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Abstract

Utility-based shortfall risk (SR) measures have received increasing attention over the
past few years for its potential to quantify the risk of large tail losses more effectively than
conditional value at risk. In this paper, we consider a distributionally robust version of the
shortfall risk (DRSR) measure where the true probability distribution is unknown and the
worst distribution from an ambiguity set of distributions is used to calculate the SR. We
start by showing that the DRSR is a convex risk measure and under some special circum-
stance a coherent risk measure. We then move on to study an optimization problem with the
objective of minimizing the DRSR of a random function and investigate numerical tractabil-
ity of the optimization problem with the ambiguity set being constructed in various ways
including moment conditions, φ-divergence, Kantorovich metric and mixture distribution.
In the case when the underlying random variables are continuously distributed, we propose
some discrete approximation schemes for the ambiguity sets and derive error bounds for the
approximation under the Kantorovich metric. Quantitative convergence of the optimal val-
ues of the approximation problems is consequently established under moderate conditions.
Specifically, we show that the error of the optimal value is linearly bounded by the error of
each of the approximate ambiguity sets and subsequently derive a confidence interval of the
optimal value under each of the approximation schemes. Some preliminary numerical test
results are reported for the proposed modeling and computational schemes.

keywords DRSR, Kantorovich metric, moment conditions, φ-divergence ball, Kantorovich
ball, mixture distribution, quantitative convergence analysis

1 Introduction

Quantitative measure of risk is a key element for financial institutions and regulatory authorities.
It provides a way to compare different financial positions. A financial position can be mathe-
matically characterized by a random variable Z : (Ω,F , P ) → IR, where Ω is a sample space
with sigma algebra F and P is a probability measure. A risk measure ρ assigns to Z a number
that signifies the risk of the position. A good risk measure should have some virtues, such as
being sensitive to excessive losses, penalizing concentration and encouraging diversification, and
supporting dynamically consistent risk managements over multiple horizons [15].
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Artzner et al. [1] considered the axiomatic characterizations of risk measures and first intro-
duced the concept of coherent risk measure, which satisfies: (a) positive homogeneity (ρ(αZ) =
αρ(Z) for α ≥ 0); (b) subadditivity (ρ(Z+Y ) ≤ ρ(Z)+ρ(Y )); (c) monotonicity (if Z ≥ Y , then
ρ(Z) ≤ ρ(Y )); (d) translation invariance (if m ∈ IR, then ρ(Z + m) = ρ(Z) −m). Frittelli and
Rosazza Gianin [12], Heath [17] and Föllmer and Schied [9] extended the notion of coherent risk
measure to convex risk measure by replacing the positive homogeneity and the subadditivity
with convexity, that is, ρ(αZ + (1− α)Y ) ≤ αρ(Z) + (1 − α)ρ(Y ), for all α ∈ [0, 1]. Obviously
positive homogeneity and subadditivity imply convexity but not vice versa. In other words, a
coherent risk measure is a convex risk measure but conversely it may not be true.

A well-known coherent risk measure is conditional value at risk (CVaR) defined by CVaRα(Z) :=
1
α

∫ α
0 VaRλ(Z)dλ, where VaRλ(Z) denotes the value at risk (VaR) which in this context is the

smallest amount of cash that needs to be added to Z such that the probability of the financial
position falling into a loss does not exceed a specified level λ, that is, VaRλ(Z) := inf{t ∈ IR :
P (Z+t < 0) ≤ λ}. In a financial context, CVaR has a number of advantages over the commonly
used VaR, and CVaR has been proposed as the primary tool for banking capital regulation in
the draft Basel III standard [2]. However, CVaR has a couple of obvious deficiencies.

One is that CVaR is not invariant under randomization, a property which is closely related
to the weak dynamic consistency of risk measurements, that is, if CVaRα(Zi) ≤ 0, for i =

1, 2 and Z :=

{
Z1, with probability p,
Z2, with probability 1− p, for p ∈ (0, 1), then we do not necessarily have

CVaRα(Z) ≤ 0; see [32, Example 3.4]. The other is that CVaR is not particularly sensitive to
heavy tailed losses [15, Section 5]. Here, we illustrate this by a simple example. Let

X1 :=


100, p1 = 98%

−100, p2 = 1%

−200, p3 = 1%

, X2 :=


100, p1 = 98%

−1, p2 = 1%

−299, p3 = 1%

, X3 :=


100, p1 = 98%

99, p2 = 1%

−399, p3 = 1%

. (1.1)

It is easy to calculate that CVaR0.02(X1) = CVaR0.02(X2) = CVaR0.02(X3) = 150.

To overcome the deficiencies, a special category of convex risk measure, called utility-based
shortfall risk measure (abbreviated as SR hereafter) was introduced by Föllmer and Schied [9]
and attracted more and more attention in recent years; see [7, 15, 18]. Let l : IR → IR be a
convex, increasing and non-constant function. Let λ be a pre-specified constant in the interior
of the range of l to reveal the risk level. The SR of a financial position Z is defined as

(SR) SRP
l,λ(Z) := inf{t ∈ IR : t+ Z ∈ AP }, (1.2)

where AP := {Z ∈ L∞ : EP [l(−Z(ω))] ≤ λ} is called the acceptance set and L∞ denotes the
set of bounded random variables. From the definition, we can see that the SR is the smallest
amount of cash that must be added to the position Z to make it acceptable, i.e., t + Z ∈ AP .
Observe that when l(·) takes a particular characteristic function of the form 1(0,+∞](·), that is

1(0,+∞](z) = 1 if z ∈ (0,+∞], otherwise 0, in this case SRP
l,λ(Z) coincides with VaRλ(Z). Of

course, here l is nonconvex.

Compared to VaR and CVaR, the shortfall risk measure not only satisfies convexity and
invariance under randomization, but also can be used more appropriately for dynamic measure-
ment of risks over time. To see invariance under randomization, we note that SR defined as in
(1.2) is a function on the space of random variables, it can also be represented as a function on
the space of probability measures; see [32, Remark 2.1]. In the latter case, the acceptance set can
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be characterized by N := {µ ∈ P(C) :
∫
l(−x)µ(dx) ≤ λ}, where P(C) denotes the space of

probability measures with support set being contained in a compact set C ⊂ IR. If µ, ν ∈ N , i.e.,∫
l(−x)µ(dx) ≤ λ,

∫
l(−x)ν(dx) ≤ λ, then for any α ∈ (0, 1),

∫
l(−x)(αµ + (1 − α)ν)(dx) ≤ λ,

which means αµ+ (1− α)ν ∈ N . Moreover, the SR is found to be more sensitive to financial
losses from extreme events with heavy tailed distributions; see [15, Section 5]. Indeed, if we set
l(z) = ez and λ = e, then we can easily calculate the shortfall risk values of X1, X2 and X3

in the previous example (1.1) with SRP
l,λ(X1) ≈ 194,SRP

l,λ(X2) ≈ 293, and SRP
l,λ(X3) ≈ 393.

Furthermore, if we choose l(z) = eβz with β > 0, the resulting SR coincides, up to an additive
constant, with the entropic risk measure, that is,

SRP
l,λ(Z) = inf{t ∈ IR : EP [e−β(Z+t)] ≤ λ} =

1

β

(
logEP [e−βZ ]− log λ

)
.

In the case when l(z) = zα1[0,∞)(z) with α ≥ 1 the associated risk measure focuses on downside
risk only and thus neglects the tradeoff between gains and losses.

Dunkel and Weber [7] are perhaps the first to discuss the computational aspects of SR.
They characterized SR as a stochastic root finding problem and proposed the stochastic ap-
proximation (SA) method combined with importance sampling techniques to calculate it. Hu
and Zhang [18] proposed an alternative approach by reformulating SR as the optimal value of
a stochastic optimization problem and applying the well-known sample average approximation
(SAA) method to solve the latter when either the true probability distribution is unknown or
it is prohibitively expensive to compute the expected value of the underlying random functions.
A detailed asymptotic analysis of the optimal values obtained from solving the sample average
approximated problem was also provided.

In some practical applications, however, the true probability distribution may be unknown
and it is expensive to collect a large set of samples or the samples are not trustworthy. However,
it might be possible to use some partial information such as empirical data, computer simulation,
prior moments or subjective judgements to construct a set of distributions which contains or
approximates the true probability distribution in good faith. Under these circumstances, it
might be reasonable to consider a distributionally robust version of (1.2) in order to hedge the
risk arising from ambiguity of the true probability distribution,

(DRSR) SRPl,λ(Z) := inf{t ∈ IR : t+ Z ∈ AP}, (1.3)

where AP := {Z ∈ L∞ : supP∈P EP [l(−Z)] ≤ λ}, and P is a set of probability distributions.
Föllmer and Schied seem to be the first to consider the notion of distributionally robust SR. In
[10, Corollary 4.119], they established a robust representation theorem for DRSR. More recently,
Wiesemann et al. [33] demonstrated how an DRSR optimization problem may be reformulated
as a tractable convex programming problem when l is piecewise affine and the ambiguity set is
constructed through some moment conditions, see [33, Example 6] for details.

In this paper, we take on the research by giving a more comprehensive treatment of DRSR.
We start by looking into the properties of DRSR and then move on to discuss some optimization
problems associated with DRSR. Specifically, for a loss c(x, ξ) associated with decision vector
x ∈ X ⊂ IRn and random vector ξ ∈ IRk, we consider an optimization problem which aims to
minimize the distributionally robust shortfall risk measure of the random loss:

(DRSRP) min
x∈X

SRPl,λ(−c(x, ξ)), (1.4)
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where SRPl,λ(·) is defined as in (1.3). We present a detailed discussion on (DRSRP) including
tractable reformulation for the problem when the ambiguity set has a specific structure. For
the cases when the tractable reformulation is not possible, we propose discrete approximation
schemes and quantify the approximation error of the ambiguity set and its propagation to the
optimal value of (DRSRP). As far as we are concerned, the main contribution of the paper can
be summarized as follows.

• We demonstrate that DRSR is the worst-case SR (Proposition 2.1) and using the property
to show that it is a convex risk measure. In the case when SRP

l,λ(·) is a coherent risk

measure for each P ∈ P, we show that SRPl,λ(·) is also a coherent risk measure, see Remark
2.1.

• We investigate tractability of (DRSRP) by considering particular cases where the am-
biguity set P is constructed through moment conditions, φ-divergence ball, Kantorovich
ball and mixture distribution. For instance, when P is defined through some moment
conditions, and l(·) is piecewise linear, we find that (DRSRP) can be reformulated as a
linear program (3.13) with linear semi-definite constraint using standard approach in the
literature of distributionally robust optimization. Similar observations are made when P
is constructed through φ-divergence ball and Kantorovich ball.

• Since the structure of P often involves sample data, we analyse convergence of the ambi-
guity set as the sample size increases. For instance, when the nominal distribution in the
φ-divergence ball is constructed through iid samples, we derive a quantitative convergence
result about how the ambiguity set approximates the true probability distribution as the
sample size increases, similar convergence result is established for the Kantorovich ball,
see Propositions 3.1 and 3.3. These results not only give rise to appropriate error bounds
for the ambiguity sets PN , but also present a confidence interval for the true probability
distribution with a given set of samples. To quantify how the errors arising from the am-
biguity set propagate to the optimal value of (DRSRP), we show under some moderate
conditions that the error of the optimal value is linearly bounded by the error of the ambi-
guity set and subsequently derive a confidence interval for the optimal value of (DRSRP)
for each discrete approximation scheme of the ambiguity sets (Theorem 4.2 and Corollary
4.1). Similar convergence results are established for mathematical programs with DRSR
constraints (Theorem 4.3).

• Finally, as an application, we apply the (DRSRP) model to a portfolio management prob-
lem and carry out various tests on the numerical schemes for the (DRSRP) model with
simulated data and real data. One of the important findings is that the (DRSRP) model
outperforms the SAA model (with the ambiguity set P in (DRSRP) being replaced by the
empirical probability distribution) in all of the tests (Section 5).

Throughout the paper, we use IRn to represent n dimensional Euclidean space, ‖x‖ the
Euclidean norm of a vector x ∈ IRn and d(x,A) := infx′∈A ‖x−x′‖ the distance from a point x to
a set A. For two compact sets A,B ⊂ IRn, we write D(A,B) := supx∈A d(x,B) for the deviation
of A from B and H(A,B) := max{D(A,B),D(B,A)} for the Hausdorff distance between A and
B. For two matrices Y1, Y2 ∈ IRn×n, 〈Y1, Y2〉 := Trace(Y T

1 Y2), Y1 � 0 signifies the negative
semi-definiteness of symmetric matrix Y1. We use B to denote the unit ball in a matrix or vector
space. Finally, for a sequence of subset {SN} in a metric space, denote by lim supN→∞ SN its
outer limit, that is lim supN→∞ SN := {x : ∃xNk ∈ SNksuch thatxNk → x as k →∞}.
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2 Properties of DRSR

In this section, we investigate the properties of DRSR. It is easy to observe that SRPl,λ(Z) is the
optimal value of the following minimization problem:

min
t∈IR

t

s.t. sup
P∈P

EP [l(−Z − t)] ≤ λ. (2.5)

The following proposition states that the DRSR is the worst-case SR and it preserves convexity
of SR.

Proposition 2.1 Let SRPl,λ(Z) be defined as in (1.3), Z ∈ L∞ and l : IR → IR be a convex,
increasing and non-constant function, let λ be a pre-specified constant in the range of l. Then
SRPl,λ(Z) is finite,

SRPl,λ(Z) = sup
P∈P

SRP
l,λ(Z), (2.6)

and SRPl,λ(Z) is a convex risk measure.

Proof. Since Z is bounded, then there exist constants α, β such that Z(ω) ∈ [α, β] for all
ω ∈ Ω. Thus

l(−β − t) ≤ sup
P∈P

EP [l(−Z − t)] ≤ l(−α− t), ∀t ∈ IR.

Since l(−β− t)→∞ as t→ −∞ and l(−α− t) ≤ λ for t sufficiently large, we conclude that the
feasible set of the left hand side of (2.5) is bounded. To show equality (2.6), we note that

t̂ := sup
P∈P

SRP
l,λ(Z) ≤ inf

t
sup
P∈P
{t ∈ IR : EP [l(−Z − t)] ≤ λ}

≤ inf
t
{t ∈ IR : sup

P∈P
EP [l(−Z − t)] ≤ λ} = SRPl,λ(Z) =: t∗.

To show the converse inequality, note that t̂ ≥ SRP
l,λ(Z), ∀P ∈ P. Thus

EP [l(−Z − t̂)] ≤ λ,∀P ∈ P,

which implies t̂ is a feasible solution of (2.5) and hence t∗ ≤ t̂. �

Remark 2.1 It may be helpful to make some comments on Proposition 2.1.

(i) The relationship established in (2.6) means that DRSR is the worst-case SR. This observa-
tion allows one to calculate DRSR via SR for each P ∈ P if it is easy to do so. Moreover,
Giesecke et al. [15] showed that SR is a coherent risk measure if and only if the loss function
l takes a specific form:

l(z) := λ− α[z]− + β[z]+, β ≥ α ≥ 0,

where [z]− denotes the negative part of z and [z]+ denotes the positive part. Using this re-
sult, we can easily show through equation (2.6) that DRSR is a coherent risk measure when
l takes the specific form in that the operation supP∈P preserves the positive homogeneity
and subadditivity.
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(ii) The restriction of Z to L∞ implies that the support 1 of the probability distribution of
Z is bounded. This condition may be relaxed to the case when there exist tl, tu ∈ IR such
that supP∈P EP [l(−Z − tl)] > λ and supP∈P EP [l(−Z − tu)] < λ; see [18].

We now move on to discuss the property of DRSR when it is applied to a random function.
This is to pave a way for us to develop full investigation on (DRSRP) in Sections 3-4. To this
end, we need to make some assumptions on the random function c and the loss function l.

Throughout this section, we use Ξ to denote the image space of random variable ξ(ω) and
P(Ξ) to denote the set of all probability measures defined on the measurable space (Ξ,B) with
Borel sigma algebra B. To ease notation, we will use ξ to denote either the random vector ξ(ω)
or an element of IRk depending on the context.

Assumption 2.1 Let X, l(·) and c(·, ·) be defined as in (DRSRP) (1.4). We assume the fol-
lowing.

(a) X is a convex and compact set and Ξ is a compact set.

(b) l is convex, increasing, non-constant and Lipschitz continuous with modulus L.

(c) c(·, ξ) is finite valued, convex w.r.t. x ∈ X for each ξ ∈ Ξ and there exists a positive
constant κ such that

|c(x, ξ)− c(x, ξ′)| ≤ κ‖ξ − ξ′‖, ∀x ∈ X, ξ, ξ′ ∈ Ξ.

The proposition below summarises some important properties of l(c(x, ξ)−t) and sup
P∈P

EP [l(c(x, ξ)−

t)]− λ as a function of (x, t).

Proposition 2.2 Let g(x, t, ξ) := l(c(x, ξ)− t) and v(x, t) := sup
P∈P

EP [g(x, t, ξ)]−λ. The follow-

ing assertions hold.

(i) Under Assumption 2.1 (b) and (c), g(·, ·, ξ) is convex w.r.t. (x, t) for each fixed ξ ∈ Ξ,
g(x, t, ·) is uniformly Lipschitz continuous w.r.t. ξ with modulus Lκ, and v(x, t) is a convex
function w.r.t. (x, t).

(ii) If, in addition, Assumption 2.1 (a) holds and λ is a pre-specified constant in the interior
of the range of l, then there exist a point (x0, t0) ∈ X × IR and a constant η > 0 such that

sup
P∈P

EP [l(c(x0, ξ)− t0)]− λ < −η (2.7)

and (DRSRP) has a finite optimal value.

Proof. Part (i). It is well known that the composition of a convex function by a monotonic
increasing convex function preserves convexity. The remaining claims can also be easily verified.

1The support of the probability distribution is the smallest closed set such that a probability measure of its
complement is zero.
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Part (ii). Since c(x, ξ) is finite valued and convex in x, it is continuous in x for each fixed
ξ. Together with its uniform continuity in ξ, we are able to show that c(x, ξ) is continuous over
X × Ξ. By the boundedness of X and Ξ, there is a positive constant α such that c(x, ξ) ≤ α
for all (x, ξ) ∈ X × Ξ. With the boundedness of c and the monotonic increasing, convex and
non-constant property of l, we can easily show Part (ii) analogous to the proof of the first part
of Proposition 2.1. We omit the details. �

3 Structure of (DRSRP’) and approximation of the ambiguity
set

In this section, we investigate the structure and numerical solvability of (DRSRP). Using the
formulation (2.5) for DRSR, we can reformulate (DRSRP) as

(DRSRP’)
min

x∈X,t∈T
t

s.t. sup
P∈P

EP [l(c(x, ξ)− t)] ≤ λ, (3.8)

where T is a compact set in IR which contains t0 defined as in (2.7) and its existence is ensured
by Proposition 2.2 under some moderate conditions. Obviously, the structure of (DRSRP’) is
determined by the distributionally robust constraint. The latter relies heavily on the concrete
structure of the ambiguity set P and the loss function l.

In the literature of distributionally robust optimization, various statistical methods have been
proposed to build ambiguity sets based on available information of the underlying uncertainty,
see for instance [33, 34] and the references therein. Here we consider four approaches which
use moment information, φ-divergence ball, Kantorovich ball and mixture distribution because
(DRSRP’) is a special class of DRO. We discuss tractable formulation of (DRSRP’) and its
approximation in each case.

3.1 Ambiguity set based on moment conditions

Consider the case where the ambiguity set is defined by a general system of moment conditions:

P := {P ∈P(Ξ) : EP [Ψ(ξ, u)] = 0,EP [Φ(ξ, u)] � 0}, (3.9)

where Ψ : Ξ × IRm → IRn1 is a vector-valued function and Φ : Ξ × IRm → IRn2×n2 is a
matrix-valued mapping, u ∈ IRm is a parameter, the mathematical expectations of Ψ and Φ
are taken componentwise. In the literature of distributionally robust optimization, ambiguity
set built on moment conditions can be traced back to earlier work by Scarf [28], who considered
a distributionally robust model for a newsvendor problem. More recent works using moment
conditions can be found in Delage and Ye [6], Wiesemann et al. [33] and Xu et al. [34].

Under some moderate conditions on the moment systems, we can easily derive Lagrangian
dual formulation of supP∈P EP [l(c(x, ξ)− t)] (see [34]) and consequently recast (DRSRP’) as

min
x,t,y,Y

t

s.t. l(c(x, ξ)− t)− yTΨ(ξ, u)− 〈Y,Φ(ξ, u)〉 ≤ λ, ∀ξ ∈ Ξ,
Y � 0,
x ∈ X, y ∈ IRn1 , t ∈ T,

(3.10)
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which is a minimization problem with semi-infinite constraints. Under Assumption 2.1, the
semi-infinite constraints are convex. Moreover, when l, c and P take specific forms, we can
further reformulate (3.10) as a convex semi-definite program (SDP for short). For example,
consider the case that c(x, ξ) := −xT ξ, Ξ = IRk and

P(µ,Σ, γ1, γ2) :=

{
P ∈P(IRk) :

EP [ξ − µ]TΣ−1EP [ξ − µ] ≤ γ1

EP [(ξ − µ)(ξ − µ)T ] � γ2Σ

}
, (3.11)

where µ and Σ � 0 are estimates of the mean and covariance of ξ and γ1, γ2 are parameters.
This type of ambiguity set was first considered by Delage and Ye [6]. When the loss function l
is piecewise affine and convex, that is,

l(z) := max
j=1,...,K

ajz + bj , (3.12)

Problem (3.10) can be reformulated as a convex SDP through the S-lemma [25]:

min
x,t,λ0,ζ,Y1,Y2,y,η

t

s.t. 〈Σ, γ2Y1 + Y2〉+ λ0 − µTY1µ− 2µT y + γ1η ≤ λ,
ζ + 2Y1µ+ 2y = 0,[

Y1 (ζ + ajx)/2
(ζ + ajx)T /2 λ0 + ajt− bj

]
� 0, j = 1, . . . ,K,

Y1 � 0,[
Y2 y
yT η

]
� 0,

x ∈ X, t ∈ T.

(3.13)

In the case when l(·) is a general increasing and convex function on IR, we may develop inner and
outer piecewise affine convex approximations for the feasible set of problem (3.10). To see how
it works, let z1 < z2 < . . . < zK be K points in a compact set O ⊂ IR where l is differentiable
with l′(z) = dl

dz , let

aj := l′(zj), bj := l(zj)− l′(zj)zj for j = 1, . . . ,K,

and l(z) := max
j=1,...,K

ajz + bj . Let

aj :=
l(zj+1)− l(zj)
zj+1 − zj

, bj := −ajzj + l(zj) for j = 1, . . . ,K − 1,

and l(z) := max
j=1,...,K−1

ajz + bj . By the convexity of l(·), l(z) ≤ l(z) ≤ l(z),∀z ∈ O. If we replace

l(·) with l(·) and l(·) respectively in (3.10), then the resulting feasible set will give an outer and
inner approximation of the feasible set of (3.10) and the approximate programs will give lower
and upper bounds for the optimal value of (3.10). In either case, the approximate program can
be solved through (3.13).

Remark 3.1 When µ and Σ in P(µ,Σ, γ1, γ2) are estimated via iid samples, i.e.,

µN :=
1

N

N∑
i=1

ξi and ΣN :=
1

N

N∑
i=1

(ξi − µN )T (ξi − µN ), (3.14)
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and γ1 and γ2 are some positive constants depending on the samples, written as γN1 and γN2 ,
we may ask ourselves as to how P(µN ,ΣN , γ

N
1 , γ

N
2 ) evolves as the size of data increases. Delage

and Ye [6] proved that under the boundedness of support of ξ, the true probability distribution
of ξ lies in set P(µN ,ΣN , γ

N
1 , γ

N
2 ) with probability at least 1− δ; see [6, Corollaries 3 and 4]. So

[30] relaxed the bounded condition by replacing it with some moment growth condition, that is,
there exists an absolute constant s > 0 such that for any q ≥ 1, the following holds:

EP [‖Σ−1/2(ξ − µ)‖q] ≤ (sq)q/2. (3.15)

By specifying γN1 and γ2
N as follows:

γN1 :=
tNm

1− tNc − tNm
, and γN2 :=

1 + tNm
1− tNc − tNm

, (3.16)

where

tNm :=
4se2 ln2(2/δ)

N
, tNc :=

4s′(2e/3)3/2 ln3/2(4k/δ)√
N

with δ ∈ (0, 2e−3), s′ = max{s, 1}, So [30, Theorem 9] showed that the true probability distri-
bution of ξ lies in P(µN ,ΣN , γ

N
1 , γ

N
2 ) with probability 1− δ for N being sufficiently large.

Sun and Xu [31, Section 4] presented some quantitative convergence analysis of the ambiguity
set P(µN ,ΣN , γ

N
1 , γ

N
2 ) and its impact on the underlying DRO problem as the sample size N

increases. Similar analysis is given by Zhang et al. for DRO problems with general conic
constrained moment conditions; see [37, Sections 2 and 3]. Note also that when tractable
reformulation such as (3.13) is impossible, we may resort to discrete approximation scheme
considered by Xu et al. [34, Section 3] for solving (DRSRP’). Quantitative convergence analysis
of the ambiguity set and the approximate (DRSRP’) may be established as in [19], we leave
interested readers to explore as it is not the main focus here.

3.2 Ambiguity set constructed through φ-divergence

Let us now consider the case that the only available information about the random vector ξ is its
empirical data and the size of such data is limited (not very large). In stochastic programming,
a well-known approach in such situation is to use empirical distribution constructed through
the data to approximate the true probability distribution. However, if the sample size is not big
enough or there is a reason from computational point of view to use a small size of empirical
data (e.g., in multistage decision-making problems), then the quality of such approximation may
be compromised. φ-divergence is subsequently proposed to address this dilemma.

Let p = (p1, . . . , pM )T ∈ IRM
+ and q = (q1, . . . , qM )T ∈ IRM

+ be two probability vectors, that

is,
∑M

i=1 pi = 1 and
∑M

i=1 qi = 1. The so-called φ-divergence between p and q is defined as

Iφ(p, q) :=

M∑
i=1

qiφ

(
pi
qi

)
,

where φ(t) is a convex function for t ≥ 0, φ(1) = 0, 0φ(a/0) := a limt→∞ φ(t)/t for a > 0 and
0φ(0/0) := 0. In this subsection, we consider some common φ-divergences which are defined as
follows.

9



(a) Kullback-Leibler: IφKL(p, q) =
∑

i pi log
(
pi
qi

)
with φKL(t) = t log t− t+ 1;

(b) Burg entropy: IφB (p, q) =
∑

i qi log
(
qi
pi

)
with φB(t) = − log t+ t− 1;

(c) J-divergence: IφJ (p, q) =
∑

i(pi − qi) log
(
pi
qi

)
with φJ(t) = (t− 1) log t;

(d) χ2-distance: Iφχ2 (p, q) =
∑

i
(pi−qi)2

pi
with φχ2(t) = 1

t (t− 1)2;

(e) Modified χ2-distance: Iφmχ2 (p, q) =
∑

i
(pi−qi)2

qi
with φmχ2(t) = (t− 1)2;

(f) Hellinger distance: IφH (p, q) =
∑

i(
√
pi −

√
qi)

2 with φH(t) = (
√
t− 1)2;

(g) Variation distance: IφV (p, q) =
∑

i |pi − qi| with φV (t) = |t− 1|.

Lemma 3.1 (Relationships between φ-divergences) For two probability vectors p, q ∈ IRM
+ , the

following inequalities hold.

(i) IφV (p, q) ≤
√

2IφKL(p, q);

(ii) IφV (p, q) ≤
√

2IφB (p, q);

(iii) IφV (p, q) ≤
√
IφJ (p, q);

(iv) IφV (p, q) ≤
√
Iφχ2 (p, q);

(v) IφV (p, q) ≤
√
Iφmχ2 (p, q);

(vi) IφH (p, q) ≤ IφV (p, q) ≤ 2
√
IφH (p, q).

Proof. Parts (i), (v) and (vi) follow straightforwardly from [14]. We prove the rest of the
inequalities. Observe that IφB (p, q) = IφKL(q, p) and IφV (p, q) = IφV (q, p). By Part (i),

IφV (p, q) = IφV (q, p) ≤
√

2IφKL(q, p) =
√

2IφB (p, q),

which gives rise to the inequality in Part (ii). Part (iii) follows from a combination of Parts (i)
and (ii) in that IφJ (p, q) = IφKL(p, q) + IφB (p, q). Part (iv) holds because

IφV (p, q) =
∑
i

|pi − qi|√
pi

√
pi ≤

√
Iφχ2 (p, q),

where the inequality follows from the Cauchy-Schwarz inequality and the fact that p is a prob-
ability vector. �

Let {ζ1, . . . , ζM} ⊂ Ξ denote the M -distinct points in the support of ξ and Ξi denote the
Voronoi partition of Ξ centered at ζi for i = 1, . . . ,M . Let ξ1, . . . , ξN be an iid sample of ξ
where N >> M and Ni denote the number of samples falling into area Ξi. Define empirical
distribution

PN (·) :=

M∑
i=1

Ni

N
1ζi(·), (3.17)
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and ambiguity set

PMN :=

{
M∑
i=1

pi1ζi(·) : Iφ(p, pN ) ≤ r,
M∑
i=1

pi = 1, pi ≥ 0, ∀i = 1, . . . ,M

}
, (3.18)

where pN =
(
N1
N , . . . , NMN

)T
. Using PMN for the ambiguity set in (DRSRP’), we can derive a

dual formulation of (DRSRP’) as follows:

min
x∈X,t∈T,τ,u

t

s.t. τ + ru+ u

M∑
i=1

[pN ]iφ
∗(si) ≤ λ,

si ≤ lim
t→∞

φ(t)

t
, i = 1, . . . ,M,

si = [l(c(x, ζi)− t)− τ ]/u, i = 1, . . . ,M,

u ≥ 0,

(3.19)

where pN is defined as in (3.18) and we write [pN ]i for the i-th component of pN , φ∗ denotes the
Fenchel conjugate of φ, i.e., φ∗(s) = supt≥0{st− φ(t)}, see similar formulation in [3]. Note that

u
∑M

i=1 φ
∗(l(c(x, ζi) − t) − τ)/u] is a convex function of x, u, τ and t, see [20]. Thus, problem

(3.19) is a convex program.

It is important to note that the tractable reformulation (3.19) relies heavily on the discrete
structure of the nominal distribution. Note that it is possible to use a continuous distribution
for the nominal distribution, in which case the summation in the first constraint of problem
(3.19) will become E[φ∗((l(c(x, ζ) − t) − τ))/u)] (before introducing new variables si). In such
a case, we will need to use sample average approximation approach to deal with the expected
value.

Let L denote the space of all Lipschitz continuous functions h : Ξ→ IR with modulus being
bounded by 1 and P,Q ∈ P(Ξ) be two probability measures. Recall that the Kantorovich
metric (or distance) between P and Q, denoted by dlK(P,Q), is defined by

dlK(P,Q) := sup
h∈L

{∫
Ξ
h(ξ)P (dξ)−

∫
Ξ
h(ξ)Q(dξ)

}
.

Using the Kantorovich metric, we can define deviation of a set of probability measures P from
another set of probability measures Q

DK(P,Q) := sup
P∈P

inf
Q∈Q

dlK(P,Q),

and the Hausdorff distance between the two sets

HK(P,Q) := max {DK(P,Q),DK(Q,P)} . (3.20)

An important property of the Kantorovich metric is that it metrizes weak convergence of prob-
ability measures [4] when the support is bounded, that is, a sequence of probability measures
{PN} converges to P weakly if and only if dlK(PN , P )→ 0 as N tends to infinity.
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Recall that for a given set of points {ζ1, . . . , ζM}, the Voronoi partition of Ξ is defined as M
subsets of Ξ, denoted by Ξ1, . . . ,ΞM , with

⋃
i=1,...,M Ξi = Ξ and

Ξi ⊆
{
y : ‖y − ζi‖ = min

j=1,...,M
‖y − ζj‖

}
.

By [24, Lemma 4.9],

dlK

(
M∑
i=1

P ∗(Ξi)1ζi(·), P ∗
)

=

∫
min

1≤i≤M
d(ξ, ζi)dP ∗ (3.21)

=
M∑
i=1

∫
Ξi

d(ξ, ζi)dP ∗ ≤ βM ,

where

βM := max
ξ∈Ξ

min
1≤i≤M

d(ξ, ζi). (3.22)

Using this, we can estimate the Kantorovich distance between PMN and the true probability
distribution P ∗.

Proposition 3.1 Let PMN be defined as in (3.18) and P ∗ be the true probability distribution of
ξ. Let βM be defined as in (3.22) and δ be a positive number such that Mδ < 1. If φ is chosen
from one of the functions listed in (a)-(g) preceding Lemma 3.1, then with probability at least
1−Mδ,

HK(PMN , P ∗) ≤ βM +
D

2
max{2

√
r, r}+

D

2
∆(M,N, δ), (3.23)

where ∆(M,N, δ) := min
(
M√
N

(
2 +

√
2 ln 1

δ

)
, 4 + 1√

N

(
2 +

√
2 ln 1

δ

))
, D is the diameter of Ξ,

that is, sup{‖ξ′ − ξ′′‖ : ξ′, ξ′′ ∈ Ξ}, and r is defined in (3.18). In the case when ξ follows a
discrete distribution with support set {ζ1, . . . , ζM}, we have

HK(PMN , P ∗) ≤ D

2
max{2

√
r, r}+

D

2
∆(M,N, δ) (3.24)

with probability at least 1−Mδ, where D = sup{‖ζi − ζj‖, 1 ≤ i 6= j ≤M}.

Proof. By the triangle inequality of the Hausdorff distance with the Kantorovich metric,

HK(PMN , P ∗) ≤ sup
P∈PMN

dlK

(
P,

M∑
i=1

P ∗(Ξi)1ζi(·)

)
+ dlK

(
M∑
i=1

P ∗(Ξi)1ζi(·), P ∗
)
.

By (3.21), dlK

(∑M
i=1 P

∗(Ξi)1ζi(·), P ∗
)
≤ βM . Moreover, it follows by [14, Theorem 4], the

Kantorovich distance is bounded by D/2 times the total variation distance, that is,

dlK

(
P,

M∑
i=1

P ∗(Ξi)1ζi(·)

)
≤ D

2

M∑
i=1

|pi − P ∗(Ξi)| .
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Observe that

M∑
i=1

|pi − P ∗(Ξi)| ≤
M∑
i=1

(|pi − [pN ]i|+ |[pN ]i − P ∗(Ξi)|)

= IφV (p, pN ) +

M∑
i=1

|[pN ]i − P ∗(Ξi)| .

By Lemma 3.1,

IφV (PMN , pN ) ≤ max

{
2
√
Iφ(PMN , pN ), IφV (PMN , pN )

}
≤ max{2

√
r, r}.

Thus, in order to show (3.23), it suffices to show

M∑
i=1

|[pN ]i − P ∗(Ξi)| ≤ ∆(M,N, δ). (3.25)

Let a ∈ IRM be a vector with ‖a‖∞ = max1≤i≤M |ai| = 1, and φa(ξ) :=
∑M

i=1 ai1Ξi(ξ). Then
supξ∈Ξ |φa(ξ)| ≤ 1 and it follows by [29, Theorem 3] that∣∣∣∣∣ 1

N

N∑
k=1

φa(ξ
k)− EP ∗ [φa(ξ)]

∣∣∣∣∣ ≤ 1√
N

(
2 +

√
2 ln

1

δ

)
(3.26)

with probability at least 1− δ for the fixed a. In particular, if we set a = ei, for i = 1, · · · ,M ,
where ei ∈ IRM is a vector with i-th component being 1 and the rest being 0, then we obtain

|[pN ]i − P ∗(Ξi)| =

∣∣∣∣∣ 1

N

N∑
k=1

φei(ξ
k)− EP ∗ [φei(ξ)]

∣∣∣∣∣ ≤ 1√
N

(
2 +

√
2 ln

1

δ

)
(3.27)

with probability at least 1− δ for each i = 1, · · · ,M . This gives

M∑
i=1

|[pN ]i − P ∗(Ξi)| ≤
M√
N

(
2 +

√
2 ln

1

δ

)
(3.28)

with probability at least 1−Mδ and hence we have shown (3.25) for the first part of its bound
in ∆(M,N, δ).

To show the second part of the bound, we need a bit more complex argument to estimate
the left hand side of (3.25). Let A := {a ∈ IRM : ‖a‖∞ = 1}. Let ν be a small positive number
(less or equal to 2) and Ak := {a1, · · · , ak} be a ν-net of A, that is, for any a ∈ A, there is a
point ai(a) ∈ Ak depending on a such that ‖a− ai(a)‖∞ ≤ ν. Observe that

M∑
i=1

|[pN ]i − P ∗(Ξi)| = sup
‖a‖∞=1

|pTNa− p∗
Ta|, (3.29)

where we write p∗ for the M -dimensional vector with i component P ∗(Ξi). Then

|pTNa− p∗
Ta| ≤ |pTN (a− ai(a))|+ |pTNai(a)− p∗Tai(a)|+ |p∗Tai(a)− p∗Ta|

≤ 2ν + |pTNai(a)− p∗Tai(a)|.
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By (3.26), for each ai, i = 1, · · · , k

|pTNai − p∗
Tai| ≤ 1√

N

(
2 +

√
2 ln

1

δ

)
(3.30)

with probability at least 1 − δ, thus inequality (3.30) holds uniformly for all i = 1, · · · , k with
probability at least 1− kδ. This enables us to conclude that

M∑
i=1

|[pN ]i − P ∗(Ξi)| = sup
‖a‖∞=1

|pTNa− p∗
Ta|

≤ 2ν +
1√
N

(
2 +

√
2 ln

1

δ

)
(3.31)

with probability at least 1 − kδ. Since when ν = 2, Ak will be a trivial ν-net, then we can set
k = M and obtain from (3.31)

M∑
i=1

|[pN ]i − P ∗(Ξi)| ≤ 4 +
1√
N

(
2 +

√
2 ln

1

δ

)
(3.32)

with probability at least 1−Mδ. This completes the proof of (3.25) and hence inequality (3.23).

In the case when ξ follows a discrete distribution with support set {ζ1, . . . , ζM},

HK(PMN , P ∗) ≤ sup
P∈PMN

D

2

(
IφV (P, pN ) +

M∑
i=1

|[pN ]i − P ∗(Ξi)|

)
.

The rest follows from similar analysis for the proof of (3.23). �

It might be helpful to make a few comments on the above technical results. First, if we set
δ = 1

10M , then 1− δM = 90% and the third term at the right hand side of (3.23) is

D

2
min

(
M√
N

(
2 +

√
2 ln(10M)

)
, 4 +

1√
N

(
2 +

√
2 ln(10M)

))
. (3.33)

In order for the first part of (3.33) to be small, N must be significantly larger than M . The
approach works for the case when there is a large data set which is not scattered evenly over Ξ,
but rather they form clumps, locally dense areas, modes, or clusters. In the case that N is less
than (M − 1)2, the second part of (3.33) is smaller than the first part, which means the second
part provides a lower bound. Second, the true distribution in the local areas may be further
described by moment conditions, see [21, 33]. Third, Pflug and Pichler proposed a practical way
for identifying the optimal location of discrete points ζ1, . . . , ζM and computing the probability
of each Voronoi partition, see [24, Algorithms 4.1-4.5]. Forth, the inequality (3.23) gives a bound
for the Hausdorff distance of the true probability distribution P ∗ and the ambiguity set PMN , it
does not indicate the true probability distribution P ∗ being located in PMN .

Since the ambiguity set PMN does not constitute any continuous distribution irrespective of
r > 0, then when the true probability distribution P ∗ is continuous, P ∗ lies outside PMN with
probability 1. If the true probability distribution P ∗ is discrete, Pardo [22] showed that the
estimated φ-divergence 2N

φ′′(1)Iφ(p∗, pN ) asymptotically follows a χ2
M−1-distribution with M − 1
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degree of freedom, where p∗ denotes the probability vector corresponding to probability measure
P ∗ and M is the cardinality of Ξ (the support of P ∗), which means if we set

r :=
φ′′(1)

2N
χ2
M−1,1−δ, (3.34)

then with probability 1 − δ, Iφ(p∗, pN ) ≤ r. The latter indicates that the ambiguity set (3.18)
lies in the 1− δ confidence region.

For general φ-divergences, we are unable to establish the quantitative convergence as in
Proposition 3.1. However, if P ∗ follows a discrete distribution with support {ζ1, . . . , ζM}, the
following qualitative convergence result holds.

Proposition 3.2 [20, Proposition 2] Suppose that φ(t) ≥ 0 has a unique root at t = 1 and the
samples are independent and identically distributed from the true distribution P ∗. Then

HK(PMN , P ∗)→ 0,w.p.1,

as N →∞, where r is defined as in (3.34).

Proof. The proof is analogous to [20, Proposition 2], we provide it for completeness. First,
we claim that

sup
p∈PMN

‖p− p∗‖∞ → 0.

Observe that by the strong law of large numbers, [pN ]i = Ni
N converges to p∗ uniformly, i.e.,

‖pN − p∗‖∞ = sup
i=1,...,M

|[pN ]i − p∗i | → 0 asN →∞,

and for any p ∈ PMN ,
‖p− p∗‖∞ ≤ ‖p− pN‖∞ + ‖pN − p∗‖∞,

we only need to prove that supp∈PMN
‖p− pN‖∞ → 0. We will prove it by contradiction.

Let ε > 0 be such that mini p
∗
i >

ε
2 and N1 such that ‖pN − p∗‖∞ ≤ ε

2 for N ≥ N1, this
means [pN ]i > 0 for i = 1, . . . ,M . Suppose that there exists p ∈ PMN such that ‖p− pN‖∞ > ε

2
for N > N1, that is, there exists i0 such that |pi0 − [pN ]i0 | > ε

2 , i.e. pi0 > [pN ]i0 + ε
2 or

pi0 < [pN ]i0 − ε
2 . In either case, since φ(t) ≥ 0 is a convex function with only one root at t = 1,

we have

φ

(
pi0

[pN ]i0

)
≥ min

{
φ

(
[pN ]i0 + ε

2

[pN ]i0

)
, φ

(
[pN ]i0 − ε

2

[pN ]i0

)}
≥ min

{
φ
(

1 +
ε

2

)
, φ
(

1− ε

2

)}
,

where the last inequality follows from the fact that

a+ ε
2

a
≥ 1 +

ε

2
and

a− ε
2

a
≤ 1− ε

2
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for 0 ≤ a ≤ 1 and the property of φ. Thus

Iφ(p, pN ) =

M∑
i=1

[pN ]iφ

(
pi

[pN ]i

)
≥ (min

i
[pN ]i)φ

(
pi0

[pN ]i0

)
(3.35)

≥ min
i

{
p∗i −

ε

2

}
min

{
φ
(

1 +
ε

2

)
, φ
(

1− ε

2

)}
.

The right hand side of (3.35) is positive because φ has a unique root at t = 1. By choosing
N2 > N1 such that

min
i

{
p∗i −

ε

2

}
min

{
φ
(

1 +
ε

2

)
, φ
(

1− ε

2

)}
≥ r0

N2
,

with r0 = φ′′(1)
2 χ2

M−1,1−δ, we now obtain that ‖p − pN‖∞ > ε
2 implies Iφ(p, pN ) > r0

N for all

N > N2, which is a contradiction with p ∈ PMN . Hence we have for any ε > 0, there exists
N2 > 0 such that ‖p− pN‖∞ ≤ ε

2 holds for any p ∈ PMN and N > N2.

Note that

HK(PMN , P ∗) = sup
p∈PMN

dlK(p, p∗) ≤ sup
p∈PMN

D′M‖p− pN‖∞,

where D′ is the diameter of discrete support set of P ∗, the conclusion follows. �

3.3 Kantorovich ball

An alternative approach to the φ-divergence is to consider Kantorovich ball centered at a nominal
distribution, that is,

PN = {P ∈P(Ξ) : dlK(P, PN ) ≤ r}, (3.36)

where PN (·) = 1
N

∑N
i=1 1ξi(·), ξ1, . . . , ξN are iid samples of ξ. Differing from the ambiguity set

based on φ-divergence, the Kantorovich ball contains both discrete and continuous distributions.
In particular, if there exists a positive number a > 0 such that

A :=

∫
Ξ

exp(‖ξ‖a)P ∗(dξ) <∞, (3.37)

then for any r > 0, there exist positive constants C1 and C2 such that

Prob(dlK(P ∗, PN ) ≥ r) ≤
{
C1 exp(−C2Nr

max{k,2}) if r ≤ 1,
exp(−C2Nr

a) if r > 1,
(3.38)

for all N ≥ 1, k 6= 2, where C1 and C2 are positive constants only depending on a, A and k,
“Prob” is a probability distribution over space Ξ× · · · × Ξ (N times) with Borel-sigma algebra
B ⊗ · · · ⊗B, and k is the dimension of ξ; see [11] for details. By setting the right hand side of
the above inequality to δ and solving for r, we may set

rN (δ) :=


(

log(C1δ−1)
C2N

)1/max{k,2}
ifN ≥ log(C1δ−1)

C2
,(

log(C1δ−1)
C2N

)1/a
ifN < log(C1δ−1)

C2
,

(3.39)
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and consequently the ambiguity set (3.36) contains the true probability distribution P ∗ with
probability 1− δ when r = rN (δ).

In [8, 13, 35], the dual formulation of distributionally robust optimization problem with the
ambiguity set (3.36) has been established. Based on these results, the dual of DRSRP can be
written as

min
x∈X,t∈T,η,s

t

s.t. ηr +
1

N

N∑
i=1

si ≤ λ,

sup
ξ∈Ξ

[
l(c(x, ξ)− t)− η‖ξ − ξi‖

]
≤ si, i = 1, . . . , N.

(3.40)

In the case when c(x, ξ) = −xT ξ, Ξ = {ξ ∈ IRk : Gξ ≤ d} and

l(c(x, ξ)− t) = max
j=1,...,K

aj(−xT ξ − t) + bj = max
j=1,...,K

〈−ajx, ξ〉 − ajt+ bj ,

problem (3.40) can be recast as

min
x∈X,t∈T,η,s,γij

t

s.t. ηrN +
1

N

N∑
i=1

si ≤ λ,

bj − ajt− 〈ajx, ξi〉+ 〈γij , d−Aξi〉 ≤ si, i = 1, . . . , N, j = 1, . . . ,K,
‖GTγij + ajx‖ ≤ η, i = 1, . . . , N, j = 1, . . . ,K,
γij ≥ 0, i = 1, . . . , N, j = 1, . . . ,K.

The proposition below gives a bound for the Hausdorff distance of PN and P ∗ under the
Kantorovich metric.

Proposition 3.3 Let PN be defined as in (3.36) and P ∗ denote the true probability distribution.
Let rN (δ) be defined as in (3.39). If the radius of the Kantorovich ball in (3.36) is equal to rN (δ),
then with probability at least 1− δ,

HK(PN , P ∗) ≤ 2rN (δ). (3.41)

Proof. We first prove that

HK(PN , P ∗) ≤ dlK(PN , P
∗) + r. (3.42)

To see this, for any P ′ ∈ PN , we have

dlK(P ′, P ∗) ≤ dlK(P ′, PN ) + dlK(PN , P
∗) ≤ r + dlK(PN , P

∗),

which implies
DK(PN , P ∗) ≤ r + dlK(PN , P

∗).

On the other hand,

DK(P ∗,PN ) = inf
Q∈PN

dlK(P ∗, Q) ≤ dlK(P ∗, P ′) ≤ r + dlK(PN , P
∗).
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A combination of the last two equations yields (3.42).

Let us now estimate the first term in (3.42), i.e., dlK(PN , P
∗). By the definition of rN (δ),

we have with probability 1− δ, dlK(PN , P
∗) ≤ rN (δ). The conclusion follows. �

In the case when the centre of the Kantorovich ball PN in (3.36) is replaced by that defined
as in (3.17), we have

HK(PN , P ∗) ≤ βM + r + ∆(M,N, δ) (3.43)

with probability at least 1 −Mδ, where ∆(M,N, δ) is defined as in Proposition 3.1. To see
this, we can use the triangle inequality of the Hausdorff distance with the Kantorovich metric
to derive

HK(PN , P ∗)

≤ sup
P∈PN

dlK

P, M∑
j=1

P ∗(Ξj)1ζj (·)

+ dlK

 M∑
j=1

P ∗(Ξj)1ζj (·), P ∗
 . (3.44)

Since

dlK

P, M∑
j=1

P ∗(Ξj)1ζj (·)

 ≤ dlK (P, PN ) + dlK

PN , M∑
j=1

P ∗(Ξj)1ζj (·)


≤ r +

D

2

M∑
j=1

|[pN ]j − P ∗(Ξj)| , (3.45)

we establish (3.43) by combining (3.44), (3.45), (3.28) and (3.31).

3.4 Mixture distribution

We now turn to discuss the case when the true distribution P ∗ of ξ lies in a convex combination
of some known distributions Pj , j = 1, . . . , J . In other words, P ∗ can be represented as a mixture
distribution of Pj although we don’t know the representation. Consequently, we may construct
the ambiguity set as follows:

P :=


J∑
j=1

αjPj :
J∑
j=1

αj = 1, αj ≥ 0, j = 1, . . . , J

 . (3.46)

Distributionally robust optimization under mixture distribution can be traced back to Hall et
al. [16] and Peel and McLachlan [23]. More recently, Zhu and Fukushima [36] studied robust
optimization of the CVaR of a random function under mixture distribution.

The (DRSRP’) with P being defined as in (3.46) can be written as

min
x∈X,t∈T

t

s.t. EPj [l(c(x, ξ)− t)] ≤ λ, j = 1, . . . , J.
(3.47)

Note that in order to solve problem (3.47), it might be desirable to use sample average approx-
imation to avoid computation of the expected values w.r.t. probability distributions Pj . Let
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PNj (·) = 1
N

∑N
k=1 1ξkj

(·) be an empirical distribution of Pj for j = 1, . . . , J . We consider

min
x∈X,t∈T

t

s.t. EPNj [l(c(x, ξ)− t)] ≤ λ, j = 1, . . . , J
(3.48)

to approximate problem (3.47). By (3.38), we know PNj converges to Pj under the Kantorovich
metric at exponential rate w.r.t. increase of sample size N under some condition. If we write
P̂ for {Pj , j = 1, . . . , J} and P̂N for {PNj , j = 1, . . . , J}, then we can easily establish the

convergence of P̂N to P̂ under the Kantorovich metric.

Proposition 3.4 Assume that dlK(PNj , Pj)→ 0 for j = 1, . . . , J as N →∞. For N sufficiently
large

HK(P̂N , P̂) = max
{
dlK(PNj , Pj) : j = 1, . . . , J

}
(3.49)

and

HK(P̂N , P̂) ≤ max
j=1,...,J

rjN (δ) (3.50)

probability 1− δ, where rjN (δ) is defined as in (3.39) for Pj, j = 1, . . . , J .

Proof. The proof is similar to [31, Proposition 6] where the discrepancy of two ambiguity
sets defined via mixture distribution is quantified by the total variation metric. Denote by
α the minimal Kantorovich distance between each pair of probability distributions in P̂, i.e.,
α := min{dlK(Pi, Pj) : i, j = 1, . . . , J, i 6= j}. Since dlK(PNj , Pj)→ 0 for j = 1, . . . , J as N →∞,
there exists N0 such that for N ≥ N0,

dlK(PNj , Pj) ≤
α

8
, ∀j = 1, . . . , J.

Observe that for any i 6= j,

dlK(PNj , Pi) ≥ dlK(Pi, Pj)− dlK(PNj , Pj) ≥
7

8
α.

Hence,

dlK(PNj , P̂) = min
i∈{1,...,J}

{dlK(PNj , Pi)} = dlK(PNj , Pj).

By the definition of DK , the inequality gives rise to

DK(P̂N , P̂) = max{dlK(PNj , Pj) : j = 1, . . . , J}.

Likewise, we can show

DK(P̂, P̂N ) = max{dlK(PNj , Pj) : j = 1, . . . , J}.

A combination of the two equalities yields (3.49). Inequality (3.50) follows from (3.49) and
(3.39). �

Following our discussion in section 3.3, condition for convergence of PNj to Pj under the
Kantorovich metric is fulfilled if (3.37) holds. In particular the latter is satisfied when the
support set of Ξ is bounded.
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4 Approximation of (DRSRP’)

In Section 3, we discussed four approaches to construct the ambiguity set P and argued in each
approach that there is a need to approximate P by PN because the ambiguity set contains
samples. Under these circumstances, we have to solve (DRSRP’) via solving the following
minimization problem:

(DRSRP’-N)


min

X∈X,t∈T
t

s.t. sup
P∈PN

EP [l(c(x, ξ)− t)] ≤ λ. (4.51)

Consequently, it is necessary to investigate finite sample guarantees on the quality of the optimal
solutions obtained from solving (DRSRP’-N), a concept proposed by Esfahani and Kuhn [8], as
well as convergence of the optimal values.

Let ϑN denote the optimal value of (DRSRP’-N) and SN the corresponding optimal solution
set. Let xN ∈ SN and P ∗ denote the true probability distribution. We investigate the data-
driven solution xN with performance guarantee of the following type

Prob(SRP ∗
l,λ (−c(xN , ξ)) ≤ ϑN ) ≥ 1− δ, (4.52)

where δ ∈ (0, 1) is called as a significance parameter, ϑN is a certificate for the out-of-sample
performance of xN and the probability on the left-hand side of (4.52) indicates ϑN ’s reliability.
The following theorem states that the finite sample guarantee condition is fulfilled for the ambi-
guity sets discussed in Section 3, that is, when the size of the ambiguity sets are chosen carefully,
the certificate ϑN can provide a 1− δ confidence bound of the type (4.52) on the out-of-sample
performance of xN .

Theorem 4.1 (Finite sample guarantee) The following assertions hold:

(i) Let P(µN ,ΣN , γ
N
1 , γ

N
2 ) be defined as in (3.11) with µN ,ΣN , γ

N
1 , γ

N
2 being defined as in

(3.14) and (3.16). Suppose the moment growth condition (3.15) holds, then with PN =
P(µN ,ΣN , γ

N
1 , γ

N
2 ), the finite sample guarantee (4.52) holds.

(ii) Suppose the true probability distribution P ∗ is discrete, i.e., Ξ = {ζ1, . . . , ζM}. Let PMN
be defined as (3.18) with r being given as (3.34), then with PN = PMN , the finite sample
guarantee (4.52) holds.

(iii) Let PN be defined as in (3.37) with r = rN (δ) being given in (3.39). Under condition
(3.38), the finite sample guarantee (4.52) holds.

The results follow straightforwardly from (3.34), (3.38), (3.39) and the definition of finite
sample guarantee. We now move on to investigate convergence of ϑN and SN .

Theorem 4.2 (Convergence of the optimal values and optimal solutions) Let P∗ ⊂P(Ξ)
be such that

lim
N→∞

HK(PN ,P∗) = 0.
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Let ϑ∗ denote the optimal value of (DRSRP’) with P being replaced by P∗. Let S∗ be the
corresponding optimal solutions. Under Assumption 2.1,

|ϑN − ϑ∗| ≤
2DXLκ

η
HK(PN ,P∗) (4.53)

for N sufficiently large and

lim sup
N→∞

SN = S∗, (4.54)

where DX denotes the diameter of X, η is defined as in Proposition 2.2, and L, κ are defined as
in Assumption 2.1.

Proof. Let
v∗(x, t) := sup

P∈P∗
EP [l(c(x, ξ)− t)]− λ

and
vN (x, t) := sup

P∈PN
EP [l(c(x, ξ)− t)]− λ.

By the definition

vN (x, t)− v∗(x, t) = sup
P∈PN

EP [g(x, t, ξ)]− sup
Q∈P∗

EQ[g(x, t, ξ)]

= sup
P∈PN

inf
Q∈P∗

(EP [g(x, t, ξ)]− EQ[g(x, t, ξ)])

≤ sup
P∈PN

inf
Q∈P∗

LκdlK(P,Q)

= LκDK(PN ,P∗),

where the first inequality is due to equi-Lipschitz continuity of g in ξ and the definition of the
Kantorovich metric. Likewise, we can establish

v∗(x, t)− vN (x, t) ≤ LκDK(P∗,PN ).

Combining the above two inequalities, we obtain

sup
x∈X,t∈T

|vN (x, t)− v∗(x, t)| ≤ LκHK(PN ,P∗). (4.55)

Let

F∗ := {(x, t) ∈ X × T : v∗(x, t) ≤ λ},

and

FN := {(x, t) ∈ X × T : vN (x, t) ≤ λ}.

By Proposition 2.2, v∗ and vN are convex on X×T . Moreover, the Slater condition (2.7) allows
us to apply Robinson’s error bound for the convex inequality system (see [26]), i.e., there exists
a positive constant C1 such that for any (x, t) ∈ X × T ,

d((x, t),F∗) ≤ C1[v∗(x, t)− λ]+.

21



Let (x, t) ∈ FN . The inequality above enables us to estimate

d((x, t),F∗) ≤ C1[v∗(x, t)− λ]+

≤ C1(|v∗(x, t)− vN (x, t)|+ [vN (x, t)− λ]+)

= C1|v∗(x, t)− vN (x, t)|
≤ C1LκHK(P∗,PN ). (4.56)

The last inequality follows from (4.55) and Robinson’s error bound [26] ensures that the constant
C1 is bounded by DX/η, where DX is the diameter of X. This shows

D(FN ,F∗) ≤
DXLκ

η
HK(P∗,PN ).

On the other hand, the uniform convergence of vN to v ensures

vN (x0, t0)− λ < −η/2

for N sufficiently large, which means the convex inequality vN (x, t)− λ ≤ 0 satisfies the Slater
condition. By applying Robinson’s error bound for the inequality, we obtain

d((x, t),FN ) ≤ C2|v∗(x, t)− vN (x, t)| ≤ C2LκHK(PN ,P∗) (4.57)

for (x, t) ∈ F∗ and N is sufficiently large, where C2 is bounded by 2DX/η. Combining (4.56)
and (4.57), we obtain

H(FN ,F∗) ≤
2DXLκ

η
HK(PN ,P∗). (4.58)

Let (x∗, t∗) be an optimal solution to (DRSRP’) with P being replaced by P∗ and (xN , tN ) the
optimal solution of (DRSRP’-N). Note that FN ,F∗ ⊂ X × T . Let

ΠTF := {t ∈ T : there exists x ∈ X such that (x, t) ∈ F}.

Since tN = min{t : t ∈ ΠTFN} and t∗ = min{t : t ∈ ΠTF∗}, then

|tN − t∗| ≤ H(ΠTFN ,ΠTF∗).

Thus

|ϑN − ϑ∗| = |tN − t∗| ≤ H(ΠTFN ,ΠTF∗) ≤ H(FN ,F∗),

which yields (4.53) via (4.58).

Now, we move on to show (4.54). Let (xN , tN ) ∈ SN . Since X and T are compact, there
exist a subsequence {(xNk , tNk)} and a point (x̂, t̂) ∈ X × T such that (xNk , tNk) → (x̂, t̂). It
follows by (4.58) and (4.53) that (x̂, t̂) ∈ F∗ and t̂ = ϑ∗. This shows (x̂, t̂) ∈ S∗. �

Theorem 4.2 is instrumental in that it provides a unified quantitative convergence result for
the optimal value of (DRSRP’-N) in terms of HK(PN ,P∗) when PN is constructed in various
ways discussed in Section 3. Based on the theorem and some quantitative convergence results
about HK(PN ,P∗), we can establish confidence intervals for the true optimal value ϑ∗ in the
following corollary.
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Corollary 4.1 Under the assumptions in Theorem 4.2, the following assertions hold.

(i) If P∗ comprises the true probability distribution only and PN is defined by (3.18), then
under conditions of Proposition 3.1,

ϑ∗ ∈ [ϑN −Θ, ϑN + Θ]

with probability 1 −Mδ, where Θ := 2DXLκ
η

[
βM + D

2 max{2
√
r, r}+ D

2 ∆(M,N, δ)
]

with

∆(M,N, δ) = min
(
M√
N

(
2 +

√
2 ln 1

δ

)
, 4 + 1√

N

(
2 +

√
2 ln 1

δ

))
, β being defined as in (3.22)

and D being the diameter of Ξ.

(ii) If P∗ comprises the true probability distribution only and PN is defined by (3.36), then
under conditions of Proposition 3.3,

ϑ∗ ∈
[
ϑN −

4DXLκrN (δ)

η
, ϑN +

4DXLκrN (δ)

η

]
with probability 1− δ.

(iii) If P and PN are defined as P̂ and P̂N in Proposition 3.4, then with probability 1− δ,

ϑ∗ ∈
[
ϑN −

(
2DXLκ max

j=1,...,J
rjN (δ)

)
/η, ϑN +

(
2DXLκ max

j=1,...,J
rjN (δ)

)
/η

]
.

4.1 Extension

Now we turn to extend the convergence result to optimization problems with DRSR constraints:

(DRSRCP)
min
x∈X

f(x)

s.t. SRPl,λ(−c(x, ξ)) ≤ γ,
(4.59)

where decision maker wants to optimize an objective f(x) while requiring the DRSR risk level
to be contained under threshold γ. By replacing P with PN , we may associate (DRSRCP) with

(DRSRCP-N)
min
x∈X

f(x)

s.t. SRPNl,λ (−c(x, ξ)) ≤ γ.
(4.60)

Tractable reformulation of problem (DRSRCP) or (DRSRCP-N) may be derived as we did
in Section 3. In what follows, we establish a theoretical quantitative convergence result for
(DRSRCP-N).

Let F̂ , Ŝ and ϑ̂ denote respectively the feasible set, the set of the optimal solutions and the
optimal value of (DRSRCP). Likewise, we define F̂N , ŜN and ϑ̂N for its approximate problem
(DRSRCP-N).

Theorem 4.3 Let Assumptions 2.1 hold. Suppose that there exists x0 ∈ X such that

SRPl,λ(−c(x0, ξ)) < γ

and HK(PN ,P)→ 0 as N →∞. Then the following assertions hold.
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(i) There is a constant C > 0 such that

H(F̂N , F̂) ≤ CHK(PN ,P)

for N sufficiently large.

(ii) lim
N→∞

ϑ̂N = ϑ̂ and lim sup
N→∞

ŜN = Ŝ.

(iii) If, in addition, f is Lipschitz continuous with modulus β, then

|ϑ̂N − ϑ̂| ≤ βH(F̂N , F̂). (4.61)

Moreover, if (DRSRCP) satisfies the second order growth condition at the optimal solution
set Ŝ, i.e., there exist positive constants α and ε such that

f(x)− ϑ̂ ≥ αd(x, Ŝ)2, ∀x ∈ F̂ ∩ (Ŝ + εB),

then

D(ŜN , Ŝ) ≤ max
{

2C,
√

8Cβ/α
}√

HK(PN ,P) (4.62)

when N is sufficiently large.

Proof. Part (i) can be established through an analogous proof of Theorem 4.2. We omit the
details.

Part (ii). First we rewrite (DRSRCP) and (DRSRCP-N) as

inf
x∈IRn

f̃(x) := f(x) + δF̂ (x) (4.63)

and

inf
x∈IRn

f̃N (x) := f(x) + δF̂N (x), (4.64)

where δF̂ (x) is the indicator function of F̂ , i.e.,

δF̂ (x) :=

{
0, ifx ∈ F̂ ,
∞, ifx /∈ F̂ .

Note that the epigraph of δF̂ (·) is defined as

epi δF̂ (·) := {(x, α) : δF̂ (x) ≤ α} = F̂ × IR+.

The convergence of F̂N to F̂ implies

lim
N→∞

epi δF̂N (·) = epi δF̂ (·),

and through [27, Definition 7.39] that δF̂N (·) epiconverges to δF̂ (·). Furthermore, it follows from

[27, Theorem 7.46] that f̃N epiconverges to f̃ . Since f is continuous and F̂ and F̂N are compact
set, then {xN} has a subsequence converging to x̄. By [5, Proposition 4.6], lim

N→∞
ϑ̂N = ϑ̂ and

x̄ ∈ Ŝ.
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In what follows, we show Part (iii). Let xN ∈ ŜN and x∗ ∈ Ŝ. By the definition of D(F̂N , F̂),
there exists x′ ∈ F̂ such that d(xN , x

′) ≤ D(F̂N , F̂). Moreover, by the Lipschitz continuity of f ,
we have

f(x∗) ≤ f(x′) ≤ f(xN ) + |f(xN )− f(x′)| ≤ f(xN ) + β|xN − x′|
≤ f(xN ) + βD(F̂N , F̂).

Exchanging the role of xN and x∗, we have

f(xN ) ≤ f(x∗) + βD(F̂ , F̂N ).

A combination of the two inequalities yields (4.61).

Next, we show (4.62). Let xN ∈ ŜN and x ∈ Ŝ. By the second order growth condition,

f(xN )− f(ΠF̂ (xN )) = f(xN )− f(x)− (f(ΠF̂ (xN ))− f(x))

≤ f(ΠF̂N (x))− f(x)− αd(ΠF̂ (xN ), Ŝ)2,

where ΠŜ(a) denotes the orthogonal projection of vector a on set Ŝ, that is, ΠŜ(a) ∈ arg mins∈Ŝ ‖s−
a‖. By the Lipschitz continuity of f , the inequality implies

d(ΠF̂ (xN ), Ŝ) ≤
√
β/α|ΠF̂N (x)− x|+ β/α|ΠF̂ (xN )− xN |.

Therefore,

d(xN , Ŝ) ≤ |xN −ΠF̂ (xN )|+ d(ΠF̂ (xN ), Ŝ)

≤ |xN −ΠF̂ (xN )|+
√
β/α|ΠF̂N (x)− x|+ β/α|ΠF̂ (xN )− xN |. (4.65)

Since

max

{
max
xN∈ŜN

∣∣xN −ΠF̂ (xN )
∣∣ ,max

x∈Ŝ

∣∣∣ΠF̂N (x)− x
∣∣∣} ≤ H(F̂N , F̂),

we have from inequality (4.65) and Part (i),

d(xN , Ŝ) ≤ max
{
C,
√

2Cβ/α
}[

HK(PN ,P) +
√
HK(PN ,P)

]
.

The last inequality implies (4.65) in that xN is arbitrarily chosen from ŜN and HK(PN ,P) ≤√
HK(PN ,P) when N sufficiently large. The proof is complete. �

Analogous to Corollary 4.1, we can derive confidence intervals and regions for the optimal
value and the optimal solutions with different PN .

5 Application in portfolio optimization

In this section, we apply the (DRSRP) model to decision-making problems in portfolio opti-
mization. Let ξi denote the rate of return from investment on stock i and xi denote the capital
invested in the stock i for i = 1, . . . , d. The total return from the investment of the d stocks is
xT ξ, where we write ξ for (ξ1, ξ2, . . . , ξd)

T and x for (x1, x2, . . . , xd)
T . We consider a situation
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where the investor’s decision on allocation of the capital is based on minimization of the distri-
butionally robust shortfall of xT ξ, that is, SRPl,λ(xT ξ) for some specified l, λ and P, that is, the
investor finds an optimal decision x∗ by solving

min
x∈X,t∈IR

t

s.t. sup
P∈P

EP [l(−xT ξ − t)] ≤ λ. (5.66)

We have undertaken numerical experiments on problem (5.66) from different perspectives rang-
ing from efficiency of computational schemes applied to problem (5.66) as we discussed in Section
3, the out-of-sample performance of the optimal portfolio and the growth of the total portfolio
value over a specified time horizon using different optimal strategies.

We begin by looking into problem (5.66) with the ambiguity set being constructed through
moment conditions. Our focus is on the performance of the inner and outer approximation
schemes discussed in Section 3.1.

Example 5.1 Consider problem (5.66) with the ambiguity set being defined as

P :=

{
P ∈P(Ξ) :

EP [ξ] = µ,

EP [(ξ − µ)(ξ − µ)T ] = Σ

}
,

where µ and Σ are the true mean and variance. We assume that both quantities are known
with µi = 0.04 + 0.46(i− 1)/(d− 1) for i = 1, . . . , d and Σii = (µi + 0.05)2 and Σij = 0.35(µi +
0.05)(µj + 0.05) for i 6= j.

We set the loss function l(z) := exp(z), X := {x ∈ IRd :
∑d

i=1 xi = 1, x ≥ 0} and λ = 0.1.
Obviously l(·) is a monotonically increasing and strictly convex function, the total capital is
normalized to one and no short selling is allowed. This experiment is to examine the inner and
outer approximation schemes discussed in Section 3.1. The loss function is approximated by a
piecewise affine function described as in (3.12). The resulting optimization problem is described
as

min
x,t,y0,y1,Y2

t

s.t. y0 + yT1 µ+ 〈Y2, µµ
T + Σ〉 ≤ λ,[

−Y2 (−ajx− y1)/2
(−ajx− y1)T /2 −ajt+ bj − y0

]
� 0, j = 1, . . . ,K,

x ∈ X.

(5.67)

and we solve the latter using toolbox CVX installed in MATLAB. Figure 1 depicts change of
CPU time and the gap against increment of the number of linear pieces (denoted by K). It
shows that the CPU time increases at a linear rate w.r.t. increase of K. Looking at problem
(5.67), the approximation scheme affects the problem through the K semidefinite constraints
and the trends that we have observed from Figure 1 shows roughly that the CPU time is linearly
dependent on the number of the semidefinite constraints. The figure also shows that the gap
between the inner and outer approximations tends to be very close when K ≥ 60.

Figure 2 displays change of CPU time against variation of the number of stocks (d) for fixed
K = 60. The CPU time increases rapidly w.r.t. increment of d. This may be partly explained by
the fact that the size of the matrix in each of the semidefinite constraints depends on d (which
is (d+ 1)× (d+ 1)).
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Figure 1: CPU time and optimal value w.r.t K.
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Figure 2: CPU time w.r.t d.

The following numerical experiments focus on problem (5.66) with the ambiguity set being
defined through the Kantorovich ball. We report the details in Example 5.2.

Example 5.2 Let ξ1, . . . , ξN be iid samples of ξ and PN be the nominal distribution constructed
through the samples, that is, PN (·) = 1

N

∑N
i=1 1ξi(·). The ambiguity set is defined respectively

as

PN = {P ∈P(IRd) : dlK(P, PN ) ≤ r}. (5.68)

To simplify the tests, we consider a specific piecewise affine loss function l(t) = max{0.05t+1, t+
0.1, 4t+2}. We set λ = 1 and let the total number of stocks d be fixed at 10. We follow Esfahani
and Kuhn [8] to generate the iid samples by assuming that the rate of return ξi is decomposable
into a systematic risk factor ψ ∼ N (0, 2%) common to all stocks and an unsystematic risk factor
ζi ∼ N (i× 3%, i× 2.5%) specific to stock i, that is, ξi = ψ + ζi, for i = 1, . . . , d. Based on the
discussions in Sections 3.3, problem (5.66) can be reformulated through dual formulation as

JN (r) := min
x∈X,t∈T,η,s

t

s.t. ηr +
1

N

N∑
i=1

si ≤ 1,

bj − ajt− 〈ajx, ξi〉 ≤ si, for i = 1, . . . , N, j = 1, 2, 3,
‖ajx‖∞ ≤ η, for j = 1, 2, 3.

(5.69)

Following the terminology of Esfahani and Kuhn [8], we call JN (r) the certificate.

In the first set of experiments, we investigate the impact of the radius of the Kantorovich
ball r on the out-of-sample performance of the optimal portfolio. For any fixed portfolio
xN (r) obtained from problem (5.69), the out-of-sample performance is defined as J(xN (r)) :=
SRP ∗

l,λ (xN (r)T ξ), which can be computed from theoretical point of view since the true proba-
bility distribution P ∗ is known by design although in the experiment we will generate a set of
validation samples of size 2 × 105 to do the evaluation. Following the same strategy as in [8],
we generate the training datasets of cardinality N ∈ {30, 300, 3000} to solve problem (5.69) and
then use the same validation samples to evaluate J(xN (r)). Each of the experiments is carried
out through 200 simulation runs.

Figures 3-5 depict the tubes between the 20% and 80% quanrtiles (shaded areas) and the
means (solid lines) of the out-of-sample performance J(xN (r)) as a function of radius r, the
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Figure 8:

dashed lines represent the empirical probability of the event J(xN (r)) ≤ JN (r) with respect
to 200 independent runs which is called reliability in Esfahani and Kuhn [8]. It is clear that
the reliability is nondecreasing in r and this is because the true probability distribution P ∗ is
located in PN more likely as r grows and hence the event J(xN (r)) ≤ JN (r) happens more likely.
The out-of-sample performance of the portfolio improves (decreases) first and then deteriorates
(increases).

In the second set of experiments, we investigate convergence of the out-of-sample per-
formance, the certificate and the reliability of the distributionally robust approach and the
sample average approximation (SAA) as the size of sample increases. Note that SAA cor-
responds to the case when the radius r of the Kantorovich ball is zero. In all of the tests
we use cross validation method in [8] to select the Kantorovich radius from the discrete set
{{5, 6, 7, 8, 9}× 10−3, {0, 1, 2, . . . , 9}× 10−2, {0, 1, 2, . . . , 9}× 10−1}. We have verified that refin-
ing or extending the above discrete set has only a marginal impact on the results.

Figure 6 shows the tubes between the 20% and 80% quantiles (shaded areas) and the means
(solid lines) of the out-of-sample performance J(xN ) as a function of the sample size N based on
200 independent simulation runs, where xN is the minimizer of (5.69) and its SAA counterpart
(r = 0). The constant dashed line represents the optimal value of the SAA problem with N = 106

samples which is regarded as the optimal value of the original problem with the true probability
distribution. It is observed that the robust model outperforms the SAA model in terms of
out-of-sample performance. Figure 7 depicts the optimal values of the DRO model and the
SAA counterpart, which is the in-sample estimate of the obtained portfolio performance. Both
of the approaches display asymptotic consistency, which is consistent with the out-of-sample
and in-sample results. Figure 8 describes the empirical probability of the event J(xN ) ≤ JN
with respect to 200 independent runs, where xN is the optimal value of the DRO model or
SAA model, and JN are the optimal value of the corresponding problem. It is clear that the
performance of the DRO model is better than that of the SAA model.
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Figure 9: Wealth evolution with the trading times.

Example 5.3 In this set of experiments, we examine the performance of problem (5.66) with
real data for the ambiguity set being constructed through the KL-divergence and the Kan-
torovich ball, specifically we have undertaken tests on problem (5.66) with 10 stocks (Apple
Inc., Amazon.com, Inc., Baidu Inc., Costco Wholesale Corporation, DISH Network Corp., eBay
Inc., Fox Inc., Alphabet Inc Class A, Marriott International Inc., QUALCOMM Inc.) where
their historical data are collected from National Association of Securities Deal Automated Quo-
tations (NASDAQ) index over 4 years (from 3rd May 2011 to 23rd April 2015) with total of
1000 records on the historical stock returns.

We have carried out out-of-sample tests with a rolling window of 500 days, that is, we use
the first 500 data to calculate the optimal portfolio strategy for day 501 and then move on a
rolling basis. The radiuses in the two ambiguity sets are selected through the cross validation
method. Figure 5 depicts the performance of three models over 500 trading days. It seems that
the KL-divergence model and SAA model perform similarly, whereas the Kantorovich model
outperforms the both over most of the time period.

We have also carried out tests on problem (5.66) with the ambiguity set being constructed
through mixture distribution.

Example 5.4 The example is varied from test examples in Zhu and Fukushima [36, Section
3.2.1]. Consider four different assets A1, A2, A3 and A4, a total of 2700 samples of daily returns
of these assets are known. The samples are divided evenly into three groups with 900 samples
specified by three different time periods and then we calculate empirical mean and covariance
for each group (see Table 2). We can see that the difference of these quantities are significant
and this motivates us to consider different distribution for each of the groups.

In the tests, we consider the loss function l(z) = exp(z) and set λ = 0.1. We also impose an
additional constraint

min
i=1,2,3

EP i900 [xT ξ] ≥ u (5.70)

to the (DRSRP) model. Our focus is on comparison of the (DRSRP) model with the SAA
model. Note that in the (DRSRP) model, we use 900 samples in each group to construct three
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Group
Mean (10−3) Variance (10−3)

A1 A2 A3 A4 A1 A2 A3 A4

Group 1 1.9294 0.8325 1.4316 0.5413 0.2192 0.2042 0.2376 0.2146
Group 2 0.5027 0.4965 0.3648 0.8378 0.1886 0.1779 0.2399 0.2082
Group 3 -0.2762 -0.1785 -0.3036 0.8226 0.5438 0.4539 0.7790 0.7392

Table 1: Emprical mean and variance of returns of four assets in each group

empirical distributions denoted by P 1
900, P

2
900, P

3
900 and in the SAA model, we use all 2700 samples

to construct one empirical distribution. The additional constraint in the SAA model is

EP2700 [xT ξ] ≥ u. (5.71)

u (10−3)
DRSRP (I) Mean (10−3)

Optimal value
SAA (II) Group 1 Group 2 Group 3

0
I 0.5553 0.8345 0.8116 2.3021
II 1.2722 0.6614 0.2441 2.3019

0.30
I 0.5553 0.8345 0.8116 2.3021
II 1.2722 0.6614 0.2441 2.3019

0.56
I 0.5600 0.8333 0.8078 2.3021
II 1.2722 0.6614 0.2441 2.3019

0.60
I 0.6000 0.8237 0.7762 2.3021
II 1.2722 0.6614 0.2441 2.3019

0.73
I — — — —
II 0.8984 0.7516 0.5400 2.3020

Table 2: Comparison of performance of DRSRP and SAA models

u (10−3)
DRSRP portfolio SAA portfolio

mean (10−3) variance (10−3) mean (10−3) variance (10−3)

0 0.7338 0.3791 0.7259 0.1693
0.30 0.7338 0.3791 0.7259 0.1693
0.56 0.7337 0.3765 0.7259 0.1693
0.60 0.7333 0.3647 0.7259 0.1693
0.73 — — 0.7300 0.2303

Table 3: Mean and variance of the portfolio returns

Table 3 lists the five u values that are used in the test, the mean return in each group
with (DRSRP) based optimal strategy and the SAA based optimal strategy, and the optimal
value. The constraint (5.71) in the SAA model is inactive at the optimal solution for u =
0, 0.00030, 0.00056, 0.00060 and it becomes active for u = 0.00073. On the other hand, the
constraint (5.70) is inactive for u = 0, 0.00030, active for u = 0.00056, 0.00060, and infeasible for
u = 0.00073. For the same u, the optimal value of (DRSRP) model is slightly larger than that
of the SAA model because the feasible set of the former is smaller. Table 4 illustrates the means
and variances of the two portfolio returns computed by the total 2700 samples. We see that
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the mean and variance of the (DRSRP) portfolio return are both larger than that of the SAA
portfolio return, which means the robust strategy brings higher return on average with larger
variances. This finding is consistent with the observations made by Zhu and Fukushima [36].
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