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e-OPTIMAL BIDDING IN AN ELECTRICITY MARKET WITH
DISCONTINUOUS MARKET DISTRIBUTION FUNCTION*
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Abstract. This paper investigates the optimal bidding strategy (supply function) for a gen-
erator offering power into a wholesale electricity market. The model has three characteristics: the
uncertainties facing the generator are described by a single probability function, namely the market
distribution function; the supply function to be chosen is nondecreasing but need not be smooth;
the objective function is the expected profit which can be formulated as a Stieltjes integral along
the generator’s supply curve. In previous work the market distribution function has been assumed
smooth, but in practice this assumption may not be satisfied. This paper focuses on the case that
the market distribution function is not continuous, and hence an optimal supply function may not
exist. We consider a modified optimization problem and show the existence of an optimal solution
for this problem. Then we show constructively how such an optimum can be approximated with an
e-optimal supply function by undercutting when the generator does not hold a hedging contract (and
possibly overcutting when the generator has a hedging contract). Our results substantially extend
previous work on the market distribution model.
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1. Introduction. In recent years many countries have carried out substantial
restructuring of their electricity industries. Though each country has adopted its own
solution, the trend has been towards increased market mechanisms, particularly at
the wholesale level. It is important to understand the operation of these electricity
markets, and yet the special features that are characteristic of wholesale electricity
markets make this a challenging task.

We begin by sketching the fundamentals of the way that a wholesale market for
electricity works. Generators compete to supply electricity to users (primarily retailers
providing electricity to consumers). The price paid fluctuates as demand (and supply)
varies. The price is determined through a process that is a type of sealed bid auction.
In each time period each generator submits a bid, which we refer to as a supply
function S(p), which gives the quantity of electricity that the generator is willing to
supply for any price p (strictly, this is a price per megawatt hour and the quantity is
measured in megawatts). The supply function is increasing (not necessarily strictly)
and often has to satisfy other restrictions imposed by the market operator. The spot
price is determined from the combined supply functions of all the generators, and is
such that supply at the spot price is just sufficient to meet demand. In practice this
has to take account of the location of both the generators and the demand within the
network, but we will ignore location effects in this paper. A generator needs to decide
on the supply function to offer into the market in order to maximize profits. The
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demand at any time is uncertain and the offers of other generators are also unknown.

A number of authors have used equilibrium concepts to look at the operation
of an electricity market. An important set of papers is that by Green and Newbery
[8], Green [9], Newbery [12], and Green [7], in which they analyze the experience in
the pool market of England and Wales using the concept of an equilibrium in supply
functions (see Klemperer and Meyer [10]). The concept of supply function equilibria
has also been applied in this context by Rudkevich [13, 14], Anderson and Philpott
[1], and Baldick, Grant, and Kahn [5]. The equilibrium models usually assume the
smoothness or piecewise linearity of generators’ supply functions and consequently it
becomes relatively easy to find the optimal choice of strategy by a single generator.
However, this may not be the case when we allow general supply functions.

Some recent papers have looked in detail at the optimal strategy for a generator
offering power in an electricity spot market. The conclusions depend largely on the
models that are used to describe both the generator’s objective and constraints, and
the market mechanisms. Anderson and Philpott [2] study strategies for generators
making offers into an electricity market when either or both of the demand and the
offers of competing generators are stochastic. They introduce the market distribution
function and use it to describe the residual demand for a generator. The market
distribution function % is a function of price p and quantity ¢ and the value ¥(q, p)
represents the probability that a generator is not fully dispatched if it offers a quantity
q of electricity at price p. The advantage of this approach is that in many circum-
stances a single function (g, p) is enough to determine a generator’s expected profit
given any particular offer curve.

Anderson and Philpott [2] explore the problem of finding an offer curve that
maximizes the expected value of the profit made by an individual generator. The
offer curve is simply a monotonic continuous curve in the two-dimensional (quantity,
price) space. This curve need not be smooth; indeed, in practice it will often take the
form of a series of steps. Anderson and Philpott show that the problem of maximizing
expected profit is, in some circumstances, equivalent to maximizing a line integral
along the offer curve of the market distribution function and they derive necessary
conditions for a supply offer curve to be optimal. Anderson and Xu [4] study the
same model and extend the analysis to include necessary conditions of a higher order
in the presence of horizontal and/or vertical sections in an offer curve. They also
derive sufficient conditions for an offer curve to be locally optimal. Neame, Philpott,
and Pritchard [11] use Anderson and Philpott’s model to study a generator’s optimal
choice of supply offer curve under the assumption that the generator is a price taker.

All of this work has been carried out under the assumption that the market
distribution function ¥(q, p) is continuously differentiable in both price p and quantity
q. In this paper we address the problem of finding optimal offer strategies when
may be discontinuous in price.

In many electricity wholesale markets, a generator’s offer curve consists of a finite
number of steps. For instance, in Australia generator bids are restricted to have no
more than ten prices. We can model a generator’s offer strategy as a step function of
price. In this case the market clearing price will not have a continuous distribution;
instead, the distribution of clearing price will be concentrated at certain prices. The
consequence of this is that the market distribution function will be discontinuous at
these prices. The probability of not being fully dispatched if an offer is made of a
quantity g at a price p (i.e., the value of ¢) will increase discontinuously as the price
moves from just below the offer of another generator to the same price as the other
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generator, when the dispatch will be shared between the two generators. In fact this
discontinuity happens in both directions of price movement, since as the price moves
from being the same as the other generator to just above this level, there is another
discontinuous jump in the probability of not being fully dispatched. Previous work in
this area has generally made the assumption that the market has a large number of
participants, with offer prices well diversified, and so the market distribution function
for a generator is nearly continuous and can be approximated with a continuous
function.

In this paper we look in more detail at what happens with a discontinuous market
distribution function. In the most natural models for this, the existence of an optimal
solution for a generator will not be guaranteed (and indeed will occur only rarely).
The lack of an optimal solution just reflects the actual difficulty associated with un-
dercutting that can occur in practice. Suppose we know that another generator is
offering power at $30 per MWh, and we have to choose our best offer curve. For ex-
ample, we might suppose that the other generator is nonstrategic and always submits
the same offer. Power we offer at any price up to $30 will be used in preference to the
other generator, power at $30 will involve a sharing out of the demand between us
and the other generator, and power offered at any price higher than $30 will be dis-
patched only when the power from the other generator is insufficient to meet demand.
This leads to a profit function that is discontinuous in price (in both directions) if
we choose to offer power at a single price. A typical good solution to this problem
involves offering some power at a price just below the $30 mark. The closer to $30 the
better for us, but the price must remain below $30 in order to avoid having to share
dispatch. In other words, as we indicated, there is no optimal solution unless we take
explicit account of the discretization that may be forced on us by market rules such
as, for example, the restriction that we use whole numbers of cents as prices.

In theory at least, this type of undercutting behavior, when translated into the
framework of a Nash equilibrium, with different generators all engaged in the same
process, will lead to very competitive outcomes as generators repeatedly lower their
offer prices towards their true marginal costs. This is essentially the same kind of
argument that gives rise to low consumer prices in the Bertrand equilibrium of classical
microeconomics. But it can be argued that this is misleading, since markets usually
operate in the form of a sealed bid auction, with participants unaware of the bids of
other generators. This leads to the possibility of less competitive outcomes through
the use of strategies which randomize over the prices offered (see von der Fehr and
Harbord [15]).

In this paper, however, we will not discuss equilibrium solutions. Instead we
seek to characterize solutions which approach optimality in the undercutting case. In
practice it is not unusual for a generator to know the prices at which one or more of the
other generators will offer power. For example, there may be nonstrategic generators
who offer some quantity of energy at fixed prices which do not vary from day to day. It
may be surprising that this occurs, since it is clear that this policy will not in general
be optimal for the nonstrategic generator. One explanation is that more complex
randomized policies may offer only a limited improvement in profit. As a concrete
example of this behavior, consider the Australian market, in which a single generation
unit offers power at 10 different price points, set for a 24-hour period (with quantities
offered at each price point set separately for each half-hour). These price points are
not usually varied from one day to the next; moreover, complete information on all
bids is freely available one day after the event (see the web site www.nemmco.com).
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For example, power from the Bayswater (coal-fired) power station in New South Wales
is offered at a number of price points, but these have included the price $22.89 for
many months on end.

In order to deal with the undercutting behavior, our approach is to alter the
model to ensure that the limit of undercutting solutions is a solution with the limiting
value. The fundamental idea is to suppose that the generator we are interested in has
automatic priority of dispatch when there are other generators offering at the same
price. This will ensure that the market distribution function has sufficient continuity
properties to guarantee that there will be an optimal solution. Though the exact
optimal value is unachievable, the generator can operate in a way that gets as close
as it likes to this value. From a practical point of view, establishing the supremum
value, and the limiting solution which achieves this, is useful since it enables the
generator to find a good solution near the limit, and also bounds the opportunity cost
of accepting a suboptimal outcome. In practice market rules imply further restrictions
on bids offered, but knowledge of the best possible limit solution will help to guide
the selection of a suitable bidding policy.

There is another complication we need to consider. In most cases a generator will
have hedging contracts for a significant part of its output. As we shall see, this can
have the effect of reversing some of the incentives for the generator. If the generator
has contracted for a larger quantity than will actually be dispatched in a certain
period, then the generator will benefit from lower prices. The consequence is that,
in this case, it will usually be optimal to “overcut” another generator’s offer. Hence,
to use the same example as above, if another generator has offered some quantity at
$30 per MWh, then we could well decide to make an offer of some amount of power a
little above this level (and the closer to $30 the better). In the case that offers have
to be made in whole numbers of cents this would lead to an offer at $30.01.

We can summarize this paper as follows. We first demonstrate the existence of
an optimal solution for a modified problem (section 2). The modified problem differs
from the original problem through the method used to determine the sharing of dis-
patch when two generators offer power at the same price: essentially, the optimizing
generator is given the ability to choose its best sharing rule. Care is needed in de-
termining the precise form of the objective function in these circumstances (Theorem
2.9) and in establishing the appropriate form of continuity in order to show the exis-
tence result (Lemma 2.7). Then we explore the necessary conditions for an optimal
solution to this modified problem (section 3). Next we show how to use an optimal
solution for the modified problem to generate an e-optimal solution for the original
problem (section 4). Finally, we illustrate all this with an example (section 5).

2. Problem formulation and fundamentals. In this section we will introduce
some notation and formulate the problem that we shall consider.

We consider the behavior of a single generator, which we call A, and we let R(q, p)
be the profit for generator A if it is dispatched ¢ at a clearing price p. Usually R(q, p)
has three components. First there is the cost, C(q), of generating a quantity ¢ of
electricity, which is often taken to be an increasing convex function. Second there is
the money, pq, paid to the generator through the market clearing mechanism. Finally,
we must also consider the hedging contracts entered into by the generator. These are
financial instruments which do not involve the actual generation of electricity; the
money paid under the contract is tied to the pool price. If the generator enters into
a contract at a strike price f for a quantity @, and the actual spot price is p, then
the generator will pay an amount Q(p — f) to the other party in the contract. The
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contracts we consider are two-way contracts for differences, so if the spot price is lower
than the contract strike price, then the generator will receive an amount Q(f — p).
Contracts of this sort are a common feature of electricity markets operating with a
“pool” structure in which prices for all traded electricity are determined through a
combined pricing and dispatch mechanism (such as the markets operating in Australia
and New Zealand and the old pool arrangements in England and Wales). Note that
this is a different environment than that of markets which are based on bilateral
contracts, such as in the new trading arrangements in England and Wales.

Thus we arrive at the following expression for the profit to generator A as a
function of spot price p and dispatched quantity g:

(2.1) R(q,p) =pq — C(q) +Q(f —p)-

We will not assume any particular functional form for the function R. However,
throughout this paper we will assume that R has continuous bounded partial deriva-
tives, Ry and R,, and is strictly concave in ¢ for fixed p. Thus we have R4(:,p)
strictly decreasing for each fixed p. In the case that (2.1) holds, this assumption will
be satisfied provided that the marginal cost of generation is strictly increasing, since
Ry(q,p) =p—C'(q).

Next we consider the market dispatch mechanism. We will restrict attention to
the case where there is a single node. We consider this from the point of view of
generator A. We model the sequence of events in this way. First generator A submits
a supply function Sa(p), which gives the total amount of power that generator A is
prepared to supply as a function of the price p. Then all the other generators submit
their supply functions, which we collectively write as Sp(p)—this is the total amount
of power that all the other generators are prepared to supply as a function of price.
We take both S4 and Sp as right-continuous increasing functions (not necessarily
strictly increasing). Where there is a discontinuity in S, a jump up occurs at a
certain price p, and this corresponds to a certain quantity of power being offered at p
and all available at that price. Hence right-continuity is a natural assumption here.

Finally, a demand occurs, where demand at this node is given by a function D(p)
of price. We suppose that from the point of view of generator A, both Sg(p) and D(p)
are uncertain and must be modeled as stochastic. The market clears at the lowest
price p for which S4(p) + Sg(p) > D(p).

In the model we are considering, which corresponds to the most common type of
pool market, all generators are paid this clearing price for all the electricity that they
are dispatched. This is a type of uniform price auction mechanism. There are other
(discriminatory) auction price mechanisms that have been proposed.

Throughout this paper, we assume that a generator’s supply function (or equiv-
alently supply curve) is nondecreasing. It can be step-like or strictly increasing, or
both. Rather than dealing with a supply function S4(-) directly, it is convenient to
model the offer using a continuous curve s = {(G(7),p(7)),0 < 7 < T}, in which the
components ¢(7) and p(7) are continuous monotonic increasing function of 7, and
G(7) and p(7) trace, respectively, the quantity and price components. Without loss
of generality we may take §(0) = p(0) = 0 and p(7T") < pps, where pys is a bound on
the price of any offer. It is quite common for electricity markets to have a cap on
prices; for example, this is $10,000 per MWh in Australia. We also assume that qas
is a bound on the generation capacity of generator A, and thus ¢(7T') < qas.

In all markets there are restrictions on the form of offers made into the market;
we have already mentioned the need for offers to consist of step functions in many
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cases. But in this paper we will not include any constraints on the form of offers. Our
perspective is that a generator which has a specific optimal offer curve will usually
be able to approximate this within the rules of the market. Owners of generators will
often be offering power from more than one generation set in a coordinated way, and
this can also increase their flexibility.

We use a single market distribution function ¥ (g, p) to describe the uncertainty in
the market. Following Anderson and Philpott [2], ¥(q, p) is defined as the probability
of generator A not being fully dispatched if it offers an amount of generation ¢ at a
price p. Different generators will have different market distribution functions, but we
just write ¢ rather than ¢4 for this function. It turns out that when (g, p) is contin-
uous, knowledge of the single function ¢ is enough to determine the expected profit
for a generator. When ¢ is continuous, Anderson and Philpott [2] have demonstrated
that the expected profit if a generator offers in a supply curve s can be expressed as
a Stieltjes integral along the line s:

(2.2) o(s) = / R(g.p) di(g.p).

The generator’s aim is to choose an optimal supply curve s so that v(s) is maximized.
Note that the market distribution function v is assumed to be known. Anderson and
Philpott [3] have proposed a Bayesian inference method to estimate ¢ given data on
the market behavior in previous days. Note that although the setting is a stochastic
one, this formulation of the problem of maximizing expected profit has converted the
objective function into a deterministic optimization problem.

When the function v is discontinuous we need a different form of the fundamental
relationship (2.2), and this will be derived in Theorem 2.9 below.

2.1. Discontinuous @ function. Previous work in this area has assumed that
the market distribution function is continuous. In this paper, rather than requiring
1 to be continuous, we assume that ¢ may be discontinuous at a finite number of
prices. Since v is a type of probability distribution function, a discontinuity in its
value corresponds to a single price at which there is a jump in the probability of
being fully dispatched. For this to occur two things have to happen. First some other
generator has to make an offer which contains a “step,” a distinct tranche of energy at
a given price, and second this price has to be determined in advance (in other words,
it cannot be drawn from a continuous distribution). The first condition may be met
because of market rules which only allow step function offers, but for a discontinuity
in % it is also necessary to be able to predict the prices at which other generators
make offers.

We illustrate this with an example.

Example 2.1. Suppose that just two generators A and B are offering power into
the spot market. Generator B is nonstrategic: its offer does not vary and is known in
advance from previous market data. Thus the only uncertainty is in relation to the
level of demand. Suppose that the generator B offers 200 MW at a price of $10 per
MWh, 300 MW at a price of $14, and 300 MW at a price of $18. Thus generator B’s
supply function is

0 for 0<p< 10,

_J 200 for 10 <p< 14,

S8(P) =19 500 for 14< p < 18,
800 for p > 18.
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Consider generator A offering 100 MW at price $10 per MWh. We suppose that
demand, which can be a function of price, is uncertain. If the market clears at price
$10 with a total demand of 300 MW, then all the power offered at this price is
dispatched. However, if the demand is below 300 MW at price $10, then market rules
will impose some sharing of dispatch should the market clear at this price. Suppose
that the market rules share dispatch proportionately to the quantity offered at that
price, so that one third of demand is met from generator A and two thirds from
generator B. Thus neither of the generators gets fully dispatched at price $10. On the
other hand, if generator A offers 100 MW at price $10 — &, where € > 0 is small, then
it is fully dispatched provided that the demand at price $10 is greater than or equal
to 100 MW. Therefore the probability of not being fully dispatched if generator A
offers at price $10 with a quantity of 100 MW is strictly greater than the probability
of not being fully dispatched if A offers at price $10 — e with a quantity of 100 MW;
ie.,

lim (100,10 — €) < (100, 10).

This example motivates us to consider discontinuities in the functions Sg(p). We
write P for the entire set of prices at which the other generators may make significant
offers, and hence at which there may be discontinuities in Sz (p). Let P= {p*,...,p"},
where 0 < p! < ---p™ < ppr. We assume that the prices in P are known in advance.

For clarity we write w; € 2 for the realizations of the demand, and wy € 9
for realizations of the other generator offers. More formally, we assume a probability
space (21 X9, F, Pr). The demand need not be independent of other generator offers.
We shall assume that for every realization wy, the demand, D(p,w), is a continuously
differentiable decreasing function of p. Moreover we assume that for every realization
wa, the total of the other generator offers, Sp(p,ws), is a continuously differentiable
increasing function of p except at points in P. We will normally omit the explicit
dependence on w; and wy, and write D(p) and Sg(p).

Observe that in any realization (of demand and other generator offers) for which
D(p) < ¢+ 1lim. o Sp(p —€), an offer of ¢ at price p cannot be fully dispatched (since
if it were fully dispatched, then the price is at least p and so the other generators
would be dispatched at least lim. o Sg(p — €), giving a contradiction). Hence

(2.3) ¥(q,p) > Pr(D(p) < q+ 12?& Sp(p —¢)).

If p ¢P, then for every realization of other generator offers lim. o Sg(p —¢) = Sg(p)
and thus (¢, p) = Pr(D(p) < ¢+ S(p)).

On the other hand, in any realization for which an offer of ¢ at price p is not
fully dispatched we can show that D(p) < ¢+ lim. o Sp(p + €) (since in this case the
clearing price is p or less, and so the maximum quantity dispatched from the other
generators is lim. o Sp(p + €)). Thus

(2.4) ¥(g,p) < Pr(D(p) < q+ 12?3 Sp(p+e¢))

and (g, p) < Pr(D(p) < ¢+ Sp(p)) when p ¢P. Hence, except at points of disconti-
nuity in Sp,

(2.5) ¥(q,p) = Pr(D(p) < ¢+ Sp(p)).



1398 EDWARD J. ANDERSON AND HUIFU XU

We may use this as a definition of 1(q,p) for p ¢P, but for p €P the value of ¥
depends on the sharing rule.

Since in any realization of demand and other generator offers in which D(p) <
g+ Sp(p) the same inequality holds for any higher value of p or ¢, we can deduce that
(g, p) is increasing in both its arguments at prices p ¢ P. Moreover we can use (2.3)
and (2.4) to show that (g, p) is also increasing in p at prices p €P.

Note that since 1 is monotonic increasing in p and bounded, the two limits
limg |0 ¥(q, p’ + 8) and lims| (g, p? — §) will both exist. For convenience, we will
use the following notation: for j =1,...,n,

(2.6) @(q. 1) = ¥+ (a,77) = Y- (a, 7).

Thus ®(q, p’) is the jump in the probability of dispatch that takes place if the generator
offers an amount g at a price just below p/ in comparison with what happens if the
price is increased to be just above p’.

It is important to consider the expected return for a generator offering a curve
s when the market distribution function is discontinuous: in the continuous case we
have the expression (2.2). In general we would expect to have, in addition to an
integral, a sum of discrete values R(q,p) at points (g, p) on s at which there is a jump
in the value of 4. This is indeed what happens when the curve s is strictly increasing.
We will show later that if we define ¢/(s) as the point at which the curve s crosses
the discontinuity p’, then

(2.7 o) = [ Rla.p) dula.p) + > Ra(6).0)0( ().,
s j=1

where s© is the part of curve s excluding the points (¢7(s), p?). However, when the
curve s has a horizontal section at one of the prices p’, things are more complex.

2.2. Sharing rules. If we suppose that the generator is offering power at the
same price p’ as another generator, then we cannot calculate the expected profit
without knowledge of the market rules concerning the sharing of dispatch between
two generators offering at the same price. Moreover, the value of 1 at p’ gives just the
probability of complete dispatch, whereas the sharing rules imply more information
than this. Specifically the values of 1) might not be enough to determine a generator’s
expected profit. It may be that two different sharing rules give the same v values
but different expected profit. To illustrate this we return to Example 2.1.

Ezample 2.2. Suppose as before that generator B offers 200 MW at price $10
and 300 MW at $14, while generator A offers 100 MW at $10. Suppose that sharing
of dispatch between two generators offering at the same price is proportional to the
offers made at that price. Suppose now that generator A has costs of $8 per MWh and
demand is uniformly distributed between 0 MW and 500 MW. Thus with probability
0.4 demand is greater than 300 MW, the market clears at $14, and the profit to
generator A is $600 per hour. On the other hand, with probability 0.6 the market
will clear at $10 and generator A will be only partially dispatched. It is not hard to
see that the total expected profit per hour is given by

100 T
—0.6 [ 2-2 dz+ 0.4 x 600 = 300.
v /0 100"t
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Consider now a sharing rule which gives priority to generator B. In this case with
probability 0.4 the demand is less than 200 MW and generator A is not dispatched
at all (while generator B is partially dispatched). We have the following expression
for expected profit:

100 .
=0.2 2—d 4 = 260.
v=0 /0 Too ™ + 0.4 x 600 60

Notice that in this second case, too, generator A is not fully dispatched unless demand
is greater than 300 MW. So both these sharing rules have the same value for ¢(100, 10),
which is the probability of generator A not being fully dispatched with this offer.
Indeed the two rules will give the same value of (g, 10) for any value of g.

In order to make further progress we need to consider specific sharing rules. We
will write v(s,L) for the expected profit when an offer curve of s is used together with
market sharing rules defined by £. We will investigate the particular choice of sharing
rule which is best for generator A.

Suppose that generator A uses the supply function S (p) and the other generators
use the supply function Sg(p). We write Sg(p—) for the limit lim.|o Sp(p — ¢) and
Sa(p-) for the limit lim. o S4(p — €).

We are interested in the sharing rule to be applied when the market clears at
price p’. The market clears at this price if and only if D(p?) satisfies

(2.8) Sa(p’) +Se(’) < D) < Salp’) + S ().

A sharing rule £ is any method for determining the dispatch quantity 4 (L) for
generator A in this case. Though this is not made explicit in the notation, the sharing
rule is applied at a particular price p’; and in general we need to define a sharing rule
for each price p €P. Notice that v4(L) is a function of the demand, but we suppress
this dependence in the notation.

A feasible sharing rule has to satisfy the following inequalities:

(2.9) Sa(p’) < ya(L) < Salp)),
(2.10) Se.) < D(p’) —va(L) < S().

The right-hand inequalities correspond to the restriction that no generator can be
dispatched more than it offers at price p’. The left-hand inequalities correspond
to the restriction that any power offered at prices less than p/ must be completely
dispatched.

More generally, we can make the following definition.

DEFINITION 2.3. Let the market clear at price p € (0,pM), and thus

Sa(p-) +Sp(p-) < D(p) < Sa(p) + Ss(p).

Then L is a feasible sharing rule if it determines uniquely the respective dispatch
quantities ya4 € [Sa(p-),Sa(p)] for generator A, and vp € [Sp(p-),Sp(p)] for the
other generators, such that

Ya+v8 = D(p).

Notice that unless two generators both offer power at the price p there will only
be one possible choice for 74 and yg. Thus the only prices at which the sharing rule
needs to be defined are p?, j =1,2,...,n.
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We let ¢* (p?) be the value of ¢ at which R(q, p?) achieves its maximum over [0, gar].
Our assumptions on R imply that this is unique. We have ¢*(p/) = 0 if R,(0,p’) <0,
q*(p?) = qu if Ry(qar,p?) > 0, and Ry(q*(p’),p’) = 0 otherwise. Notice that ¢*(p’)
is not affected by any hedging contracts.

Now we define the sharing rule £* as follows. Let

Sap’) it Sa(p’) < q*(¥),

¢ =¢ ¢ () if Sap) < g (p?) < Salp?),

Sapl) if ¢*(p') < Sa(pl).

It is easy to see that ¢/ maximizes R(g,p’) subject to Sa(p’) < q < Sa(p?).
Since we also require that (2.10) be satisfied, we define the dispatch amount 4 from
generator A under £* (when the price is p?) as

(@) D) —Ss(p.) it DP)—Sp(pl)<¢,
(L) =9 (b))  D’)—Ss(p’) if D@p’)—-Ss(’)>¢,
(c) ¢’ otherwise.

The lemma below demonstrates that £* is the best choice of sharing rule for
generator A, in the sense that no other sharing rule will produce such a large profit
for A.

LEMMA 2.4. L* is a feasible sharing rule, and v(s,L*) > v(s,L) for every feasible
sharing rule L.

Proof. We consider the profit when the clearing price is p/ € P, since if the
clearing price is not in P no sharing rule will be needed. We write I for the interval
[Sa(p’),Sa(p’)] and I for the interval [D(p’) —Sg(p’), D(p?)—Sp(p’)]. The length
of interval I, is the offer from A at price p?, while I is the range of possible residual
demand for A at this price. Therefore a feasible sharing rule has 74 in both I4 and
Ip.

We wish to establish that v4 is the unique optimal solution to

2.11 R(q,p%).
(2.11) onax (¢,7")

From (2.8) we observe that I4 and Ip will overlap, so the feasible set for the maxi-
mization problem is nonempty. Observe also that ¢/ is the unique optimal solution
to the problem

R J
max (q,0),

which implies that, within interval 14, R(-,p’) is strictly increasing for ¢ < ¢’ and
strictly decreasing for ¢ > ¢’.

We consider the three cases in the definition of v4(£*). In case (a) ¢/ falls to
the right of the interval Iz, hence the right end point of Iz, D(p’) — Sg(p’ ), is the
optimal solution of (2.11). Similarly in case (b) ¢’ falls to the left of the interval
I, and hence the left-hand end point of interval Iz, D(p’) — Sg(p?), is the optimal
solution of (2.11). In case (c) ¢’ is in Ip and is therefore the optimal solution of
(2.11). This shows y4(L*) is the optimal solution of (2.11). O

2.3. R-semicontinuous v function. We need to define a specific type of dis-
continuity behavior for the function ¢. In fact, at some points in the (g,p) plane we
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need v to be continuous from above, and at other points to be continuous from below,
depending on the characteristics of the function R.

DEFINITION 2.5. Suppose that the market distribution function ¥(q,p) is contin-
uous at all prices p ¢ P. 1 is called R-semicontinuous if ¥_(q,p’) = ¥(q,p’) when
Ry(q,p7) > 0 and ¢4 (q,p’) = ¥(q,p’) when Ry(q,p?) <0, j=1,...,n.

With the form of profit function given in (2.1) we can see that an R-semicontinuous
market distribution function will have the property of being continuous from below
(in the (¢,p) plane) when p > C’(q), and will be continuous from above when the
reverse inequality holds. We will show that v will be R-semicontinuous when the
sharing rule £* is applied.

Though we have assumed that both demand and other generator offers are well
behaved in any given realization, we also need to have the realizations of demand and
offers in some sense continuously distributed through the appropriate spaces.

Assumption 2.6 (continuity). The function ¢ — Pr(D(p) < ¢+ Sp(p)) is
continuous on [0, ¢™], and the function ¢ — Pr(D(p) < ¢+ Sp(p)) is continuous on
[0,pM\P .

This assumption implies, from (2.5), that (g, p) is continuous at all prices p ¢ P.

LEMMA 2.7. Under Assumption 2.6, if the sharing rule L* is used, then the
market distribution function ¢ is R-semicontinuous.

Proof. We consider an offer of an amount ¢ by generator A at a price p’, where
(g, -) is discontinuous. We suppose that there is no other offer by generator A. Thus
Sa(p’) = qand Sa(pl) =0. _ _

Suppose first that R,(¢,p’) > 0, so ¢ < ¢*(p?). From the definition of ¢7, we
have ¢/ = ¢, thus £* will choose to dispatch an amount g, if this is possible when the
constraints due to the demand realization are considered.

Recall that ¢(q, p’) is defined as the probability of not being fully dispatched when
A makes an offer of ¢ at p/. Under £*, the probability of not being fully dispatched
is the probability of either the market clearing at a price below p’ or clearing at price
P’ but D(p?) — Sp(p’.) < q, which means generator B’s offer at p’ is not dispatched
at all, and the residual demand for generator A falls below ¢. In this case A gets
dispatched D(p?) — Sp(p’.). This is exactly the case (a) in the definition of v4(L*).

Define the event

H = {(w1,ws) : D(p?,w1) < g+ SB(pj_,am)}-

Then

¥(g,p’) = Pr(H).

In what follows, we show (g, -) is continuous at p = p’ from below. We write G for
the event that an offer of ¢ at price p’ — ¢ is not fully dispatched; i.e.,

Ge = {(w1,w2) : D(p? —e,w1) < ¢+ Sp(p’ —e,wa)}.

Then the G. are monotonically increasing sets as e decreases to zero, with, say, a
limit G. D is a continuous function of p in each realization, and so if (wy,w2) € H,
then for some choice of g > 0, D(p/ — &,w1) < ¢+ Sp(p’ — &, ws) for 0 < & < .
Therefore H C G. From the axioms of probability, Pr(G) = lim._oPr(G:). Thus
¥(q,p’) < lime_g (g, p’ — ¢). But since 1 is increasing in p, there must be equality
here, i.e., ¥_(q,p’) = ¥(q,p’), as required.

Now consider the case that R,(g,p’) < 0 and we show (g, -) is continuous at
p =p’ from above.
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In this case ¢ > ¢*(p’). The probability of not being fully dispatched under £* is
the probability of either the market clearing at a price below p’ or of clearing at p’
with D(p?) — Sp(p’) < q. Thus ¥(q,p’) = Pr(J) where

J = {(wi,ws) : D(p/,w1) < q+ Sp(p’,ws)}.

We write F. for the event that an offer of ¢ at price p/ + ¢ is not fully dispatched.
Then F. is monotonically decreasing as ¢ decreases to zero, with a limit F, say. So
every realization in F is in every F. for € < €, where ¢y depends on the realization;
i.e., for every (wi,ws) € F, D(p/ +¢&,w1) < q+ Sp(p’ + €,ws) for € > 0. Thus from
the continuity of D and Sp, F C {(w1,w2) : D(p?,w1) < ¢+ Sp(p’,ws)}. Thus from
Assumption 2.6

PI‘(F) < Pr((w17w2) : D(pjawl) < q+ SB(pj7w2))
=Pr((wi,we2) : D(p’,w1) < g+ Sp(p’,w2)) = ¢(q.p).
Now, since lim. .o Pr(F.) = Pr(F), we have established that ¢ (q,p’) < 9(q,p’),
and the monotonicity of ¢ shows that these are equal. 0

The reverse implication does not hold: we can have an R-semicontinuous % with-
out using the sharing rule £*.

2.4. Expected profit. We let ¥ = {(¢,p) : 0 < ¥(¢,p) < 1}. In line with
Definition 2.5, we can divide ¥ into two regions ¥, and ¥_, where

U, ={(¢,p) € ¥: Ry(q,p) >0}, U_={(¢,p) € ¥: Ry(q,p) <0}

In the case that v is R-semicontinuous, to calculate the expected profit from a supply
curve s when it has a segment on the horizontal line {(q,p?) : ¢ € [0,¢™]}, we need to
think of it as part of the region below that line in the set ¥ and part of the region
above that line in the set W_. This motivates the following definitions:

W={(gp)€V:0<q<qu, P <p<p'}U{(g.p’) €V}
(g, p H e o_}, j=2,...,n,
U ={(g;p) €V:0<qg<qm, 0<p<p'tu{(qgp") € ¥y},
U = {(q,p) € V:0<qg<qum, p" <p<p“}U{(g,p") €V},
s/ =snNW.
It is not hard to see that the values ¢/ which we introduced in relation to the

sharing rule £* also define the points at which an offer curve s moves from ¥/ to
Wi+l Thus, writing ¢/ as a function of s,

¢ (s) = sup{q: (¢,p") € s’}

for j = 1,...,n. From the monotonicity of the offer curve s, and because R, is
decreasing, we can also write

¢(s) = inf{q: (qg,p’) € s’}

Under the assumptions of Lemma 2.7, we can take ¢ as R-semicontinuous and
made up from a number of different pieces 7, where 1’ is defined on the interval
between p’ ! and p’ and is well behaved on that interval. Thus we let

_ Yilg,p~t) for p=pi=t
Y (qp) =9 ¥(gp)  for PPt <p<pl,

VY_(q,p7)  for p=p/
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for 7 =2,...,n, and

for 0 !
wl(q,p) :{ z(q,p)pl) fz; piglfp ’

et _ [ ¥4lgp") for p=p",
v a.p) {w(q,p) for pm < p < pM.

We need to make an assumption on the behavior of the function 1.

Assumption 2.8 (continuous differentiability). (g, p) is continuously differen-
tiable for p ¢ P and each v/ can be extended to a continuously differentiable function
on an open set W7 which contains the closure of the set W7,

THEOREM 2.9. Suppose that a generator offers a curve s and Assumptions 2.6
and 2.8 are satisfied. If sharing rule L* is used, then the expected profit for the
generator is

n+1 n
(212)  w(s)=) /j R(q,p) d¢ (q,p) + Y R(¢'(s),p)@(¢ (s), 1),

Jj=

where @ is defined in (2.6).

Proof. To simplify our presentation we prove the theorem for n = 1 with just
one price discontinuity at p'. The case with n > 1 can be dealt with similarly. We
suppose that generator A uses an offer curve s which we take as s ={(x(7),y(7))} in
parameter form.

We write v4 for the dispatch quantity from generator A given the offer curve s.
We start by showing that ¢(x(7), y(7)) is the probability that v, is less than z(7). In
the case that 1 is continuous in a neighborhood of (z(7),y(7)), this is straightforward
and is implicitly established in [2]. But when y(7) = p! we need to be more careful.
Observe that from the definition of £*, if 2(7) < ¢!, then

Pr(y4 < () = Pr(D(p') — Sp(pL) < z(7)).

But the probability of an offer of x(7) at price p! is not fully dispatched under L*
with the same probability. Hence Pr(ya < x(7)) = ¥(x(7),y(7)) as required. The
case when z(7) > ¢* can be dealt with similarly.

We let 7! be such that y(r!) = p! and x(7!) = ¢*. We consider the expected
profit on a segment, ss = {(x(7),y(7)) : 71 —§ < 7 < 71 + 8}, of curve s. From our
observation on 9 (x(7),y(7)) we know that the probability that the market clears at
a price p and quantity ¢ on the offer curve in the segment s;s is given by v (z(7! +
8),y(r* +6)) — (x(r! — 6),y(r' = 9)).

The expected profit from the line segment ss is bounded above (below) by this
probability multiplied by the supremum (infimum) of R over the set ss. Since R is
continuously differentiable, for § small enough, the expected profit from segment s is

v(ss) = R(x(r),y(r)) (W (a(r" +8),y(r" +8)) —w(x(r = 6),y(r" = 6))) + 0(6).

The total expected profit from the offer curve s can be written as v(s) = v(s}) +
v(ss) +v(s2), where s}, sZ are the other components of s created when ss is removed.
So s; = {(z(7),y(r)) : 7 < 7' — &} and s? = {(z(7),y(r)) : 7 > 7' + &}. These
components lie entirely within the regions where % is continuously differentiable (and
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given by %), using Assumption 2.8. Using the result of Anderson and Philpott [2] we
know that

o) = [ Rlap) dilan), =12

)

By driving ¢ to zero, we have
lim v(ss) = R(x(7), y(r1) (¥*(2(r), y(r)) = ' (@(r), y(r1))
= R(¢",p")®(q",p"),

and

i [ Rla.p) a'@n) = [ Rap) ai'an, =12

i

This completes the proof. ]

2.5. Existence of an optimal solution. Having established the objective func-
tion formula (2.12), our approach to showing that an optimal solution exists is to
concentrate on the formal problem of maximizing (2.12) given an R-semicontinuous
market distribution function .

In order to discuss the optimality of a continuous offer curve, we need to compare
the line integrals on two distinct curves. When ¢ is continuous, Anderson and Philpott
[2] use Green’s theorem and observe that

//sZ(q’p) dpdq:/cR(q,p) di(q,p),

where S is a region enclosed by a curve C and

_ | Ry — Bpby, (g,p) €V,
(2.13) Z(q,p) = { 0 otherwise.

Clearly this result will not hold when the curve C crosses one of the lines of disconti-
nuity at p € P.

Our approach will be to calculate the change in v that arises from a change in
offer curve s by applying Green’s theorem separately to each region ¥/ together with
a calculation of the change that arises across the lines of discontinuity. We need to
start with a lemma that can be established using an integration by parts argument.

LEMMA 2.10. Suppose p’ € P and 0 < q1 < g2 < qur. Then, under Assumption
2.8,

q1 1

/ Rig.p?) d/* (q,07) + (g2 )@ (a2, )
q

[ R ava.r) -
—R(q1,p")®(q1,7)

- [M o Rier) do

q1

Proof. Let

v = / R(¢,p%) & (q.77) + Rz, 1) (g2, 7’)

q1
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and

a2 . ) ) . )

v :/ R(g,p’) dy’"(g,p’) + R(q1,p")®(q1. 7).
q1

From Assumption 2.8, both 7 (-, p’) and ¥71(-,p?) are continuously differentiable,

and we have already assumed that R(-,p’) is continuously differentiable. Integrating

both v; and ve by parts, we obtain

o1 — 2 = R(ga, P9 (a0, 97) — Rlau, ) (a1, /wﬂq, Ry(a.p) dg

- R(qQapj)wj+1(q27pj) +R(q13p])wj+1(q1,pj) +/ ¢J+1(Q7PJ)R¢I(Qap]) d
+ R(q2,p")®(q2,9") — R(q1,p")®(q1,p7)
:/ ®(q,p’)Ry(q,p?) dg,

q1

as required. 1]

Note that v is the expected return of the generator for offering go — g1 at price
just under p?, and v, is the expected return of the generator for offering g, — ¢y at price
just above p/. The lemma states that the difference between these two values can be
expressed as the integral of ®(q,p’)R,(q,p’) with respect to ¢ from ¢; to go. Since
R, is the marginal profit, ®(q,p’)R,(q,p’) represents the difference of the marginal
profits between the offer of ¢ at just above p? and the offer of ¢ at just below p7.

Anderson and Philpott [2] and Anderson and Xu [4] treat v(s) in (2.2) as an
objective function and investigate the necessary and sufficient conditions for an offer
curve s to be a local maximum. When % is continuously differentiable on ¥, Anderson
and Xu prove that there exists a maximum over the set of curves that are considered.
However, the existence result is not straightforward when 1 is not continuous, and
our first result is to confirm that a maximum does exist provided that 1 satisfies the
conditions we have given.

A generator need not offer all its generation capacity into the market; the offer
curve will start at some point (0, p(0)) and finish at (§(T), p(T")). However, the clearing
price is determined as though the offer curve began with a vertical segment from the
origin to (0,(0)) and finished with a vertical segment from (G(7"), p(T)) to (¢(T"), par)-
Hence we assume that A, the set of possible offer curves, has these characteristics.
The following result has been established by Anderson and Xu [4].

LEMMA 2.11. Let A be the set of monotonic continuous curves starting at the
origin and ending on the closed line segment from (0,prr) to (qa,pa). Then A is
compact under the Hausdorff metric:

|s1 —sa|g = max min /(g1 — q2)? + (p1 — p2)*.
(q1,p1)€s1 (q2,p2)€Es2

We need some sort of compactness result such as this to ensure the existence
of an optimal solution; once compactness is established in some topology, then the
existence result follows provided that we have a suitable continuity property in that
topology. Our next result uses compactness to establish that the problem of finding
a curve s which maximizes the expected profit v(s) in (2.12) has an optimal solution.
But before we prove this theorem we need to establish a preliminary lemma (which
is required because ¢’ (s) is not a continuous function of s).
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LEMMA 2.12. Ifs — s in the Hausdorff metric and for some j: limy_.o ¢’ (i) =
qo, then

(2.14) / ( @0p)A (0. p) dy <0

Proof. Observe that if ¢/(s) = qo there is nothing to prove, so we suppose
these two are unequal. Since s — s in the Hausdorff metric we can deduce that

ming pes (90 — )% + (P —p)2)1/2 = 0 and hence that (qo,p’) € s. Thus, from
monotonicity, all of the line interval (¢’ (s),p’) to (qo,p’) is in s. First we suppose
that ¢/(s) < qo. Then, from the definition of ¢/, this line interval lies in W/*+! and
hence is part of U_, where R, < 0. Since ®(q,p’) > 0, the inequality (2.14) follows.
On the other hand, if ¢7(s) > qo, then the line interval (g, p’) to (¢’(s), p?) lies in W/
and hence is part of ¥, where R, > 0. Again, we have shown the desired inequality
(2.14) after noting that the limits of the integral are reversed. O

THEOREM 2.13 (existence). Let A be defined as above and let v be the expected
return function given in (2.12). Under Assumptions 2.6 and 2.8, if the market distri-
bution function is R-semicontinuous, then v achieves its maximum on A.

Proof. Let v* = supgep v(s), which exists since R is bounded and 7 lies between
0 and 1. For every k > 0, there exists a supply curve s; € A such that v* —v(sg) < %
Since A is a compact set, there exists s* € A such that |sy —s*|g — 0 (we can take a
subsequence if necessary). In addition we shall arrange that for each j, limy_ ¢7(s)
exists. We want to prove that v(s*) = v*. We will do this by showing that v(s;) —
v(s*), using Green’s theorem on each of the W/ regions together with Lemma 2.10 for
the crossovers from one ¥/ to the next.

We define s*/ = s*NWJ and s], = s;N¥’. Thus

n+1 n
W)= [ Rlap) wiap) + Y R@E). )0

Jj=

n+1 n
v(sk) = Z/ R(g,p) d¢(,p) + > R(¢’ (sk),0)) @ (¢’ (sr), p").

j=

Let sign(q,p) be a function such that sign(q,p) = 1 if (¢, p) is located below the
curve s*; sign(q,p) = —1 if (g, p) is located above the curve s*; and sign(q,p) = 0 if
(¢,p) is located on the curve s*. Now, using Green’s theorem

[ Bap) i) - [ Riap) o a.p
@ (sw)

=// sign(q,p)Z(q,p) dg dp+/ R(q,p’) dv(q,p)
A';C

¢’ (s*)

@ (sk) ) ) )
_/ R<q7p]_1> dz/}j(qap])a
q

i1 (s%)

where Ai is the area between s*/ and si, and Z is given by (2.13). Let Ay be the
entire area between s* and s;. Then

v(sk) — v(s%) = / /A sign(g, p) Z(q, p) dg dp
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n G

; d ] Jj+1
+;/qj(s*) R(g,p’) i’ (q,p") Z/J(S (g, 1)
+> R (sk), 0))®(q” (s), ) — ZR(qj(S*),pj)‘I’(qj(S*),pi)

j=1

=//A sign(q,p)Z(q, p) dq dp +

using Lemma 2.10.
Since |sy — s*|g — 0 and Z is bounded from Assumption 2.6, the area integral
approaches zero as k — o0o. Also from Lemma 2.12, we know that

n e (sk) . .
Z/ ®(q,p")Rq(qp’) dg
j=174(s*)

¢ (sk) . .
lim ®(q, p’)Rq(q,p’) dg < 0.
k=00 Jqi(s*)
Thus v(s*) > limg_ o v(sg) = v*, but from the definition of v*, v(s*) < v*, and thus
we have established the desired equality. 0
Using this theorem and the results of Theorem 2.9 and Lemma 2.7, we have the
immediate corollary.
COROLLARY 2.14. Under Assumptions 2.6 and 2.8, if the sharing rule L* is used,
then there is an optimal supply curve.

3. Necessary conditions for optimality. From Theorem 2.13, we know that
the problem of maximizing profit using the sharing rule £* is well defined. This is
equivalent to the following maximization problem:

n+1

(3.1) max v(s Z/ (¢,p) d¥’ (q,p —|—ZR )P (¢’ (s),p”).

In this section, we discuss necessary conditions for an offer curve to be optimal for
this problem.

When % is continuously differentiable, optimality conditions were derived by An-
derson and Philpott [2] and extended by Anderson and Xu [4]. Let s = {(§(7),p(7)) :
0 < 7 < T} be the offer curve. The main tool that is used in investigating the
optimality conditions of s is the line integral of Z along s, which is defined by

win) = [ " 2000, 50)@ () + 7 (1) dt.

When % is not continuously differentiable, we need to use a different approach.

We take 9 as R-semicontinuous and we define, for (¢,p) € W7, the function
Zi(q,p) = wag — Rpwg. This will make Z/ match Z in the interior of ¥/ and be
defined by continuity for points in ¥/ that lie on its boundary.

Given a monotonic continuous, piecewise smooth offer curve s = {(¢(7), p(7)),0
7 < T}, for each 7 we let J(7) be the index of the region W7 in which (¢(7), ﬁ(T)) hes
and we let 77 be the parameter value at which the curve moves from ¥J to ¥7+! and
thus ¢(77) = ¢’. Then we define

; J(r)-1
w(r) = / 270 (). p))@ (&) + (1)) dt + Z A& P).
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THEOREM 3.1 (first order necessary conditions). Suppose thats = {G(7),p(7),0 <
7 < T} is an offer curve and Assumptions 2.6 and 2.8 are satisfied. Suppose that there
exist m numbers 0 < 71 < 1o < -+ < Ty, < T with 0 < §(7) < g and 0 < p(7) < pum
for 11 < T < Tpn. Suppose further that on each section (1,-1,7;), ¢ = 2,...,m, S is
either strictly increasing in both components, or horizontal, or vertical, with different
characteristics in successive segments and with 71 (T, ) the smallest (largest) param-
eter value such that (G(7),p(7)) € . If s is optimal for (3.1), then w(r) = 0 and
w(rm) = w(T). Moreover, for each interval I being one of (1,-1,7;), i = 2,...,m,
one of the following holds:

(i) s is strictly increasing in both components and w(r) = w(r;_1) for 7 € I.

(ii) s is horizontal on I. For T € I with (§(7),p(7)) € V4, then w(T) < w(ri—-1);

for T e I with (§(7),p(1)) € U_, then w(t) < w(m;). Moreover, if p(1;) € P,
then w(r—1) = w(7;).

(iii) s is vertical on I, w(ri—1) = w(r;), and w(r) > w(r;) for T € 1.

Proof. We begin by looking at the w values at 7y and 7,,,. First, we prove w(r;) =0
(the proof that w(r,,) = w(T) is similar). By assumption, for any 7 < 71, (4(7), p(7))
is located outside the ¥ region where Z and w(r) are zero. Note that if p(71) & P,
then w is continuous at 71 and w(7) = 0. Thus we only need to consider the case
that p(71) = p’ € P. This means that the lower boundary of ¥ contains a horizontal
section p = p/ and the point (G(m1),p(71)) is located on the horizontal section. We
consider three cases according to whether the point (§(71),5(71)) is located in ¥, in
W_, or on the line separating these regions. In the latter case Rq(G(71),p(m)) = 0,
and hence w(ry) = 0. If (G(m1),p(m1)) is in ¥4, then J(r) =j — 1 and w(m) =0 by
the definition of the w function. Thus we are left with the case when (§(71),p(m1)) is
in ¥_, when J(71) = j. By definition, since Z is zero outside U,

w(m) = Ry(§(m1),p)@(4(m1),p’) < 0.

Suppose for a contradiction that w(r;) < 0. Since <I>(q,p7) = w(q,pi) for all ¢
with (q,pj) at the boundary, this implies that 1 (g(r),p’.) > 0. By Assumptipn 2.8,
¥(g,p’) is continuous in ¢, and so there exists § > 0 such that ¢(¢(m) — 6,p’.) > 0.
Consider another supply curve r which enters ¥ at a point (g(71) — 6, pﬂ_) and then
goes horizontally until it reaches the point (zj(ﬁ),pi) and then joins s to the end.
Using Lemma 2.10, it is easy to verify the difference between the expected profits of
the two supply curves,

G(1)
E(s) — E(r) = / Ry(z,p?")®(z,p’)dx = sw(m) + 0(8) < 0,
G(m1)—6
for ¢ sufficiently small. This contradicts the optimality of s and establishes w(7;) = 0.
Part (i). This part of the theorem amounts to the statement that if §(7) and
p(7) are both increasing in an interval 7 € (74,75) and we choose a point (§,p) =
(G(7*),p(r*)) in this interval, then Z(4,p) = 0 if (¢,p) is in the interior of a W/,
and ®(§,p)Ry(G,p) = 0 if p € P. The first statement is proved in Anderson and
Philpott [2], but for convenience we will repeat their argument here. We begin by
defining a small perturbation of s around the point (¢(7*), p(7*)). Reparameterizing
s if necessary, we can assume that ¢’(7*) > 0. Let

(g2 — (7% = 0)),p(r* = 0)), =671 <7T%,

q
rs(7) =< (G(r*+6),p(2T — (7* +6)), <7< 7"+,
(q(7), (7)), otherwise.
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Y=0

Fic. 1. Perturbations for first order optimality.

This perturbation is illustrated in Figure 1 at the point marked a.
In the case that p(7*) ¢ P we can avoid any discontinuities within the perturba-
tion by taking 6 small enough. In this case

v(rs) — v(s) ://,4(5) Z(q,p) dqdp,

where A(6) is the region between the two curves. Since s is optimal and Z is continuous
in this region we obtain the conclusion that Z(g(7*),p(7*)) < 0, since otherwise we
have v(rs) > v(s) for 6 small enough. If we reverse the direction of the perturbation
(going above (G(7*), p(7*)) rather than below it) we can show that Z(G(7*), p(7*)) > 0.
The two inequalities show that Z = 0 as required.

Now suppose that p(7*) = p’ € P. Using Lemma 2.10 and the usual Green’s

theorem argument we have

) o) = [ [ samdaips [ [ 200 dodp
)

G(r*+6 ) )
+/( : ®(q,p’)Ry(q,p’) dg,
q(r~

where A(6) = A(8§) N ¥’ But we have just shown that Z(q,p) = 0 along the s curve
(except where s crosses the p’ line). The continuity of Z implies that both the first
two integrals are o(8). Thus the continuity of ® and R, will imply that

v(rs) = v(s) = (4" +6) = G(r)) @), P ) Rg(a(7), p") + 0(6).
Since §'(7*) > 0, G(7*+6)—4(7*) is O(6), and thus @(@(T*),pj)Rq(é(T*)7pj2 < 0 from

the optimality of s. Again reversing the perturbation shows ®(G(7*), p?) R, (4(7*),p’) >
0, and thus

as required.
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Part (ii). As before we consider a point with parameter 7* € (7;_1,7;), a hori-
zontal section. We will need to use two different types of perturbation. Suppose first
that (§(7i—1),p(7i—1)) € V4. There are two possibilities: s is vertical immediately
before 7;_1 and s is strictly increasing immediately before 7;_;. We only consider the
first case in detail.

Let § > 0 be small and define 7;,_1(—8) = p~1(p(7;_1) — ) so that this is the
parameter value at which s reaches a price level § below p(7;—1). Let rs be the
perturbation of s which moves a horizontal section from §(7;—1) to ¢(7*) down by an
amount . Thus

(G(7), p(1)), 0<7<7i1(=0),
r (7_) _ ((j(T_l — Ti— 1( 6) —I-T), (7’Z 1) (5), Ti_l(—é) <T< T —Ti1 +Ti_1(—(5),
b (@), p(1 + 7ie1 — 7)), T — T+ T (=6) < T < T,
(q(7),p(7)), <7T<T

This perturbation is illustrated in Figure 1, with (G(7*),p(7*)) shown as the point
marked b. If (§(7*),p(7*)) € ¥, then this perturbation does not involve a disconti-
nuity in Z, and thus

P(Ti—1) q(r™)
v(rs) — v(s) =/ / Z(q,p) dqdp
p

(7'7_ 1) 6 (7‘1 1)

q(r")
=6 Z(q,p(ri—1)) dq + o(6).
q(ri-1)
Since s is optimal, we obtain the conclusion that qq((: )1) Z(q,p(1i—1))dg < 0, since

otherwise we have v(rs) > wv(s) for § small enough. Thus w(7*) < w(7_1). In the
case that s is strictly increasing immediately before 7;_1, we need to make a slightly
more complex definition for rs(7) and the area over which Z is integrated is no longer
rectangular, but the basic argument is the same.

Now if (¢(7*),p(7*)) € ¥_, then (§(7;),p(7:)) € ¥_ and we choose a perturbation
that moves a horizontal section of s from §(7*) to ¢(7;) upward by an amount 6.
If (G(7*),p(7*)) € ¥_, then the continuity of Z for this perturbation implies that

qu((:’) Z(q,p(1:))dq > 0 and hence w(7*) < w(r;).

When p(7;) € P we have continuity for Z without having to restrict ourselves to
(G(7*),p(7*)) € ¥, for a perturbation downwards at the beginning of the horizontal
section, or (G(7*),p(7*)) € ¥_ for a perturbation upwards at the end of the horizontal
section. Hence we can take 7% = 7; for the first argument and 7* = 7;,_; for the second
argument to show that both the inequalities w(7;) < w(r—1) and w(ri—1) < w(7;)
hold, and hence that there is equality.

Part (iii). Suppose s is vertical on the interval between 7;,_; and 7;. We establish
the result using perturbations of either end of the interval. We begin with a perturba-
tion that moves the lower part of the interval to the left. There are two possibilities:
s is horizontal immediately before 7;_; or s is strictly increasing immediately before
T;—1. The first case makes it slightly simpler to give an explicit perturbation, and we
restrict ourselves to this.

Let & > 0 be small and define 7;_1(—8) = ¢ (¢(m—1) — 6) so that this is the
parameter value at which s reaches a quantity §(r;—1) — 6. Let rs be the perturbation
of s which moves a vertical section from p(7;—1) to p(7*) to the left by an amount 6;
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thus
(qA(T)vﬁ(T )a 0<t< Tifl(—é),
rs(7) = (G(1i—1) = 6),D(Tic1 — Tim1(=06) + 1), Tim1(=0) <t <7" =71 +7i—1(=0),
’ (Gt + 751 — 7),B(7)), T =T A (—8) St < T
(q(7),n(7)), ™ <t<T.

This perturbation is illustrated in Figure 1, with (G(7*),p(7*)) shown as the point
marked c. In general this perturbation may involve a number of different regions 07,
Suppose that (§(ri—1),p(mi—1)) € ¥/ and (4(7%),p(7*)) € V9. Write A(8) for the
region between the two curves, s and rs, and A7(§) = A(5) NI, Then

(Ti—1)

) — u(rs) Z//A Z() dqdp+z/q P)R,(a.1) da

(T1 1) (5

_5/ Z(G(ri—1),p dp+6Z/ Z(§(ri_1),p) dp
P(Ti—1)

Jj= f+1

(") .
+5/g Z((ri-1),p dpwzcﬁ 75 1), P Ry (d(ri 1), ) + 0(0)

= 6(w(t™) —w(ri—1)) + 0o(6).

As s is optimal we obtain the conclusion that w(r*) > w(r;—1), since otherwise we
have v(rs) > v(s) for § small enough.

The other perturbation to be considered involves a section of the vertical segment
from 7 to 7;, which moves to the right. The argument in this case is exactly the
same and we can show that w(7*) > w(r;). Moreover, since these results also apply
with 7% = 7,1 and with 7* = 7, we see that w(r;) = w(7—1). O

In many cases there will only be a single solution which satisfies the necessary
conditions, and hence the optimal solution can be identified without further compu-
tation. Later we will illustrate the application of these conditions on an example, but
first it is helpful to give some more general discussion.

In practice, the nature of the optimal solution will be quite dependent on the
form of the Z = 0 curve. If, as is usually the case, this is a monotonic increasing
curve, then the optimal solution will typically follow it for much of its length, with
some small variations introduced by the discontinuities. We see this behavior in the
example we consider in the next section.

On a vertical section of the offer curve we must have w values greater than at the
end points of the section. In the case when neither of the end points is on a horizontal
price discontinuity, then this will imply that the beginning (bottom) of the vertical
section is in a region where Z > 0 and the end of the section is in a region where Z < 0.
If the bottom end point, say (G(7;—1),(7i—1)), lies on a horizontal price discontinuity,
say p’, then we need to consider two cases. First suppose that (G(7i_1),p(7i_1)) € ¥_,
which in turn implies (§(7i—1),p(m—1)) € ¥/ Then J(r;—1) = j + 1 and w(7;_1)
already incorporates the jump at this discontinuity; thus the vertical section must
begin in a region where Z > 0 to avoid contradicting the necessary conditions. The
other case occurs when (G(7;,—1),p(7i—1)) € ¥4, in which case R, > 0 and the jump
in value is positive. In this case, we can draw no immediate conclusion on the sign of
Z at the start of the vertical section. The same kind of argument shows that if the
top end of a vertical section is at a price discontinuity, then when this point is in ¥
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we can conclude that the vertical section finishes in a region where Z < 0, and no
conclusion can be drawn when the point is in ¥_.

Now consider a horizontal section that does not coincide with a price discontinuity.
In this case the condition of the theorem simply says that w(7) is less than the w
values at both end points. So the left-hand end of the horizontal section must be in
a region where Z < 0 and the right-hand end in a region where Z > 0.

When the horizontal section runs along a price discontinuity the situation is a
little more complex. Suppose first that the left-hand end of the horizontal section is
in ¥,. Then the necessary conditions for optimality imply that w is decreasing and
hence that the beginning of the horizontal section is in a region where Z < 0. In the
same way, if the right-hand end of the horizontal section is in ¥_, then we can deduce
that this end point is in a region where Z > 0.

4. Construction of an approximate optimal supply function through
undercutting and overcutting. We have found a form of sharing rule for which
there will be an optimal solution. However, this form of sharing rule will not occur
in practice. Our eventual aim is to have a way of generating e-optimal solutions for
problems with arbitrary sharing rules.

We suppose that we have found an optimal solution s* for the modified problem
with sharing rule £*. The next step is to create an e-optimal solution for the problem
using undercutting and overcutting. We define the solution s*(6) for any 6 > 0 by
following s* except at the prices in P. In essence, where s* = p’ and lies in ¥, we
undercut the solution and set s*(8) = s* — §. Where s* = p/ and lies in ¥_, we
overcut the solution and set s*(6) = s* + . To make this definition more precise
involves some messy technical details, which we will give below. We shall assume that
the equation R4(g,p) = 0 defines a single monotonically increasing line which divides
U, and ¥_, and we write this in the form p = I'(¢). In the case in which R is given
by (2.1), T is just C’. If s* moves from the region ¥ to the region ¥_ at a single
value p?, then s*(8) follows the line p = I'(g) to join the undercutting section to the
overcutting one.

We need to go back to the individual component functions ¢(7) and p(r), say,
that define s*. We let ¢s(7) = §(7) for every 7. We have the following definitions for

ps(7):

p =06  for {T:p) =6 <p(r) <p’(4(r),p" —0) € ¥y},
p+6  for {r:p? <p(r) <p’ +6,(4(7),p) +6) € U_},

ps(t) = T(q(r)) for {7:p" =6 <p(r) <p’,(4(7),p” —6) ¢ Vi, (4(7),p7) € ¥y},
T((é)(T)) for {r:p? <p(r) <p’ +6,(4(7),p) +6) ¢ ¥, (4(7),p") € ¥}
p(T otherwise.

As it stands this defines ps(7) in such a way that it may not be continuous. We need
to make the definition of ps continuous by filling in these (vertical) gaps. Suppose
that

P(10-) = lim p(7) = lim p(7) — 7

7170 T|To
for some 1 > 0. Then we define
(pé(T)7Q6(T)) for 7 < 70,

(Ps(7),q5(1)) = § (ps(70-) + 7 —70,95(70)) for 70 <7 <70+,
(ps(T—7),q5(T — 7)) for > 19+ .



e-OPTIMAL BIDDING IN AN ELECTRICITY MARKET 1413

Section added to
make ]3; , ZI; 74‘ /
2 (e
p 1

w_

(g

F1G. 2. Construction of s*(9).

This removes one of the discontinuities, and we can continue in the same way to
remove each of the other discontinuities (at most one of which is introduced at each
p?). Then s*(6) is defined by (ps(7),s(7)). Figure 2 illustrates this construction.

Our key result is that s*(6) is e-optimal for small enough §. We are now in a
position to prove this.

THEOREM 4.1. Suppose that s* maximizes the expected profits of the generator
when the sharing rule L* is used. Then

lim u(s™(6)) i‘éﬁu(s)’

where u(r) denotes the expected profits of the generator given a supply curve r with
some other sharing rule L .

Proof. We write v(r) for the expected profit of the generator given a supply curve
r with the ideal sharing rule £*. From Lemma 2.4 we know that v(s) > u(s). Thus

v(s™) > supu(s).
sEA

Moreover, as each s*(6) € A, lims|ou(s*(6)) < supgep u(s). So it is enough to show
limg o u(s*(6)) = v(s*). . .

Now it is not hard to see that ¢7(s*(8)) = ¢’ (s*) for each j. This is a result of
the construction we have used for s*(6). Thus

n+1
v(s) —u(s*(8) =) (/ R(q.p) dv’(q,p) */

j=1 *J s*(8)7

R(q,p) dW(q,p)) :

Since the end points of the segments s*/ and s*(6)? coincide within each W7, we can use
Green’s theorem within this region to show that the difference between the integrals
tends to zero as § — 0. So v(s*) = lims_,o v(s*(8)). But as s*(6) does not contain a
tranche offered at any p’ the sharing rule used will not affect the expected profit, and
hence v(s*(8)) = u(s*(6)) for each 6. |

5. An example. In order to illustrate the ideas we have discussed above we
return to the example we considered before. We now suppose that the market demand
is given by D(p) + € where D(p) = 800 — %pZ, and the random shock e ranges
uniformly over [0,2300]. We wish to find the optimal offer curve for generator A. For
p # 10,14, 18, we can derive the market distribution function for generator A:

1

Y(q,p) = m(q — D(p) + SB(p))
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and

wII:{(q,p):o <q—D(p>+sB<p>><1}.

< 2300

The values of ¥ at p = 10,14, 18 will depend on the market sharing rules, which we
do not need to specify.

We need to specify a contract position and the cost of generation. We suppose
that generator A has contracts for a total quantity of 800 MW at a strike price of $15
per MWh (that is, @ = 800 MW), and we take the total capacity for the generators
to offer into the market as 1100 MW. We also take the costs generator A incurs for
generating an amount ¢ MWh as nonlinear and given by C(q) = 10g + 0.004¢. Thus
the profit function (in $ per hour) is

R(g,p) = qp — 10g — 0.004¢> 4 800(15 — p).

We wish to find an optimal supply curve for generator A so that its expected profit
is maximized. However, since 1 here is discontinuous, an optimal supply curve may
not exist.

Note that

R,(¢q,p) = p— 10 — 0.008¢.
Thus ¢*(p?) = 125(p’ — 10), and

Uy ={(¢g;p) € ¥:q<125(p—10)},
U_ ={(g,p) € ¥:q>125(p—10)}.

The optimal sharing rule £* is defined according to the rules set out earlier. Essen-
tially, the aim of the sharing rule is to obtain a dispatch of 125(p’ — 10) for generator
A at each of the prices p’ = 10, 14,18 (or as close to this figure as possible).

In what follows, we derive the optimal supply curve, assuming the sharing rule
L*, using Theorem 3.1. Note that for p £ 10, 14, or 18,

P
(p — 10 — 0.008q) (??p> —q+ 800] .

1
Z(q7p) = R(ﬂ/’p - Rp'(/)q = 2300

In Figure 3 we show the upper and lower boundaries of the region ¥ (i.e., where
1 =0 and ¢ = 1) together with the curve (in fact a parabola) where Z = 0 and the
straight line p = C’(¢q) = 10 + 0.008g.

We will try to identify an optimal offer curve which satisfies the first order nec-
essary conditions that are derived in Theorem 3.1. To do this we consider tracing a
curve starting at the lower boundary 1 = 0 and finishing at ¢ = 1. According to part
(i) of Theorem 3.1, the optimal offer curve must follow the Z = 0 line at any point
where it is neither horizontal nor vertical, and it is natural to start by considering a
solution which follows this line. The argument given below shows that, for this exam-
ple, there will be only one solution that satisfies the necessary optimality conditions.
This is often the case for this type of problem (but not always). If there is more than
one solution satisfying the optimality conditions, then the expected profits for the
different offer curves need to be compared directly in order to find a global optimum.

Observe, though, that a solution which follows the line Z = 0 from the point
B = (507.2,9.372) where it crosses ¢ = 0 through the point D cannot be optimal.
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Fic. 3. An optimal solution for the example.

The line Z = 0 crosses p = 10 at D = (521.7,10), and at this point there is a
discontinuity in w which would contradict the necessary condition (i) of the theorem.
In fact, ®(521.7,10)R,(521.7,10) = —0.363.

Thus we need to consider the possibility of a vertical segment finishing at the
p = 10 line. In order to satisfy the conditions of the theorem, the integral of Z along
the vertical section would have to exactly match the jump down that occurs at p = 10.
For convenience we define

b
Wi(g.a,b) = / Z(¢,p)dp + ®(q,b)Ry(g,b)

to be the w integral over a vertical segment at ¢ starting at p = a and finishing at
p = b where there is supposed to be a discontinuity. Thus in this case we are interested
in finding a starting point (g, a) for which Wi (g, a, 10) = 0. The possibilities here are
to begin by following the line Z = 0 from the point B, but to start a vertical segment
before reaching D, or to start from some point between A and B with a vertical section.
However, it is not hard to check that in all cases Wi(q, a, 10) will be negative.

Therefore we next consider a horizontal segment starting from some point in JA.
This is in the region ¥_, and thus the necessary conditions will just imply that w(7)
is less than the w value at the next corner point. This condition will be satisfied
since Z is positive in this region. However, this same condition will ensure that this
horizontal section of the optimal offer curve does not go beyond D where Z changes
sign. In fact, the necessary conditions imply that the horizontal segment starts at
J = (266.6, 10).

Now we consider the possibility of a vertical section which finishes on the hori-
zontal line p = 14. Again, using the necessary conditions will imply that we should
start this vertical segment at a point (q,a) where Wi(q,a,14) = 0. This equation
defines a curve which crosses the Z = 0 line at the point K = (643.7,13.4). Again we
can establish that the horizontal section must run from L = (643.7,14) to the point
M = (671.8,14) on the Z = 0 line and no further.

The solution then has to follow the Z = 0 line until the point E = (898.0,18). At
this point it starts a horizontal segment. Since the solution is now in the ¥, region,
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the start of this horizontal section remains in the region “below the line” including
14 < p < 18. For this reason there is no jump in the w value until the line leaves
the horizontal, and there cannot be a solution with a vertical segment ending at the
p = 18 line which satisfies the necessary conditions.

To make our discussion here easier we define

b
Walg.,5) = ®(q, a)Ry(q. a) + / Z(4,p)dp.

which is the w integral over a vertical segment starting at (¢,a) € ¥4 when a is a
price discontinuity. In this case, we need to continue with a vertical segment starting
at a point (g, 18) and ending at a point (g, b), either on the Z = 0 line or on the upper
boundary ¢ = 1, with Wa(q, 18,b) = 0. Now the curve defined by Ws(q,18,b) = 0
intersects the Z = 0 line at G = (921.2,18.36). The optimal solution then continues
along the Z = 0 line until crossing the upper boundary at H = (1009.6,19.675). The
complete optimal solution is shown in Figure 1.

Having found the optimal solution to the problem when £* is used, it is straight-
forward to generate e-optimal solutions for the case where we do not have the ideal
sharing rule when prices coincide. We should follow the solution described above, but
overcutting slightly for horizontal sections of the offer curve in ¥_ and undercutting
in U,. It will not matter what the offer looks like outside the region W. If we choose
to undercut and overcut by an amount of $0.01, we end up with the following offer

schedule:
(a) an amount of 266.6 MW at price $0 (or any price below $10),

(b) an amount of 521.7-266.6 = 255.1 MW at price $10.01,

(c) an amount of 643.7-521.7 = 122.0 MW in a smooth curve rising to a price

of $13.40,

(d) an amount of 671.8-643.7 = 28.1 MW at a price of $14.01,

(e) an amount of 898.0-671.8 = 226.2 MW in a smooth curve rising to a price

of $17.99,

(f) an amount of 921.2-898.0 = 23.2 MW at a price of $17.99,

(g) an amount of 1009.6-921.2 = 88.4 MW in a curve from a price of $18.36

to $19.67,

(h) an amount of 1100-1009.6 = 90.4 MW at $50 (or any price above $19.67).

The offer schedule above now needs to be altered in line with market rules. In the

case that only step functions are allowed as offers, then the smooth curves of (c), (e),
and (g) will need to be approximated with step functions. In the case that piecewise
linear offers are required, then these curves would be approximated by one or more
linear segments.

6. Discussion. Work on optimal offer policies and on Nash equilibria in an elec-
tricity market setting has often confronted the issue of undercutting (though our dis-
cussion of overcutting solutions is new). The essential problem is that the possibility
of undercutting on price will in many models lead to highly competitive (Bertrand-
type) equilibrium solutions, with no possibility of supporting an equilibrium in which
generators offer at prices above their marginal costs. However, this idealized behavior
is very far from that which is observed in actual markets around the world. Different
authors have suggested a variety of methods to address the issue.

Using supply functions as a model for the offer procedure is one approach which
avoids the difficulty of undercutting. In this framework we usually assume that there
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is no single price at which a generator offers a significant quantity of power, and this
allows us to formulate models in which Nash equilibria exist for supply functions.

An alternative approach which has been suggested by von der Fehr and Harbord
[15], and which has been used by Wolfram [16] and Brunekreeft [6], is to assume
that offers are made at one or a small number of prices but that these prices are not
revealed in advance to the other players. This allows a type of mixed strategy to be
played which chooses prices according to a continuous distribution. This clearly rules
out the possibility of undercutting, since even though we know the strategy of the
other player, we do not know a price which we can then undercut.

In this paper we do not try to establish equilibrium conditions; instead we concen-
trate on the question of evaluating the optimal (or e-optimal) offer strategy. From a
generator’s viewpoint this is valuable if the generator wishes to achieve the maximum
one period profit. The analysis we give can then point to the best possible policy
which is likely to involve some part of the offer either just below or just above other
players’ prices. But the analysis is also valuable if the generator decides to adopt a
less aggressive policy, since it indicates the degree of suboptimality involved in adopt-
ing any other (nonundercutting) solution. In practice generators will also need to
build an offer according to specific market rules: again we can think of the optimal
supply function strategy as setting a benchmark against which other policies can be
compared. Sometimes, as in Australia and New Zealand, these market rules imply
that a step function is used, in which case a step function approximation to the type
of policy shown in Figure 3 should be constructed. Other markets allow an offer to
be piecewise linear, which will enable a much closer approximation to be achieved.

It is natural to ask whether the type of analysis we give here could be extended
to an equilibrium analysis. In fact it is not possible to construct an exact Nash equi-
librium in offers with the type of undercutting behavior we have analyzed. However,
an interesting area for further research is the existence of an e-equilibrium, in which
player ¢ submits an offer S; (being a step function satisfying the market rules) in such
a way that the expected profit for player 4, v;(S;), is within € of the best possible ex-
pected profit for player ¢ given the offers of the other generators. Such a step function
e-equilibrium will not be unique, and so there will be the usual conceptual problems
of coordination on nonunique equilibria, coupled here with additional difficulties in
coordinating on an appropriate value of €. Nevertheless, such e-equilibrium might be
arrived at in practice through repeated adjustment of generator offers in response to
the other generators, but where generators prefer not to change their offer strategy
unless this will lead to an increase in expected profit of at least ¢.

REFERENCES

[1] E. J. ANDERSON AND A. B. PHILPOTT, Using supply functions for offering generation into an
electricity market, Oper. Res., 50 (2002), pp. 477-489.

[2] E.J. ANDERSON AND A. B. PHILPOTT, Optimal offer construction in electricity markets, Math.
Oper. Res., 27 (2002), pp. 82-100.

[3] E. J. ANDERSON AND A. B. PHILPOTT, Estimation of electricity market distribution functions,
Ann. Oper. Res., 121 (2003), pp. 21-32.

[4] E. J. ANDERSON AND H. XU, Necessary and sufficient conditions for optimal offers in electricity
markets, STAM J. Control Optim., 41 (2002), pp. 1212-1228.

[5] R. BALDICK, R. GRANT, AND E. KAHN, Theory and application of linear supply function equi-
librium in electricity markets, Journal of Regulatory Economics, 25 (2004), pp. 143-167.

[6] G. BRUNEKREEFT, A multiple-unit, multiple-period auction in the British electricity spot mar-
ket, Energy Economics, 23 (2001), pp. 99-118.



1418 EDWARD J. ANDERSON AND HUIFU XU

[7] R. J. GREEN, The electricity contract market in England and Wales, J. Industrial Economics,
47 (1999), pp. 107-124.
[8] R. J. GREEN AND D. M. NEWBERY, Competition in the British electricity spot market, J.
Political Economy, 100 (1992), pp. 929-953.
[9] R. J. GREEN, Increasing competition in the British electricity spot market, J. Industrial Eco-
nomics, 44 (1996), pp. 205-216.
[10] P.D. KLEMPERER AND M. A. MEYER, Supply function equilibria in oligopoly under uncertainty,
Econometrica, 57 (1989), pp. 1243-1277.
[11] P. J. NEAME, A. B. PHILPOTT, AND G. PRITCHARD, Offer stack optimization in electricity pool
markets, Oper. Res., 51 (2003), pp. 397-408.
[12] D. M. NEWBERY, Competition, contracts and entry in the electricity spot market, RAND J.
Economics, 29 (1998), pp. 726-749.
[13] A. RUDKEVICH, Supply Function Equilibrium in Power Markets: Learning All the Way, TCA
Technical Paper 1299-1702, Tabors Caramanis and Associates, Cambridge, MA, 1999.
[14] A. RUDKEVICH, Supply function equilibrium: Theory and applications, in Proceedings of the
Hawaii International Conference on Systems Science (HICSS-36), Waikoloa, HI, 2003.
[15] N. H. M. vON DER FEHR AND D. HARBORD, Spot market competition in the UK electricity
industry, Economic Journal, 103 (1993), pp. 531-546.
[16] C. D. WOLFRAM, Strategic bidding in a multiunit auction: An empirical analysis of bids to

supply electricity in England and Wales, RAND J. Economics, 29 (1998), pp. 703-725.



