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Abstract. In this paper, we consider the optimal policy for a generator offering power into
a wholesale electricity market operating under a pool arrangement. Anderson and Philpott [Math.
Oper. Res., 27 (2002), pp. 82–100] recently discussed necessary conditions for an optimal offer curve
when there is uncertainty in the demand and in the behavior of other participants in the market.
They show that the objective function in these circumstances can be expressed as a line integral
along the offer curve of a profit function integrated with respect to a market distribution function.
In this paper, we prove the existence of an optimal offer stack, and we extend the analysis of [Math.
Oper. Res., 27 (2002), pp. 82–100] to include necessary conditions of a higher order in the presence
of horizontal and/or vertical sections in an offer curve. Finally, we establish sufficient conditions for
an offer curve to be locally optimal.
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1. Introduction. In the past few years, there has been an enormous change
in the way that wholesale prices for electricity are determined in many parts of the
world. Increasingly, market mechanisms are being set up in which the clearing price
for electricity is determined by some sort of auction process. The book by Chao and
Huntington [3] gives a useful overview of the nature of electricity markets, and the
working paper by von der Fehr and Harbord [4] is another useful starting point as it
reviews the form of a variety of markets as they existed in 1998. In this paper, we
consider a model of the operation of such a market which captures some important
features of the electricity markets which operate in the UK, Australia, New Zealand,
and parts of the US. The model was introduced in a recent paper by Anderson and
Philpott [1]. We begin by reviewing this model before going on to extend the results of
Anderson and Philpott on the form of the optimal solutions for generators operating
in a market of this sort.

Generators in an electricity market offer energy into the market at prices that they
determine. We take this offer as having the form of an offer curve linking quantity and
price. We can write the quantity of electricity offered as a nondecreasing function of
price, S(p). S(p) is the quantity of electricity that will be delivered by the generator
in question if the clearing price is p. In some markets, power is offered in blocks, which
will imply that S(p) has the form of a step function. The clearing price is determined
by a market mechanism that incorporates consideration of the offers made by all the
generators, transmission constraints operating within the electricity network, and the
demand (which may have price dependence for some large consumers).

The model we consider represents a market operating under pool arrangements.
In some markets, there are more bilateral trading arrangements, and our model will
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not apply in these cases. In a pool arrangement, some form of independent system
operator (ISO) is responsible for determining which generators are dispatched and
will do this in a way which satisfies demand at least cost, using the generator bids
as proxies for cost. If the spot market consists of a pool located at a single node,
then the price of electricity can be computed by successively dispatching generation
from the offers with the lowest price until all of the demand is met. The price of the
marginal offer, the system marginal price, is then the price that is paid for all the
electricity dispatched. Thus a low cost generator can choose to offer power at its real
marginal cost and will be very likely dispatched and paid a substantial premium over
its marginal generating cost.

Following Anderson and Philpott [1], we will be interested in finding an optimal
offer for a generator when there is uncertainty about the demand and the behavior of
the other generators. This takes a different approach than that considered by Gross
and Finlay [6], who assume perfect competition so that the clearing price is unaffected
by any single generator’s offer. In our model, the offer that a generator makes has
a direct influence on the clearing price, but we will not consider the equilibrium
framework that would arise if we were to consider the optimal response of other
generators to our offer curve. In fact, the majority of papers dealing with electricity
markets have studied equilibria, often with the aim of assessing the degree of market
power implied by different market structures. See, for example, the papers by Hobbs
[7], Bolle [2], Green and Newbery [5], Rudkevich, Duckworth, and Rosen [8], and Wei
and Smeers [9].

Our work is more directly concerned with the problem faced by a generator in
deciding on an offer. In this case, the generator might take an equilibrium solution
as an indication of where things may end up in the long term, but the immediate
problem will be to respond to the current environment, which will involve uncertainty
in demand and in other generators’ offers. Such uncertainty arises partly because of
possible outages and partly because generators’ bidding behavior is not stable. Con-
centration only on an equilibrium solution is problematic: this assumes that other
generators are behaving in a fully rational way and that we have access to all rel-
evant information. Moreover, in many circumstances, there will be more than one
equilibrium possible; which one should guide the offer behavior for a generator? Fi-
nally, we should observe that the actual computation of equilibria in these markets
with many participants is extremely hard. Of course, since offers are repeated many
times a day and there is often considerable similarity between outcomes at the same
hour on different days, we should expect electricity markets to move toward some
sort of equilibrium behavior. Thus we are not arguing here against the importance
of understanding equilibria but merely that the problem we address is of importance.
Indeed, a good understanding of this problem will be helpful in moving forward in
the analysis of equilibrium models.

Anderson and Philpott have explored the problem of finding an offer curve that
maximizes the expected value of the profit made by an individual generator. The
offer curve is simply a monotonic continuous curve in the two-dimensional (quantity,
price) space. This curve need not be smooth; indeed, it will often in practice take the
form of a series of steps. Anderson and Philpott show how the problem of maximizing
expected profit is, in some circumstances, equivalent to maximizing the line integral
along the offer curve of a market distribution function defined in the (quantity, price)
space. The market distribution function captures all the elements of uncertainty in
either demand or the other players’ behavior.
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Anderson and Philpott give necessary conditions for an optimal offer curve in this
framework. In this paper, we make a number of contributions. First, in section 2,
we demonstrate the existence of an optimal solution. Second, in section 3, we extend
the necessary conditions given previously. In section 4, we give sufficient conditions
for an offer curve to be locally optimal. Finally, in section 5, we give an example to
demonstrate the application of these conditions.

The analysis we give is quite general and has some interest apart from its elec-
tricity market context. The necessary and sufficient conditions apply to the problem
of finding a choice of monotonic curve within a bounded region in order to maximize
a line integral along the curve. In the absence of monotonicity constraints, this is
a problem in the calculus of variations. However, the requirement for monotonicity
is fundamental and implies additional conditions that apply on sections of the curve
which are either horizontal or vertical (and hence at points where monotonicity acts
as a binding constraint). The results we give are proved by relatively direct and el-
ementary methods involving consideration of perturbations of an offer curve. It is
interesting that sufficient conditions for optimality can be obtained in this way.

2. Problem formulation and fundamentals. In this section, we will intro-
duce some notation and formulate the problem that we shall consider. Let R(q, p) be
the return function: that is, R(q, p) denotes the profit we make if we are dispatched
an amount q at a clearing price p. We will assume that R has continuous partial
derivatives. This function captures not only the cost of generating an amount q and
the proceeds pq which arise from the sale of this electricity but also the effects of any
hedging contracts the generator holds which depend on the market clearing price.

Rather than dealing with a supply function S(·) directly, it is convenient to model
the offer using a continuous curve s = {(x(t), y(t)), 0 ≤ t ≤ T}, in which the compo-
nents x(t) and y(t) are continuous monotonic increasing functions of t, and x(t) and
y(t) trace, respectively, the quantity and price components. Without loss of general-
ity we may take x(0) = y(0) = 0 and y(T ) ≤ pM , where pM is a bound on the price
of any offer. We also assume that qm is a bound on the generation capacity of the
generator, so x(T ) ≤ qM .

We use a single market distribution function ψ(q, p) to describe the uncertainty
in the market. ψ(q, p) is defined as the probability of not being fully dispatched if we
offer generation q at price p. It turns out that knowledge of the single function ψ(q, p)
is enough to determine the expected profit for a generator. In practice, a generator
will estimate the market distribution function from knowledge of the distribution of
demand and from repeated observations of the behavior of other generators. This
estimation problem will depend on the information released to market participants
about other players’ bids (something which varies between different markets). Another
issue will be to decide the class of functions from which an estimate is to be chosen.
However, subject to these considerations, either Bayesian or maximum likelihood
estimation techniques can be used.

Since ψ(q, p) is a probability, it takes values between 0 and 1. Let Ψ = {(q, p), 0 <
ψ(q, p) < 1}. Throughout, we assume that ψ is continuously differentiable on Ψ ∩
{(q, p), 0 ≤ q ≤ qM , 0 ≤ p ≤ pM}. The first key result, which we repeat from Anderson
and Philpott [1], demonstrates that the expected return if a generator offers in a
supply curve s can be expressed as a line integral along s. This can be established
by showing that a generator can only be dispatched at price-quantity points lying on
its offer curve and observing that the derivative of the market distribution function
ψ captures the appropriate probability density.
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Lemma 1 (see [1, Theorem 2]). If a generator offers in a curve s and the market
distribution function ψ is continuous, then the expected return is the line integral

v(s) =

∫
s

R(q, p)dψ(q, p).

Anderson and Philpott [1] treat v(s) as an objective function and investigate the
necessary conditions for an offer curve s to be a local maximizer. However, there is an
important question that they do not address explicitly: does there exist a maximum
over the set of curves which are considered? We begin by answering this question
before discussing optimality conditions.

A generator need not offer all of its generation capacity into the market; the
offer curve will start at some point (0, y(0)) and finish at (x(T ), y(T )). However, the
clearing price is determined as though the offer curve began with a vertical segment
from the origin to (0, y(0)) and finished with a vertical segment from (x(T ), y(T )) to
(x(T ), pM ). Hence we assume that Ω, the set of curves, has these characteristics.

Lemma 2. Let Ω be the set of monotonic continuous curves starting at the origin
and ending on the closed line segment, L, from (0, pM ) to (qM , pM ). Then Ω is
compact under the Hausdorff metric:

|s1 − s2|H = max
(x1,y1)∈s1

min
(x2,y2)∈s2

√
(x1 − x2)2 + (y1 − y2)2.

Proof. Let s ∈ Ω and L(s) be the arc length of s. By the monotonicity of s,

pM ≤ L(s) ≤ pM + qM .

For any s ∈ Ω, we may use the arc length measured from the origin as a parameter
and write s = {(x(t), y(t)), 0 ≤ t ≤ L(s)}. For 0 ≤ t1 < t2 ≤ L(s), we have

t2 − t1 ≥ max (x(t2)− x(t1), y(t2)− y(t1)) .

Thus both x and y are Lipschitz with respect to t. By replacing t with T
L(s) t, we

obtain a representation of s with both x and y defined on [0, T ]. The scaled x and
y are still Lipschitz and monotonic. It is well known that the class of monotonic
Lipschitz functions defined on [0, T ] forms a compact set. Thus the set of curves Ω,
when represented as pairs of (Lipschitz) functions, is compact with the metric

|s1 − s2| = max

(
sup

0≤t≤T
|x1(t)− x2(t)|, sup

0≤t≤T
|y1(t)− y2(t)|

)
.

Since |s1 − s2|H ≤ √
2|s1 − s2|, this implies compactness of Ω with the Hausdorff

metric.
Anderson and Philpott [1] introduced the notation

Z(q, p) ≡
{

Rqψp −Rpψq, (q, p) ∈ Ψ,
0 otherwise

and observed that ∫ ∫
S
Z(q, p)dpdq =

∫
C
R(q, p)dψ(q, p),(1)
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where S is a region enclosed by a curve C. Relation (1) follows immediately from
Green’s theorem and plays an important role in the investigation of optimality con-
ditions. The scalar function Z can be thought of as indicating the direction in which
the offer curve needs to move to produce an improvement in expected profit. If Z > 0,
then a move of the offer curve down and to the left in the (q, p) plane will produce
an improvement, while Z < 0 indicates that the offer curve should move up and to
the right. Consequently, when monotonicity constraints are not binding, it will be
optimal to follow a Z = 0 curve.

Using Lemma 2 and (1), we are able to obtain the following result.
Theorem 3. Let Ω be defined as above, and let v be the expected return function

given in Lemma 1. Then v achieves its maximum on Ω.
Proof. By Lemma 2, Ω is a compact set. It suffices to prove that v is continuous

with the Hausdorff metric. Let s̃ ∈ Ω, and assume without loss of generality that S
is the region surrounded by s̃, s. Thus, as s̃ is close to s, the area S is small. By (1),
the boundedness of Ψ, and the continuous differentiability ψ and R, we know that
the integral of Z over S will be arbitrarily small when the area of S shrinks to zero.
On the other hand, the line integral at the right side of (1) over the segment of L
between s and s̃ tends to zero as s̃→ s. This implies that v(s̃) tends to v(s).

Given this theorem, the maximization problem

maximize v(s), subject to s ∈ Ω

is well defined. In the rest of this paper, we will discuss the necessary and sufficient
conditions for an offer curve s to be a local maximizer.

3. Necessary conditions. We turn now to necessary conditions for optimality.
Anderson and Philpott [1] establish a set of conditions which we will extend. Such
conditions are important in the development of algorithms to solve the generator’s
maximization problem. Later we will illustrate their use by considering a simple
example. In general, more complete optimality conditions will serve to eliminate
more potential candidate optimal offer curves. It is convenient to restate the result
of [1] in a slightly different form in order to show how it is related to the results that
we prove in this paper.

Throughout, we need to use the line integral of Z along a curve {(x(t), y(t)) : 0 ≤
t ≤ T} which is defined by

w(t) =

∫ t

0

Z(x(τ), y(τ))(x′(τ) + y′(τ))dτ.

In some cases, we will write w(x(t), y(t)) to denote w(t) for clarity.
Theorem 4. Suppose that s = {x(t), y(t), 0 ≤ t ≤ T} is an increasing continuous

offer curve. Suppose that there exist m numbers 0 ≤ t1 < t2 < · · · < tm ≤ T with
0 < x(t) < qM and 0 < y(t) < pM for t1 < t < tm and such that, on each section
(ti−1, ti), i = 2, . . . ,m, s is either strictly increasing in both components or horizon-
tal or vertical, with different characteristics in successive segments. If s is optimal,
then each of the w(ti), i = 1, 2, . . . ,m, takes the same value, say, w0, and, for each
interval I, being one of (ti−1, ti), i = 2, . . . ,m, (0, t1), or (tm, T ), one of the following
holds:

(i) s is strictly increasing in both components, and Z(x(t), y(t)) = 0 for t ∈ I;
(ii) s is horizontal on I, and w(t) ≤ w0 for t ∈ I;
(iii) s is vertical on I, and w(t) ≥ w0 for t ∈ I.
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Anderson and Philpott [1] show, in addition, that, when s is neither horizontal
nor vertical, then there are sign constraints on the partial derivatives of Z if they
exist. In fact, the existence of partial derivatives for Z will allow us to extend the
results of Theorem 4 provided that Z is well behaved enough.

We will need to make an assumption about the partial derivatives of Z. We give
the weakest form of this required for our results; it is stronger than continuous differ-
entiability, requiring also a uniformity condition on horizontal and vertical sections
of s. This condition will be implied, for example, by Z having continuous second
derivatives.

Assumption 1. Z is continuously differentiable on Ψ. If s is horizontal on [ti−1, ti],
then, for every η > 0, there is a τ0 > 0 with

|Z(x(t), y(ti) + τ)− Z(x(t), y(ti))− Zp(x(t), y(ti))τ | ≤ η|τ |

for every t ∈ [ti−1, ti] and |τ | < τ0. Similarly, if s is vertical on [ti−1, ti], then, for
every η > 0, there is a τ0 > 0 with

|Z(x(ti) + τ, y(t))− Z(x(ti), y(t))− Zq(x(ti), y(t))τ | ≤ η|τ |

for every t ∈ [ti−1, ti] and |τ | < τ0.
The theorem below extends Theorem 4, but there is a key difference that is worth

pointing out before stating the result. In the previous theorem, the values ti are
defined as corresponding to points where the curve changes characteristic, say, from
horizontal to vertical. In the theorem we give next, we will define the values ti in
terms of the w values instead. Thus suppose we have a horizontal segment within
which w(t) ≤ w0: then, in Theorem 4, the ti values mark either end of this segment,
but in the next theorem we add to this any other values of t at which w(t) = w0,
between the end points. Thus we may have a point ti, with s horizontal on either
side of it. It will be convenient to distinguish those values of ti such that the curve s
changes its characteristics at (x(ti), y(ti)), for instance, from vertical to horizontal or
strictly increasing in both components. For convenience, we call both the parameter
ti and the point (x(ti), y(ti)) a turning point.

Theorem 5. Suppose that s = {x(t), y(t), 0 ≤ t ≤ T} is an increasing continuous
offer curve. Suppose that there exist m numbers 0 ≤ t1 < t2 < · · · < tm ≤ T such that
each of the w(ti), i = 1, 2, . . . ,m, takes the same value, say, w0, and, on each section
[ti−1, ti], i = 2, . . . ,m, s is either strictly increasing in both components or horizontal
or vertical. Suppose that s is an optimal offer stack. Then, under Assumption 1, for
each section (ti−1, ti), the following hold:

(i) if s is strictly increasing on (ti−1, ti), then Zp(x(t), y(t)) ≥ 0 and Zq(x(t), y(t))
≤ 0 for t ∈ (ti−1, ti);

(ii) if s is horizontal on (ti−1, ti) and one of ti−1 or ti is a turning point, then

∫ x(ti)

x(ti−1)

Zp(x, y(ti))dx ≥ 0;(2)

further, if s turns from horizontal to vertical at ti, then∫ x(ti)

x(ti−1)

Zp(x, y(ti))dx−
∫ y(ti+1)

y(ti)

Zq(x(ti), y)dy ≥ 2Z(x(ti), y(ti));(3)
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(iii) if s is vertical on (ti−1, ti) and one of ti−1 or ti is a turning point, then

∫ y(ti)

y(ti−1)

Zq(x(ti), y)dy ≤ 0;(4)

further, if s turns from vertical to horizontal at ti, then∫ y(ti)

y(ti−1)

Zq(x(ti), y)dy −
∫ x(ti+1)

x(ti)

Zp(x, y(ti))dx ≤ 2Z(x(ti), y(ti)).(5)

Before giving a proof of this result, it may be helpful to discuss the conditions
(2), (3), (4), and (5).

If s is horizontal on (ti−1, ti), then, since w(ti−1) = w(ti) = w0,∫ x(ti)

x(ti−1)

Z(x, y(ti))dx = 0.

This integral captures the first order effect of a move of the horizontal segment up or
down by a small amount. Given that the integral is zero, we can look at the second
order effects of the same move, and these are given by the integral in (2). The same
argument applied to a vertical segment leads to the integral in (4).

The stronger conditions (3) and (5), which apply when there is a turn from
horizontal to vertical (or vice versa), arise from considering a move of a horizontal
segment at the same time as a vertical segment. Notice that, if s turns from horizontal
to vertical at ti, then Z(x(ti), y(ti)) ≥ 0. This follows from the observation that
Theorem 4 implies that w(t) is increasing at t = ti. In the same way, Z(x(ti), y(ti)) ≤
0 if there is a turn from vertical to horizontal at ti.

Proof. Part (i) was already established by Anderson and Philpott [1]. We will
prove part (ii); part (iii) follows in exactly the same way. For the sake of contradiction,
assume that (2) does not hold and s is horizontal on (ti−1, ti) but not horizontal on
(ti, ti+1). Let δ > 0 be sufficiently small, and consider a vertical perturbation of s
by an amount δ between ti−1 and ti. We can make this explicit as follows. Define
ti(+δ) = y−1(y(ti) + δ), and let

s̃(t) =




(x(t), y(t)), t ≤ ti−1,
(x(ti−1), t− ti−1 + y(ti−1)), ti−1 ≤ t ≤ ti−1 + δ,
(x(t− δ), y(ti−1) + δ), ti−1 + δ ≤ t ≤ ti(+δ) + δ,
(x(t− δ), y(t− δ)), ti(+δ) + δ ≤ t ≤ T + δ,

be a perturbation of s. This is illustrated in Figure 1. For 0 ≤ τ ≤ δ, we consider the
line integral

I(τ) =

∫ x(ti)

x(ti−1)

Z(x, y(ti) + τ)dx.

Let ε > 0 be such that
∫ x(ti)

x(ti−1)
Zp(x, y(ti))dx < −ε < 0. By Assumption 1, for τ

sufficiently small and x ∈ [x(ti−1), x(ti)],

Z(x, y(ti) + τ) ≤ Z(x, y(ti)) + Zp(x, y(ti))τ +
τε

x(ti)− x(ti−1)
.
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s

s̃

(x(ti(+ )),y(ti)+ )
(x(ti),y(ti))

Fig. 1. Perturbation of a horizontal section of s.

Thus

I(τ) ≤ w(ti)− w(ti−1) + τ

∫ x(ti)

x(ti−1)

Zp(x, y(ti))dx+ τε.

Consequently, we have, for all τ , I(τ) < 0 when δ is sufficiently small. The area
integral of Z over the region surrounded by s, s̃, x = x(ti−1), and x = x(ti) can be

written as
∫ δ

0
I(τ)dτ , which is not larger than δ2

2 [
∫ x(ti)

x(ti−1)
Zp(x, y(ti))dx+ ε].

Now we need to consider the region, namely, R, to the right of x = x(ti) sur-
rounded by s and s̃. This area exists only when s is strictly increasing in each com-
ponent on the interval (ti, ti+1). In this case, the area is of order o(δ). On the other
hand, since Z(x(t), y(t)) = 0 along the lower boundary of the region,

Z(x(t), y(ti) + τ) = Zp(x(t), y(t))(y(ti) + τ − y(t)) + o(τ) < Zp(x(t), y(t))τ + o(τ)

for all ti ≤ t ≤ ti(+δ), 0 ≤ τ ≤ δ, such that (x(t), y(ti) + τ) ∈ R. Note that Zp is
continuous, and the distance between any point (x, y) ∈ R and (x(ti), y(ti)) tends to
0 as δ → 0. Consequently, the integral of Z over R is at most of order o(δ2). Thus
we have

v(s)− v(s̃) ≤
∫ δ

0

I(τ)dτ + o(δ2) =
δ2

2

∫ x(ti)

x(ti−1)

Zp(x, y(ti))dx+
δ2

2
ε+ o(δ2)

for δ small enough. From the choice of ε, this contradicts the optimality of s for δ
small enough.

In the case that s is not horizontal on (ti−2, ti−1), we can obtain the same result by
considering a vertical perturbation of s between ti−1 and ti downward by an amount δ.

Now suppose that ti is a corner where s turns from horizontal to vertical. We will
assume that (3) does not hold and derive a contradiction. Let η be a scalar such that

∫ x(ti)

x(ti−1)

Zp(x, y(ti))dx−
∫ y(ti+1)

y(ti)

Zq(x(ti), y)dy − 2Z(x(ti), y(ti)) < −2η < 0.(6)

We consider a perturbation that moves the horizontal section between ti−1 and ti
upward by a small amount δ and the vertical section between ti and ti+1 to the
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left by the same amount δ. We can make this explicit as follows. Define ti(−δ) =
x−1(x(ti)− δ), and let

s̃(t) =




(x(t), y(t)), t ≤ ti−1,
(x(ti−1), t− ti−1 + y(ti−1), ti−1 ≤ t ≤ ti−1 + δ,
(x(t− δ), y(ti−1) + δ), ti−1 + δ ≤ t ≤ ti(−δ) + δ,
(x(ti)− δ, y(t+ k − δ)), ti(−δ) + δ ≤ t ≤ ti+1 − k + δ,
(x(ti+1) + t− 2δ + k − ti+1, y(ti+1)), ti+1 − k + δ ≤ t ≤ ti+1 − k + 2δ,
(x(t+ k − 2δ), y(t+ k − 2δ))), ti+1 − k + 2δ ≤ t ≤ T − k + 2δ,

be a perturbation of s, where k = ti(+δ)− ti(−δ).
First observe that

w(ti(−τ))− w(ti(+τ)) = −
∫ x(ti)

x(ti)−τ

Z(x, y(ti))dx−
∫ y(ti)+τ

y(ti)

Z(x(ti), y)dy

≤ −2τZ(x(ti), y(ti)) + ητ/2(7)

for τ sufficiently small, using the mean value theorem and the continuity of Z. On
the other hand, under Assumption 1, for the given η, there exists δ > 0 sufficiently
small such that, for 0 < τ ≤ δ, the line integral

I(τ) ≡
∫ x(ti)−τ

x(ti−1)

Z(x, y(ti) + τ)dx+

∫ y(ti+1)

y(ti)+τ

Z(x(ti)− τ, y)dy

≤ w(ti(−τ))− w(ti−1) + w(ti+1)− w(ti(+τ))

+ τ

∫ x(ti)−τ

x(ti−1)

Zp(x, y(ti))dx− τ

∫ y(ti+1)

y(ti)+τ

Zq(x(ti), y)dy + ητ/2.(8)

Since Zp and Zq are continuous, it follows from (6) that, for δ sufficiently small and
τ ≤ δ,

∫ x(ti)−τ

x(ti−1)

Zp(x, y(ti))dx−
∫ y(ti+1)

y(ti)+τ

Zq(x(ti), y)dy − 2Z(x(ti), y(ti)) < −η.(9)

Combining (7)–(9) and noticing that w(ti−1) = w(ti+1) = w0, we have I(τ) < 0 for δ
sufficiently small and all 0 ≤ τ ≤ δ.

Now the area integral of Z over the region surrounded by s and s̃ can be written

as
∫ δ

0
I(τ)dτ and hence is strictly negative. Thus we have constructed a perturbed

curve which leads to a larger value for v, which is a contradiction. This completes the
proof.

4. Sufficient conditions. In this section, we discuss sufficient conditions for an
offer curve s to be locally optimal. This involves a more complex set of conditions
than were required for the necessary conditions. To establish this result, we will have
to consider all possible monotonic perturbations around the offer curve s. As we shall
see, considerable care is needed in the argument required to prove this result.

Theorem 6. Let s = {x(t), y(t), 0 ≤ t ≤ T} be an increasing and continuous
offer stack. Suppose that there exist finite numbers 0 = t0 < t1 < t2 < · · · < tM = T
such that, for i = 1, . . . ,M − 1, w(ti) takes a common value, say, w0, and on each
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Fig. 2. Area of perturbation split into subregions.

section (ti−1, ti), i = 1, . . . ,M , s is either strictly increasing in both components or
horizontal or vertical. Suppose also that Assumption 1 and the following hold:

(i) if s is increasing in both components on (ti−1, ti), then, for t ∈ (ti−1, ti),
Z(x(t), y(t)) = 0, Zp(x(t), y(t)) > 0, and Zq(x(t), y(t)) < 0;

(ii) if s is horizontal on (ti−1, ti), then, for t ∈ (ti−1, ti), w(t) < w0; moreover,
for any j < k such that s is horizontal from tj to tk with at least one of tj
and tk a turning point,∫ x(tk)

x(tj)

Zp(x, y(tj))dx > Z(x(tk), y(tk))− Z(x(tj), y(tj));(10)

(iii) if s is vertical on (ti−1, ti), then, for t ∈ (ti−1, ti), w(t) > w0; moreover, for
any j < k such that s is vertical from tj to tk with at least one of tj and tk
a turning point,∫ y(tk)

y(tj)

Zq(x(tj), y)dy < Z(x(tk), y(tk))− Z(x(tj), y(tj));(11)

(iv) if (x(ti), y(ti)) is a point where the curve turns from horizontal to vertical,
then either Z(x(ti), y(ti)) > 0 or Z(x(ti), y(ti)) = 0 and Zp(x(ti), y(ti)) > 0,
Zq(x(ti), y(ti)) < 0; if (x(ti), y(ti)) is a point where the curve turns from
vertical to horizontal, then either Z(x(ti), y(ti)) < 0 or Z(x(ti), y(ti)) = 0
and Zp(x(ti), y(ti)) > 0, Zq(x(ti), y(ti)) < 0.

Then s is a locally optimal offer stack.
Proof. In order to prove that s is locally optimal, it suffices to prove that, for any

local perturbation s̃ which is sufficiently close to s, v(s̃) < v(s). By Green’s theorem,
this is equivalent to proving that the area integral of Z over any region surrounded
by s̃ and s is positive if the region is above or to the left of the curve s and negative
if under or to the right of s. We discuss only the case that the perturbed region is
above or to the left of the curve s, and the other case can be dealt with similarly.

We define a line y = y(ti) − (x − x(ti)) at every turning point and call this line
Li. Figure 2 illustrates this with s shown bold and s̃ as a dashed line. Assume the
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Fig. 3. Comparison between w and s.

maximum distance between s and s̃ is no larger than δ0. The idea of the proof is to
deal separately with different parts of the region between s and s̃. In fact, we divide
this region into subregions using the lines Li and show that the area integral of Z is
positive over each nonempty subregion. To accomplish this, we will consider integrals
along horizontal (or vertical) segments with an end point on one of the lines Li and
show that each of these has positive value. One of these integrals I(τ) is illustrated
in Figure 3. Since the perturbation is monotonic, the horizontal line segments will
finish on an Li, while the vertical line segments will start on an Li.

Suppose first that s is strictly increasing in both components on (ti−1, ti). By
assumption (i), it is easy to verify that Z(x, y) > 0 for any (x, y) within the region
surrounded by s, s̃, and lines Li−1 and Li provided δ0 is chosen small enough. Con-
sequently, the area integral of Z over the region surrounded by s, s̃, and these lines,
if not empty, is positive.

Now we turn to the central part of the proof, and we consider the case that s is
horizontal between th and ti, and (x(th), y(th)) and (x(ti), y(ti)) are turning points.
We observe first from (i) and (iv) that

Z(x(th), y(th)) ≤ 0(12)

and

Z(x(ti), y(ti)) ≥ 0.(13)

We will need to keep track of the parameter t at points on s which are a distance
γ to the right or left of one of the ti values in this horizontal segment. We let
tk(−γ) denote x−1(x(tk) − γ) for k = h + 1, . . . , i, and tj(+γ) = x−1(x(tj) + γ) for
j = h, . . . , i− 1.
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The proof proceeds in two major steps. In step 1, we construct a value of δ
sufficiently small for the I(τ) integrals to be positive when δ0 < δ; then, in step 2, we
demonstrate this inequality.

Step 1. To define δ appropriately, we need first to define some intermediate
quantities γ and ε. Choose γ > 0 small enough so that, for all x ∈ (x(ti)− γ, x(ti)),

Z(x, y(ti)) > 0, Zp(x, y(ti)) > 0,(14)

and for xu ∈ [x(ti)− γ, x(ti)], x
l ∈ [x(tj)− γ, x(tj) + γ], j = h+ 1, . . . , i− 1,

∫ xu

xl

Zp(x, y(ti))dx− Z(x(ti), y(ti)) > 0,(15)

and for xl ∈ [x(th), x(th) + γ],

∫ xu

xl

Zp(x, y(ti))dx+ Z(x(th), y(th))− Z(x(ti), y(ti)) > 0.(16)

The existence of a γ satisfying (14) is guaranteed by conditions (i) and (iv) and (13),
while the existence of a γ satisfying (15) and (16) follows from (10) after observing
that Z(x(tj), y(tj)) = 0 since w(tj) is a local maximum of w(·) for j = h+1, . . . , i−1.

Given such a γ, choose ε > 0 small enough so that

w0 − α(γ) > ε,

where

α(γ) = sup
x(t)∈J (γ)

w(t),

and

J (γ) =
⋃

h≤j≤i−1

[x(tj) + γ, x(tj+1)− γ];

and for xu ∈ [x(ti)− γ, x(ti)], x
l ∈ [x(tj)− γ, x(tj) + γ], j = h+ 1, . . . , i− 1,

∫ xu

xl

Zp(x, y(ti))dx− Z(x(ti), y(ti)) > 2ε,(17)

and for xl ∈ [x(th), x(th) + γ],

∫ xu

xl

Zp(x, y(ti))dx+ Z(x(th), y(th))− Z(x(ti), y(ti)) > 3ε.(18)

The definitions of α(γ) and J (γ) are illustrated in Figure 3.
Having chosen ε and γ, now let δ > 0 be chosen small enough such that the

following six conditions (a)–(f) hold.
(a)

δ <
1

2ε
(w0 − α(γ)− ε) .(19)
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(b) For xl ∈ J (γ) and xu ∈ [x(ti)− γ, x(ti)],

δ

∣∣∣∣∣
∫ xu

xl

Zp(x, y(ti))dx− Z(x(ti), y(ti))

∣∣∣∣∣ < ε.(20)

This follows from the fact that Zp is continuous.
(c) For 0 ≤ τ ≤ δ,

w0 − w(ti(−τ)) ≤ τZ(x(ti), y(ti)) + ετ.(21)

This can be proved using continuity of Z and the mean value theorem.
(d) For 0 ≤ τ ≤ δ and t ∈ [th, ti],

Z(x(t), y(ti) + τ) ≥ Z(x(t), y(ti)) + Zp(x(t), y(ti))τ − ετ

(x(ti)− x(th))
.(22)

This follows from Assumption 1.
(e) For x ∈ (x(ti)− γ, x(ti)), 0 ≤ τ ≤ δ,

Z(x, y(ti) + τ) > 0.(23)

This follows from (14) and Assumption 1.
(f) For 0 ≤ τ1, τ2 ≤ δ,

Z(x(th)− τ1, y(th) + τ2) > Z(x(th), y(th))− ε.(24)

This follows from the continuity of Z.
Step 2. For 0 < τ ≤ δ, we consider the integral

I(τ) =

∫ x(ti)−τ

xl

Z(x, y(ti) + τ)dx.

We shall prove that I(τ) > 0 for all xl ∈ [x(th)− τ, x(ti)− τ ]. To do this, we need to
consider four cases depending on the position of xl. When xl ∈ J (γ), we will show
that the value of the integral I(τ) is dominated by I(0), which is a similar integral of
Z but shifted down by an amount τ . Now I(0) = w0 −w(xl, y(ti)), which is positive.
However, when xl is near th, ti, or one of the intermediate tj , then I(0) is near zero,
and we need to consider more precisely the difference between I(τ) and I(0). This
difference will be determined by the integral of Zp along the line segment.

Suppose first that xl ≥ x(th). By (22), we have

I(τ) ≥ w(x(ti)− τ, y(ti))− w(xl, y(ti)) + τ

∫ x(ti)−τ

xl

Zp(x, y(ti))dx− ετ.(25)

Case A. For xl ∈ [x(th), x(ti)− γ]\J (γ), since w(xl, y(ti)) ≤ w(x(ti), y(ti)) = w0,
it follows from (21) and (25) that

I(τ) ≥ τ

(∫ x(ti)−τ

xl

Zp(x, y(ti))dx− Z(x(ti), y(ti))

)
− 2ετ.(26)

Thus (using (17), (18), and (12)), I(τ) > 0.
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Case B. For xl ∈ J (γ), combining (19), (20), (21), and (25), we have

I(τ) ≥ w0 − α(γ) + τ

(∫ x(ti)−τ

xl

Zp(x, y(ti))dx− Z(x(ti), y(ti))

)
− 2ετ

≥ w0 − α(γ)− ε− 2τε

> 0.

Case C. For xl ∈ [x(ti)−γ, x(ti)− τ ], 0 ≤ τ ≤ δ, it follows immediately from (23)
that I(τ) is positive.

Case D. For xl < x(th), we must have x
l ∈ [x(th)− τ, x(th)], 0 ≤ τ ≤ δ, and

I(τ) =

∫ x(th)

xl

Z(x, y(ti) + τ)dx+

∫ x(ti)−τ

x(th)

Z(x, y(ti) + τ)dx.

By (26),

∫ x(ti)−τ

x(th)

Z(x, y(ti) + τ)dx ≥ τ

(∫ x(ti)−τ

x(th)

Zp(x, y(ti))dx− Z(x(ti), y(ti))

)
− 2ετ.

On the other hand, it follows from (24) that

∫ x(th)

xl

Z(x, y(ti) + τ)dx ≥ (Z(x(th), y(th))− ε)τ.

Thus

I(τ) ≥ τ

(∫ x(ti)−τ

x(th)

Zp(x, y(ti))dx− Z(x(ti), y(ti)) + Z(x(th), y(th))− 3ε

)
> 0.

The last inequality is due to (18).
Now that we have established that I(τ) is positive, we are almost done. Let L be

any horizontal line segment with a distance less than δ0 above s and lying between
the lines Lh and Li, and with its right-hand end on the line Li. The above discussion
shows that, when δ0 ≤ δ, the line integral of Z along L is positive. Let R̃ denote
the region surrounded by s̃, s, Lh, and Li. Since s̃ is monotonic increasing and
the maximum distance between s̃ and s is not larger than δ0, any intersection of a
horizontal line and R̃ will take the form L. This implies that the area integral of Z
over R̃ is positive.

The argument for a vertical section is similar, but the integral I(τ) takes the form

I(τ) =

∫ yu

y(ti)+τ

Z(x(ti)− τ, y)dy.

This completes the proof.
The conditions of Theorem 6 are stronger than the necessary conditions of The-

orems 4 and 5, and it is worth discussing the differences. First observe that the
necessary conditions of Theorem 4 (i) and Theorem 5 (i) carry over as we would
expect after a change to strict inequalities for Zp and Zq.

When we come to consider conditions (ii) and (iii) of Theorems 4 and 5, the
position is more complex. We replace the condition w(t) ≤ w(t1) on a horizontal
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section with the condition w(t) < w(t1) except at identified points among the tj , j =
1, . . . , where w(tj) = w(t1). The same thing happens on a vertical section. However,
there is no direct equivalence of conditions (3) and (5) (though these inequalities can
be derived from adding (10) and (11) in an appropriate way). Consider the inequality
(10). As we have already observed, Z(x(tk), y(tk)) ≥ 0, and Z(x(tj), y(tj)) ≤ 0. So
inequality (10) is strictly stronger than inequality (2). Similarly, inequality (11) is
stronger than inequality (4).

Condition (iv) of Theorem 6 strengthens the inequality Z(x(ti), y(ti)) ≥ 0 (or
Z(x(ti), y(ti)) ≤ 0), which can be derived from the necessary conditions at a turning
point from horizontal to vertical (or vertical to horizontal).

5. An example. To illustrate the application of these necessary and sufficient
conditions, we consider a small example based on one given in [1]. We define the
market distribution function ψ via an intermediate function φ, which is defined as

φ(q, p) = ((q − p)2 − 1)((q − p)2 − 0.7)− 1.59p2 − 1.11q2.

Then we set ψ (q, p) = pq + 0.045φ(q, p) − 0.1. We suppose that the cost function
is given by the quadratic C(q) = 0.08q2. We also suppose that the generator has a
two-way hedging contract for a quantity 0.15 and thus makes payments under these
contracts of 0.15(f − p) where f is the contract price. Since f is fixed, we can ignore
this term in seeking an optimal solution, and so we can take the profit function as
R(q, p) = (q − 0.15)p− C(q).

The first step in understanding the behavior of this example is to look at the
values of the function Z over the region Ψ. This is shown in Figure 4, where the
dashed lines show that Z = 0 and divide Ψ into regions where Z is either positive
or negative. Also shown in the figure are three solid lines AB, CD, and EF, which
connect the lower boundary of Ψ, ψ = 0, with its upper boundary, ψ = 1. These are
candidate offer curves. AB runs along a Z = 0 line, and EF runs along another Z = 0
line for most of its length. It is clear that AB will satisfy all of the conditions used
in this paper and is a local optimum, but the position is less clear for the other two
curves.

0

0.5

1

1.5

2

2.5

3
p

0.5 1 1.5 2 2.5
q

Z>0

Z>0
Z<0

Z<0

A

C

E

B

D
F

Fig. 4. Candidate supply curves for the example.
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First we look at the CD offer curve. This starts with a vertical section from
(0.1858, 0.68244) to (0.1858, 0.75685), then has a horizontal section to the point (1.1972,
0.75685), and then finishes with a vertical section to hit the boundary of Ψ at the
point (1.1972, 1.0245). These points have been chosen so that the solution satisfies all
of the conditions of Theorem 4. Each of the three sections has the property that the
integral of Z along the section is zero, which is what is required for w to take the same
value w0 at the endpoints of each section. Moreover, the fact that the two vertical
sections move from Z > 0 to Z < 0, while the horizontal section does the reverse,
will ensure that w is no less than w0 on the vertical sections and no more than w0 on
the horizontal section. Once it is decided to search for an offer curve of this general
form, these conditions can be used to find the exact curve. Starting from different
points on the ψ = 0 curve, we can let the w condition determine when to switch from
vertical to horizontal and then back to vertical. We then iterate amongst possible
starting positions to search for a solution which achieves a zero Z integral on the final
vertical section; i.e., it makes w = w0 at the point where the vertical section crosses
the ψ = 1 curve. (All of the numerical calculations for this example were performed
using Maple.)

The next step is to check the second order conditions of Theorem 5. We require
that the integral of Zq on the first vertical section be no greater than zero, and, in
fact, ∫ 0.75685

0.68244

Zq(0.1858, y)dy = −5.408× 10−3,

so this condition is satisfied. We also require that the integral of Zp along the hori-
zontal section be no less than zero, but∫ 1.1972

0.1858

Zp(x, 0.75685)dx = −0.16526,

so this condition fails. Moreover, the integral of Zq on the last vertical section is
greater than zero so that this condition fails as well. Finally, both the conditions
(3) and (5) involving the value of Z at the corner points fail. So we know from the
theorem that this solution is not a local optimum.

Next we consider the EF solution. The final vertical section of this is chosen
in such a way that the integral of Z on this vertical section is zero. It starts at
the point (1.365, 0.82561) and moves vertically until meeting the ψ = 1 boundary at
(1.365, 0.90056) Since the rest of the curve is on the Z = 0 curve, the conditions of
Anderson and Philpott will be satisfied. We check the conditions of Theorem 5. We
have ∫ 0.90056

0.82561

Zq(1.365, y)dy = −9.4287× 10−3 < 0

as required.
The next step is to check the sufficient conditions of Theorem 6. Most of the

conditions of this theorem will hold trivially, but we need to check that∫ 0.90056

0.82561

Zq(1.365, y)dy < Z(1.365, 0.90056)− Z(1.365, 0.82561).

Now Z(1.365, 0.82561) = 0, and Z(1.365, 0.90056) = −1.3136×10−3, so this condition
will hold.
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Hence both the curves AB and EF are locally optimal: to choose between them,
we must evaluate the objective function for each. In fact, the objective function value
along the curve AB is 0.5183, while the value along EF is 0.4857. So the curve AB is
the (global) optimum for this problem.
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