on X. Then the optimality condition
(2.8) can be stated as follows: there exists w 2 @x#(x) such that

PXðxþ E½rf ðx; nÞ� � qwÞ ¼ x: ð2:9Þ

We will use this in the next section.
In the rest of this paper, we apply the stochastic approximation

method and the level function methods to solve (2.6).

3. Stochastic approximation method

In this section we discuss the stochastic quasi-gradient (SQG)
method for solving the penalized problem (2.6). One of the main
reasons that we apply this method is that the objective function
of (2.6) is non-smooth.

Let xk 2 X be an approximate solution of (2.6). The SQG method
calculates a quasi-gradient, denoted by fk, of u(x,q) at xk such that

E½fk=fx0; . . . ; xkg� 2 �E½rf ðxk; nÞ� þ q@x#ðxkÞ þ mk; ð3:1Þ

where mk is a controlled error, and by Proposition 2.1

@x#ðxkÞ ¼ conv
[

g2T	ðxkÞ
@xPðxk;gÞ

8<
:

9=
;; ð3:2Þ

where T⁄(xk) is the set of solutions to (2.2) for x = xk. In order to cal-
culate an element of @x#(xk), we need to find an g 2 +T⁄(xk). This
amounts to solving optimization problem (2.2) w.r.t. g. Note that
P(x,g) :¼max(G(x,g),0), and Gðx;gÞ ¼ E½ðg� gðx; nÞÞþ� � E ½ðg� gðy;
nÞÞþ�. Obviously for a fixed x, G(x,g) is the difference of two convex
functions in g, which means P(x,g) is not a convex function in g.
Homem-de-Mello and Mehrota [20] tackled this type of challenge
with a branch and cut method: reformulating the problem as a
DC-programming and then solving it with branch and cut algo-
rithm. Here, we propose to approximate this subgradient through
sampling. Let n1, . . . ,nN be a sampling of n, and wki

be a subgradient
of #(x) at xk. Then we may choose

fk ¼
1
N

XN

i¼1

ð�rf ðxk; n
iÞ þ qwki

Þ:

Let us explain how to calculate the wki
. By Dentcheva and

Ruszczyński [4, Proposition 3.2], we reformulate the constraints

E½ðg� gðx; nÞÞþ� 6 E½ðg� gðy; nÞÞþ�; 8g 2 ½a; b�;

as

E½ðgi � gðx; nÞÞþ� 6 E½ðgi � gðy; nÞÞþ�; i ¼ 1; . . . ;N;

where gi = g(x,ni), i = 1, . . . ,N. Assume that g(x,n) is bounded. Then
we may choose the interval [a,b] such that g(x,n) 2 [a,b] for all
x 2 X,n 2 N, which means gi 2 [a,b], i = 1, . . . ,N. Consequently we
can reformulate problem (2.2) as follows:

max
gi

1
N

XN

i¼1

ðgi � gðxk; n
iÞÞþ �

1
N

XN

i¼1

ðgi � gðy; niÞÞþ: ð3:3Þ

Based on the discussions above, we present a stochastic quasi-
subgradient algorithm for solving problem (2.6).

Algorithm 3.1.

Step 1. Set a sequence of stepsizes {kk} satisfying

X1
k¼0

k2
k <1;

X1
k¼0

kk ¼ 1; kk P 0: ð3:4Þ

Choose an initial vector x0 2 X, set k = 0.
Step 2. At x

k

calculate an approximated subgradient of u(x,q),
denoted by f

k

, that is

E½fk=x0; . . . ; xk� 2 �E½rf ðxk; nÞ� þ q@x#ðxkÞ þ mk; ð3:5Þ

where @x#(x) is defined as in Proposition 2.1 and mk is a controlled
error satisfying
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X1
k¼0

E½kkkmkk þ k2
kkfkk2� <1: ð3:6Þ

Step 3. Set

xkþ1 :¼ PXðxk � kkfkÞ; ð3:7Þ

where PX(x) is the orthogonal projection of x on X.
Step 4. If xk+1 = xk and mk = 0, stop. Otherwise, set k :¼ k + 1, go to

Step 2.

Let us make a comment on the stopping rule. In the case when
xk+1 = PX(xk � kkfk) = xk, we have

�kfk 2 N XðxkÞ

and hence

�fk 2 N XðxkÞ: ð3:8Þ

Since mk = 0, then

0 2 �E½rf ðxk; nÞ� þ q@x#ðxkÞ þ N XðxkÞ; ð3:9Þ

which, by Remark 2.1, implies that xk is an optimal solution of (2.6).
Let us now consider the case that xk ¼ xk0 for k P k0 but mk – 0.

By (3.8),

0 2 �E½rf ðxk; nÞ� þ q@x#ðxkÞ þ mk þN XðxkÞ:

Under (3.6), mk ? 0 as k ?1. By taking a limit on the equation
above, we have

0 2 �E½rf ðxk0 ; nÞ� þ q@x#ðxk0 Þ þ N Xðxk0 Þ

which implies that xk0 satisfies the first order optimality condition
and hence xk0 is an optimal solution.

In what follows, we study the convergence of the general case.

Definition 3.1. Let k�k denotes the Euclidean norm. A random
process {xk} valued in Rn and adapted to the filtration F k is called a
random quasi-Feyer sequence w.r.t. a set S # Rn, if E½kx0k� <1, and
for any s 2 S,

E½kxkþ1 � sk=F k� 6 kxk � sk þ rk

and

X1
k¼0

E½rk� <1; rk P 0;

where rk is an error.

Lemma 3.1 [10, p. 98]. Let {xk} be a stochastic quasi-Feyer sequence
w.r.t. Z. Then the following assertions hold.

(i) The sequence {kz � xkk2} converges w.p.1 for any z 2 Z, and
E½kz� xkk2� < C <1 for some constant C.

(ii) The set of accumulation points of {xk} is not empty. Suppose
that an accumulation point of {xk} belongs to Z. Then {xk} has
only one limiting point.

We are now ready to present our main results.

Theorem 3.1. Let {xk} be generated by the Algorithm 3.1 and let X⁄

denote the set of optimal solutions of (2.6). Assume: (a) f(x,n) and
g(x,n) are concave for almost every n and continuous w.r.t. both x and
n, (b) X is a convex compact set, (c) there exists a constant C > 0 such
that E½kfkk2=F k� 6 C; fk satisfy (3.5), {kk}, and mk satisfy conditions
(3.4) and (3.6) w.p.1. Then there is a subsequence fxki

g such that
fxki
g ! x	 and uðxki

;qÞ ! uðx	;qÞ, where x⁄ 2 X⁄.

The proof is rather standard and we provide it in the Appendix A
for completeness. Let us make a comment on condition (c) of the
theorem. If the sequence of the approximate solutions {xk} is con-
tained in a compact set w.p.1 and the controlled error mk is
bounded, then it follows from (3.1) that E½rf ðxk; nÞ� is bounded.
Moreover it follows from Proposition 2.1 that #(x) is globally Lips-
chitz continuous with modulus E½jðnÞ� which implies that @x #(xk)
is also bounded by E½jðnÞ�.

Before concluding this section, we make a few general com-
ments on stochastic quasi-subgradient method. The stochastic
quasi-subgradient method [9–11] has been developed to solve sto-
chastic problems with complicated functions. The main advantage
of this method is that, at each iteration, the search direction is a
stochastic subgradient of the objective function. Another advan-
tage of stochastic approximation methods is that it allows working
directly with the samples of random variables, rather than the full
distributions. However, this advantage comes at a cost. One diffi-
culty is the choice of the stepsize. In general, choosing the stepsize
requires some experimentation, and there are no hard or fast rules
for making the choice.

4. Level function methods

In this section, we consider another approach for solving (2.6).
The stochastic approximation method discussed in the previous
section uses only one subgradient of the objective function at the
current iterate in order to move to the next iterate. From a compu-
tational point of view it might be helpful to use some of previous
iterates as well as subgradients at the points. This motivates us
to apply the so-called level function method to solve (2.6). The fun-
damental idea of the method is to use a subgradient of the objec-
tive function at each iteration to construct a linear function and
treat the minimizer of the maximum of the linear function as the
next iterate. The method was first proposed by Lemarechal et al.
[18] and extended by Xu [34].

Let us start with some basic definition of the method.
Let a 2 R be a scalar and u(x,q) be a general continuous func-

tion. We use

TuðaÞ ¼ fx 2 X : uðx;qÞ < ag;

to denote the strict lower level set of u. We discuss the case where
the distribution of random variable n is known and a subgradient
could be calculated based on the available scenarios. This will aid
us in the calculation of a subgradient of the objective function at
each iteration.

Definition 4.1. Let u(x,q) be continuous function and x 2 X, where
X is a nonempty convex subset of Rn. A function r : Rn ! R is
called a level function of u at x if it satisfies the following
conditions:

(a) r(x) = 0,
(b) r is a continuous convex function,
(c) Tu(u(x,q)) � Tr(0).

From the definition, we can see that the minimizers of u are
contained in Tu(u(x,q)) and x is optimal if and only if
Tu(u(x,q)) = ;.

In what follows, we apply the level function method to (2.6). Let
f(x,n) and g(x,n) be continuous convex and concave functions,
respectively. Let fk 2 @xu(xk,q), then

rxk
ðxÞ ¼ fT

kðx� xkÞ=kfkk;

is a level function of u(x,q) at xk.

R. Meskarian et al. / European Journal of Operational Research 216 (2012) 376–385 379
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Algorithm 4.1.

Step 1. Let � > 0 be a constant, select a starting point x0 2 X; set
k :¼ 0.

Step 2. Calculate fk 2 @xu(xk,q).
Define the functions rxk

ðxÞ and rk(x) by

rxk
ðxÞ ¼ fT

kðx� xkÞ=kfkk;
rkðxÞ ¼ maxfrk�1ðxÞ;rxk

ðxÞg;

where r�1(x) 
 �1. Let

xkþ1 2 arg min
x2X

rkðxÞ

and

DðkÞ ¼ �rkðxkþ1Þ:

Step 3. If D(k) 6 �, stop. Otherwise, set k :¼ k + 1, go to Step 2.

It is important to note that here we need to calculate a subgra-
dient of u(x,q) at each iterate. This is more demanding than the
stochastic approximation method where only a quasi-subgradient
is calculated at each iterate. However, in some practical instances,
the random variable may have a finite distribution, in that case
u(x,q) can be written as a sum of a finite number of deterministic
functions. Calculating a subgradient of such a function might be
numerically possible. In the case when we are not able to obtain
a closed form of the expected value of the underlying functions,
we may use the sample average approximation method [31] to
approximate u(x,q) and reduce it to a finite sum.

Theorem 4.1. Letu(x,q) be defined as in (2.6) and let the assumptions
of Theorem 2.1 hold. Then limk?1D(k) = 0 and there exists a
subsequence of {xk} converging to a global minimizer of u over X.

Proof. Under the assumptions, each of the level functions frxk
ðxÞg

generated by Algorithm 4.1 is Lipschitz on X. The conclusion fol-
lows from [34, Theorem 3.2]. h

The Algorithm 4.1 takes a minimizer of rk(x) as the next iterate,
the main drawback is that it is not possible to predict the maxi-
mum number of iterations required to reduce D(k) to a prescribed
precision. To overcome this problem, Xu [34] modified the Algo-
rithm 4.1 by updating an iterate using projection of the current
point to a level set of rk(x). This projection idea belongs to Lemare-
chal et al. [18], who applied it to convex programming.

Algorithm 4.2.

Step 1. Let � > 0 be a constant, and select a constant k 2 (0,1) and a
starting point x0 2 X; set k = 0.

Step 2. Calculate a level function rxk
ðxÞ of u at x, and set

rkðxÞ ¼maxfrk�1ðxÞ;rxk
ðxÞg;

where r�1 = �1. Let

x̂k ¼ arg minfuðxj;qÞ : j 2 0; . . . ; kg

and

xkþ1 2 PQk
ðx̂k;Q kÞ;

where

Qk :¼ fx 2 X : rkðxÞ 6 �kDðkÞg; DðkÞ ¼ �min
x2X

rkðxÞ

and PQ k
is the Euclidean projection of the point x on a set Qk.

Step 3. If D(k) 6 �, stop. Otherwise, set k :¼ k + 1, go to Step 2.

Note that, when k = 1, Qk becomes the set of minimizers of rk

over X. Consequently, Algorithm 4.2 becomes identical to
Algorithm 4.1. The following convergence results follow directly
from [34, Theorem 3.3].

Theorem 4.2. Let {xk} be generated by Algorithm 4.2. Assume the
conditions of Theorem 4.1. Then

DðkÞ 6 �; for k > M2d2��2k�2ð1� k2Þ�1
;

where � is specified as in Algorithm 4.2, M is the Lipschitz modulus of u
over X, and d is the diameter of X defined as

d ¼ sup
x;y
fkx� yk; x; y 2 Xg:

5. Numerical results

We have carried out a number of numerical tests on the pro-
posed algorithms by using nonlinear programming solver fmincon
built in MATLAB 7.10 installed on a Viglen PC with Windows XP
operating system and 2.96 GB of RAM. In this section, we report
the test results.

We consider primarily two portfolio optimization problems to
examine the SSD model (1.5) and efficiency of our proposed
numerical methods, that is, the penalization approach (2.6) and
algorithms discussed in Sections 3 and 4.

Suppose that we have a fixed capital to be invested in n assets.
Let Ri, i = 1, . . . ,n, denotes the return of asset i. In practice, the re-
turn is often uncertain and we use a random variable n to describe
the uncertainty. Specifically, we write Ri as Ri(n) and in doing so we
are assuming that all n assets have identical random factor.

To simplify the discussion, we normalize the capital to 1 and
use xi, i = 1, . . . ,n, to denote the fraction of capital to be invested
in asset i. The portfolio return can then be formulated as:

gðx; nÞ :¼ R1ðnÞx1 þ R2ðnÞx2 þ � � � þ RnðnÞxn: ð5:1Þ

We apply the SSD model (1.5) to optimize our investment strategy.
To ease the citation, we repeat the model:

min
x

E½f ðx; nÞ�;

s:t: gðx; nÞ �ð2Þ gðy; nÞ;
x 2 X;

ð5:2Þ

where g is defined by (5.1). We need to specify f(x,n) and X. We will
start with the simplest case of f(x,n) = �g(x,n) and
X :¼ x :

Pn
i¼1xi ¼ 1; xi P 0

� �
and then consider a variation which al-

lows f to include a quadratic term and xi to take a negative value in
order to address some practical need where investment in a partic-
ular asset is not too small and/or the short selling occurs. We will
come to the details of the variations later on. Here y denotes a
benchmark investment with yi ¼ 1

n, for i = 1, . . . ,n.
To examine the appropriateness of the SSD model, we calculate

the Conditional Value at Risk (CVaR) for random variables g(x⁄,n)
and g(y,n) where x⁄ is an approximate optimal solution obtained
from solving (5.1). Recall that, by definition for a specified proba-
bility level a, the Value at Risk (VaR) of a portfolio is the lowest
amount C such that, with probability a, the profit does not fall be-
low C. The CVaRa is the conditional expectation of profit below C.
In our context,

CVaRaðgðx	; nÞÞ ¼ sup
C

C� 1
a

E½ðC� gðx	; nÞÞþ�
� �

; ð5:3Þ

where a 2 (0,1) is a prespecified constant.
Dentcheva and Ruszczyński [5] showed that there is a funda-

mental relationship between the concept of CVaR and the second
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order stochastic dominance constraint. Specifically they showed
that

gðx; nÞ �ð2Þ gðy; nÞ;

if and only if

CVaRaðgðx; nÞÞP CVaRaðgðy; nÞÞ; 8a 2 ð0;1�;
which means that as the return of a portfolio increases the CVaR of
that portfolio also increases. Three values of a are commonly con-
sidered: 0.90, 0.95, 0.99. However, in our analysis we focus on the
case of a = 0.95.

5.1. Numerical performance

Example 5.1. We consider a history of percentage returns, for
m = 6 and m = 10 time periods, for a group of n = 2 and n = 5 assets
in Tables 5.1 and 5.2, respectively.

Our aim is to find an optimal investment strategy for a fixed
capital in the n assets which maximizes the expected profit subject
to certain risk averse measures. Particularly we consider the
following model:

min
x

E½f ðx; nÞ� ¼ �E½gðx; nÞ�;

s:t: gðx; nÞ �ð2Þ gðy; nÞ;
x 2 X:

ð5:4Þ

For the purpose of this example we set the upper and lower bound
on the fraction of capital invested in each asset to 0.6 and 0, respec-
tively. We do this to ensure diversification. Minimizing this function
can be regarded as an attempt to get as close as possible to meeting
requirements on both return and risk.

We apply the exact penalization as discussed in Section 2 to
Examples 5.1 and set the penalty parameter q = 1000. We solve
the reformulated problem with Algorithms 3.1, 4.1, and 4.2. For
Algorithm 3.1, we use the step size:

kk ¼
1
k

and the stopping rule:

kxkþ1 � xkk 6 dxkxkþ1k; kuðxkþ1;qÞ �uðxk;qÞk 6 dukuðxkþ1;qÞk;

where dx = 0.001 and du = 0.001 are specified precisions.
For Algorithms 4.1 and 4.2 we use � = 0.001 and k = 0.5.
Consider Example 5.1, we apply the Algorithms 3.1, 4.1 and 4.2

to solve this problem. The optimal fractions of the invested capital
from the starting point x0 = (1,0)T are shown in Table 5.3.

In order to investigate the accuracy of the solution, we calcu-
lated the norm of the subgradient at this solution. The norm of sub-
gradient at x = (0.6,0.4) is equal to 0.0068 which confirms that the
solution is close to optimal.

In Table 5.3 and the rest of the tables ‘‘Iter’’ refers to the number
of iterations, ‘‘Alg’’ is the short form for algorithm, and ‘‘S-sell’’ re-
fers to short selling.

The results are obtained after 6 iterations by Algorithms 4.1 and
4.2 and are equivalent to the results obtained by Algorithm 3.1.
Additionally, as it is expected both the return and its CVaR of the
selected portfolio are higher than the benchmark return and CVaR.

Further, we use the data of 5 assets over 10 periods in Table 5.2
and examine Example 5.1. Table 5.4 shows the results of this
example.

As it can be seen, all three algorithms result in a similar optimal
portfolio. Also the selected portfolio dominates the benchmark
portfolio in a sense that the CVaR of the selected portfolio is greater
than that of the benchmark portfolio. However, the number of iter-
ations is different and as a result the computation times differ.
Algorithm 4.2 performed better than the other algorithms as it
converged to the optimal portfolio with the least number of
iterations.

Note that in Example 5.1, both f and g are linear. In what fol-
lows, we consider nonlinear portfolio optimization problems
where either f or g or both are nonlinear. This is to demonstrate
that the proposed algorithms can cope with both linear and nonlin-
ear portfolio optimization problems.

Example 5.2. In Example 5.1 we considered an optimization
problem where any fraction of capital between 0 and 0.6 was
acceptable. However, due to transaction cost, investors do not like
to invest very small amount of their capital in different assets. We
now reformulate Example 5.1 into a slightly more complicated
problem in which we do not want to invest very small amounts in
an asset. We consider the following performance function:

f ðx; nÞ ¼ �gðx; nÞ �
Xn

i¼1

x2
i ð5:5Þ

and incorporate (5.5) into the optimization problem (5.4). In the
section we will consider two cases:

� Short-selling is allowed and upper and lower bounds on the
fraction of capital invested in each asset are set to 2 and �1.
� Short-selling is prohibited and the bounds are set to 0.6 and 0 to

ensure diversification.

Table 5.1
Monthly rates of return on two assets.

Returns % for period

January February March April May June

Asset 1 1.2 1.3 1.4 1.5 1.1 1.2
Asset 2 1.3 1.0 0.8 0.9 1.4 1.3

Table 5.2
Rates of return on five assets over ten periods.

Returns % for period

1 2 3 4 5 6 7 8 9 10

Asset 1 1.2 1.3 1.4 1.5 1.1 1.2 1.1 1.0 1.0 1.1
Asset 2 1.3 1.0 0.8 0.9 1.4 1.3 1.2 1.1 1.2 1.1
Asset 3 0.9 1.1 1.0 1.1 1.1 1.3 1.2 1.1 1.0 1.1
Asset 4 1.1 1.1 1.2 1.3 1.2 1.2 1.1 1.0 1.1 1.2
Asset 5 0.8 0.75 0.65 0.75 0.8 0.9 1.0 1.1 1.1 1.2

Table 5.3
Example 5.1 using data in Table 5.1. Time is in minutes, the expected return of the
benchmark portfolio E½gðy; nÞ� ¼ 1:200 and its CVaR = 0.897.

Algorithm Iter. Time x E½gðx; nÞ� CVaR

3.1 6 0.845 (0.600,0.400) 1.217 0.9824
4.1 6 0.631 (0.599,0.401) 1.218 0.9824
4.2 6 0.628 (0.599,0.401) 1.218 0.9824

Table 5.4
Example 5.1 using data in Table 5.2. Time is in minutes, the expected return of the
benchmark portfolio E½gðy; nÞ� ¼ 1:093 and its CVaR = 0.895.

Alg. Iter. Time x E½gðx; nÞ� CVaR

3.1 115 5 (0.325,0.231,0.177,0.266,0) 1.147 1.004
4.1 7 0.8931 (0.322,0.231,0.177,0.266,0) 1.148 1.004
4.2 5 0.6355 (0.325,0.231,0.177,0.266,0) 1.148 1.004
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The invested fractions which solve this problem using the dis-
cussed algorithms and the data in Table 5.1 are the same as the re-
sult obtained in Example 5.1. However, the results of the problem
using data in Table 5.2 are shown in Table 5.5.

Furthermore, we collect 300 daily historical returns of 95
FTSE100 assets prior to March 2011 and a cash account paying
5% interest. We used the first 200 daily return to construct the
portfolio strategy based on the performance function (5.5). We also
used the FTSE100 Index as the benchmark. The results are pre-
sented in Table 5.6.

It can be seen that when short-selling is allowed the optimal
portfolio has higher return compared to the case where short-sell-
ing is prohibited, however this higher return is associated with a
higher risk. A rational risk-averse investor is expected to discour-
age short-selling as the excess return is not worth the extra risk.
Additionally, the financial authorities in many countries including
the UK and the USA restrict many financial institutions such as
pension funds from the practice of short-selling.

Note that both of the level function algorithms converge to very
similar portfolios. The portfolio returns are higher than the bench-
mark portfolio return and as it was expected the CVaR of the se-
lected portfolios are higher than the CVaR of benchmark
portfolio. Although the fraction of the capital invested in each asset
differ from the results from SA method, but the optimal portfolios
return and risk are very close. The number of iterations in the level
function method are much lower compared to the stochastic
approximation method, consequently the optimization time is
lower for the level function method. Further it could be seen that
the projected level function algorithm converges to the optimal
solution with fewer number of iterations compared to the scaled
level function algorithm. This makes Algorithm 4.2 more attractive
than Algorithm 4.1.

In next section, we demonstrate the advantage of taking sto-
chastic dominance constraints into account using real world data
for a portfolio optimization problem followed with a bakctest
and a out-of-sample analysis.

5.2. Portfolio performance

In this section we focus on optimization problem (5.4) where
g(y,n) is set to be equal to FTSE100 Index and draw some
conclusions.

We use the FTSE100 data collected and a cash account paying
5% interest. We used the first 200 daily return to construct the
portfolio strategy and the further 100 daily return for an out-of-
sample test. In practice there are many strict regulations imposed
by authorities on short selling and as a result many financial insti-
tutions prohibit any short selling activity. Consequently, in this
example we only consider the case where short selling is not al-
lowed and set the upper and lower bounds on portion of capital in-
vested at 0.6 and 0, in order to ensure diversification.

We solve the above optimization problem using the FTSE100
data and compare the proposed algorithms. The results are pre-
sented in Table 5.7.

As it is explained in Section 4, Algorithm 4.1 takes a minimizer
of rk(x) as the next iterate, the main drawback is that it is not pos-
sible to predict the maximum number of iterations required to re-
duce D(k) to a prescribed precision. To overcome this problem, the
projected level function method was introduced. In the remainder
of this section we concentrate on the investigating the efficiency of
selected portfolio by Algorithms 3.1 and 4.2.

To illustrate the benefit of using stochastic dominance con-
straints, we set up a backtest which is a key component of effective
trading-system development in finance. It is accomplished by
reconstructing, with historical data, trades that would have oc-
curred in the past using rules defined by a given strategy. Further-
more, we set up an out-of-sample test to evaluate the performance
of the selected portfolio over the remaining 100 samples. For the
backtest the model finds the optimal portfolio weights from 200
historical market data, then the portfolio strategy is applied to
the same data and daily portfolio return is calculated for each
day (Fig. 5.1). In the out-of-sample test, the same portfolio strategy
is applied to the remaining data of 100 days and the portfolio re-
turn is again calculated for each day (Fig. 5.2). In both tests the

Table 5.5
Example 5.2 using data in Table 5.2. Time is in minutes, the expected return of the benchmark portfolio E½gðy; nÞ� ¼ 1:200 and its CVaR = 0.897.

Alg. Problem Iter. Time x E½gðx; nÞ� CVaR

3.1 S-sell 684 16 (0.127,0.495,0.550,0.380,�0.553) 1.230 1.045
No S-sell 226 9 (0.600,0,0,0.400,0) 1.1740 1.007

4.1 S-sell 6 0.899 (0.400,0.514,0.314,0.390,�0.500) 1.260 1.063
No S-sell 6 0.768 (0.600,0,0,0.400,0) 1.1740 1.007

4.2 S-sell 4 0.649 (0.39,0.527,0.287,0.3,�0.5) 1.260 1.063
No S-sell 4 0.577 (0.600,0,0,0.400,0) 1.1740 1.007

Table 5.6
Example 5.2 using FTSE100 historical return. Time is in minutes, ‘‘No. assets’’ represent the number of assets in the optimal portfolio. The expected return of the benchmark
portfolio E½gðy; nÞ� ¼ �0:051 and its CVaR = 0.023.

Alg. Problem Iter. Time No. assets E½gðx; nÞ� CVaR

3.1 S-sell 792 28.542 32 0.089 0.079
No S-sell 685 25.43 27 0.036 0.025

4.1 S-sell 16 1.274 40 0.094 0.082
No S-sell 13 0.973 26 0.037 0.026

4.2 S-sell 12 0.640 40 0.094 0.082
No S-sell 10 0.561 26 0.037 0.026

Table 5.7
Result of the problem using FTSE100 data. Time is in minutes, No. assets represents
the number of assets in the optimal portfolio. The expected return of the benchmark
portfolio E½gðy; nÞ� ¼ �0:051 and its CVaR = 0.023.

Algorithm Iter. Time No. assets E½gðx; nÞ� CVaR

3.1 735 25.64 31 0.036 0.027
4.1 9 1.717 29 0.037 0.027
4.2 7 1.215 29 0.037 0.027
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portfolio performance is compared with FTSE100 Index and an
investment strategy generated by a Markowitz model as described
below:

max
x2X

E½gðx; nÞ� � kE½Rðx; nÞ�;

s:t: E½gðx; nÞ�P Rb;Xn

i¼1

xi ¼ 1; x P 0; x 2 X;

ð5:6Þ

where k = 1 is a fixed nonnegative number, E½Rðx; nÞ� is the portfolio
variance, Rb is the benchmark return set equal to the FTSE100 Index,
and E½gðx; nÞ� is the return defined as in (5.1). The Markowitz model
(5.6) assumes that portfolio can be characterized by their mean re-
turn and variance.

It can be seen that the portfolios constructed by the SSD model
(5.4) and solved by proposed Algorithms 4.2 and 3.1 performs bet-
ter than the Markowitz model (5.6) and a FTSE100 Index. Note that

the two algorithms generate similar results, but their numerical
efficiency differ significantly in terms of CPU time and the number
of iterations. Fig. 5.3 shows the CPU time of different numbers of
assets for Algorithms 3.1 and 4.2.

5.3. Conclusions

Our preliminary numerical tests show that Algorithm 4.2 (pro-
jected level function) is numerically more efficient than Algorithm
3.1 (Stochastic approximation). However, Algorithm 3.1 has a un-
ique advantage; that is at each iteration only one approximated
subgradient of the objective function is calculated.

Furthermore, the portfolio optimization problem with SSD con-
straints performs better than the Markowitz model and it also out-
performs the benchmark both in-sample and out-of-sample in
sense of portfolio return, which was shown by the results from
the backtest and out-of-sample test (Figs. 5.1 and 5.2).
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Fig. 5.1. Backtesting of the selected portfolios and comparison with FTSE100 Index and Markowitz model.
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Fig. 5.2. Out-of-sample test for the selected portfolios and comparison with FTSE100 Index and Markowitz model.
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Appendix A

Proof of Theorem 2.1. Let dðx;DÞ :¼ infx02Dkx� x0k denotes the
distance from a point x to a set D. Under the Slater condition, it
follows by Lin and Xu [22, Lemma 2.5] that there exists a constant
b > 0 such that

dðx;FÞ 6 bkE½Gðx;gÞ�þk1; 8x 2 X; ð6:7Þ

where F denotes the feasible set of problem (2.6). Let C denote the
Lipschitz modulus of E½f ðx; nÞ�. By Clarke [3, Proposition 2.4.3] for
any q > bC, the two optimal solutions of problem (1.5) and (2.6)
coincide. Note that under the Slater condition assumption, we can
set an C ¼ E½jðnÞ�. This shows the existence of a positive constant
�q :¼ bC. The proof is complete. h

Proof of Theorem 3.1. Let {xk} be generated by (3.7) and x⁄ 2 X⁄.
By definition

kx	 � xkþ1k2 ¼ kx	 � PXðxk � kkfkÞk2
6 kx	 � xk þ kkfkk2

¼ kx	 � xkk2 þ 2kkf
T
kðx	 � xkÞ þ k2

kkfkk2
: ð6:8Þ

Let F k ¼ fx1; . . . ; xkg. Taking the conditional expectation on both
sides of the above inequality w.r.t. F k, we have

E½kx	 � xkþ1k2
=F k� 6 E½kx	 � xkk2� þ 2kkE½fk=F k�Tðx	 � xkÞ

þ k2
kE½kfkk2

=F k�:

Observe from (3.5) that E½fk=F k� � mk 2 @xuðxk;qÞ. By the convexity
of u(x,q), we have

E½fk=F k�Tðx	 � xkÞ � mT
kðx	 � xkÞ 6 uðx	;qÞ �uðxk;qÞ: ð6:9Þ

Using conditions (b) and (c) and taking into account that
u(x⁄,q) � u(xk,q) 6 0, we obtain from the above two inequalities
that

E½kx	 � xkþ1k2
=F k� 6 kx	 � xkk2 þ eC kkkmkk þ k2

kkfkk2
� 	

;

where eC is a constant.
In view of (3.6) and Definition 3.1, it is clear that {xk} is a

stochastic quasi-Feyer sequence w.r.t. X⁄. Consequently, the
sequence kxk � x⁄k2 ? 0 w.p.1. Furthermore, the set of accumula-

tion points of {xk} is not empty. Consequently, if we show that one
of the accumulation points belongs to X⁄, then from condition (c) it
follows that {xk} converges w.p.1. to a point in X⁄ [10].

Referring back to (6.8) and taking expectations, we have

E½kx	 � xkþ1k2� 6 E½kx	 � x1k2� þ 2
Xk

i¼1

kiE½fi=F i�Tðx	 � xiÞ

þ
Xk

i¼1

E½k2
i kfik2

=F i�;

through (6.9), this yields

E½kx	 � xkþ1k2� 6 E½kx	 � x1k2� þ 2
Xk

i¼1

kiE½uðx	;qÞ �uðxi;qÞ

þ kmikkxi � x	k� þ
Xk

i¼1

E½k2
i kfik2

=F i�;

6 E½kx	 � x1k2� þ 2
Xk

i¼1

kiE½uðx	;qÞ �uðxi;qÞ�

þ eC Xk

i¼1

E kikmik þ k2
i kfi=F ik2

h i
:

This and condition (3.6) imply

X1
i¼1

kiE½uðxi;qÞ �uðx	;qÞ� <1:

Since

X1
i¼1

ki ¼ 1 and uðxi;qÞ �uðx	;qÞP 0;

then there exists a subsequence xki
such that

uðxki
;qÞ �uðx	;qÞ ! 0; w:p:1:

This shows there exists a subsequence such that kxki
� x	k ! 0

w.p.1 and this completes the proof. h
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Fig. 5.3. CPU Time in minutes versus the number of instruments.
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