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Abstract This paper investigates generators’ strategic behaviors in contract signing
in the forward market and power transaction in the electricity spot market. A stochas-
tic equilibrium program with equilibrium constraints (SEPEC) model is proposed to
characterize the interaction of generators’ competition in the two markets. The model
is an extension of a similar model proposed by Gans et al. (Aust J Manage 23:83–96,
1998) for a duopoly market to an oligopoly market. The main results of the paper
concern the structure of a Nash–Cournot equilibrium in the forward-spot market: first,
we develop a result on the existence and uniqueness of the equilibrium in the spot
market for every demand scenario. Then, we show the monotonicity and convexity of
each generator’s dispatch quantity in the spot equilibrium by taking it as a function
of the forward contracts. Finally, we establish some sufficient conditions for the exis-
tence of a local and global Nash equilibrium in the forward-spot markets. Numerical
experiments are carried out to illustrate how the proposed SEPEC model can be used
to analyze interactions of the markets.

Keywords Electricity market · Nash equilibrium · Stochastic equilibrium programs
with equilibrium constraints

1 Introduction

Over the past two decades, the electricity industry in many countries has been dereg-
ulated. One of the main consequences of deregulation is that the governments under-
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take their efforts to develop fully competitive electricity spot markets. In most of the
wholesale spot markets (pool-type systems), generators make daily (or hourly) bids of
generation at different prices, and then an independent system operator (ISO) decides
how actual demand is to be met by dispatching cheaper power first. In these pool-type
electricity markets (found in Australia, New Zealand, Norway, at one time in UK, and
some parts of US), a single market clearing price is determined by a sealed-bid auction
and paid to each generator for all the power they dispatch.

Along with the spot market emerges the forward market where generators and retail-
ers may enter into hedge contracts before bidding in the spot market. For example, in the
early 1990s, during the restructuring of the electricity market in UK, some long term,
“take-or-pay” contracts (or agreements) are stipulated by three main Scottish electric-
ity generators, see Onofri (2005). Moreover, various contract markets have also been
established in Europe, Australia, New Zealand and North America. By participating
in the forward markets, generators and retailers may share their risks associated with
a fluctuating pool price for the real power dispatching. The most common type of
contract is known as a (two-way) contract-for-difference (or hedge contract), which
operates between a retailer and a generator for a given amount of power at a given
strike price. The signing of this type of contracts is separate from the market dispatch-
ing mechanism and can be taken as financial instruments without an actual transfer of
power.

In this paper, we formulate generators’ competition in the forward-spot market
mathematically as a two stage stochastic equilibrium problem where each generator
first aims at maximizing its expected profit by signing a certain mount of long term
contracts and then bids for dispatches in the spot market on a daily or hourly basis.
Differing from the two stage competition model, a volume of previous research has
been performed to study the effect on the competition in the spot market from the
contract quantities, in which the competition of signing contracts in the forward mar-
ket is not considered. von der Fehr and Harbord (1992) investigate the spot market
by modeling it as a multi-unit auction and demonstrate that contracts give genera-
tors a strategic advantage in the spot market by allowing them to commit to dispatch
greater quantities during peak demand periods. Powell (1993) explores the interaction
between the forward market and the spot market by characterizing the competition
in the spot market within a framework of Nash–Cournot equilibrium, and shows that
risk-neutral generators can raise their profits by selling contracts for more than the
expected spot price. Moreover, Green and Newbery (1992) appropriately look at the
endogenous formation of both pool and contract prices in a supply function model,
and apply their analysis to the British electricity market.

By modeling the mechanism of the competition in the forward market as a Nash–
Cournot game, previous contributions, such as (Allaz and Vila 1993; Willems 2005;
Gans et al. 1998), focus on the impact of the forward market on the spot price and
show that generators have incentives to trade in the forward market whereas forward
contracting reduces spot prices and increases consumption levels. The exploration of
the bilevel deterministic Nash–Cournot model for a duopoly forward-spot market is
first carried out by Allaz and Vila (1993), which identifies two critical assumptions:
One is the so-called Cournot behavior where producers (generators) act as though the
quantity offered by the other competitors is fixed; the other is the connection to the
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prisoner’s dilemma where each producer (generator) will sell forward so as to make
them worse off and make consumers better off than would be in the case if the forward
market did not exist. Applying this type of Nash–Cournot models of electricity pools,
Gans et al. (1998) demonstrate that the contract market can make the duopolistic spot
market more competitive, and hence the existence of the contract market lowers prices
in pool markets. By replacing two way contracts with call options, Willems (2005)
extends the results in Allaz and Vila (1993) to the Cournot type market with options,
and compares it with the market efficiency effects of the Cournot game with two
way contracts. Instead of duopoly markets in Allaz and Vila (1993), Bushnell (2007)
presents some estimation of the impact of forward contracts and load obligations on
spot market prices for a Cournot type environment with multiple generators.

Differing from much of previous work concerning on the influence on spot market
efficiency from contracts, our work provides a new model for the entire forward-
spot market by formulating it as a two stage stochastic equilibrium problem with
equilibrium constraints (EPEC), which refers to generators’ competition in the for-
ward market as an equilibrium problem subject to the equilibrium in the spot market
described by a complementarity problem. Over the past few years, EPEC models have
been applied to some hierarchical decision-making problems in a wide domain in
engineering design, management, and economics. Recently, a number of EPEC mod-
els have been performed for electricity markets. In modeling the forward-spot market,
Su (2007) and Shanbhag (2005, Chapter 5) study the Nash–Cournot equilibrium by
modeling the bilevel markets as an EPEC. Su (2007) investigates the existence results
for the deterministic forward-spot market equilibrium introduced by Allaz and Vila
(1993). Shanbhag (2005, Chapter 5) introduces a 2-node forward-spot model and con-
siders it as an expected profit maximization problem subject to the complementarity
constraints for every scenario in the spot market. He also investigates existence of the
simultaneous stochastic Nash equilibrium (SSNE) in the context of the forward-spot
electricity market. Moreover, besides the application in the forward-spot market, the
EPEC models are also used by Yao et al. (2007) to investigate the equilibrium in
the spatial electricity market, where they capture the congestion effects and bilevel
competitions by formulating each generator’s objective as a maximization problem in
the forward market subject to the Karush–Kuhn–Tucker (KKT) optimal conditions in
the spot market and the network constraints. More recently, Hu and Ralph (2007) use
EPEC to model a bilevel electricity market, where generators and customers bid cost
and utility functions in a nodal market and the ISO determines the dispatch quantities
by minimizing the overall social cost in an upper optimization level.

Apart from Cournot-type models, another well established approach is the supply
function equilibrium (SFE) model, which clearly encapsulates the underlying structure
of bidders’ strategy on the quantity–price relationship. SFE is originally proposed by
Klemperer and Meyer (1989) to model competition in a general oligopolistic market
where the market demand is uncertain and each firm aims to develop a supply func-
tion to maximize its profit in any demand scenario. By applying the SFE to predict the
performance of the pioneer England and Wales market, Green and Newbery (1992)
analyze the behavior of the duopoly and characterize the England and Wales elec-
tricity market during its first years of operation under the SFE approach. Anderson
and Philpott (2002) first propose an optimal supply function model with discontinuous
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supply functions to address the fact that supply functions in practice are not continuous
as assumed in SFE model and they use this model to investigate generators’ optimal
strategies of bidding a stack of price–quantity offers into electricity markets in circum-
stances where demand is unknown in advance. Anderson and Xu (2005) extend the
optimal supply function approach to consider both second order necessary conditions
and sufficient conditions of the optimality for each generator’s price-quantity offers
given its rivals’ offers are fixed. Besides the analysis on the optimality conditions for
the spot market, the SFE framework has also been applied to investigate the interac-
tions between the forward market and the spot market. Green (1999) and Newbery
(1998) are among the first researchers who study the impact of two-way contracts
in conjunction with the SFE model and observe that contracts provide incentives for
generators to supply more in a spot market. Anderson and Xu (2006) make further
investigations in this direction by considering the optimal supply functions in elec-
tricity markets with option contracts and nonsmooth costs. However, calculating an
SFE requires solving a set of differential equations instead of the typical set of alge-
braic equations as in Cournot models, which presents considerable limitations on the
equilibrium conditions and the numerical tractability. Indeed, the existence of the SFE
has been proved only for linear supply function models (Rudkevich 2005) and for
symmetric models without capacity limit (Klemperer and Meyer 1989), with capacity
constraints (Anderson and Xu 2005; Holmberg 2008), and there is no discussion about
an SFE model for a two stage forward-spot market.

Along the direction of the research on EPEC and Cournot models, this paper makes
a number of contributions. First, we present mathematical models for generator’s opti-
mal decisions and Nash–Cournot equilibrium problems in the forward-spot market.
Second, we discuss the existence and uniqueness of Nash–Cournot equilibrium in
the spot market and investigate properties of such equilibrium. Third, we show the
existence of Nash–Cournot equilibrium in the forward market.

The rest of the paper is laid out as follows: in the next section, we give a detailed
description of an SEPEC model for the forward-spot market competition, and show
that the equilibrium in the spot market depends on the contract quantities rather than
the strike price. In Sect. 3, we use a complementary program model to solve the equi-
librium problem in the spot market, and obtain the existence and uniqueness results
and the monotonicity of the supply functions with respect to the contract quantities.
In Sect. 4, we show the existence of Nash–Cournot equilibrium of the forward-spot
market interaction, and the continuity of each generator’s profit in the forward market.
In Sect. 5, we present some numerical tests to illustrate the theoretical results in this
paper. Finally, in Sect. 6, we point out the restrictions of the paper and further work.

2 Mathematical description of the problem

In this section, we present mathematical details on modeling competition in the for-
ward market and the spot market, and show that the optimization problem in the
forward-spot market can be structured as a two stage stochastic equilibrium model.
This model can be viewed as an extension of a similar model by Gans et al. (1998) in
a duopoly to an oligopoly.
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We suppose that there are M generators competing in a non-collaborative manner
for dispatch in the spot market on daily basis and these generators are economically
rational and risk neutral. In the spot market, market demand is characterized by an
inverse demand function p(Q, ξ(ω)), where p(Q, ξ) is the spot price, Q is the aggre-
gate dispatch quantity and ξ(ω) is a random shock. Here, ξ : � → IR is a continuous
random variable defined on probability space (�,F , P) with known distribution. To
ease the notation, we will write ξ(ω) as ξ and the context will make it clear when ξ

should be interpreted as a deterministic vector. We denote by ρ(ξ) the density function
of the random shock and assume that ρ is well defined and has a support set �.

Since the outcome of the clearing price p(Q, ξ) is fluctuating in the spot market,
both generators and retailers wishing to ensure a fixed or a stable electricity price to
hedge the risks rising from the variation of the spot price can do so by signing forward
electricity contracts. This kind of contracts can be taken as a financial instrument and
does not involve actual transaction of power. There are essentially two types of con-
tracts: a one-way contract such as a put option or a call option where only one side of
the contract commits to pay the difference between the strike price and the spot price
for the contracted quantity, and a two-way contract where both sides of the contracts
commit to pay the prices difference as opposed to the one way contract. In this paper,
we simplify the discussion by focusing on two-way contract, that is, each generator
signs a two-way contract with retailers.

2.1 Generator’s optimal decision problem in the spot market

We begin the model of the spot market by formulating a generator’s profit function
which involves three terms: a revenue from selling electricity in the spot market,
the cost of generating the electricity and the difference due to the commitment to a
contract.

First, we look into the term of each generator’s commitment to its contract by giv-
ing details on the contract signing and the mechanism of generators’ fulfillment in the
spot market. We assume that, in the forward market, generator i , i = 1, . . . , M , enters
into a two-way contract at a fixed price zi (xi , x−i ) for an amount xi , where x−i :=
(x1, . . . , xi−1, xi+1, . . . , xM )T denotes the vector of contract quantities signed by its
rivals and the superscript T denotes transpose. Here zi is a function of xi and x−i . For
the simplicity of notation, we write zi (xi , x−i ) as zi (x), where x := (x1, . . . , xM )T .
We will come back to investigate the property of function zi later on. Taking all
forward contracts as financial instruments, we may regard the fulfillment of these con-
tracts equally as generators’ commitment to daily power supply over a certain time
period. Under such contracts, generator i gets paid xi (p(Q, ξ)− zi (x)) from the other
party of the contract when the market clearing price p(Q, ξ) is greater than zi (x) and
pays the other party by xi (zi (x) − p(Q, ξ)) otherwise.

Consider a spot market in which generators set their dispatch quantities before the
realization of the market demand uncertainties. If generator i’s dispatch quantity is qi

and the aggregate dispatch from its rivals is Q−i , then at a demand scenario p(·, ξ),
the market is cleared at the price p(qi + Q−i , ξ) and each generator is paid at the
price for their dispatch. Hence, we can formulate generator i’s revenue from selling
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electricity qi by qi p(qi + Q−i , ξ). Note that in this model, a generator can influence
the market clearing price and hence its revenue by choosing a proper qi . In reality,
some markets allow generators to bid in a stack of quantities at an increasing order
of prices for dispatch and the ISO forms a schedule of aggregate quantities at each
price by putting them together. After the realization of the demand shock, the market
clearing price is determined and all bids below the price get dispatched which are
paid at the same price, see for instance Anderson and Philpott (2002) and references
therein. Our work simplifies the bidding and clearing mechanism in the real market
by looking at a generator’s total dispatch/supply and aiming to capture some insights
on how a generator plays its strategy to influence the spot market by adjusting its total
supply of power, which is a Cournot model.

Finally, we assume that generation of an amount qi by generator i incurs a total cost
of ci (qi ), which is twice continuously differentiable for any qi ≥ 0, i = 1, 2, . . . , M .
Accordingly, generator i’s profit in the spot market is

Ri (qi , x, Q−i , ξ) := qi p(qi + Q−i , ξ) − ci (qi ) − xi (p(qi + Q−i , ξ) − zi (x)) .

Therefore, generator i’s decision problem is to choose qi to maximize Ri (qi , x,

Q−i , ξ), where x , ξ , Q−i and zi (x) treated as fixed parameters, that is,

max
qi ≥0

Ri (qi , x, Q−i , ξ) := qi p(qi +Q−i , ξ)−ci (qi )−xi p(qi + Q−i , ξ)+xi zi (x).

(2.1)

In the following, we state two assumptions on each generator’s implicit capacity
limit, the differentiability of p(·, ξ) for ξ ∈ � and ci (·) for i = 1, 2 . . . , M . We first
make the following assumption on generators’ capacity limits.

Assumption 2.1 For each generator i , i = 1, 2, . . . , M , there is a capacity limit qu
i ,

such that

c′
i (qi ) ≥ p(qi , ξ), for qi ≥ qu

i , ξ ∈ �.

Observe that, Assumption 2.1 is an implicit way of ensuring that each generator’s dis-
patch quantity is upper bounded. This type of assumptions has been used by Sherali
et al. (1983); DeWolf and Smeers (1997) in a deterministic version, and by DeMiguel
and Xu (2008) in a stochastic version, for the same purpose. The assumption implies
that even generator i was a monopoly, its marginal cost at output level qu

i or above
would exceed any possible market price. Therefore, none of the firms would wish to
supply more than qu

i . Moreover, we proceed to make some fairly standard assumptions
on the inverse demand function and generators’ cost functions.

Assumption 2.2 For Q ≥ 0 and qi ≥ 0, i = 1, 2, . . . , M , the inverse demand func-
tion p(Q, ξ) and the cost function ci (qi ) satisfy the following:

(a) p(Q, ξ) is twice continuously differentiable w.r.t. Q, and p(Q, ξ) is a strictly
decreasing and convex function of Q for every fixed ξ ∈ �.
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(b) p′
Q (Q, ξ) + Qp′′

Q(Q, ξ) ≤ 0, for every Q ≥ 0 and ξ ∈ �.

(c) The cost function ci (qi ), i = 1, 2, . . . , M , is twice continuously differentiable
and c′

i (qi ) ≥ 0 and c′′
i (qi ) ≥ 0 for any qi ≥ 0.

The assumption is fairly standard and used in Sherali et al. (1983), DeWolf and
Smeers (1997) and Xu (2005) except the convexity of the inverse demand function.
The convexity is required to establish some technical results in Lemma 3.1 and it
covers a variety of demand functions such as linear multiplicative function, isoelastic
function and logarithmic function. From the above assumptions and generators’ profit
functions, we give the following proposition to show that each generator’s optimal
dispatch quantity in the spot market does not depend on the strike price.

Proposition 2.3 Generator i’s optimal solution to (2.1) depends on the vector of con-
tract quantities x, the spot market scenario ξ and the spot dispatches {q1, . . . , qM } but
not the strike prices {z1(x), . . . , zi (x), . . . , zM (x)}. Moreover, if generator i’s con-
tract quantity xi is less than qu

i , then its marginal profit is negative for qi > qu
i under

Assumptions 2.1 and 2.2.

Proof Consider the derivative of generator i’s profit maximization problem (2.1).
Since ξ , xi , Q−i and zi (x) are fixed, differentiating Ri w.r.t. qi , we have,

∂ Ri (qi , x, Q−i , ξ)

∂qi
= p(qi + Q−i , ξ) + (qi − xi )p′

qi
(qi + Q−i , ξ) − c′

i (qi ). (2.2)

Since the optimal solution is determined by the above derivative which is independent
of zi (x), the first part of the conclusion follows.

To show the second part of the proposition, note that p(qi + Q−i , ξ) − c′
i (qi ) < 0

for qi ≥ qu
i under Assumption 2.1 and (qi − xi )p′

qi
(qi + Q−i , ξ) < 0 when qi ≥ qu

i
as qu

i ≥ xi and p′
qi

(qi + Q−i , ξ) < 0. The conclusion follows. ��
By Proposition 2.3, we can add the capacity constraint explicitly to the profit max-

imization problem (2.1):

max
qi ∈[0,qu

i ]
Ri (qi , x, Q−i , ξ) = qi p(qi + Q−i , ξ)

−ci (qi ) − xi p(qi + Q−i , ξ) + xi zi (x). (2.3)

A referee raised a question of whether we can replace the explicit capacity limit
by assuming that c′

i (q) increases steeply as qi approaches qu
i but not mentioning qu

i
explicitly. The potential benefit of doing this is that we don’t need to consider the
upper bound in the first order optimality conditions to be discussed in Sect. 3. The
answer is yes. However, following Proposition 2.3, we can ignore the upper bound
in the derivation of first order optimality conditions anyway because generator i’s
optimum will not be achieved beyond qu

i . The additional benefit of giving an explicit
qu

i makes our profit maximization problem (2.3) well defined without specifying the
properties of the underlying objective function.
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2.2 Nash–Cournot equilibrium in the spot market

In the spot market, when market demand is realized, that is, every generator knows the
inverse demand function p(·, ξ) giving the relationship between the clearing price and
the aggregate dispatch quantity, and each generator sets its optimal dispatch quantity
to the pool market by solving profit maximization problem (2.1), which means that
generators play a Nash–Cournot game in the spot market, a situation that no generator
can improve its profit in the spot market by changing its dispatch unilaterally while
the other players keep their bids fixed. Following Proposition 2.3, if there exists a
Nash–Cournot equilibrium in the spot market, it must be independent of strike price
zi (x), for i = 1, 2, . . . , M . A formal definition of such an equilibrium can be given
as follows.

Definition 2.4 A Nash–Cournot equilibrium in the spot market at demand scenario
p(·, ξ) is an M-tuple (q1(x, ξ), . . . , qM (x, ξ)) where qi (x, ξ) solves (2.3) for i =
1, . . . , M .

Remark 2.5 The dependence of qi (x, ξ) on xi is intuitive and follows from Proposi-
tion 2.3. However, the dependence of qi (x, ξ) on x j needs some clarification. Let us
look at (2.2). If we change x j but q j is not changed accordingly (e.g., q j ≡ 0) for
j = 1, 2, . . . , M and j 	= i , then Q−i does not change. In this case, qi (x, ξ) is not
affected by the change of x j . This implies that only when the change of x j has an

impact on Q−i , it has an impact on ∂ Ri (qi ,x,Q−i ,ξ)
∂qi

, hence the optimal solution qi (x, ξ).
Practically, it means that a generator can influence a market equilibrium in the spot
market only by changing its dispatch quantity to the spot market. We will use this
observation in Proposition 3.7.

From theoretical point of view, there may exist multiple equilibria although in
practice only one of them is reached. We denote the set of these equilibria by q(x, ξ).
We also use q(x, ξ) = (q1(x, ξ), . . . , qM (x, ξ))T to denote an equilibrium in the
set q(x, ξ). Note also that the market clearing price p(Q(x, ξ), ξ) is determined by
the market equilibrium at the end of competition because the aggregate dispatch is
Q(x, ξ) = ∑M

i=1 qi (x, ξ).

2.3 Generator’s optimal decision problem in the forward market

In the forward market, when generators compete to sign contracts, they do not know
what market clearing price will be in the spot market. We assume here that each gen-
erator knows: (a) generators play a Nash–Cournot game in the spot market; (b) there
is an equilibrium in every scenario; (c) the inverse demand function p(·, ξ) and the
distribution of ξ .

Under these assumptions, generator i’s expected profit can be written as

πi (xi , x−i ) := E
[
Ri (qi (x, ξ), x, Q−i (x, ξ), ξ)

]
, (2.4)

where qi (x, ξ) and Q−i (x, ξ) correspond to some equilibrium q(x, ξ) in the spot
market, and generator i aims to maximize its expected profit by choosing an optimal
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contract quantity xi . It is important to note that this is a statistical average that generator
i may expect before the competition in the spot market is realized.

Observe that if the spot market has multiple equilibria, then each generator may
have its own prediction on an equilibrium q(x, ξ) ∈ q(x, ξ), and consequently q(x, ξ)

in the term Ri (qi (x, ξ), x, Q−i (x, ξ), ξ) in (2.4) may depend on i , that is, it takes a
value depending on generator i’s view about the market equilibria. For instance, if
generator i is optimistic, then it may expect the best equilibrium situation, that is, to
choose q(x, ξ) ∈ q(x, ξ) such that Ri (qi (x, ξ), x, Q−i (x, ξ), ξ) is maximized. See a
similar discussion by Pang and Fukushima (2005) in a deterministic Nash equilibrium
model and Shapiro and Xu (2005) in a stochastic mathematical program with equilib-
rium constraints (SMPEC) model. Therefore, the expected profit of generator i at the
forward market can be formulated as:

π̂i (xi , x−i ) := E

[

max
q(x,ξ)∈q(x,ξ)

qi (x, ξ)p (Q(x, ξ), ξ)

−ci (qi (x, ξ)) − xi p(Q(x, ξ), ξ) + xi zi (x)

]

.

On the other hand, for a pessimistic generator i , it may expect the worst equilibrium
situation, that is, to choose q(x, ξ) ∈ q(x, ξ) such that Ri (qi (x, ξ), x, Q−i (x, ξ), ξ)

is minimized, and the expected profit of generator i at the forward market can be
formulated as:

π̌i (xi , x−i ) := E

[

min
q(x,ξ)∈q(x,ξ)

qi (x, ξ)p (Q(x, ξ), ξ)

−ci (qi (x, ξ)) − xi p(Q(x, ξ), ξ) + xi zi (x)

]

.

Let us now focus on the strike price in the forward market. In practice, most gen-
erators are risk neutral. That means, with the perfect knowledge of the distribution of
the demand scenario ξ , no generator will sign a contract at a strike price lower than the
expected spot price, and similarly retailers will find no advantage to sign a contract at
a strike price higher than the expected spot price. For the simplicity of discussion, we
assume that every generator and retailer are risk neutral and they have the same view
on a market equilibrium. This leads to the following assumption.

Assumption 2.6 The strike price in the forward market equals the expected spot mar-
ket price, that is,

zi (x) ∈
{
E[p(Q(x, ξ), ξ)] : Q(x, ξ) = qT (x, ξ)e, q(x, ξ) ∈ q(x, ξ)

}
, (2.5)

where e is an M-dimensional vector with unit components.

This kind of assumption is not new and has been made by Gans et al. (1998), Su
(2007) and Shanbhag (2005, Chapter 5). Under the risk neutrality assumption, if the
spot market has a unique equilibrium in every demand scenario, then we have an
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identical strike price, that is, z1(x) = · · · = zM (x). Of course, if the spot market has
multiple equilibria, and each generator has different view on a market equilibrium,
then zi (x), i = 1, . . . , M may take different values and a contract can be agreed only
when both parties of the contract have the same view on spot market equilibrium.

2.4 Nash–Cournot equilibrium in the forward market

For the simplification of discussion, we assume that z1(x) = · · · = zM (x) either
because generators have the same views on spot market equilibrium or there is a
unique equilibrium in every scenario. From a practical perspective, it means that, to
each generator, every unit of contract defines the same obligation of energy dispatch-
ing in the spot market. Therefore, the expected profits of generators at the forward
market can be rewritten as

πi (xi , x−i ) = E [qi (x, ξ)p (Q(x, ξ), ξ) − ci (qi (x, ξ))],

for i = 1, . . . , M and its decision problem in the forward market is

max
xi ≥0

πi (xi , x−i ) = E [qi (x, ξ)p (Q(x, ξ), ξ) − ci (qi (x, ξ))] , i = 1, . . . , M, (2.6)

that is, generators play a Nash–Cournot game when they compete to sign contracts in
the forward market. We are interested in the outcome of competition by looking into
an equilibrium of the Nash–Cournot game.

Definition 2.7 A stochastic equilibrium in the forward-spot market is a 2M tuple
(x∗

1 , . . . , x∗
M , q∗

1 (x∗, ξ), . . . , q∗
M (x∗, ξ)) such that

πi (x∗
i , x∗−i ) = max

xi ≥0
πi (xi , x∗−i ), i = 1, . . . , M, (2.7)

qi (x∗, ξ) ∈ arg max
qi ≥0

Ri
(
qi (x∗, ξ), x∗, Q−i (x∗, ξ), ξ

)
, i = 1, . . . , M, ∀ξ ∈ �,

(2.8)

and (q1(x∗, ξ), . . . , qM (x∗, ξ)) is a Nash–Cournot equilibrium in demand scenario
p(·, ξ).

The problem is essentially an SEPEC. Recently DeMiguel and Xu (2008) pro-
pose a stochastic multiple leader Stackelberg (SMS) model for a general oligopoly
market where a group of firms compete to supply homogeneous goods to a future
market and they model the problem as an SEPEC. The model extends Sherali’s deter-
ministic multiple-leader model (Sherali 1984) and De Wolf and Smeers’ stochastic
single-leader model (DeWolf and Smeers 1997). However, there are some fundamen-
tal differences between this model and the SMS model: (a) In the SMS model, only
a few strategic firms (leaders) play a Nash–Cournot game at the first stage and the
non-strategic firms (followers) do not participate in the competition. In our model,
all generators compete in the forward market. (b) In the SMS model, leaders do not

123



A two stage stochastic equilibrium model for electricity markets with two way contracts

compete at the second stage after market demand is realized, and their commitments
(supply) at the first stage are treated as given and consequently followers only compete
for a residual demand. In our model, every generator must compete for dispatch in the
spot market and their optimal strategy is affected by their commitments to forward
contracts.

3 Equilibrium in the spot market

In this section, we investigate in detail Nash–Cournot equilibrium in the spot market
at demand scenario p(·, ξ). We are particularly concerned with existence, uniqueness
of equilibrium and properties of equilibrium as a function of forward contracts.

3.1 Existence and uniqueness of the equilibrium

First, before presenting further analysis on the existence and uniqueness of the equilib-
rium, we give some results on the strict concavity of each generator’s profit function.

Lemma 3.1 Under Assumption 2.2, for every Q ≥ 0 and ξ ∈ �

(i) Qp(Q + K , ξ) is a concave function for any fixed K ≥ 0.
(ii) For any fixed K ≥ 0 and X ≥ 0, (Q − X)p(Q + K , ξ) is a strictly concave

function of Q for Q ≥ 0.

The proof to Lemma 3.1 is given in the appendix. From the strict concavity of the
function (Q − X)p(Q, ξ), we can verify that each generator’s objective function,
Ri (qi , x, Q−i , ξ), i = 1, 2, . . . , M , is strictly concave w.r.t. qi for fixed Q−i ≥ 0,
x ≥ 0 and ξ ∈ �.

Proposition 3.2 Let Ri (qi , x, Q−i , ξ) be defined as in (2.1). Under Assumptions 2.6
and 2.2, Ri (qi , x, Q−i , ξ) is strictly concave w.r.t. qi .

The conclusion follows straightforwardly from the convexity of ci (qi ) and the con-
cavity of (qi − xi )p(qi + Q−i , ξ) that is proved in Lemma 3.1 (ii).

Proposition 3.3 Under Assumptions 2.1, 2.6 and 2.2, for every fixed xi ∈ [0,+∞),
i = 1, 2, . . . , M and ξ ∈ �, there exists a unique Nash–Cournot equilibrium in
the spot market, q(x, ξ) = (q1(x, ξ), . . . , qM (x, ξ))T , which solves the following
problem

qi (x, ξ)∈arg max
qi ≥0

{Ri (qi , x, Q−i , ξ)=(qi − xi )p(qi + Q−i , ξ) − ci (qi ) + xi zi (x)} .

Moreover, qi (x, ξ) ∈ [0, max{qu
i , xi }], for any fixed x and ξ with i = 1, . . . , M.

Proof Since generator i’s objective function Ri (qi , x, Q−i , ξ), is strictly concave in
qi (here x, ξ are parameters), the existence of equilibrium follows from Rosen (1965,
Theorem 1) while the uniqueness follows from Rosen (1965, Theorem 2) because the
strict concavity implies the diagonally strict concavity of a weighted non-negative sum
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of the objective functions. Let us now look into the boundedness of the equilibrium.
Because, for any fixed ξ ∈ � and xi ≥ 0, Ri (qi , x, Q−i , ξ) is strictly concave, we
have

d Ri (qi , x, Q−i , ξ)

dqi
= p(qi + Q−i , ξ) + qi p′

Q(qi + Q−i , ξ)

−c′
i (qi ) − xi p′

Q(qi + Q−i , ξ)

≤ p(qi , ξ) + qi p′
Q(qi + Q−i , ξ) − c′

i (qi ) − xi p′
Q(qi + Q−i , ξ)

≤ (qi − xi )p′
Q(qi + q−i , ξ) ≤ 0,

for any qi ≥ max{qu
i , xi }. Hence, Ri achieves maximum in [0, max{qu

i , xi }]. ��

3.2 Properties of the equilibrium in the spot market

We now investigate properties of Nash–Cournot equilibrium q(x, ξ) in the spot mar-
ket by taking it as a function of x and ξ . We will also investigate the monotonicity
of aggregate dispatch function Q(x, ξ) w.r.t.xi for i = 1, 2, . . . , M . We do so by
reformulating the Nash–Cournot equilibrium problem in the spot market as a nonlin-
ear complementarity problem. The KKT conditions of the Nash–Cournot equilibrium
problem can be written as

p(Q, ξ) + (qi − xi )p′
Q(Q, ξ) − c′

i (qi ) + µi = 0,

0 ≤ µi ⊥ qi ≥ 0,
(3.9)

for i = 1, 2, . . . , M , where 0 ≤ µi ⊥ qi ≥ 0 denotes that qi ≥ 0, µi ≥ 0 and at least
one of them is equal to zero.

Denote generators’ cost functions in a vector-valued form as c(q)=(c1(q1), . . . , cM

(qM ))T and e = (1, . . . , 1)T with an appropriate dimension. Define a vector-valued
function

G(q, x, ξ) := −p(qT e, ξ)e − (q − x)p′
Q(qT e, ξ) + ∇c(q),

where ∇c(q) := (c′
1(q1), . . . , c′

M (qM ))T . The complementarity problem (3.9) can be
rewritten as

0 ≤ q ⊥ G(q, x, ξ) ≥ 0. (3.10)

Consequently, each generator’s decision problem can be reformulated as a stochastic
mathematical program with complementary constraints (SMPCC), where, for every
i = 1, . . . , M , generator i’s decision problem is

max
xi ≥0

E [qi (x, ξ)p(Q(x, ξ), ξ) − ci (qi (x, ξ))]

s.t. q(x, ξ) solves 0 ≤ q ⊥ G(q, x, ξ) ≥ 0, ξ ∈ �.
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It is well known that (3.10) can be reformulated as a system of nonsmooth equations
as

F(q, x, ξ) := min(G(q, x, ξ), q) = 0, (3.11)

where ‘min’ is taken componentwise.
In what follows, we use Eq. (3.11) to investigate the dependence of q on x and

ξ . Observe that F is only piecewise smooth, therefore we need to use the Clarke
generalized implicit function theorem rather than the classical implicit function theo-
rem to derive the implicit function q(x, ξ) defined by (3.11).

Definition 3.4 (Clarke generalized Jacobian/subdifferential) Let H : R
n → R

m be a
Lipschitz continuous function. The Clarke generalized Jacobian (Clarke 1983) of H
at w ∈ R

n is defined as

∂ H(w) ≡ conv

{

lim
y∈DH , y→w

∇H(w)

}

,

where ‘conv’ denotes the convex hull of a set and DH denotes the set of points in a
neighborhood of x at which H is Frechét differentiable.

When m = 1 or n = 1, ∂ H is also called Clarke subdifferential. When n = m, the
Clarke generalized Jacobian ∂ H(x) is said to be non-singular if every matrix in ∂ H(x)

is non-singular. From Definition 3.4, we can observe that the Clarke subdifferential
coincides with the usual gradient ∇H(x) at the point x where H(·) is strictly differ-
entiable. Note that a number of functions in this paper are piecewise continuously
differentiable, which means that at “most” points, the Clarke subgradient coincides
with the classical gradient. The additional benefit of the Clarke notion provides us a
derivative tool to deal with a “few” points where the classical derivatives do not exist
and traditional right/left derivative approach make discussions complicated and indeed
not working when dealing with vector valued functions. By using the Clarke notion, we
have a unified derivative tool for both “differentiable points” and “nondifferentiable
points”.

Theorem 3.5 Let F(q, x, ξ) be defined as in (3.11). Under Assumptions 2.1, 2.2 and
2.6, the following results hold.

(i) ∂q F(q, x, ξ) is non-singular for q ≥ 0 and x ≥ 0.
(ii) For every x ≥ 0 and ξ ∈ �, there exists a unique q such that F(q, x, ξ) = 0.

(iii) There exists a unique Lipschitz continuous and piecewise smooth function q(x, ξ)

defined on [0,+∞) × � such that

F(q(x, ξ), x, ξ) = 0.

The theorem above shows that under Assumptions 2.1, 2.2 and 2.6, there exists
a unique Nash–Cournot equilibrium in the spot market for every x and ξ , and the
equilibrium is a vector valued function of x and ξ which is Lipschitz continuous and
piecewise smooth. In what follows, we investigate the subdifferentials of the dispatch
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function q(x, ξ) in the spot equilibrium and the aggregate dispatch Q(x, ξ) w.r.t. xi

and ξ . This is to examine the impact of the changes of individual generator’s contract
level and random shock ξ on the market equilibrium and the aggregate dispatch in the
spot market. We need the following assumption to guarantee that, for every demand
scenario, there is at least one generator whose dispatch quantity to the spot market is
strictly positive. Obviously, this is always satisfied in the real electricity market.

Assumption 3.6 Suppose that, for every ξ ∈ � and x signed in the forward market,
the inverse demand function p(·, ξ) and the cost functions ci (·) satisfy

min
i=1,...,M

c′
i (0) < p(Q(x, ξ), ξ). (3.12)

The assumption implies that at any demand scenario, and for any contract quantities
x signed in the forward market, there is at least one generator whose marginal cost of
producing a very small amount of electricity is strictly lower than the market clearing
price, which means that there exists at least one generator which is profitable by sup-
plying a small amount of electricity in the spot market. This assumption excludes the
case that no generator is willing to sell electricity in a particular scenario.

Proposition 3.7 Let F(q, x, ξ) be defined as in (3.11). Under Assumptions 2.1, 2.2,
2.6 and 3.6, we have the following.

(i) The Clarke generalized Jacobian of q(x, ξ) w.r.t. x can be estimated as follows:

∂x q(x, ξ) ⊂ conv
{
−W −1U : (W, U, V ) ∈ ∂ F(q(x, ξ), x, ξ),

W ∈ R
M×M , U ∈ R

M , V ∈ R

}
. (3.13)

(ii) The Clarke subdifferential of the aggregate dispatch function, Q(x, ξ), w.r.t. xi ,
for i = 1, . . . , M, can be estimated as

∂xi Q(x, ξ) ⊂ [0, 1).

The lower bound is reached only when qi (x, ξ) = 0.
(iii) The Clarke subdifferential of generator i’s dispatch function, qi (x, ξ), w.r.t. xi ,

can be estimated as

∂xi qi (x, ξ) ⊂ [0, 1).

The lower bound is reached only when qi (x, ξ) = 0.
(iv) The Clarke subdifferential of qi (x, ξ), w.r.t. x j can be estimated as

∂x j qi (x, ξ) ⊂ (−1, 0].

The upper bound is reached only when q j (x, ξ) = 0.
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(v) If p′′
Q,ξ (Q, ξ) = 0, then qi (x, ξ) is an increasing function of ξ ; moreover, if

there exists a constant C ≥ 0 such that

p′
Q(Q, ξ) + p′′

Q(Q, ξ)(q − x)T e < −C, for Q ≥ 0, x ≥ 0 and ξ ∈ �,

then the Clarke subdifferential of Q(x, ξ) w.r.t. ξ can be estimated as follows:

∂ξ Q(x, ξ) ⊂
(

0,
1

C
p′
ξ (Q(x, ξ), ξ)

]

.

We provide a proof on these technical results in the appendix. Moreover, some eco-
nomic interpretations for these results can be given as following: Part (ii) indicates
that every unit increase of contract quantity by a generator in the forward market will
result in an increase of the aggregate dispatch of all generators in the spot market by
less than one unit. Part (iii) has a similar interpretation for an individual generator.
Part (iv) means that generator i’s dispatch will be reduced by less than one unit if one
of its rivals increases one unit in its contract quantity.

To give an intuitive interpretation of the results in this section, we present a simple
example of a duopoly market.

Example 3.8 Consider an electricity market with two generators, A and B. The gen-
erators’ cost functions are

cA(qA) = 0.8qA, cB(qB) = qB,

where qA and qB denote A and B’s quantities for dispatches in the spot market,
respectively. We assume that the inverse demand function is

p(qA + qB, ξ) = α(ξ) − β(qA + qB),

where α(ξ) = 7 + ξ , β = 2, and the random shock ξ follows a uniform distribution
on the set [0, 1]. Denote the contract positions of A and B in the forward market by
xA and xB . The inverse demand function after the realization of the random shock ξ

is

p(qA + qB, ξ) = 7 + ξ − 2(qA + qB).

Let qu
A = 3.6 and qu

B = 3.5 be the capacity limits of A and B. In the spot market,
generator A and B’s profit maximization problems can be respectively written as

max
qA∈[0,qu

A]
RA(qA, qB, x, ξ)=−2q2

A+qA(6.2−2qB +ξ+2xA)−xA(7−2qB +ξ),

(3.14)
max

qB∈[0,qu
B ]

RB(qB, qA, x, ξ)=−2q2
B +qB(6−2qA+ξ+2xB)−xB(7−2qA+ξ),

123



D. Zhang et al.

It is easily verify that, for any ξ ∈ [0, 1], ∀qA ≥ qu
A and ∀qB ≥ qu

B , we have the
following inequalities,

p(qA, ξ) ≤ 7 + ξ − 2qu
A ≤ 0.8 = c′

A(qA),

p(qB, ξ) ≤ 7 + ξ − 2qu
B ≤ 1 = c′

B(qB),
(3.15)

which imply that Assumption 2.1 holds in this example. According to our discussion
following Assumption 2.1, (3.15) implicitly ensures that the optimal solution q∗

i (x, ξ)

satisfy q∗
i (x, ξ) ≤ qu

i for i = A, B and will never go beyond qu
A and qu

B in every
scenario ξ ∈ �. Therefore, the constraints qi ≤ qu

i for i = A, B in (3.14) are not
active, and generator A and B’s profit maximization problems can be respectively
reformulated as

max
qA≥0

RA(qA, qB , x, ξ) = −2q2
A + qA(6.2 − 2qB + ξ + 2xA) − xA(7 − 2qB + ξ),

max
qB≥0

RB(qB, qA, x, ξ) = −2q2
B + qB(6 − 2qA + ξ + 2xB) − xB(7 − 2qA + ξ),

where RA and RB are quadratic functions. Therefore, the optimal dispatches in the
spot market satisfy the following first-order conditions:

0 ≤ qA(x, ξ) ⊥ 4qA(x, ξ) − (6.2 − 2qB(x, ξ) + ξ + 2xA) ≥ 0,

0 ≤ qB(x, ξ) ⊥ 4qB(x, ξ) − (6 − 2qA(x, ξ) + ξ + 2xB) ≥ 0.
(3.16)

Note that, the case qA = qB = 0 is excluded by Assumption 3.6 for (3.17). From
(3.16), we have

(qA(x, ξ), qB(x, ξ))

=

⎧
⎪⎨

⎪⎩

(
0, 1

4 (2xB + 6 + ξ)
)
, if qA = 0;

( 1
4 (2xA + 6.2 + ξ), 0

)
, if qB = 0;

( 1
6 (4xA − 2xB + ξ + 6.4), 1

6 (4xB − 2xA + ξ + 5.8)
)
, otherwise.

(3.17)

Equation (3.17) implies that ∂xi qi is a subset of [0, 1/2] or [1/2, 2/3] for i = A, B,
and ∂x j qi ⊂ [−1/3, 0] for i, j = A, B and i 	= j , which verifies the results (iii) and
(iv) in Proposition 3.7. Moreover, the aggregated dispatch quantity can be written as

Q(x, ξ) =

⎧
⎪⎨

⎪⎩

1
4 (6 + ξ + 2xB), if qA = 0;
1
4 (6.2 + ξ + 2xA), if qB = 0;
1
3 (6.1 + ξ + xA + xB), otherwise,

(3.18)

which implies ∂xi Q is a subset of [0, 1/2] or [1/3, 1/2], and hence the result (ii) in
Proposition 3.7. Observe that (3.17) and (3.18) provide us with a further properties,
that is, at the demand scenario ξ , if qi (x, ξ) ≡ 0 for every x , then ∂x j qi (x, ξ) ≡ {0}
for i, j = A, B and ∂xi Q(x, ξ) ≡ {0}. This fact verifies the lower bounds in the results
(ii) and (iii), and the upper bound in the result (iv) in Proposition 3.7.
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4 Equilibrium in the forward market

In this section, we investigate the competition in the forward market. We do so by look-
ing into the existence of a Nash–Cournot equilibrium in the forward market as defined
in Definition 2.7. For the simplification of discussion, we assume that the spot mar-
ket has a unique Nash–Cournot equilibrium, q(x, ξ) = (q1(x, ξ), q2(x, ξ), . . . , qM

(x, ξ))T for every x and ξ . First, from Proposition 3.7, we can establish a relationship
between the strike price and the contract quantities in the following proposition.

Proposition 4.1 Under Assumptions 2.1, 2.2 and 2.6, the strike price z is a function
of the contract quantities x, that is, z(x) = E[p(Q(x, ξ), ξ)]. Moreover, the elements
in the set ∂xi z(x) are all non-positive.

Proof Under Assumption 2.6 and the uniqueness of the supply functions qi (x, ξ) in
the spot equilibrium, we have, z(x) = E[p(Q(x, ξ), ξ)]. The Clarke subdifferential
of z(x) is

∂xi z(x) = ∂xi E[p(Q(x, ξ), ξ)].

Since the inverse demand function p(Q, ξ) is a continuously differentiable function
of Q(see Assumption 2.2), and Q(x, ξ) is a Lipschitz continuous function of each xi

proved in Proposition 3.5(iii), we have, p(Q(x, ξ), ξ) is also a Lipschitz continuous
function of xi . Therefore, from Clarke (1983, Theorem 2.7.5),

∂xi E[p(Q(x, ξ), ξ)] ⊂ E[∂xi p(Q(x, ξ), ξ)] ⊂ E[p′
Q(x, ξ)∂xi Q(x, ξ)].

Moreover, by Part (ii) of Theorem 3.5,

E[p′
Q(Q(x, ξ), ξ)∂xi Q(x, ξ)] ⊂ (p′

Q(Q(x, ξ), ξ), 0] ⊂ (−∞, 0].

This completes the proof. ��

Proposition 4.1 establishes a relationship between the strike price and a generator’s
contract quantity in the forward market, in which the negativity of the elements in
∂xi z(x) implies that any unilateral increase of the contract quantity by a generator
never results in an increase of the strike price.

4.1 Differentiability of the expected profit

We now discuss the continuity and differentiability of a generator’s objective function
in the forward market and investigate the change of the expected profit of an individual
generator against the change of its contract quantity. To avoid too much mathematical
details and make our analysis more readable, we move all the detailed proofs of the
lemmas and theorem in this subsection to the appendix. We start by considering the

123



D. Zhang et al.

first order derivative. Recall that

πi (xi , x−i ) :=
∫

ξ∈�

[qi (x, ξ)p(Q(x, ξ), ξ) − ci (qi (x, ξ))] ρ(ξ)dξ,

for i = 1, 2, . . . , M.

Obviously, the only component in the integrand which may cause nondifferentiabil-
ity of the integrand and hence πi (xi , x−i ) is q j (x, ξ), j = 1, . . . , M and j 	= i .
In what follows, we demonstrate that under some moderate condition, the piecewise
smoothness of q(x, ξ) may not cause nondifferentiability of πi (xi , x−i ).

Assumption 4.2 The inverse demand function and the cost functions satisfy the
following.

(i) For any fixed ξ ∈ �, there exists an L1(ξ) ≥ 0 such that

max
(−p′

Q(Q(x, ξ), ξ), p′′
Q(Q(x, ξ), ξ), ci (qi (x, ξ))

) ≤ L1(ξ),

∀ xi ≥ 0, i = 1, 2, . . . , M,

and supξ∈� L1(ξ) < ∞.

(ii) There exists a constant σ ≥ 0 such that −p′
Q(Q(x, ξ), ξ) + c′′

i (qi (x, ξ)) > σ ,
for all ξ ∈ � and xi ≥ 0 for i = 1, 2, . . . , M .

Under Assumption 4.2, we need a couple of intermediate results, Lemmas 4.3 and
4.4, to obtain the main result on the twice continuous differentiability of qi (x, ξ) w.r.t.
xi in Theorem 4.5. For the clarity of notation, we write qi (x, ξ) as qi (xi , x−i , ξ) to
distinguish xi and x−i because x−i will be treated as parameters when we analyze the
sensitivity of the quantities w.r.t. xi .

Lemma 4.3 Under Assumptions 2.1, 2.6, 2.2, 3.6 and 4.2, the following results hold.

(i) For each i = 1, . . . , M, qi (xi , x−i , ξ) is a piecewise continuously differentiable
and increasing function of xi .

(ii) For x j ≥ 0, j = 1, 2, . . . , M, j 	= i and ξ ∈ �, qi (xi , x−i , ξ) is globally Lips-
chitz continuous w.r.t. xi ; that is, there exists a function Li

2(ξ), i = 1, . . . , M,
such that

|qi (x (1)
i , x−i , ξ) − qi (x (2)

i , x−i , ξ)| ≤ Li
2(ξ)|x (1)

i − x (2)
i |, ∀x (1)

i , x (2)
i ≥ 0,

where
∫
ξ∈�

Li
2(ξ)ρ(ξ)dξ < ∞.

From the part (i) of Lemma 4.3, we know that qi (xi , x−i , ξ) is a nondecreasing
function in xi , and thus there exists a unique point at which qi (xi , x−i , ξ) turns from
zero to positive as xi increases, and we denote this point by xi (ξ). In economic terms,
given the contract position x−i signed by generator i’s rivals, for a realized demand
shock ξ ∈ �, xi (ξ) is the contract position at which generator i’s marginal profit in
the spot market becomes from zero to positive, and its dispatch quantity also becomes
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from zero to positive. Mathematically, xi (ξ) can be regarded as a degenerate point of
the complementarity problem (3.10) because at this point, both Gi (q(x, ξ), xi , ξ) and
qi (xi , x−i , ξ) are equal to zero. Note that qi (xi , x−i , ξ) is not differentiable w.r.t. xi at
the point xi (ξ). From a practical perspective, part (i) of Lemma 4.3 implies that, the
more contracts (in the sense of quantities) a generator signs in the forward market, the
more dispatch the generator will commit in the spot market.

In what follows, we investigate the set of degenerate points xi (ξ) for a given x . This
is because these degenerate points may result in non-differentiability of the integrand
of πi (xi , x−i ) and potentially further result in the non-differentiability of πi (xi , x−i )

if there are too many such points (in the sense that the Lebesgue measure of the set of
such points is non-zero). The following lemma states that the number of degenerate
points are actually finite which implies that they will not cause non-differentiability
of πi (xi , x−i ).

Lemma 4.4 Let �i (x) := {ξ ∈ �|xi = xi (ξ)} and �(x) := ⋃M
i=1 �i (x). Under

Assumptions 2.1, 2.6, 2.2, 3.6 and 4.2, �(x) is a finite set for any x.

Note that, from the definition of �(x), given x , �i (x) 	= φ means that there is a
ξ such that generator i’s dispatch quantity qi (xi , x−i , ξ) turns from zero to strictly
positive, that is, the i th element of x is xi (ξ). Therefore, �i (x) is the set of points
ξ ∈ � at which generator i’s dispatch quantity turns from zero to positive, and �(x)

is the set of points ξ ∈ � at which the dispatch quantity of at least one of generators
turns from zero to positive.

As observed in the proof of Lemma 4.4 in the appendix, xi (ξ) is a decreasing
function of ξ to maintain the property that qi (xi (ξ), x−i , ξ) ≡ 0 for xi ≤ xi (ξ) and
qi (xi (ξ), x−i , ξ) > 0 for xi > xi (ξ). For given x−i and xi , let us define

vi (xi , ξ) := (qi (xi , x−i , ξ) − xi )p(Q(x, ξ), ξ) − ci (qi (xi , x−i , ξ)). (4.19)

The only values of ξ at which vi (·, ξ) might not be differentiable w.r.t. xi are points ξ

at which the dispatch of one of generator turns from positive to zero. These are only
points at which Q(x, ξ) might not be differentiable w.r.t. xi and thus vi (·, ξ) might
not be differentiable w.r.t. xi . By Lemma 3.4 in DeMiguel and Xu (2008), �i (xi ) is a
finite set, which implies that Q(x, ξ) is differentiable w.r.t. xi for almost every ξ ∈ �

and thus vi (xi , ξ) is differentiable w.r.t. xi for almost every ξ ∈ �. We are now able
to address the main results of this section.

Theorem 4.5 Suppose that there exists L3(ξ) ≥ 0 such that
∫
�

L3(ξ)ρ(ξ)dξ < ∞
and

max
(

p(Q, ξ), |p′′′
Q(Q, ξ)|, |Q′′

xi
(x, ξ)|) ≤ L3(ξ),

for all Q ≥ 0, ξ ∈ � and xi with i = 1, . . . , M, at which Q(x, ξ) is twice continuously
differentiable w.r.t. xi . Then, under Assumptions 2.1, 2.6, 2.2, 3.6 and 4.2, πi (xi , x−i )

is twice continuously differentiable.
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In what follows, we explain Theorem 4.5 through a simple example based on
Example 3.8.

Example 4.6 (Continued from Example 3.8) Consider a duopoly market as described
in Example 3.8. From the definition, for any fixed xB , the degenerate point xA(ξ) (at
which qA(xA, xB , ξ) turns from zero to positive as xA increases) can be identified by
solving the following equations

qA(xA(ξ), xB, ξ) = 0; and

4qA(x, ξ)−(6.2−2qB(xA(ξ), xB, ξ) + ξ+2xA(ξ)) = 0,

where xA(ξ) ≥ 0. By solving (3.16), we obtain

xA(ξ) = 1

2
(xB − 0.5ξ − 3.2), for fixed xB . (4.20)

Combining the condition that xA(ξ) ≥ 0, we can see that for fixed xA there exists at
most one ξ such that qA(xA, xB , ξ) is possibly not differentiable. This implies that the
cardinality of the set �A(x) is at most 1, and hence verifies Lemma 4.4.

In what follows, we look into Theorem 4.5. For the sake of simplicity, we only
verify the differentiability of πA(xA, xB) in xA

1 and xB ≤ 3.22. We can obtain qA

and qB by solving the following complementarity problem:

4qA(xA, xB, ξ) − (6.2 − 2qB(xA, xB, ξ) + ξ + 2xA) = 0,

0 ≤ qB(xA, xB , ξ) ⊥ 4qB(xA, xB , ξ) − (6 − 2qA(xA, xB , ξ) + ξ + 2xB) ≥ 0.

(4.21)

From (3.15) in Example 3.8, qA and qB can be expressed as:

⎧
⎪⎨

⎪⎩

(q I
A, q I

B) = ( 1
4 (6.2 + ξ + 2xA), 0

)
, if ξ ∈ [0, 2xA − 4xB − 5.8],

(q I I
A , q I I

B ) = ( 1
6 (6.4 + ξ + 4xA − 2xB) ,

1
6 (5.8 + ξ + 4xB − 2xA)

)
, if ξ ∈ [2xA − 4xB − 5.8, 1],

where the two smooth pieces {(q I
A, q I

B)} and {(q I I
A , q I I

B )} intersect at the point xA =
2xB + 2.9 + 0.5ξ , where (q I

A, q I
B) = (q I I

A , q I I
B ) =

(
6.2+ξ+2xA

4 , 0
)

. In other words,

at any fixed point xA and xB , there is at most one ξ such that qA and qB are not
differentiable w.r.t. variable xA. Consequently, generator A’s expected profit in the
forward market can be calculated as follows:

1 As we can do for xB in the same way.
2 There will be two nondifferentiable points when xB > 3.2.
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πA(xA, xB)

=

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∫ 1
0

[
q I

A p(QI , ξ) − cA(q I
A)
]
ρ(ξ)dξ, if ξ̄ ≥ 1;

∫ ξ̄

0

[
q I

A p(QI , ξ) − cA(q I
A)
]
ρ(ξ)dξ + ∫ 1

ξ̄

[
q I I

A p(QI I , ξ) − cA(q I I
A )
]
ρ(ξ)dξ,

if 0 < ξ̄ < 1;
∫ 1

0

[
q I I

A p(QI I , ξ) − cA(q I I
A )
]
ρ(ξ)dξ, if ξ̄ ≤ 0,

where QI = q I
A + q I

B , QI I = q I I
A + q I I

B and ξ̄ denotes ξ̄ (xA) := 2(xA − 2xB − 2.9).

Calculating the derivative ∂πA(xA,xB )
∂xA

for the case 0 < ξ̄ < 1, we have

∂πA(xA, xB)

∂xA
=

ξ̄ (xA)∫

0

∂
[
q I

A p(QI , ξ) − cA(q I
A)
]

∂xA
ρ(ξ)dξ

+∂ξ̄ (xA)

∂xA

[
q I

A(xA, xB , ξ̄ (xA))p(QI (x, ξ̄ (xA)), ξ̄ (xA))

−cA(q I
A(xA, xB, ξ̄ (xA)))

]
ρ(ξ̄ (xA))

+
1∫

ξ̄ (xA)

∂
[
q I I

A p(QI I , ξ) − cA(q I I
A )
]

∂xA
ρ(ξ)dξ

−∂ξ̄ (xA)

∂xA

[
q I I

A (xA, xB , ξ̄ (xA))p(QI I (x, ξ̄ (xA)), ξ̄ (xA))

−cA(q I I
A (xA, xB , ξ̄ (xA)))

]
ρ(ξ̄ (xA)).

Since at the point xA = 2xB + 2.9 + 0.5ξ̄ (xA),

(
q I

A(xA, xB, ξ̄ (xA)), q I
B(xA, xB , ξ̄ (xA))

)

=
(

q I I
A (xA, xB , ξ̄ (xA)), q I I

B (xA, xB, ξ̄ (xA))
)

.

and then ∂πA(xA, xB)/∂xA above can be simplified as

∂πA(xA, xB)

∂xA
=

ξ̄ (xA)∫

0

∂
[
q I

A p(QI , ξ) − cA(q I
A)
]

∂xA
ρ(ξ)dξ

+
1∫

ξ̄ (xA)

∂
[
q I I

A p(QI I , ξ) − cA(q I I
A )
]

∂xA
ρ(ξ)dξ. (4.22)
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Moreover, for ξ̄ ≥ 1 and ξ̄ ≤ 0 we have

∂πA(xA, xB)

∂xA
=
⎧
⎨

⎩

∫ 1
0

∂
[
q I

A p(QI ,ξ)−cA(q I
A)
]

∂xA
ρ(ξ)dξ, if ξ̄ ≥ 1;

∫ 1
0

∂
[
q I I

A p(QI I ,ξ)−cA(q I I
A )
]

∂xA
ρ(ξ)dξ, if ξ̄ ≤ 0,

(4.23)

Combining both (4.22) and (4.23), we can see that ∂πA(xA,xB )
∂xA

is a continuous func-
tion of xA and hence πA(xA, xB) is continuously differentiable w.r.t. xA. Repeating
the process above on derivative ∂πA(xA,xB )

∂xA
, we can show that πA(xA, xB) is twice

continuously differentiable. This verifies the result in Theorem 4.5.

4.2 Existence of the forward-spot equilibrium

We now move on to discuss the existence of Nash–Cournot equilibrium in the for-
ward-spot market. A well known sufficient condition for the existence is the concavity
or quasi-concavity of each generator’s objective function on its strategy space. See
for instance Rosen (1965, Theorem 1) and Yuan and Tarafdar (1996, Theorem 1). It
turns out, however, very difficult to show this kind of ‘global’ concavity here. For this
reason, we look into the local concavity and consequently investigate the existence of
‘local Nash equilibrium’. The notion is used by Hu and Ralph for modeling a bilevel
games in an electricity market with locational prices, see Hu and Ralph (2007) for
details. As noted in Hu and Ralph (2007), the concept of local Nash equilibrium is
proposed as a weaker alternative to Nash equilibrium for the electricity market. From
a viewpoint of the real market, given that the global optima of nonconcave maximiza-
tion problems are difficult to identify, the limitation of knowledge of generators may
lead to meaningful local Nash equilibria, in which the local optimality is sufficient for
the satisfaction of generators. Moreover, given the condition that the spot market is
always profitable for every generator at every scenario ξ , we establish our main results
on the existence of the global Nash equilibrium in the forward-spot market. We start
by giving a definition on local Nash equilibrium.

Definition 4.7 (Local Nash equilibrium) x∗ is a local Nash–Cournot equilibrium of
the forward market if for each i , x∗

i is a local optimal solution to the problem

max
xi ≥0

πi (xi , x∗−i ) = E
[
qi (xi , x∗−i , ξ)p(Q(xi , x∗−i , ξ), ξ)

−ci (qi (xi , x∗−i , ξ))
]
, i = 1, 2, . . . , M.

Comparing to their global counterparts, local Nash equilibria seem deficient. How-
ever, for some decision-making problems, given that global optima are difficult to
identify because of the nonconcave objective functions, local optimality may be suffi-
cient for the satisfaction of players. For instance, generators may only optimize their
contract positions locally due to limited information on the forward market or general
conservativeness. To illustrate the existence of the local Nash–Cournot equilibrium
in the forward-spot market, we present the following example based on the duopoly
model in Example 3.8.
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Example 4.8 (Continued from Example 4.6) Consider a duopoly market described in
Example 4.6, in which the capacity limits of generator A and B are qu

A = 3.6 and
qu

B = 3.5, respectively.
Define

X = {(xA, xB) | xA > 0.4, xB > 0.6},

and x := (xA, xB) ∈ X . Let

X+ = {x = (xA, xB) | qA(x, ξ) > 0, qB(x, ξ) > 0, ∀ξ ∈ [0, 1]}.

That is, if contract position x = (xA, xB) is in X+, then for all ξ ∈ �, the dispatch
of each generator in the spot market is always strictly positive. It is easy to verify that
X+ is an open convex set.

Let x ∈ X ∩ X+ (the set X ∩ X+ is nonempty, open and convex). It is easy to derive
that the optimal dispatches in the spot market satisfy the following:

qA(x, ξ) = 1
4 (6.2 − 2qB(x, ξ) + ξ + 2xA),

qB(x, ξ) = 1
4 (6 − 2qA(x, ξ) + ξ + 2xB),

qA(x, ξ) > 0, for all ξ ∈ �,

qB(x, ξ) > 0, for all ξ ∈ �,

(4.24)

and the spot price is

p(qA + qB, ξ) = 7 + ξ − 2(qA + qB)

= 1

3
(8.8 + ξ − 2xA − 2xB).

Consequently, we have the generators’ profit functions in the forward market

πA(xA, xB) =
1∫

ξ=0

[qA p − cA(qA)]ρ(ξ)dξ

= 1

18

[
1

3
+ 1

2
(12.8 + 2xA − 4xB)

+(6.4 + 4xA − 2xB)(6.4 − 2xA − 2xB)

]

,

πB(xB, xA) =
1∫

ξ=0

[qB p − cB(qB)]ρ(ξ)dξ

= 1

18

[
1

3
+ 1

2
(11.6 + 2xB − 4xA)

+(5.8 + 4xB − 2xA)(5.8 − 2xA − 2xB)

]

.

123



D. Zhang et al.

Accordingly, the first order derivative of πi w.r.t. xi , i = A, B, are

∂πA

∂xA
= 1

18
(13.8 − 16xA − 4xB),

∂πB

∂xB
= 1

18
(11.6 − 16xA − 4xB).

By solving the system of equations

1

18
(13.8 − 16xA − 4xB) = 0,

1

18
(11.6 − 16xA − 4xB) = 0,

we obtain x∗ = (x∗
A, x∗

B) = (0.71, 0.61). It is easy to verify that x∗ ∈ X+ ∩ X .
Moreover, since

∂2πA(x∗)
∂x2

A

= −8

9
,

∂2πB(x∗)
∂x2

B

= −8

9
,

then the expected profit functions are concave. Therefore x∗ is a local Nash–Cournot
equilibrium.

Before presenting further analysis on the existence of local Nash equilibrium, we
need the following result on the concavity of each generator’s dispatch function.

Proposition 4.9 Let p(Q, ξ) = α(ξ) − β(ξ)Q, where ξ : � → � ⊂ IR is a random
variable defined on probability space (�,F , P), α(ξ) : � → R+ and β(ξ) : � →
R+ are continuous functions for all ξ ∈ �. Assume that the marginal cost functions
ci (qi ), i = 1, . . . , M, satisfy one of the following conditions:

(i) c j (q j ) is linear on q j ∈ [0, qu
j ] for j = 1, . . . , M;

(ii) all generators’ marginal cost functions are identical and nondecreasing, that is,
for any q̄ > 0

c′
1(q̄) = c′

2(q̄) = · · · = c′
M (q̄).

Under Assumptions 2.1, 2.2, 2.6, and 3.6, the aggregate dispatch quantity Q(x, ξ) is
convex w.r.t. xi for xi ≥ 0.

The proof of this proposition is attached in the appendix of this paper. The proof not
only shows the convexity of the aggregate dispatch quantity, but also gives the formu-
lation of Q′

xi
(x, ξ) in (6.47), which implies that the more contract is signed, the higher

rate of increase in the aggregate dispatch is. It also shows that the rate of increase is a
piecewise smooth function of x for any ξ .
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Lemma 4.10 Under Assumptions 2.1, 2.2, 2.6, and 3.6, for fixed x−i and ξ ∈ �, the
function p(Q(x, ξ), ξ) − c′

i (qi (xi , x−i , ξ)) is a decreasing function w.r.t. xi .

Proof Let

h(xi , x−i , ξ) := p(Q(x, ξ), ξ) − c′
i (qi (xi , x−i , ξ)).

Under the assumption of Proposition 4.9, we have

h(xi , x−i , ξ) = α(ξ) − β(ξ)Q(x, ξ) − c′
i (qi (xi , x−i , ξ)).

For each fixed ξ ∈ �,

∂xi h(xi , x−i , ξ) ⊂ −β(ξ)∂xi Q(x, ξ) − c′′
i (qi (xi , x−i , ξ))∂xi qi (xi , x−i , ξ).

By Proposition 3.7 and Assumption 2.2, ∂xi Q(x, ξ) ⊂ [0, 1), ∂xi qi (xi , x−i , ξ) ⊂
[0, 1) and c′′

i (qi ) ≥ 0. Thus

∂xi h(xi , x−i , ξ) ⊂ −β(ξ)∂xi Q(x, ξ) − c′′∂xi qi (xi , x−i , ξ) ⊂ (−∞, 0],

which implies that p(Q(x, ξ), ξ) − c′(qi (xi , x−i , ξ)) is a decreasing function of xi

for every ξ . ��
We are now ready to state a couple of existence results on equilibrium in the forward-

spot market. Before that, we define the index set I(x, ξ) = { j |q j (x, ξ) > 0} which is
slightly different from the definition of I(xi , ξ) = { j |q j (xi , x−i , ξ) > 0, j 	= i} for
fixed x−i in the proof of Proposition 4.9.

Theorem 4.11 (Existence of local equilibrium) Let assumptions in Proposition 4.9
hold. There exists at least one local Nash–Cournot equilibrium in the forward market,
if the following conditions are satisfied:
(1) There exist open and convex sets Xi , i = 1, . . . , M, such that for any ξ ∈ �,

I(x, ξ) is constant on X := X1 × X2 × · · · × X M .
(2) For i = 1, 2, . . . , M, there exist a non-empty compact convex subset X0

i of Xi

and a non-empty compact subset Ki of Xi such that, for each x ∈ X\K , there
exists y ∈ conv(X0 ⋃{x}) satisfying

M∑

i=1

πi (xi , x−i ) <

M∑

i=1

πi (yi , x−i ),

where X0 := ∏M
i=1 X0

i and K := ∏M
i=1 Ki .

Proof We first consider a local forward-spot equilibrium problem formulated as

⎧
⎨

⎩

πi (x∗
i , x∗−i ) = max

xi ∈Xi
πi (xi , x−i ),

q∗
i (x∗, ξ) ∈ arg max

qi ≥0
Ri (qi (x∗, ξ), x∗, Q−i (x∗, ξ), ξ), ∀ξ ∈ �,

(4.25)
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for i = 1, 2, . . . , M , where (q1(x∗, ξ), . . . , qM (x∗, ξ)) is the global Nash–Cournot
equilibrium in the spot market for fixed x∗. Note that, in this local equilibrium prob-
lem, the decision variables xi for i = 1, 2, . . . , M take their values in a noncompact
and convex subset Xi of the feasible strategy set [0,+∞) in the global problem (2.7).
Let

fi (xi , x−i , ξ) := q∗
i (xi , x−i , ξ)p(Q∗(x, ξ), ξ) − ci (q

∗
i (xi , x−i , ξ)). (4.26)

We reformulate (4.25) as

max
xi ∈Xi

πi (xi , x−i ) = E[ fi (xi , x−i , ξ)]. (4.27)

We prove the existence of a local Nash–Cournot equilibrium satisfying (4.27) by
virtue of Yuan and Tarafdar (1996, Theorem 1) which addresses the existence of Nash
equilibrium problem with noncompact feasible sets of strategies.

To apply this theorem, we need to verify Conditions (1) to (4) in Yuan and Tarafdar
(1996, Theorem 1) Conditions (1) and (2) in Yuan and Tarafdar (1996, Theorem 1)
can be easily verified by the twice continuously differentiability of πi (xi , x−i ) proved
in Theorem 4.5. Condition (4) in Yuan and Tarafdar (1996, Theorem 1) is equivalent
to Condition (2) of Theorem 4.11.

To verify Condition (3), we need to show that fi is concave w.r.t. xi on the non-
compact feasible set Xi for every fixed ξ . For this purpose, we need to prove that the
right-hand derivative of fi (xi , x−i , ξ) is a non-increasing function of xi on Xi . Denote
the right-hand derivative of fi (xi , x−i , ξ) by f +

i (xi , x−i , ξ). Then

f +
i (xi , x−i , ξ) = q+

i (xi , x−i , ξ)[p(Q(x, ξ), ξ) − c′
i (qi (xi , x−i , ξ))]

−qi (xi , x−i , ξ)β(ξ)Q+
xi

(x, ξ).

Similar to the proof of Proposition 4.9 and Lemma 4.10, we divide the right-hand
derivative of fi (xi , x−i , ξ) w.r.t. xi into two cases depending on whether i ∈ I(x, ξ)

or not. Case 1, i ∈ I(x, ξ). We have

f +
i (xi , x−i , ξ) = 1 + |I(x, ξ)|

2 + |I(x, ξ)| [p(Q(x, ξ), ξ) − c′
i (qi (xi , x−i , ξ))]

− 1

2 + |I(x, ξ)|qi (xi , x−i , ξ)β(ξ).

Case 2, i 	∈ I(x, ξ). We have

f +
i (xi , x−i , ξ) = − 1

2 + |I(x, ξ)|qi (xi , x−i , ξ)β(ξ).

Because |I(x, ξ)| is constant on Xi , qi (x, ξ) is a monotonically increasing function
of xi and p(Q(x, ξ), ξ) − c′

i (qi (xi , x∗−i , ξ)) is decreasing by Lemma 4.10, we can
easily see that f +

i (xi , x−i , ξ) is a decreasing function of xi in either case. This shows
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the concavity of fi (xi , x−i , ξ) and hence of πi (xi , x−i ) = E[ fi (xi , x−i , ξ)] on the set
X = ∏M

i=1 Xi , because concavity is preserved under the integration w.r.t. ξ , which
verifies Condition (3) in Yuan and Tarafdar (1996, Theorem 1).

Therefore, Yuan and Tarafdar (1996, Theorem 1), there exists at least one Nash–
Cournot equilibrium for {(4.27)}M

i=1. Let us denote the equilibrium by x∗ = (x∗
1 ,

x∗
2 , . . . , x∗

M )T . Since, for every i = 1, 2, . . . , M , Xi is an open subset of [0,+∞),
then x∗

i is a local maximizer of πi (xi , x∗−i ) for xi ≥ 0. Hence, x∗ is also a local
Nash–Cournot equilibrium for the global equilibrium problem

max
xi ≥0

πi (xi , x−i ) = E[ fi (xi , x−i , ξ)], i = 1, 2, . . . , M.

By Proposition 3.3, there exists a unique equilibrium q(x∗, ξ) = (q1(x∗, ξ), . . . , qM

(x∗, ξ)) for the game problem in the spot market given that generators reach the
local equilibrium x∗ in the forward market. Therefore, 2M tuple (x∗

1 , x∗
2 , . . . , x∗

M , q1
(x∗, ξ), . . . , qM (x∗, ξ)) is a local Nash–Cournot equilibrium for the forward-spot
competition problem,

⎧
⎪⎨

⎪⎩

πi (x∗
i , x∗−i )=max

xi ≥0
πi (xi , x−i ),

q∗
i (x∗, ξ)∈arg max

qi ≥0
Ri (qi (x∗, ξ), x∗, Q−i (x∗, ξ), ξ), i =1, 2, . . . , M, ∀ξ ∈�,

(4.28)

This completes the proof. ��
From a practical perspective, Theorem 4.11, giving a result on the existence of local

Nash equilibrium, implies that, if every generator would like to accept a local optimal
solution subject to its limited knowledge of the nonconcave profit function, then all
generators will reach an equilibrium in the forward-spot market. On the other hand,
the restrictions of Theorem 4.11 are straightforward. First, the theorem only gives a
result on the existence of local Nash equilibrium which is not necessarily an optimal
choice for each generator. Second, Condition (2) in Theorem 4.11 on the structure of
the feasible sets may not be easily verified in the real system because it is given purely
for a mathematical purpose. In order to get a result with more practical implication,
we need to consider a particular type of markets in which every generator is profitable
for every demand scenario. In the following theorem, we will show the existence of
the global Nash–Cournot equilibrium for a class of forward-spot markets.

Theorem 4.12 (Existence of global equilibrium) Let conditions in Proposition 4.9
hold. If for any contracts x := (x1, . . . , xM ) signed in the forward market, the spot
equilibrium (q1(x, ξ), . . . , qM (x, ξ)) satisfies the condition that for any scenario ξ ∈
�,

p(Q(x, ξ), ξ) − c′
i (qi (x, ξ)) + β(ξ)qi (x, ξ) > 0, (4.29)

for i = 1, 2, . . . , M, then there exists a global Nash–Cournot equilibrium in the
forward-spot market.
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Remark 4.13 We make a few comments on the condition (4.29) before providing a
proof.

(i) The condition implies that every generator makes a positive dispatch in the spot
equilibrium for any x ∈ X and ξ ∈ �. To see this, let us assume for a contra-
diction that there exists i such that qi (x, ξ) = 0 in the spot equilibrium. From
the condition (4.29), we have p(Q−i (x, ξ), ξ) − c′

i (0) > 0. Therefore, from the
continuity of functions p(·, ξ) and c′

i (·), there exists a small positive value ε

satisfying that p(ε + Q−i (x, ξ), ξ) − c′
i (ε) > 0 and hence generator i’s profit

function Ri (ε, x, Q−i , ξ) in the spot market can be calculated as

Ri (ε, x, Q−i , ξ) = (ε − xi )p(ε + Q−i (x, ξ), ξ) − ci (ε)

= (ε − xi )p(ε + Q−i (x, ξ), ξ) −
⎛

⎝

ε∫

0

c′
i (q)dq + ci (0)

⎞

⎠

> (ε − xi )p(ε + Q−i (x, ξ), ξ) − (εc′
i (ε) + ci (0))

> −xi p(ε + Q−i (x, ξ), ξ) − ci (0), (4.30)

where the first inequality is from the convexity of ci (·) assumed in (iii) of Prop-
osition 2.2. Consequently, we have

Ri (ε, x, Q−i , ξ) > −xi p(ε + Q−i (x, ξ), ξ) − ci (0)

> (0 − xi )p(Q−i (x, ξ), ξ) − ci (0)

= Ri (0, x, Q−i , ξ), (4.31)

which implies that qi = 0 is not the optimal decision of generator i given its
rivals’ decision q−i (x, ξ) in the spot equilibrium, hence (0, q−i (x, ξ)) is not an
equilibrium, a contradiction! Therefore, for any fixed x−i , i ∈ I(x, ξ).

(ii) Theorem 4.12 may be viewed as a special case of Theorem 4.11 on local Nash
equilibrium. Since qi (x, ξ) > 0 is for generator i in the spot equilibrium, we
have that every generator dispatches a positive quantity, and hence I(x, ξ) =
{1, 2, . . . , M} is constant in the whole strategy space, which satisfies condition
(i) of Theorem 4.11. From the proof of Theorem 4.12, we can identify the con-
cavity of generator i’s profit function in the whole strategy space X , and hence
condition (2) is also satisfied. Therefore, the condition in Theorem 4.12 implies
both conditions in Theorem 4.11.

Proof of Theorem 4.12 Under the assumption p(Q, ξ) = α(ξ) − β(ξ)Q in Proposi-
tion 4.9, we have

p(Q−i (x, ξ), ξ) − c′
i (qi (x, ξ)) = α(ξ) − β(ξ)Q−i (x, ξ) − c′

i (qi (x, ξ)) ≥ 0,

(4.32)

for all ξ ∈ �.
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Now, we look into the right-hand derivative of fi (xi , x−i , ξ), which can be written
as following,

f +
i (xi , x−i , ξ) = q+

i (xi , x−i , ξ)[p(Q(xi , x−i , ξ), ξ) − c′
i (qi (xi , x−i , ξ))]

−qi (xi , x−i , ξ)β(ξ)Q+
xi

(x, ξ). (4.33)

By (4.30), we have that every generator will dispatch a positive quantity and hence
i ∈ I(x, ξ) for every generator i and any fixed contract quantity x . From the proof of
Proposition 4.9, we can reformulate (4.33) as

f +
i (xi , x−i , ξ) = 1 + |I(xi , x−i , ξ)|

2 + |I(xi , x−i , ξ)| [p(Q(x, ξ), ξ) − c′
i (qi (xi , x−i , ξ))]

− 1

2 + |I(xi , x−i , ξ)|qi (xi , x−i , ξ)β(ξ),

where we reformulate I(x, ξ) by I(xi , x−i , ξ) to emphasize generator i’s decision. As
proved in Sect. 3, qi (xi , x−i , ξ) and hence f +

i (xi , x−i , ξ) are piecewise smooth func-
tions of x j for any i, j = 1, 2, . . . , M . For any fixed x−i , we proceed the proof by divid-
ing our discussion on the monotonicity of the right-hand derivative of fi (xi , x−i , ξ)

in two cases depending on the smoothness of fi :
Case 1, we consider the monotonicity of f +

i (xi , x−i , ξ) at the point xi where the set
I(xi , x−i , ξ) is constant and hence f +

i (xi , x−i , ξ) is continuous. From Lemma 4.10,
p(Q(x, ξ), ξ)−c′

i (qi (xi , x−i , ξ)) is a decreasing function of xi for any fixed x−i , and
qi (xi , x−i , ξ) is an increasing function of xi . Therefore, we have f +

i (xi , x−i , ξ) is a
decreasing function of xi for any fixed x−i and any scenario ξ in every smooth piece
of xi .

Case 2, we consider the monotonicity of f +
i (xi , x−i , ξ) at the point xi where

I(xi , ξ) is not constant and hence f +
i (xi , x−i , ξ) is not continuous. Let

x−
i = lim

δ→0
xi − δ, and x+

i = lim
δ→0

xi + δ, for a δ > 0,

which are on the left and right sides of xi , respectively. Since |I(x, ξ)| is a decreasing
function of xi for any fixed x−i which has been shown in the proof of Proposition 4.9,
we have I + := |I(x+

i , x−i , ξ)| is less than or equal to I − := |I(x−
i , x−i , ξ)| for every

fixed x−i and ξ . Moreover, because of the Lipschitz continuity of qi (xi , x−i , ξ) w.r.t x j

for any i, j = 1, 2, . . . , M , we have qi (x+
i , x−i , ξ) = qi (x−

i , x−i , ξ) = qi (xi , x−i , ξ)

for any x−i , and hence

f +
i (x+

i , x−i , ξ) − f +
i (x−

i , x−i , ξ)

=
{

1 + I +

2 + I + [p(Q, ξ) − c′
i (qi )] − 1

2 + I + qiβ(ξ)

}
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−
{

1 + I −

2 + I − [p(Q, ξ) − c′
i (qi )] − 1

2 + I − qiβ(ξ)

}

= 1

(2 + I +)(2 + I −)

[(
I + − I −) (p(Q, ξ) − c′

i (qi ) + qiβ(ξ)
)]

,

where the second equality is from qi (x+
i , x−i , ξ) = qi (x−

i , x−i , ξ). Due to (4.29) in
this theorem, we have

f +
i (x+

i , x−i , ξ) − f +
i (x−

i , x−i , ξ)

= 1

(2 + I +)(2 + I −)

[(
I + − I −) (p(Q, ξ) − c′

i (qi ) + qiβ(ξ)
)]

< 0,

which means that, at the point xi , f +
i (xi , x−i , ξ) is also a decreasing function of xi

for fixed x−i .
By combining the results in both cases, we can show that the right-hand derivative of

fi (xi , x−i , ξ) is a decreasing function of xi for i = 1, 2, . . . , M , which indicates that
the function fi (xi , x−i , ξ) and hence πi (xi , x−i ) are concave functions of xi . From the
proof of Rosen (1965, Theorem 1), we know that there exists a global Nash–Cournot
equilibrium in the forward-spot market. ��

From Theorem 4.12 and Remark 4.13, we can make the following qualitative
statement.

Corollary 4.14 If for all possible demand shock, every generator makes a positive
dispatch in the spot equilibrium, then there exists a global Nash–Cournot equilibrium
in the forward-spot electricity market.

5 Numerical examples

In this section, we present a simple example to illustrate how the forward-spot market
equilibrium can be obtained numerically and how the SEPEC model can be used to
analyze the interaction of the markets. We carry out some computer simulations for the
SEPEC model with two players. We investigate how the dispatches, expected profits
and strike prices vary on the change of a generator’s contract position.

Note that it is very difficult to obtain a closed form of the expected value of the
objective functions. Consequently, we use a well known sample average approxima-
tion (SAA) approach to approximate the expected values. SAA is a popular method
in stochastic programming; see Gürkan et al. (1999), Robinson (1996), DeMiguel and
Xu (2008) and the references therein. The basic idea behind the SAA method is to
approximate the expected value function by a sample average. Here we use the SAA
approach as in DeMiguel and Xu (2008) to solve our SEPEC problem. We skip the
theoretical analysis of convergence of this method because we believe similar con-
clusion can be drawn as in DeMiguel and Xu (2008) and it is not the focus of this
paper.

We now move on to computer simulations for the SEPEC model to look into specifi-
cally dependence of dispatches, expected profits and strike prices on forward contracts.
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Let ξ1, . . . , ξ N be an independent identically distributed (i.i.d) sample of ξ(ω), where
N is the sample size. The sample average approximation problem for generator i is,

max
xi ≥0

1
N

N∑

k=1
q N

i (x, ξ k)p(QN (x, ξ k), ξ k) − ci (q N
i (x, ξ k)), (5.34)

where for i = 1, 2, . . . , M , q N
i (x, ξ k) is defined implicitly as the equilibrium in the

spot market at demand scenario ξ k , and QN (x, ξ k) = ∑M
i=1 q N

i (x, ξ k). Note that as
discussed in Sect. 3.2, q N (x, ξ k) = (q N

1 (x, ξ k), . . . , q N
M (x, ξ k))T is a solution to the

nonlinear complementarity problem 0 ≤ q N (x, ξ k) ⊥ G(x, q N , ξ k) ≥ 0, where

G(x, q N , ξ k) = −p(QN (x, ξ k), ξ k)e − (q N − x)p′
Q(QN (x, ξ k), ξ k) + ∇c(q N ).

Consequently the problem can be reformulated as the following standard nonlinear
programming problem:

maxxi ≥0
1
N

N∑

k=1
q N

i (x, ξ k)p(QN (x, ξ k), ξ k) − ci (q N
i (x, ξ k))

s.t. q N ≥ 0 ∀k,

G(x, q N , ξ k) ≥ 0 ∀k,

−q N ◦ G(x, q N , ξ k) ≥ 0 ∀k,

(5.35)

where ◦ represents the componentwise scalar product.

Example 5.1 Consider two generators, A and B, competing in a forward market.
Assume that the inverse demand function takes the following form

p(Q, ξ) = α(ξ) − β(ξ)Q,

where ξ is a random variable following a truncated normal distribution with zero mean,
standard deviation of 1, and truncated at two deviations above and below the mean.
Let α(ξ) = 2 + ξ , β(ξ) = 7 + 0.5ξ , and each generator’s cost function be as follows:

GeneratorA : cA(qA) = 0.1q2
A + 1qA;

GeneratorB : cB(qB) = 0.1q2
B + 0.5qB .

By fixing the Generator A’s contract level xA, we carry out some static analysis on
generator’s dispatch qi , for i = A and B, expected profit πB(xA, xB) and market
clearing price p(Q, ξ) in the spot market, w.r.t. the different values of xB .

In Figs. 1 and 2, we let xA = 0, that is, generator A has no contract. We examine
how the optimal dispatch of A varies as xB increases. The results show that generator
A’s average dispatch decreases as xB increases from 0 to 0.1, and it becomes zero
when xB ∈ [0.1, 0.3]. This demonstrates that generator A’s dispatch is a decreasing
function of xB . The results also show that generator B’s average dispatch qB increases
as xB increases and the curve of qB is concave.

123



D. Zhang et al.

Fig. 1 The average dispatch w.r.t. contract level xB

Fig. 2 The strike price w.r.t. contract level xB

In Fig. 2, we show that the strike price is a piecewise smooth and decreasing func-
tion of xB . Moreover, because z(xA + xB) = E[α(ξ) − β(ξ)Q(x, ξ)], and Q(x, ξ) is
a convex function of xB , the strike price is a concave function of xB .

In Fig. 3, we present some results on the expected profits of generator B, that is
πB(xA, xB), for various contracts xA and xB . We observe that there is a local max-
imizer of πB(xA, xB) w.r.t. xB ∈ [0, 0.2] for every fixed xA. The underlying reason
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Fig. 3 Generator B’s profit w.r.t. contract level xB

of the results is that by signing more contracts, generator B becomes more incentives
to dispatch in the spot market as we have shown in Fig. 1. On the other hand, more
contracts result in a lower average spot price and hence contract strike price. Conse-
quently, it results in a lower expected profit for generator B shown in Fig. 3. For its
rival, because a greater contract quantity from B leads to a lower average price in the
spot market, generator A will lose its profit.

6 Further discussion

In this paper, we have developed an SEPEC model for studying interactions between
the forward market and the spot market. The model is essentially an extension of a
Nash–Cournot model developed by Gans et al. (1998) for deterministic duopolistic
electricity markets. A number of restrictions have been made to simplify the discus-
sions: (a) the spot market competition is assumed to take place in a single node where
the network constraints and transmission costs are not considered; (b)one-way con-
tracts such as call options and put options, are not considered; (c) there is no speculator
in the forward market; (d) bids in spot market is a single quantity rather than a stack of
prices and quantities as in supply function models. We believe that similar equilibrium
results can be established by dropping some of the restrictions although we have not
attempted. We leave this for our future work.

Acknowledgments The authors would like to thank two anonymous referees for their valuable com-
ments which lead to a significant improvement of the presentation of the paper. They would also gratefully
acknowledge helpful comments from Richard Green, David Newbery and Daniel Ralph during the UK
operational research annual conference OR50 in York in September 2008.
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Appendix

Proof of Lemma 3.1 Part (i) is proved in Proposition 2.4, Xu (2005).
Part (ii). By differentiating the function R(Q, ξ) = (Q − X)p(Q + K , ξ), we have

R′
Q(Q, ξ) = p(Q + K , ξ) + (Q − X)p′

Q(Q + K , ξ).

Consequently,

R′′
Q(Q, ξ) = 2p′

Q(Q + K , ξ) + (Q − X)p′′
Q(Q + K , ξ)

≤ p′
Q(Q + K , ξ) − X p′′

Q(Q + K , ξ).

From Assumption 2.2 (a) and (b), we have

R′′
Q(Q, ξ) ≤ p′

Q(Q + K , ξ) − X p′′
Q(Q + K , ξ) < 0.

Therefore, the function (Q − X)p(Q + K , ξ) is strictly concave. ��
Proof of Theorem 3.5 Part (i). The Jacobian of G(q, x, ξ) w.r.t. q can be written
explicitly as

∇q G(q, x, ξ) = −p′
Q(Q, ξ)eeT − p′′

Q(Q, ξ)(q − x)eT − p′
Q(Q, ξ)IM + ∇2c(q)

where Q = qT e is the aggregated supply quantity and IM ∈ R
M×M is an iden-

tity matrix. Since p(Q, ξ) is strictly decreasing in qi , we have p′
Q(Q, ξ) < 0 for any

Q ≥ 0, ξ ∈ �. Moreover, because the terms −p′
Q(Q, ξ)eeT and −p′′

Q(Q, ξ)(q−x)eT

are both rank one matrices, and −p′
Q(Q, ξ)IM and ∇2c(q) are both diagonal matrices,

the eigenvalues of ∇q G(q, x, ξ) are lower bounded by

− Mp′
Q(Q, ξ) − p′′

Q(Q, ξ)(q − x)T e + min
i=1,...,M

c′′
i (qi ) − p′

Q(Q, ξ). (6.36)

Since � is compact, there exists a constant C > 0 such that

min
ξ∈�

−p′
Q(Q, ξ) ≥ C, for Q ∈

[

0,

M∑

i=1

qu
i

]

.

On the other hand, from the convexity of p(Q, ξ) and Assumption 2.2 (ii), we have

−p′
Q(Q, ξ) − p′′

Q(Q, ξ)(q − x)T e

= −p′
Q(Q, ξ) − p′′

Q(Q, ξ)qT e + p′′
Q(Q, ξ)xT e ≥ 0. (6.37)

By the convexity of cost function under Assumption 2.2 (iii), c′′
i (qi ) ≥ 0, for any

qi ≥ 0, ξ ∈ �. Substituting (6.37) into (6.36), we have

−(M + 1)p′
q(q, ξ) − p′′

q (q, ξ) + min
i=1,...,M

c′′
i (qi ) ≥ MC,
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which implies that ∇q G(q, x, ξ) is uniformly positive definite. We now consider
(3.11). It can be easily found that function F(q, x, ξ) is Lipschitz continuous and the
Clarke generalized Jacobian of F in (q, x, ξ) can be written as

∂ F(q, x, ξ) =
{
(

IM − � �
)
(

IM

∇q G(q, x, ξ)

)

: θi ∈ [0, 1], i = 1, 2, . . . , M

}

,

(6.38)

and

∂q F(q, x, ξ) = �∇q G(q, x, ξ) + (IM − �),

where � := diag(θ1, . . . , θM ) ∈ R
M×M , is a diagonal matrix with the (i, i)th entry

being θi , for i = 1, 2, . . . , M . Thus, by Lemma 3.1 in Xu (2005), ∇q F(q, x, ξ) is
uniformly non-singular.

Part (ii). The conclusion follows straightforwardly from uniqueness and existence
of the Nash–Cournot equilibrium in the spot market in Proposition 3.3 together with
the definition of the nonsmooth function F .

Part (iii). From Part (i), ∇q F(q, x, ξ) is non-singular. By the proof of Part (ii) and
Lemma 3.2 in Xu (2005), there exists a unique Lipschitz continuous and piecewise
smooth implicit function q(x, ξ), such that F(q(x, ξ), x, ξ) = 0 in a neighborhood
of (q, ξ). The domain of implicit function can be extended to [0,+∞) × � given
the non-singularity of ∇q F(q, x, ξ) for all x, ξ and the existence and uniqueness in
Proposition 3.3. ��
Proof of Proposition 3.7 Part (i). The conclusion follows from Xu and Meng (2007,
Lemma 2.1) because F is piecewise smooth in q.
Part (ii). Since ∂x Q(x, ξ) ⊂ eT ∂x q(x, ξ), we have from (3.13)

∂x Q(x, ξ) ⊂ eT conv{−W −1U : (W, U, V ) ∈ ∂ F(q, x, ξ)}.

Since, for i = 1, 2, . . . , M , the i th component of F(q, x, ξ), Fi , is a piecewise smooth
function, the Clarke subdifferential of Fi (q, x, ξ) can be written as

∂(q,x)Fi (q, x, ξ) = {θi∇Gi (q, x, ξ) + (1 − θi )li },

where θi ∈ [0, 1], Gi (·) is the i th component of function G(·) and li is a 2M + 1
dimensional vector with the i th component being 1 and the rest being zero.

Note that θi = 0 only when Fi (q, x, ξ) = qi . Let � = diag(θ1, . . . , θM ). First, we
show that under condition (3.12), q(x, ξ) 	= 0. Let i0 ∈ {1, . . . , M} be such that

c′
i0
(0) < p(Q(x, ξ), ξ), ξ ∈ �. (6.39)

By definition, qi0(x, ξ) solves the following maximization problem

max
qi0 ≥0

Ri0(qi0 , x, Q−i0 , ξ)=qi0 p
(
qi0 +Q−i0 , ξ

)−ci0(qi0)−xi0

[
p(qi0 +Q−i0 , ξ)−z

]
.
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The first-order necessary condition can be represented as the following complemen-
tarity conditions:

qi0(x, ξ)
d Ri0(qi0 , x, Q−i0 , ξ)

dqi0

= qi0(x, ξ)[p(Q(x, ξ), ξ) + (qi0 − xi0)p′
Q(Q(x, ξ), ξ) − c′

i0
(qi0(x, ξ))]

= 0, qi0(x, ξ) ≥ 0,

−p(Q(x, ξ), ξ) − (qi0 − xi0)p′
Q(Q(x, ξ), ξ) + c′

i0
(qi0 , ξ) ≥ 0.

Assume that qi0(x, ξ) = 0. Then

R′
i0
(0, x, Q−i0 , ξ) = p(Q(x, ξ), ξ) − c′

i0
(0) − xi0 p′(Q(x, ξ), ξ)

≥ p(Q(x, ξ), ξ) − c′
i0
(0) > 0.

The last inequality is due to (6.39). This contradicts the second inequality in the above
complementarity conditions. This shows qi0 > 0 and hence q(x, ξ) 	= 0. Moreover,
the strict complementarity condition indicates that

Fi0(q(x, ξ), x, ξ) = Gi0(q(x, ξ), x, ξ) = 0,

and hence θi0 = 1. This demonstrates that � is not a zero matrix under (3.7). We will
use this result in the rest of the proof. By definition,

R = �∇q G(q, x, ξ) + (IM − �)

= �(−p′
Qe − (q − x)p′′

Q)eT + �(−p′
Q IM + ∇2c(q)) + (IM − �),

and

U = �∇x G(q, x, ξ) = �p′
Q IM .

Let D = �(−p′
Q IM + ∇2c(q)) + (IM − �). D is an M × M diagonal matrix. It is

easy to verify that D is non-singular and the inverse of D is

D−1 =diag

(
1

θ1(−p′
Q +c′′

1(q1))+(1 − θ1)
, . . . ,

1

θM (−p′
Q +c′′

M (qM ))+(1 − θM )

)

.

Let

γ := eT D−1�(−p′
Qe − (q − x)p′′

Q) =
M∑

i=1

θi (−p′
Q − p′′

Q(qi − xi ))

θi (−p′
Q + c′′

i (qi )) + (1 − θi )
.

By the well known Sherman-Morrison formula in linear algebra, we have

R−1 = D−1 − 1

1 + γ
D−1�(−p′

Qe − (q − x)p′′
Q)eT D−1.
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Let

γi := θi (−p′
Q − (qi − xi )p′′

Q)

θi (−p′
Q + c′′

i (qi )) + (1 − θi )
>

θi (−p′
Q − Qp′′

Q)

θi (−p′
Q + c′′

i (qi )) + (1 − θi )
≥ 0,

where the first inequality is due to the convexity of the inverse demand function and
the second inequality is from Assumption 2.2. Because γi ≥ 0, for i = 1, 2, . . . , M ,
we have γ = ∑M

i=1 γi ≥ γi for any i = 1, 2, . . . , M . Consequently,

−eT R−1U = −eT
[

D−1 − 1

1 + γ
D−1�(−p′

Qe − (q − x)p′′
Q)eT D−1

]

�p′
Q IM

= −eT D−1�p′
Q IM + 1

1 + γ
[eT D−1�(−p′

Qe − (q − x)p′′
Q)]eT D−1 p′

Q IM

= −eT D−1�p′
Q IM + γ

1 + γ
eT D−1�p′

Q IM

= − 1

1 + γ
eT D−1�p′

Q IM

= 1

1+γ

( −θ1 p′
Q

θ1(−p′
Q +c′′

1(q1))+(1−θ1)
, . . . ,

−θM p′
Q

θM (−p′
Q +c′′

M (qM ))+(1 − θM )

)T

.

Let

κi := −θi p′
Q

θi (−p′
Q + c′′

i (qi )) + (1 − θi )
≥ 0, i = 1, 2, . . . , M.

By Assumption 2.2, −p′
Q > 0, c′′

i (qi ) ≥ 0 and θi ∈ [0, 1], hence we have γ > 0 and
0 ≤ κi ≤ 1, and

−eT R−1U ⊂
[

0,
κ1

1 + γ

)

×
[

0,
κ2

1 + γ

)

× · · · ×
[

0,
κM

1 + γ

)

⊂ [0, 1) × [0, 1) × · · · × [0, 1).

Hence we have ∂x Q(x, ξ) ⊂ ∂x q(x, ξ)T e ⊂ [0, 1) × · · · × [0, 1) and ∂xi Q(x, ξ) ⊂
∂xi q(x, ξ)T e ⊂ [0, 1). Note that θi = 0 corresponds to the case when Fi (q, x, ξ) =
qi (x, ξ) ≡ 0. In this case, (qi )

′
xi

(x, ξ) = 0. Also, by Remark 2.5, (q j )
′
xi

(x, ξ) = 0.
This shows ∂xi Q(x, ξ) = {0}.
Part (iii). From the proof of Part (ii), qi (x, ξ) > 0, therefore from the complementarity
condition

−p(Q, ξ) − (qi − xi )p′
Q(Q, ξ) + c′

i (qi ) = 0.
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By using Clarke’s generalized implicit function theorem (Xu 2005, Lemma 2.2), we
obtain

∂xi qi (x, ξ) ⊂ −p′
Q + (p′

Q + (qi − xi )p′′
Q)∂xi Q(x, ξ)

−p′
Q + c′′

i (qi )
. (6.40)

From the proof of Part (ii), the subdifferential ∂xi Q(x, ξ) is in the set [0,
κi

1+γ
). By the

property of γ , γ ≥ γi > 0, we have

∂xi Q(x, ξ) ⊂
[

0,
κi

1 + γ

)

⊂
[

0,
κi

γi

)

=
[

0,
−θi p′

Q

θi (−p′
Q − (qi − xi )p′′

Q)

)

.

Consequently, the subdifferential of qi w.r.t. xi is,

∂xi qi (x, ξ)⊂
−p′

Q + (p′
Q + (qi − xi )p′′

Q)
[
0,

κi
γi

)

−p′
Q + c′′

i (qi )
⊂
[

0,
−p′

Q

−p′
Q + c′′

i (qi )

)

⊂ [0, 1).

(6.41)

Part (iv). As discussed in Part (iii), we have the following equation,

−p(Q, ξ) − (qi − xi )p′
Q(Q, ξ) + c′

i (qi ) = 0.

By using Clarke’s generalized implicit function theorem (Xu 2005, Lemma 2.2), we
obtain

∂x j qi (x, ξ) ⊂ p′
Q + (qi − xi )p′′

Q

−p′
Q + c′′

i (qi )
∂x j Q(x, ξ).

Similarly as the proof of Part (iii), we have

∂x j qi (x, ξ) ⊂ p′
Q + (qi − xi )p′′

Q

−p′
Q + c′′

i (qi )

[

0,
κi

γi

)

⊂
(

p′
Q

−p′
Q + c′′

i (qi )
, 0

]

⊂ (−1, 0],

which implies that every element of ∂x j qi (x, ξ) is negative. This shows qi (·, ξ) is
strictly decreasing w.r.t. x j where qi (·, ξ) > 0.
Part (v). From the formulation of G(q, x, ξ), we have

∇ξ G(q, x, ξ) = −p′
ξ (q

T e, ξ)e − p′′
Q,ξ (q

T e, ξ)q.

By the assumption that p′′
Q,ξ (q

T e, ξ) = 0 in Proposition 3.7 (v), the above equation
can be written as

∇ξ G(q, x, ξ) = −p′
ξ (q

T e, ξ)e.
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The rest of the proof is similar to that of Part (ii). We include it for completeness. Let

V := �∇ξ G(q, x, ξ) = −�p′
ξ e,

and

−eT R−1V = p′
ξ (e

T D−1)�e − γ

1 + γ
p′
ξ (e

T D−1)�e = 1

1 + γ
p′
ξ (e

T D−1)�e.

By the assumption in statement (v) of this proposition, we have

γ =
M∑

i=1

θi (−p′
Q − (qi − xi )p′′

Q)

θi (−p′
Q + c′′

i (qi )) + (1 − θi )

> C
M∑

i=1

θi

θi (−p′
Q + c′′

i (qi )) + (1 − θi )
= CeT D−1�e.

Hence,

−eT R−1V ≤ p′
ξ eT D−1�e

1 + CeT D−1�e
≤ 1

C
p′
ξ .

��
Proof of Theorem 4.3 Part (i). Recall that in Theorem 3.5 (iii), we have shown that the
solution q(xi , x−i , ξ) to equation F(q, x, ξ) = 0 is a Lipschitz continuous, piecewise
smooth function of xi for i = 1, 2, . . . , M . By Proposition 3.7 (iv), ∂xi qi (xi , x−i , ξ) ⊂
[0, 1), which means that qi (xi , x−i , ξ) is increasing in xi . Moreover, from (6.40), we
have

∂xi qi (xi , x−i , ξ) ⊂ −p′
Q + (p′

Q + (qi − xi )p′′
Q)∂xi Q(x, ξ)

−p′
Q + c′′

i (qi )
.

Note that at a point where Q(x, ξ) is continuously differentiable, both ∂xi qi (xi , x−i , ξ)

and ∂xi Q(x, ξ) reduce to a singleton. Thus, qi (xi , x−i , ξ) is a piecewise differentiable
function of xi .

Part (ii). Let x (1)
i , x (2)

i ≥ 0 be any two positive numbers. From the proof above, we
know that qi (xi , x−i , ξ) is piecewise smooth in xi . At a point where the function is
not differentiable, we have from (6.40)

(qi )
′
xi

(xi , x−i , ξ) = −p′
Q + (p′

Q + (qi − xi )p′′
Q)Q′

xi
(x, ξ)

−p′
Q + c′′

i (qi )
.

Since, qi ∈ [0, max{qu
i , xi }] in Proposition 3.3, Q′

xi
(x, ξ)∈ [0, 1) and (qi )

′
xi

(xi , x−i , ξ)∈ [0, 1) for any feasible qi and xi , (qi )
′
xi

(xi , x−i , ξ) is bounded by a
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positive value as

(qi )
′
xi

(xi , x−i , ξ) ≤ −p′
Q + (max{qu

i , xi } − xi )p′′
Q

−p′
Q + c′′

i (qi )
. (6.42)

By the mean value theorem,

qi (x (1)
i , x−i , ξ) − qi (x (2)

i , x−i , ξ)

=
1∫

0

(qi )
′
xi

(
x (2)

i + θ(x (1)
i − x (2)

i ), x−i , ξ
)

(x (1)
i − x (2)

i )dθ,

and from (6.42), we have

∣
∣
∣(qi )

′
xi

(
x (2)

i + θ(x (1)
i − x (2)

i ), x−i , ξ
)∣
∣
∣ ≤ (1 + max{qu

i , xi })L1(ξ)/σ.

The conclusion follows by taking Li
2(ξ) := (1 + max{qu

i , xi })L1(ξ)/σ . ��

Proof of Theorem 4.4 From Lemma 4.3, for any fixed x−i , we know that qi (xi , x−i , ξ)

is nondecreasing on xi and thus xi (ξ) is unique. Moreover, from the definition of xi (ξ),
we have that qi (xi (ξ), x−i , ξ) = 0. By Part (v) of Proposition 3.7, qi (xi (ξ), x−i , ξ) is
increasing in both ξ and xi , thus xi (ξ) must decrease at the points where ξ increase
to maintain the equation qi (xi (ξ), x−i , ξ) = 0.

The discussion above shows that for any xi ≥ 0 and any fixed x−i , there exists at
most one ξ ∈ �, denoted by ξi , for generator i such that qi (xi , x−i , ξ) ≡ 0 for ξ ≥ ξi

and qi (xi , x−i , ξ) > 0 for ξ ≤ ξi . Therefore �(x) is a finite set. ��

Proof of Theorem 4.5 The proof can be divided into two steps, where first we show
the once continuous differentiability of πi (xi , x−i ) w.r.t. xi and, in the second step,
we show that the function is twice continuously differentiable.

In the first step, we show the continuous differentiability, from Proposition 2 in Rus-
zczyński and Shapiro (2003) and the differentiability of vi (·, ξ) w.r.t. xi , we know that
it is sufficient to prove that vi (·, ξ) is Lipschitz continuous with an integral module,
that is, there exists a function L4(ξ) such that

∫

�

L4(ξ)ρ(ξ)dξ < ∞ and

|vi (x (1)
i , ξ) − vi (x (2)

i , ξ)| ≤ L4(ξ)|x (1)
i − x (2)

i |, ∀x (1)
i , x (2)

i ≥ 0. (6.43)

By assumption, at a point where Q(x, ξ) is differentiable w.r.t. xi , p(Q, ξ) is bounded
by L3(ξ). Furthermore, p′

Q is bounded by L1(ξ) and 1 + Q′
xi

(x, ξ) takes its value in
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[1, 2). Therefore

∣
∣(vi )

′
xi

(xi , ξ)
∣
∣ = |(qi )

′
xi

(xi , x−i , ξ) − 1)p(Q(x, ξ), ξ)

+qi (xi , x−i , ξ)p′
Q(Q(x, ξ), ξ)Q′

xi
(x, ξ)

−c′
i (qi (xi , x−i , ξ))(qi )

′
xi

(xi , x−i , ξ)|
≤ |(qi )

′
xi

(xi , x−i , ξ) − 1|L3(ξ) + qi (xi , x−i , ξ)L1(ξ) + L1(ξ)

≤ L3(ξ) + (qu
i + 1)L1(ξ).

Define

L4(ξ) := L3(ξ) + (qu
i + 1)L1(ξ),

which satisfies the condition (6.43). Then we have, by the mean value theorem

|vi (x (1)
i , ξ) − vi (x (2)

i , ξ)| ≤
1∫

0

|(vi )
′
xi

(x (2)
i + θ(x (1)

i − x (2)
i ), ξ)||x (1)

i − x (2)
i |dθ

≤ L4(ξ)|x (1)
i − x (2)

i |,

which shows the once continuous differentiability of πi (xi , x−i ). Then, from Propo-
sition 2 in Ruszczyński and Shapiro (2003), we can prove that

πi (xi , x−i ) :=
∫

ξ∈�

{qi (xi , x−i , ξ)p(Q(x, ξ), ξ) − ci (qi )} ρ(ξ)dξ

is differentiable.
Next, we will show that the second derivative of πi (xi , x−i ) exists. To show this

point, we again need to apply Proposition 2 in Ruszczyński and Shapiro (2003). It is
sufficient to show that (vi )

′
xi

(·, ξ) is differentiable w.r.t. xi for almost every ξ ∈ � and
there exists an integrable function L5(ξ) ≥ 0 such that

∫

�

L5(ξ)ρ(ξ)dξ < ∞, and

|(vi )
′
xi

(x (1)
i , ξ) − (vi )

′
xi

(x (2)
i , ξ)| ≤ L5(ξ)|x (1)

i − x (2)
i |, ∀x (1)

i , x (2)
i ≥ 0

At any point where Q′
xi

(x, ξ) is differentiable w.r.t. xi , we have

(vi )
′′
xi

(xi , ξ) = (qi )
′′
xi

(xi , x−i , ξ)p(Q(x, ξ), ξ)

+ 2qi (xi , x−i , ξ)p′
Q(Q(x, ξ), ξ)Q′

xi
(x, ξ)

+ qi (xi , x−i , ξ)p′′
Q(Q(x, ξ), ξ)(Q′

xi
(x, ξ))2

+qi (xi , x−i , ξ)p′
Q(Q(x, ξ), ξ)Q′′

xi
(x, ξ)
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− c′′
i (qi (xi , x−i , ξ))((qi )

′
xi

(xi , x−i , ξ))2

− c′
i (qi (xi , x−i , ξ))(qi )

′′
xi

(xi , x−i , ξ).

Under the assumption of this theorem, it is easy to derive that, for any fixed x−i ,

∣
∣(vi )

′′
xi

(xi , ξ)
∣
∣ ≤ L5(ξ) := L3(ξ)L3(ξ) + 2qu

i L1(ξ)

+ qu
i L1(ξ) + qu

i L1(ξ)L3(ξ) + L3(ξ)L1(ξ)

= 3qu
i L1(ξ) + (

qu
i L1(ξ) + L3(ξ) + L1(ξ)

)
L3(ξ).

Because of L1(ξ) is bounded and L3(ξ) is integrable, then L5(ξ) is also integrable.
This shows that πi (xi , x−i ) is twice differentiable.

Finally, to complete our proof, we investigate the continuity of the second derivative
of πi (xi , x−i ). For any fixed x−i , to show the continuity of π ′

i (xi , x−i ) and π ′′
i (xi , x−i ),

we note that (vi )
′
xi

(·, ξ) is a continuous function of x for almost every ξ ∈ � and (vi )
′′
xi

is dominated by an integrable bound L5(ξ). By the Lebesgue dominated convergence
theorem, for any fixed x−i

lim
z→xi

π ′′
i (z, x−i ) =

∫

�

lim
z→xi

(vi )
′′
xi

(z, x−i , ξ)ρ(ξ)dξ

=
∫

�

(vi )
′′
xi

(xi , x−i , ξ)ρ(ξ)dξ

= πi
′′(xi , x−i ).

This completes the proof. ��
Proof of Proposition 4.9 We use a methodology analogous to that in DeMiguel and
Xu (2008, Proposition 4.2) to prove the results. That is, we show the derivative of
Q w.r.t. xi is non-decreasing. Note that Assumptions 2.2 and 4.2 are satisfied by the
inverse demand function and the type of cost functions considered in this proposition.
Together with Assumptions 2.1, 2.6 and 3.6, this guarantees the existence and unique-
ness of equilibrium in the spot market by Proposition 3.3. We proceed the proof in two
steps: Step 1, we consider points where Q is not differentiable w.r.t. xi ; Step 2, we
consider points where Q is continuously differentiable w.r.t. xi . Note that by Theorem
3.5, q(x, ξ) is piecewise smooth w.r.t. xi for i = 1, 2, . . . , M , and so is Q.

Step 1. Let i ∈ {1, . . . , M} and let xi (ξ) denote the point at which q j (xi , x−i , ξ)

turns from strictly positive to zero at the point, for some j ∈ {1, . . . , M}\{i}.
From the discussion above, we have that, for i = 1, 2, . . . , M , Q(x, ξ) and q j

(xi , x−i , ξ) are all piecewise smooth w.r.t. xi .
For fixed x−i , as stated in Section 3, we first show that Q(xi , x−i , ξ) is a piecewise

smooth and convex function of xi at a point where qi (xi , x−i , ξ) turns from zero to
strictly positive and the points where q j (xi , x−i , ξ), for j 	= i , turns from strictly
positive to zero. At all other points, the function is smooth.

Let I(xi , ξ) denote the index set of the generators with q j (xi , x−i , ξ) > 0 for fixed
x−i and j 	= i . Then I(xi (ξ)−, ξ)\I(xi (ξ)+, ξ) is the index set of generator i’s rivals
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which turn from a positive supply to zero at xi (ξ), where

I(xi (ξ)−, ξ) = lim
δ→0

I(xi (ξ) − δ, ξ), I(xi (ξ)+, ξ) = lim
δ→0

I(xi (ξ) + δ, ξ),

for any j 	= i .
Because qi (xi , x−i , ξ) is piecewise smooth in xi (nonsmooth only at a finite number

of points), we may assume that in a neighborhood of xi (ξ), the function qi (xi , x−i , ξ)

is differentiable except at xi (ξ). Since p(Q, ξ) is linear in Q, it follows from the
complementary equation (3.9) that G(q(x, ξ), x, ξ) = 0 for x in a left neighborhood
of xi (ξ) where qi (xi , x−i , ξ) > 0, we have, for generator i ,

(qi )
′
xi

(xi , x−i , ξ)= 1

−p′
Q + c′′

i (qi )

[−p′
Q +(p′

Q +(qi − xi )p′′
Q

)
Q′

xi
(x, ξ)

]
, (6.44)

and

(q j )
′
xi

(xi , x−i , ξ) = 1

−p′
Q + c′′

j (q j )

[
p′

Q + (q j − x j )p′′
Q

]
Q′

xi
(x, ξ). (6.45)

We consider two cases: Case (i) qi (xi , x−i , ξ) > 0, and Case (ii) qi (xi , x−i , ξ) = 0.
Case (i). Adding the Eq. (6.45) for all j ∈ I(xi , ξ) and subtracting (6.44), we have

that

Q′
xi

(x, ξ)−(qi )
′
xi

(xi , x−i , ξ) =
∑

j∈I(xi ,ξ)

(q j )
′
xi

(xi , x−i , ξ)

=
∑

j∈I(xi ,ξ)

1

−p′
Q +c′′

j (q j )

[
p′

Q +(q j −x j )p′′
Q

]
Q′

xi
(x, ξ)

Under the assumptions of this proposition, we have either c′′
j = 0 or c′′

j are identical
(in which we denote the derivative by c′′ for the cost functions defined in Condition
1 and 2 in Proposition 4.9 ). Consequently, we have

Q′
xi

(x, ξ)−(qi )
′
xi

(xi , x−i , ξ)= 1

−p′
Q + c′′

∑

j∈I(xi ,ξ)

[
p′

Q +(q j −x j )p′′
Q

]
Q′

xi
(x, ξ).

(6.46)

Since p(Q, ξ) = α(ξ) − β(ξ)Q, (6.46) is equivalent to

Q′
xi

(x, ξ) − 1

β(ξ) + c′′
[
β(ξ) − β(ξ)Q′

xi
(x, ξ)

]

= 1

β(ξ) + c′′
∑

j∈I(xi ,ξ)

[−β(ξ)Q′
xi

(x, ξ)
]
.
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Let |I| denote the cardinality of I(xi , ξ). Then we can reformulate (6.46) as

Q′
xi

(x, ξ) = 1

2 + |I| + c′′
β(ξ)

. (6.47)

Since (q j )
′
xi

(xi , x−i , ξ) ∈ (−1, 0], |I(xi , ξ)| is a decreasing function of xi , 1
2+|I|+c′′/β(ξ)

is an increasing function of xi . This implies the convexity of Q in xi at the point xi (ξ).
Case (ii). Since qi (x, ξ) = 0, by the proof in Proposition 3.7, Q′

xi
= 0 at the left

side of the neighborhood of xi (ξ). At the right side of the neighborhood of xi (ξ),
Q′

xi
> 0. This shows the convexity of Q in xi at the point xi (ξ).

Step 2. Let us consider the points xi at which both qi (xi , x−i , ξ) and q j (xi , x−i , ξ)

are continuously differentiable w.r.t. xi . In this case,

I(xi − δ, ξ) = I(xi + δ, ξ) = I(xi , ξ),

for δ > 0 sufficiently small. We can establish (6.47) and the rest of arguments are
similar to Step 1 except that |I| is a constant. ��
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