
Abstract. In this paper we analyse the equilibrium structure for a particular
type of electricity market. We consider a market with two generators
offering electricity into a pool. Generators are centrally dispatched, with
cheapest offers used first. The pool price is determined as the highest-priced
offer dispatched, and both generators are paid this price for all the elec-
tricity they provide. First generators set their price points (at which bids will
later be made) and these are announced. Then each generator chooses the
quantities to offer at each price. This reflects the behaviour of the Austra-
lian electricity market in which prices are set for 24-hours at a time, but
different quantities can be offered within each half-hour period. The
demand for electricity is uncertain when offers are made (and is drawn from
a probability distribution known to both players). We begin by analysing an
example of this two stage game for a simple case where only one price can
be chosen. The main results of the paper concern the structure of a Nash
equilibrium for the quantity-setting sub-game in which each player aims to
maximise their expected profit when prices have already been announced.
The distribution of demand plays an important role in the existence of a
Nash equilibrium. In the quantity setting game there may be Nash equi-
libria which are not stable. We show that, under certain circumstances, if
the equilibrium offers are sufficiently close to the generators’ marginal costs,
then the equilibrium will be stable.
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1 Introduction

Wholesale electricity markets have been introduced in many different
countries around the world. The way in which these markets are imple-
mented varies from one country to another, but they all seek to provide
electricity to consumers at a competitive price at the same time as giving
appropriate signals for investment and new entry (see Chao and Huntington
(1998), Stoft (2002) for more information on wholesale electricity markets).
In this paper we consider a market with a central dispatch and pricing
mechanism: this type of market is called an electricity pool. The first elec-
tricity market of this type was created in England and Wales, but similar
markets now operate in parts of North America and Europe, in Australia
and in New Zealand.

Wholesale electricity markets with a pool structure are characterized by
there being a single price for electricity paid to all generators offering power
at a single point of the transmission system. This price is set in a way that
the market clears: generators offering power below this price have the power
dispatched, and their combined output is just enough to meet the total
demand. The price paid to all the generators is that for the highest-priced
power which is actually used. The same idea can be applied to a network
with transmission losses, and we end up with separate market clearing prices
at each node. In this case an optimization problem has to be solved to find
the right dispatch (the optimization problem seeks to meet the demand at
least cost assuming that generators offers correctly reflect the cost of power
supply). Markets of this sort are designed to produce a socially optimal
outcome in the case that there are many generators and the market is
competitive, with no single generator having substantial market power. In
this case it is optimal for all generators to offer power at their marginal cost
of generation. However real electricity markets are better modelled as oli-
gopolies: even when the market as a whole has large numbers of generators,
the transmission constraints limit the extent to which large number of
generators compete for the demand at a single node. Thus we will need to
use a game theory analysis to understand the likely behavior of generators
operating in the market.

In this paper we discuss a two-player game that models some aspects of a
wholesale electricity market. The players are generators who both offer power
at the same node of the network. Each generator is concerned to maximize its
own expected profit, where uncertainty arises since demand is not known in
advance. The players first decide on the prices at which they will bid and these
prices are announced. Then the players decide on the quantities of power to
offer at their previously announced prices. Next demand occurs: the demand
is random, independent of price, and is drawn from a distribution known to
both players. prices. Finally a market mechanism dispatches the cheapest
power to meet actual demand. The market mechanism determines the system
marginal price of power and this price is paid to both generators for all of the
electricity they supply.

Our focus is on the Nash equilibria that occur in this duopoly when there
is a one shot game. There is a further issue that may arise in practice as a
result of the repeated play that occurs in electricity markets from day to day.
This enables players to learn strategies that can support high payoff outcomes
that are not equilibria for the game when only played once. Though this is an
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important issue, we will only look at the simpler question of equilibria in a
one-shot game.

The model we use is based on the wholesale electricity market that exists in
Australia called the Australian National Electricity Market (NEM). At the
beginning of each 24-hour period each generation unit chooses a set of ten
prices that are then fixed for the whole day. Generators then choose the
quantity to bid for each generation unit at each of the ten price points for
each half hour of the day. Actual dispatch quantities are then determined
based on system demand during a five-minute period. Within each five-
minute time interval the central market mechanism will dispatch the cheapest
electricity bids at that time, with all bids at the market clearing price or below
being dispatched.

Much of the previous work on equilibria in electricity markets has sim-
plified the model by assuming a continuous offer curve rather than offers at
discrete prices (see for example Green and Newbery (1992), Rudkevich et al.
(1998) and Anderson and Philpott (2002a)). Another approach, used by Von
der Fehr and Harbord (1993), has been to look at the market from the
standpoint of a multi-unit simultaneous auction. Fabra et al. (2002) argue for
the importance of correctly representing the discrete nature of the generator
bids, since if offer curves were truly continuous then market power can be
exercised more easily. Kremer and Nyborg (2002) have also discussed this
issue (their analysis is from the point of view of buyer submitting bidding
schedules as occurs in treasury auctions). All of this work points to the
importance of a careful treatment of the way that bidding occurs. The for-
mulation we give has not, to our knowledge, been considered in detail before.
It arises naturally from a consideration of the behaviour of the Australian
market.

In this paper we make a contribution to the literature in a number of ways.
First, as far as we are aware, this is the first analysis of an electricity market in
which prices and quantities are set separately, as occurs in Australia. Though
we can say little about the choice of prices made in this situation we are able
to establish some structural properties of the quantity choices made by the
generators. We also discuss the question of the stability of a Nash equilibrium
for the quantity-setting sub-game when the two players use the alternating
move Cournot dynamic (Fudenberg and Levine (1998)), in which each gen-
erator repeatedly adjusts its set of bids to give an optimal response to the
announced bids of the other generator. Under certain circumstances we can
show that stability depends on the difference between the equilibrium offers
and the marginal cost offer, with stability being guaranteed if these are close
enough.

The rest of this paper is organized as follows: In Section 2 we introduce the
problem by discussing a small example for which we can find a (numerical)
equilibrium solution for the game. In Section 3 we show that, when genera-
tors behave optimally, then it is unnecessary for either generator to offer
quantities at more than one price between two adjacent prices of the other.
This observation allows us to considerably simplify the analysis. In Section 4
we use the derivative of the expected return functions to give some further
characterization of the prices at which positive quantities are bid in a Nash
equilibrium. Finally in Section 5 we discuss the stability of a Nash equilibrium
when the demand for electricity has a uniform distribution over a certain
range of values.
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2 A game with a single price point

In order to motivate what follows we begin by discussing the simplest
example of the type we have in mind. This occurs when both players can
only set one price point. We label the two players A and B. In stage 1 of
the game each player chooses a price (p for player A, r for player B) and
these prices are then announced. In stage 2 each player chooses a quantity
(x for player A, y for player B). Finally demand occurs. Demand is
inelastic and the market clears with each player being paid the clearing
price for the quantity dispatched. There is a third non-strategic player C
who offers a large amount at a (normalized) price of 1. Thus the demand
is guaranteed to be met, and neither player A or B will offer at prices
higher than 1.

We consider a specific simple symmetric example in which each player has
marginal cost of zero and demand is uniformly distributed on ½0; 1�. We
further assume that each player has a total capacity of 1, which is thus an
upper bound on x and y.

We are interested in a subgame perfect Nash equilibrium for the two stage
game. We start by analysing the situation at the second stage, when prices
have already been determined. Consider the case when the two prices are
different. Without loss of generality we label A as the player with the smaller
price. The situation is summarized in the following result.

Proposition 1. If p < r < 1 then the only Nash equilibria are as follows. If

rð3� r � 2p þ rpÞ < k;

where

k ¼
ffiffiffiffiffiffiffiffiffiffiffi

2� p
p ffiffiffiffiffiffiffiffiffiffiffiffiffi

2r � p
p

;

then

x ¼ 1

3� r � 2p þ rp
; y ¼ 1� p

3� r � 2p þ rp
; ð1Þ

otherwise there is a mixed equilibrium in which

x ¼
r
k with probability a
r

2r�p with probability 1� a

�

where

a ¼ ð2� pÞð3r � p � r2 � rkð2� rÞÞ
rð2� p � kÞð1� rÞ ; ð2Þ

and

y ¼ 2r � p � rk
ð2r � pÞð1� rÞ : ð3Þ

Proof. We begin by looking for a pure strategy equilibrium for the choices of
x and y. Consider the expected profit for player B, EBðyÞ , given a fixed value
of x, if player B chooses an amount y. If demand is less than x, player A
captures all the demand and B makes no profit. If demand is between x and
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xþ y then player B is the marginal player and the clearing price is r. If
demand is greater than xþ y then the marginal price is 1. Thus

EBðyÞ ¼
Z xþy

x
rðu� xÞ duþ

Z 1

xþy
y du

for y � 1� x. Hence EBðyÞ ¼ ry2=2þ ð1� x� yÞy. Thus dEB=dy ¼ ry�
2y þ ð1� xÞ and the best choice of y in the range 0 � y � 1� x is

y ¼ ð1� xÞ=ð2� rÞ: ð4Þ
The maximum value of EBðyÞ is ð1�xÞ2

2ð2�rÞ. For y > 1� x, EBðyÞ ¼ rð1� xÞ2=2,
which is independent of y and smaller than the maximum value. Thus (4)
gives the best choice of y.

Now consider the choice of x, given a fixed value for y. The profit for
player A is given by

EAðxÞ ¼
Z x

0

up duþ
Z xþy

x
xr duþ

Z 1

xþy
x du;

with the obvious changes to this expression when x > 1� y. Hence

EAðxÞ ¼ px2=2þ xyr þ ð1� x� yÞx if x < 1� y;
px2=2þ xð1� xÞr if x � 1� y:

�

In finding the maximum value of EAðxÞ we need to treat the two sections
separately. When x < 1� y, dEA=dx ¼ pxþ ry þ 1� y � 2x, and the maxi-
mum value in the range ½0; 1� y� is achieved when

x ¼ x0ðyÞ ¼
ð1� yð1� rÞÞ=ð2� pÞ if y < ð1� pÞ=ð1� pþ rÞ;
1� y otherwise.

�

: ð5Þ

At this point

EAðx0Þ ¼
ðyrþ1�yÞ2
2ð2�pÞ if y < ð1� pÞ=ð1� p þ rÞ;

pð1� yÞ2=2þ yð1� yÞr otherwise.

(

When x � 1� y, dEA=dx ¼ pxþ r � 2rx, and the maximum value in the range
½1� y; 1� is achieved when

x ¼ x1ðyÞ ¼
r=ð2r � pÞ if y > ðr � pÞ=ð2r � pÞ;

1� y otherwise.

�

: ð6Þ

At this point

EAðx1Þ ¼
r2

2 2r�pð Þ if y > ðr � pÞ=ð2r � pÞ;
pð1� yÞ2=2þ yð1� yÞr otherwise.

(

It is not hard to show, using r2 < r; that ðr � pÞ=ð2r � pÞ < ð1� pÞ=ð1� p
þrÞ, hence we cannot have both the maximum over ½0; 1� y�, and the max-
imum over ½1� y; 1� occurring at 1� y, so EAðxÞ is never maximised at the
point x ¼ 1� y between the two regions.

First suppose that, at the equilibrium, y is such that EAðx1Þ > EAðx0Þ so
that the maximum for generator A occurs at the point x0ðyÞ (rather than
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x1ðyÞ). Then, after some algebra, we can show that the values (1) solve the
simultaneous equations (4) and (5). Since 3� r � 2p þ rp ¼ 2� p þ ð1� pÞ
ð1� rÞ it is easy to see that these values do satisfy the condition xþ y � 1:

We write E�Aðp; rÞ and E�Bðp; rÞ for the values of EA and EB at the equi-
librium values; these can be calculated as

E�Aðp; rÞ ¼
2� p

2ð3� r � 2p þ rpÞ2
;

E�Bðp; rÞ ¼
ð2� rÞð1� pÞ2

2ð3� r � 2p þ rpÞ2
:

Now consider the case that at the equilibrium EAðx1Þ > EAðx0Þ, and the
maximum for generator A occurs at x1ðyÞ. Then we have an immediate
contradiction since from (6) x � 1� y, but from (4) y < 1� x. So the only
pure strategy equilibrium has the form (1).

However this equilibrium will only exist when E�Aðp; rÞ � EAðx1Þ and the
maximum for generator A occurs at x0. In the case that E�Aðp; rÞ < EAðx1Þ, i.e.
when

r2

2 2r � pð Þ >
2� p

2ð3� r � 2p þ rpÞ2
; ð7Þ

there cannot be a pure strategy equilibrium. In this situation the only pos-
sibility is a mixed strategy equilibrium in which player A chooses the two
maximizing values x0 and x1 with some probabilities, a and ð1� aÞ say. In this
case, because of linearity, the profit for player B for a particular value of y is
given by the same formula (4), but replacing x with the expected value for x,
which is ax0 þ ð1� aÞx1. Hence B will still choose a pure strategy, since there
is a single optimal value for y . For a mixed strategy equilibrium to exist the
two choices of x must give the same payoff for player A. i.e.

ð1� yð1� rÞÞ2

2ð2� pÞ ¼ r2

2 2r � pð Þ :

This implies the value of y given by (3). From this we can calculate

x0ðyÞ ¼
rk

ð2r � pÞð2� pÞ ¼
r
k
:

The value of x1 is independent of y. This establishes most of what we require
for the Proposition. It only remains to check that, with the value of a given,
we have y ¼ ð1� ax0 � ð1� aÞx1Þ=ð2� rÞ and 0 � a � 1.

To establish that y satisfies this equation we have to show that a is given
by

ð2� rÞy � 1þ x1
x1 � x0

¼ ð2� pÞðð2� rÞð2r � pÞy � ðr � pÞÞ
rð2� p � kÞ

which, after substitution for y, is easily seen to be the same as the expression
(2). To show the inequalities for a it is enough to show that 1� ð2� rÞy lies
between r=k and r=ð2r � pÞ. Now

1� ð2� rÞy ¼ ð2� rÞrk � ð2r � pÞ
ð2r � pÞð1� rÞ ;
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so one of the inequalities we require for this mixed equilibrium is (after
multiplying through by k)

rð2� rÞð2� pÞð2r � pÞ � ð2r � pÞk
ð2r � pÞð1� rÞ � r:

But this simplifies to k � rðð2� rÞð2� pÞ � ð1� rÞÞ. After squaring both
sides this becomes precisely the inequality (7). So that a � 0 precisely when
the pure strategy equilibrium does not occur.

The other inequality we require is

ð2� rÞrk � ð2r � pÞ
ð2r � pÞð1� rÞ � r

ð2r � pÞ :

After simplification this inequality becomes

ð3r � p � r2Þ2 � r2 2� pð Þ 2r � pð Þð2� rÞ2 � 0:

But the left hand side of this inequality can be re written as

r � 1ð Þ2 ðr � pÞð5r � p � 2prÞ þ 4r2ð1� rÞ þ pr3 þ pr2ðr � pÞ
� �

;

and as each bracketed term in this expression is positive (using 1 > r > p), the
inequality is established.

Hence in all cases there is just a single equilibrium possible.
Our discussion in the proof above shows that, when we allow for the

possibility of a mixed strategy equilibrium, the expected profit at equilibrium
for player A is given by

E�Aðp; rÞ ¼ max
r2

2 2r � pð Þ ;
2� p

2ð3� r � 2p þ rpÞ2

 !

:

It turns out, after some algebra, that we can express the equivalent value for
player B as

E�Bðp; rÞ ¼ min
ð2� rÞð 2r � pð Þ1=2�rð2� pÞ1=2Þ2

2ð1� rÞ2 2r � pð Þ
;
ð2� rÞð1� pÞ2

2ð3� r � 2p þ rpÞ2

 !

:

Notice that when p approaches r, the values of E�A and E�B do not coincide,
unless p ¼ 0. In fact E�B is smaller by a factor of at least ð1� pÞ2 (since this
is the difference between the second of the terms in the two expressions).
This difference occurs because the limit of the profit to player A as his
announced price p approaches r from below is greater than the profit for
player B.

We need to treat the case when p ¼ r separately. First we note there is the
need to define the amount dispatched by the two players (a sharing rule). We
shall assume that demand is shared between the players in proportion to the
amount offered. Thus provided xþ y � 1,

EAðxÞ ¼
Z xþy

0

u
x

xþ y
p duþ

Z 1

xþy
x du ¼ ðxþ yÞxp

2
þ ð1� x� yÞx:

So dEA=dx ¼ xp þ yp=2þ 1� y � 2x. Similarly dEB=dy ¼ yp þ xp=2þ 1� x
�2y. At the equilibrium x and y are chosen so that these are both zero, i.e.
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½1þ p
2
ðxþ yÞ � x� y� þ px

2
� x ¼ ½1þ p

2
ðxþ yÞ � x� y� þ py

2
� y ¼ 0:

From this we can deduce that (provided p � 2=3)

x ¼ y ¼ 2

3ð2� pÞ ;

giving

E�AðpÞ ¼ E�BðpÞ ¼
2

9ð2� pÞ : ð8Þ

The other case we have to consider is that xþ y > 1. In this case EA
ðxÞ ¼ ð1=2Þpx=ðxþ yÞ and both players will maximise their profit by bidding
their entire capacity. Hence we have an alternative equilibrium when
x ¼ y ¼ 1 and E�AðpÞ ¼ E�BðpÞ ¼ p=4. This is the only equilibrium possible
when p > 2=3.

Now we consider the form of an equilibrium for the first stage of the game
(in which p and r are chosen). The game is symmetric and we look for a
symmetric mixed equilibrium. Suppose first of all that there is some price p0 in
ð0; 2=3Þ such that both players have a positive probability of choosing this
price in stage 1. If both players choose this price and then coordinate on the
equilibrium which does not bid their entire capacity, then the expected profit
is given by (8). In most cases there cannot be an equilibrium with these
properties since it would then be possible for one of the players to improve
their overall profit by choosing to replace the price p0 with a price just
undercutting p0; and then do better after the stage 2 quantity game is finished.
To see this observe that for p0 in ð0; 1Þ, 2p2

0 < 3p0 and hence
3ð2� p0Þ > 2ð3� 3p0 þ 3p2

0Þ. Squaring both sides and rearranging gives

2

9ð2� p0Þ
<

2� p0
2ð3� 3p0 þ p2

0Þ
2
;

provided p0 > 0. Moreover the alternative equilibrium (with x ¼ y ¼ 1) gives
a payoff which is also smaller than ð2� p0Þ=ð2ð3� 3p0 þ p2

0Þ
2Þ.

Thus we are left with a price of zero as the only one which can be given
(with a non-zero probability) by both players in an equilibrium solution to the
game. However we can show that a pure strategy equilibrium in which both
players announce a price of zero does not occur. Either player can improve
their payoff (from 1=9 to 1=8) by announcing a price of 1 instead.

Thus for the first stage game we must seek a mixed strategy equilibrium in
which each player has a certain probability c of offering at price zero and a
certain probability, ð1� cÞ of choosing a price from a continuous distribution
having density function g over ½0; 1�. Because of symmetry the equilibrium
solution has a single distribution g to be played by both players. Suppose now
that player B selects r using the density function g, we can calculate the
expected profit for A if he chooses a price p, which we write as PAðpÞ. This
has three terms depending on whether r is zero, between zero and p; or more
than p:

PAðpÞ ¼ cE�Bð0; pÞ þ ð1� cÞ
Z p

0

E�Bðr; pÞgðrÞ drþ ð1� cÞ
Z 1

p
E�Aðp; rÞgðrÞ dr:
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In order for there to be a mixed strategy equilibrium, PAðpÞ must be maxi-
mised at all the values of p, which may be chosen, i.e. at all the values in the
support of g, together with 0 if c > 0. The next step is to find values of c and
the function g which achieve this. We will need PAðpÞ stationary as p varies in
the support of g. We solve this problem numerically, by discretising the
interval ½0; 1� into 100 discrete points and estimating the integrals by assuming
the density function is concentrated on these points. An optimization pro-
cedure is used to find values of c and gð1=100Þ, gð2=100Þ, etc. which minimize
the variation in the values of PAðpÞ at points with non-zero values. We obtain
the approximate density function g shown in Figure 1 and a c value of zero.
The support of g is the interval 0:22; 0:48ð Þ and PAðpÞ ¼ 0:1165 in this range.

Thus we can summarise the subgame perfect Nash equilibrium strategy as
follows. In the first stage of the game each player chooses a price randomly in
the range 0:22; 0:48ð Þ using a continuous probability distribution g. Then
prices are announced and players decide their quantities using the mechanism
of Proposition 2. There is only a vanishingly small probability of both players
announcing the same price, p (in which case they may as well choose a
quantity minð1; 2

3ð2�pÞÞ).

3 Fundamentals of the market model

We will embark on our analysis of the more general case in which each
generator can select a number of different prices. We continue to assume that
there are just two generators, both located at the same node. In this paper we
will not consider any issues arising as a result of the transmission network.
We suppose that prices are set by the generators in stage 1 and during stage 2
quantities are set at each of the price points. The set of price-quantity pairs
are then fixed for the bidding period (half an hour in the Australian context).
Demand is uncertain and the generator wishes to choose the quantities to bid
in order to maximise profit.

0
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Fig. 1. The equilibrium density function g
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The market demand during the bidding period is random but with a
known distribution. We denote the demand by D and the density function of
its distribution by f . We assume that the support set of f is ½d1; d2� , where
0 � d1 < d2. Notice that this model can also be used to represent the cir-
cumstance when demand varies during the course of the bidding period, but
bids cannot be changed. In this case the various values of demand which are
used in determining dispatch (every 5 minutes in the Australian market) can
be thought of as realisations of the demand process D. This is similar to the
approach that Green and Newbery suggest in their analysis of the England
and Wales market over a 24-hour period using the supply function equilib-
rium of Klemperer and Meyer (1989). Essentially the load-duration curves
(giving the number of hours that demand is above a certain level) correspond
to a cumulative distribution function for f if taken over the period for which
a single set of quantity bids are valid.

We have chosen to assume that demand is unaffected by price. This is a
more reasonable assumption for the short term market behaviour considered
here than it would be for a longer time horizon. The structure of the market,
both in Australia and elsewhere does allow demand-side bids, however these
are not yet common in practice. There will nevertheless be some large
industrial users of power who are participants in the market and are likely to
reduce their load during periods of very high price. However for much of the
time the degree of price elasticity in the half hour time frame considered here
is close to zero. The assumption of zero price elasticity is also made by
Anderson and Philpott and Rudkevich et al.

We write RAðX ; pÞ for the profit obtained by generator A if this generator
is dispatched an amount X and the market clearing price is p. Besides the
money pX paid to the generator, there are the costs incurred in that level of
generation, which we denote by CAðX Þ. Thus

RAðX ; pÞ ¼ pX � CAðX Þ:
Similarly

RBðY ; pÞ ¼ pY � CBðY Þ
is the profit for generator B if it is dispatched an amount Y with a clearing
price of p. There are interesting questions that arise in practice when gener-
ators hold hedging contracts, but we will not address these issues here.

We now focus on the second stage of the game. Suppose that generator A
has already chosen prices p1 < p2 < � � � < pn and generator B has already
chosen prices r1 < r2 < � � � < rm, which then remain fixed. We will assume
that none of the prices pi, i ¼ 1; 2; . . . n and ri , i ¼ 1; 2; . . . m coincide. In cases
where there is a price which is chosen by both players and the market clears at
this price, then the two generators will have to share dispatch and the market
rules will determine how this sharing takes place. However our analysis of the
simple game in the previous section suggests that the situation where each
player chooses prices from a continuous distribution is important; in this case
we can safely assume that prices do not coincide.

For a given bidding period, generator A offers a quantity xi at price pi,
i ¼ 1; 2; . . . ; n, and generator B offers a quantity yi at price ri, i ¼ 1; 2; . . . ; n.
Let TA and TB denote respectively the capacities of generator A and generator
B. Then the total quantities offered by each generator at each bidding period
will not exceed its maximum generating capacity.
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Let

Xi ¼
X

i

k¼1
xk; i ¼ 1; . . . ; n

and

Yi ¼
X

i

k¼1
yk; i ¼ 1; . . . ;m:

Since the market demand is uncertain, the total supply of the electricity to the
market must not be less than the maximum possible demand d2, that is,
Xn þ Ym � d2. This is an awkward constraint since it makes the possible
choices of one generator dependent on the choices of the other. One way to
deal with this is to introduce a third non-strategic generator as we did in the
previous section (this is also equivalent to having a given ‘‘Value of Lost
Load’’ which becomes the market clearing price if demand cannot be met and
load has to be shed). However we will instead introduce the constraint that all
the capacity of a generator has to be bid in at some price. Hence we obtain the
following set of possible strategies for the two generators:

SA ¼ fðX1; . . . ;XnÞ : 0 � X1 � . . . � Xn ¼ TAg
and

SB ¼ fðY1; . . . ; YmÞ : 0 � Y1 � � � � � Ym ¼ TBg:
Throughout, we will frequently use X to denote the vector ðX1; . . . ;XnÞ and Y
the vector ðY1; . . . ; YmÞ.

The market clearing price if the generators use strategies ðX ; Y Þ and the
demand realisation is d will be:

pcðX ; Y ; dÞ ¼ inffp :
X

pj�p

xj þ
X

rj�p

yj � dg:

Since we assume that prices offered by different generators do not coincide,
there is exactly one generator offering at the clearing price, pc. We call this the
marginal generator. The system will dispatch from the marginal generator
just enough electricity to meet the demand. Any electricity offered at prices
strictly below the clearing price is dispatched completely.

The proposition below shows that if there are a whole set of prices for one
generator lying between two adjacent prices for the other, then we can find an
optimal solution that only uses the highest price in this set. Thus bidding at
any other prices in such a case is unnecessary.

Proposition 2. If ri < pj < � � � < pjþk < riþ1 for some k > 1 then there is an
optimal policy for generator A that offers no quantity at any of the prices
pj; pjþ1, . . ., pjþk�1. Similarly if pj < ri < � � � < riþh < pjþ1 for h > 1 then there
is an optimal policy for generator B that offers no quantity at any of the prices
ri; riþ1; . . . riþh�1 .

Proof. Suppose that X is a strategy for generator A, and that ri < pj < pj
þ1 < � � � < pjþk < riþ1. We define a new strategy ~X for player A by first
setting ~xs ¼ xs, for s � j� 1 or s � jþ k þ 1 and then defining the other
values as follows:
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~xj ¼ ~xjþ1 ¼ � � � ¼ ~xjþk�1 ¼ 0;~xjþk ¼
X

jþk

s¼j

xs:

Observe that under any given demand realisation d, the quantity dispatched
from A is unaltered by changing from X to ~X since the total quantity offered
between the prices ri and riþ1 is unchanged. Let Xd be the quantity dispatched
by player A, let cd be the market clearing price under strategy X . Let c0d be the
market clearing price under strategy ~X . If cd � ri or cd � riþ1, then cd ¼ c0d
and hence RAðXd ; cdÞ ¼ RAðXd ; c0dÞ.

If pj � cd � pjþk, then c0d ¼ pjþk � cd and Xd � Xj�1. Thus RAðXd ; cdÞ
� RAðXd ; c0dÞ. So whatever the demand, the profit for player A under strategy
X is less than that under strategy X̂ , and so ~X is a better strategy for player A.
The second half of the proposition, related to generator B, is proved in
exactly the same way.

This proposition implies that, once prices have been announced, both
players can ignore all but the highest price between adjacent prices of the
other generator. Consequently we only need to consider an interleaved sce-
nario in which each player offers at most one price between two adjacent
prices for the other. Here we will concentrate on the case when n ¼ m and

r1 < p1 < r2 < p2 < � � � < rn < pn:

We call this the standard price arrangement. The other possibility (where n
and m differ by 1 and the same player has both the highest and lowest price) is
not significantly different.

Now we are in a position to give explicit expressions for the expected
profits for the two generators. We suppose that generator A uses policy
X 2 SA and generator B uses policy Y 2 SB. We first consider EAðX ; Y Þ the
expected profit for generator A. If demand is in the range Xi�1 þ Yi�1 to
Xi�1 þ Yi, then the quantity dispatched from A will be Xi�1 and the price will
be ri. On the other hand if demand is in the range Xi�1 þ Yi to Xi þ Yi, say the
demand is qþ Yi, then the quantity dispatched from A will be q and the price
will be pi. Thus we arrive at the following expression for the expected profit
for A:

EAðX ;Y Þ ¼
X

n

i¼1

Z XiþYi

Xi�1þYi

RAðq�Yi;piÞf ðqÞdqþRAðXi�1;riÞ
Z YiþXi�1

Yi�1þXi�1

f ðqÞdq
� �

:

Here we take X0 ¼ Y0 ¼ 0. Similarly the expected profit for generator B is
given by

EBðX ;Y Þ ¼
X

n

i¼1

Z YiþXi�1

Yi�1þXi�1

RBðq�Xi�1; riÞf ðqÞdqþRBðYi;piÞ
Z XiþYi

Xi�1þYi

f ðqÞdq
� �

:

4 Characterization of a Nash equilibrium

Our analysis will be based on the derivatives of the expected return functions
EA and EB. The existence of these derivatives will depend on the behaviour of
the density function f . We will assume that f is continuous except at the ends
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of the interval ½d1; d2�. This will imply that there may be a difficulty in defining
the derivatives of EA and EB when for example some Xi þ Yi ¼ d1. We will
assume that the cost functions CA and CB are increasing and differentiable.

Let X denote the set of all pairs of policies for the two players, so that
generator A chooses a strategy X from SA and generator B chooses a strategy
Y from SB, that is,

X ¼ fðX ; Y Þ : X 2 SA; Y 2 SBg:
EA and EB are piecewise continuously differentiable. For ðX ; Y Þ 2 X and
i ¼ 1; . . . ; n� 1,

@EAðX ; Y Þ
@Xi

¼ f ðXi þ YiÞðpi � riþ1Þ þ f ðXi þ Yiþ1Þðriþ1 � piþ1Þ½ �Xi

þ ðriþ1 � C0AðXiÞÞðF ðXi þ Yiþ1Þ � F ðXi þ YiÞÞ; ð9Þ
If Xi þ Yi ¼ d1 or d2, or Xi þ Yiþ1 ¼ d1 or d2, then we must interpret these
partial derivatives as one-sided and evaluate f accordingly. Similarly

@EBðX ; Y Þ
@Yi

¼ ½f ðYi þ Xi�1Þðri � piÞ þ f ðYi þ XiÞðpi � riþ1Þ�Yi

þ ðpi � C0BðYiÞÞðF ðXi þ YiÞ � F ðXi�1 þ YiÞÞ, i ¼ 1; . . . ; n� 1:

ð10Þ
If Xi þ Yi ¼ d1 or d2, or Xi�1 þ Yi ¼ d1 or d2, then we must interpret these
partial derivatives as one-sided and evaluate f accordingly.

The next proposition establishes straightforward general conditions at a

Nash equilibrium. We use the notation
@EðX ;Y Þ
@X� ,

@EðX ;Y Þ
@Xþ for the left and right

partial derivatives of a function E at ðX ; Y Þ.

Proposition 3. Suppose that ðX �; Y �Þ is a Nash equilibrium. Then

(i) for i ¼ 1; . . . ; n� 1, if x�i > 0, then @EAðX �;Y �Þ
@X�i

� 0, if x�iþ1 > 0, then
@EAðX �;Y �Þ

@Xþi
� 0; moreover if both x�i > 0 and x�iþ1 > 0 and @EAðX �;Y �Þ

@Xi
exists,

then @EAðX �;Y �Þ
@Xi

¼ 0;
(ii) for i ¼ 1; . . . ; n� 1, if y�i > 0, then

@EBðX �;Y �Þ
@Y�i

� 0, if y�iþ1 > 0, then
@EBðX �;Y �Þ

@Y þi
� 0; moreover, if both y�i > 0 and y�iþ1 > 0 and

@EBðX �;Y �Þ
@Yi

exists,

then
@EBðX �;Y �Þ

@Yi
¼ 0.

Proof. We prove part (i); part (ii) can be proved in a similar way. Suppose for

a contradiction that
@EAðX �;Y �Þ

@X�i
< 0 and x�i > 0. Let ~X be such that ~xk ¼ x�k for

k 6¼ i; iþ 1, ~xi ¼ x�i � e, and ~xiþ1 ¼ x�iþ1 þ e, with e chosen small enough so
that ~xi > 0. This has the effect of reducing X �i while leaving all the other
components of X � unchanged. Then for e small enough the sign of @EA

@X�i
will

imply EAð ~X ; Y �Þ > EAðX �; Y �Þ, which contradicts the optimality of X �. In a

similar way, when x�iþ1 > 0 and
@EAðX �;Y �Þ

@Xþi
> 0, we can increase EA by reducing

x�iþ1 by a small amount and increasing x�i by the same amount. Again this
contradicts the optimality of X �.

It is clear that pcðX ; Y ; d1Þ is the lowest possible market clearing
price, which we write as pLðX ; Y Þ. Similarly pH ðX ; Y Þ ¼ pcðX ; Y ; d2Þ is the
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highest possible clearing price. We need to treat the special case d1 ¼ 0 sep-
arately: we instead define pLðX �; Y �Þ as lime!0 pcðX �; Y �; eÞ. This means that
when d1 ¼ 0, pLðX �; Y �Þ will be the lowest price at which a non-zero quantity
is offered. When it will not cause confusion we will drop the ðX ; Y Þ from our
notation and just write pL and pH for the lowest and highest clearing prices
possible.

Now we are ready to give a result showing that the prices between the
highest and lowest clearing price will all have non-zero quantities offered at an
equilibrium. The idea of the proof is to observe that if one player (say gen-
erator A) offers a zero quantity at a price, say pi > pL, then the other player will
be better off by moving a small amount from ri to riþ1 and this will undermine
the Nash equilibrium. In essence the argument is the same as that of Propo-
sition 2 which rules out having two prices ri and riþ1 with no pj between them.

Proposition 4. Suppose that ðX �; Y �Þ is a Nash equilibrium under the standard
price arrangement and d1 > 0. Then

(i) x�i > 0 for each i with pLðX �; Y �Þ � pi � pH ðX �; Y �Þ;
(ii) y�i > 0 for each i with pLðX �; Y �Þ � ri � pH ðX �; Y �Þ.

Proof. We define hA ¼ minfi : pL � pi � pH , x�i ¼ 0g, and hB ¼ minfi : pL �
ri � pH , y�i ¼ 0g. If the proposition statement is true, then both of these sets
are empty and the values hA and hB undefined. We suppose on the contrary
that one or both of hA and hB is defined (if either is not defined we let its value
be 1). We suppose without any real loss of generality that hA � hB so that
phA > rhB (the case that hA < hB can be dealt with similarly).

Now consider the value of x�hB�1. Since y�hB
¼ 0 , the market cannot clear at

rhB and pL < rhB < pH . If x�hB�1 ¼ 0, then hB � 1 satisfies all the conditions
from the definition of hA, and so hA � hB � 1 which contradicts our
assumption. So we have established that x�hB�1 > 0.

Since y�hB
¼ 0, we have X �hB�1 þ Y �hB�1 ¼ X �hB�1 þ Y �hB

. Since rhB < pH we
know that X �hB�1 þ Y �hB

< d2. So by (9),

@EAðX �; Y �Þ
@XhB�1

¼ f ðX �hB�1 þ Y �hB�1ÞðphB�1 � phBÞX �hB�1

< 0:

Thus we have a contradiction from part (i) of Proposition 3 and the fact that
x�hB�1 > 0.

We might expect that, at an equilibrium, where a generator makes a po-
sitive offer, then it will do so at a price above its marginal cost of generation.
In fact we have a slightly weaker result: the marginal cost of generation will
be less than the next higher price from the other generator. We let iA be the
index of the lowest pi which can occur as a clearing price, and similarly for iB.
Thus iA ¼ minfi : pL � pig and iB ¼ minfi : pL � rig:

Proposition 5. Suppose that ðX �; Y �Þ is a Nash equilibrium. Then under the
standard price arrangement, we have for iA � i < n, C0AðX �i Þ � riþ1 and for
iB � i < n, C0BðY �i Þ � pi:

228 E. J. Anderson, H. Xu



Proof. Suppose that there exists an index i0 such that iA � i0 < n and
ri0þ1 < C0AðX �i0 Þ, and in particular we define i0 to be the first index satisfying
these conditions. Then x�i0 > 0 , since if x�i0 ¼ 0, we have C0AðX �i0 Þ ¼ C0AðX �i0�1Þ �
ri < ri0þ1, which contradicts the definition of i0. Using (9), we have

@EAðX �; Y �Þ
@Xi0

< 0;

which, however, is impossible according to part (i) of Proposition 3. The
relationship between pi and C0BðY �i Þ can be proved similarly.

At first sight it seems counter-intuitive that offers may be made and the
market clear at a price below the marginal cost of generation: why would a
generator deliberately bid in a way which will on some occasions lead to a
loss? A simple example may clarify what is happening. Suppose that demand
is uniformly distributed between 0 and 2, generator A has marginal cost of 2 ,
a capacity of 1 and can choose quantities to offer at prices 1 and 4. If it is
known that generator B will bid its entire capacity of 1 at price 3 what should
generator A do? Suppose that generator A bids an amount x at price 1, and
the remainder at price 4. Then the profit that A makes is given by

EA ¼
Z x

0

uð1� 2Þð1=2Þduþ
Z xþ1

x
xð3� 2Þð1=2Þdu

þ
Z 2

xþ1
ðu� 1Þð4� 2Þð1=2Þdu ¼ 1=2þ x=2� 3x2=4:

This achieves a maximum value of 7=12 when x ¼ 1=3, which is therefore the
optimal bidding policy. So in this case there will be a probability of 1=6 that
the market clears at price 1 and generator A makes a loss. However a smaller
value of x leads to less profit when the other player sets the price.

Our next result is related to the highest clearing price that can occur. We
show that, under certain conditions on the distribution of demand, offers in
an equilibrium will be organized to allow the market to clear at the highest
possible price when demand is at its upper limit. The condition on the
demand distribution f is not restrictive.

Proposition 6. Suppose that ðX �; Y �Þ 2 X is a Nash equilibrium under the stan-
dard price arrangement. Suppose also either that the density function f is bounded
away from zero on ðd2 � d; d2� or the density function is non-increasing on the
interval ðd2 � d; d2� for some small positive number d. Then pH ðX �; Y �Þ ¼ pn.

Proof. We suppose that for a contradiction that the highest clearing price
pcðX �; Y �Þ is pi for i < n. The other case, where the highest clearing price is
some ri, can be dealt with similarly. Thus X �i þ Y �i � d2 and X �i�1 þ Y �i < d2.

We will show that there is a solution with a higher expected profit for A, to
establish the contradiction. We do this in two stages. First we define a
solution ~X with ~xk ¼ x�k , for k ¼ 1; . . . ; i� 1; iþ 1; . . . ; n� 1, and

~xi ¼ d2 � ðX �i�1 þ Y �i Þ:
Now as the greatest amount that A is dispatched under ðX �; Y �Þ is ~Xi, it is easy

to see that ~X will have the same behaviour as X � when played against Y �. So,
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EAð ~X ; Y �Þ ¼ EAðX �; Y �Þ: ð11Þ
Now observe that ~Xi þ Y �i ¼ d2, and hence by assumption, ~xi > 0. For � > 0
we define ~X ð�Þ as follows: ~xkð�Þ ¼ ~xk, for k ¼ 1; . . . ; i� 1; iþ 2; . . . ; n, and

~xið�Þ ¼ ~xi � �, ~xiþ1ð�Þ ¼ ~xiþ1 þ �:
By considering the derivative of EAð ~X ð�Þ; Y �Þ with respect to changes in the
quantity Xi we will show that the expected profit is greater if generator A uses
~X ð�Þ than if it uses ~X .

Notice that ~Xið�Þ þ Y �i ¼ d2 � �, ~Xið�Þ þ Y �iþ1 ¼ d2 þ y�iþ1 � �. First we
suppose that y�iþ1 > 0. Then we can choose � > 0 small enough so
d1 < ~Xið�Þ þ Y �i < d2 and ~Xið�Þ þ Y �iþ1 > d2. Hence,

@EAð ~X ð�Þ;Y �Þ
@Xi

¼ ½f ð ~Xið�ÞþY �i Þðpi� riþ1Þþ f ð ~Xið�ÞþY �iþ1Þðriþ1�piþ1Þ� ~Xið�Þ

þ ðriþ1�C0Að ~Xið�ÞÞÞðF ð ~Xið�ÞþY �iþ1Þ�F ð ~Xið�ÞþY �i ÞÞ
¼ f ðd2� �Þðpi� riþ1Þð ~Xi� �Þþðriþ1�C0Að ~Xi� �ÞÞð1�F ðd2� �ÞÞ:

Consider the case that the density function f is bounded away from zero on
ðd2 � d; d2�. Then for � small enough the first term dominates the second and
@EAð ~X ð�Þ; Y �Þ=@Xi < 0.

In the other case when the density function is non-increasing on the
interval ðd2 � d; d2� then

0 � 1� F ðd2 � �Þ � f ðd2 � �Þ�;
for � � d. Thus

@EAð ~X ð�Þ; Y �Þ
@Xi

� f ðd2 � �Þ½ðpi � riþ1Þð ~Xi � �Þ þ ðriþ1 � C0Að ~Xi � �ÞÞ��:

< 0;

for � small enough (where the last inequality uses the fact that ~Xi � � > 0 for �
small enough).

In the case that y�iþ1 ¼ 0 we have

@EAð ~X ð�Þ; Y �Þ
@Xi

¼ f ð ~Xið�Þ þ Y �i Þðpi � piþ1Þ ~Xið�Þ

< 0;

for � small enough.
Hence in all cases we have established that

EAð ~X ð�Þ; Y �Þ > EAð ~X ; Y �Þ
which, with our earlier observation (11), contradicts the assumption that
ðX �; Y �Þ is a Nash equilibrium.

It is interesting to compare this result with some of the results available
for supply function equilibria. Here we have shown that, under mild
conditions, an equilibrium solution will have the property of achieving the
highest possible price for at least some demand realisations. We might
expect that the continuous supply function equilibrium model would be
obtained in the limit of a very large number of prices. In that case the
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equivalent result in a continuous setting would have the effect of ruling out
equilibria which do not reach a price cap. However the usual formulations
of supply function equilibrium do not have this property: there may be
equilibria which reach the price cap, but there are often other more com-
petitive equilibria, i.e. equilibria with lower prices at high demand (Baldick
and Hogan(2001)).

5 Stability of a Nash equilibrium

We now turn to the stability of a Nash equilibrium in this setting. Any
discussion of this topic presupposes a dynamic component in the behaviour of
the market participants. A variety of models have been proposed as frame-
works to capture this dynamic behaviour. Within an electricity market
adjustments of the offers made can occur on a daily basis as market partic-
ipants adjust their behaviour on the basis of the observed behaviour of other
participants on the previous day. In the Australian market, which has served
as motivation for the model we consider, bid adjustment can occur at any
time during the day up to dispatch, and generators may choose to make a
number of adjustments of their offer quantities in response to sensitivity
information which derives from the offers made by other participants.

We have chosen to use the simplest definition of stability. We say that a
Nash equilibrium ðX �; Y �Þ is stable if one generator, say generator A, makes
an initial offer X 0 sufficiently close to X � and generator B responds optimally
to A’s offer, and then generator A responds optimally to B’s offer, and so on,
then the strategies played will approach X � and Y �. Many people have ob-
served the unsatisfactory nature of this Cournot dynamic in which players go
to the effort of making an optimal response to another player, when they
know in advance that the other player will immediately change their play.
More satisfactory models often incorporate some continuous adjustment
method, in which players adjust their strategies in a direction which improves
their payoff, without going as far as the optimal response (see Fudenberg and
Levine(1998)). We have not attempted to establish any kind of stability result
within a continuous adjustment framework, but it seems likely that similar
results would hold.

To find conditions under which a Nash equilibrium is stable requires some
stringent assumptions on the density function f . But rather than working
through a further complex set of assumptions, we consider a straightforward
case where the market demand has a uniform distribution, that is, the density
function f is constant over ½d1; d2�. It may appear that such an assumption is
unrealistic given the fact that demand is by nature less likely to take the
extreme values d1 and d2 than it is to take values in the middle of the possible
range. Nevertheless, it can be a sensible model. Recall that as we mentioned in
section 3, demand may change over a bidding period in a predictable way. If
we consider a demand which changes linearly over the bidding period, and
model this using ‘‘samples’’ of demand being taken every five minutes, then it
may well be appropriate to think of the samples as being taken from a uni-
form distribution.

The theorem below is interesting because of the form of the conditions
necessary for stability. It turns out, as we shall show, that when demand is
uniform and prices become more spread out as they become higher, then
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stability is guaranteed when offers are close enough to marginal cost. This
result suggests the possibility that an equilibrium may not be stable if it
involves generators offering power at prices very much higher than their
marginal costs. This conjecture is consistent with the work of Baldick and
Hogan (2001) who have shown that in the supply function case a restriction
to stable equilibria will rule out many possible equilibria at which generators
offer at high prices.

Theorem 7 Suppose that ðX �; Y �Þ is a Nash equilibrium with Y �1 > d1. Suppose
that

f ðtÞ ¼
1

d2�d1
t 2 ½d1; d2�

0 otherwise

�

Suppose also that for i ¼ 1; . . . ; n� 1,

pi � C0AðX �i Þ <
1

2
ðpi þ piþ1Þ � riþ1;

and

ri � C0BðY �i Þ <
1

2
ðri þ riþ1Þ � pi;

then ðX �; Y �Þ is stable.

Proof. First observe that we can rewrite the conditions of the theorem as

riþ1 � C0AðX �i Þ <
1

2
ðpiþ1 � piÞ; i ¼ 1; . . . ; n� 1: ð12Þ

pi � C0BðY �i Þ <
1

2
ðriþ1 � riÞ; i ¼ 1; . . . ; n� 1; ð13Þ

For simplicity of notation, we let

HiðX ; Y Þ ¼
@EAðX ; Y Þ

@Xi
; i ¼ 1; . . . ; n� 1;

HnðX ; Y Þ ¼ X �n þ Y �n � Xn � Yn;

and

GiðX ; Y Þ ¼
@EBðX ; Y Þ

@Yi
; i ¼ 1; . . . ; n:

Since ðX �; Y �Þ is a Nash equilibrium, it follows from Proposition 6 that
X �n�1 þ Y �n < d2 and pH ðX �; Y �Þ ¼ pn. Note that by assumption Y �1 > d1 and
X �n þ Y �n > d2. Therefore Hið�; �Þ, i ¼ 1; . . . ; n� 1 and Gið�; �Þ, i ¼ 1; . . . ; n are
well defined in a small neighborhood of ðX �; Y �Þ. Moreover, since Y �1 > d1, we
have pLðX �; Y �Þ ¼ r1 and hence from Proposition 4 we know that there is a
non-zero quantity offered at every price. Thus the equilibrium point ðX �; Y �Þ
is a solution of the following system of equations:

HðX ; Y Þ ¼0;
GðX ; Y Þ ¼0;
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this follows from using Proposition 3, or just observing that the solution is
not on any of the constraints in ðX ; Y Þ space.

Now, for i ¼ 1; . . . ; n� 1, we have

@HiðX �; Y �Þ
@Xi

¼ ½ðpi � piþ1Þ � C00AðX �i ÞðY �iþ1 � Y �i Þ�=ðd2 � d1Þ;

@HiðX �; Y �Þ
@Yi

¼ �ðriþ1 � C0AðX �i ÞÞ=ðd2 � d1Þ;

@HnðX �; Y �Þ
@Xn

¼ �1;

and

@HiðX �; Y �Þ
@Yiþ1

¼ ðriþ1 � C0AðX �i ÞÞ=ðd2 � d1Þ;

@HnðX �; Y �Þ
@Yn

¼ �1:

Since @HiðX �;Y �Þ
@Xi

< 0 for i ¼ 1; . . . ; n� 1, and @HiðX �;Y �Þ
@Xj

¼ 0 for j 6¼ i, the Jacobi

matrix rX HðX �; Y �Þ is nonsingular. By the classical implicit function theo-
rem, there exists an open ball UðY �Þ with center Y � and an implicit function
u : U ! IRn such that X � ¼ uðY �Þ and uð�Þ is player A’s best response function
satisfying

HðuðY Þ; Y Þ ¼ 0

for Y 2 UðY �Þ. Moreover

@uiðY �Þ
@Yi

¼ � riþ1 � C0AðX �i Þ
piþ1 � pi þ C00AðX �i ÞðY �iþ1 � Y �i Þ

;

@uiðY �Þ
@Yiþ1

¼ riþ1 � C0AðX �i Þ
piþ1 � pi þ C00AðX �i ÞðY �iþ1 � Y �i Þ

;

@unðY �Þ
@Yn

¼ �1;

and

@uiðY �Þ
@Yj

¼ 0; j 6¼ i; iþ 1:

Let kMk denote the 2-norm of a matrix M . Then by (12), we have an estimate
for the 2-norm of the Jacobi matrix ruðY �Þ,

kruðY �Þk � max 1; max
n�1

i¼1
2

riþ1 � C0AðX �i Þ
piþ1 � pi

� �

¼ 1:

In a similar way we can define v as a best response function for player B
on an open ball VðX �Þ centered at X � with similar formula except for
i ¼ n, when
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@GnðX �; Y �Þ
@Yn

¼ ½ðrn � 2pn þ C0BðY �n ÞÞ � C00BðY �n Þðd2 � Y �n � X �n�1Þ�=ðd2 � d1Þ;

@GnðX �; Y �Þ
@Xn�1

¼ �ðpn � C0BðY �n ÞÞ=ðd2 � d1Þ:

Thus

@vnðX �Þ
@Xn�1

¼ �ðpn � C0BðY �n ÞÞ
rn þ C0BðY �n Þ � 2pn � C00BðY �n Þðd2 � Y �n � X �n�1Þ

and

@vnðX �Þ
@Xj

¼ 0; j 6¼ n� 1:

Hence we can show, using (13), that

krvðX �Þk �max
pn � C0BðY �n Þ

2pn � rn � C0BðY �n Þ
, max

n�1

i¼1
2

pi � C0BðY �i Þ
riþ1 � ri

� �

<1:

Let c > 0 be a small positive number with c < 1� krvðX �Þk and VðX �Þ be
small enough so that

kvðX ÞÞ � vðX �Þk � ðcþ krvðX �ÞkÞkX � X �k
for every X 2 VðX �Þ. Let d > 0 be such that

d <
1

cþ krvðX �Þk � kruðY �Þk

and UðY �Þ be sufficiently small so that

kuðY Þ � uðY �Þk � ðkruðY �Þk þ dÞkY � Y �k
for every Y 2 UðY �Þ.

Let UðY �Þ and VðX �Þ be sufficiently small so that

uðUðY �ÞÞ � VðX �Þ, vðVðX �ÞÞ � UðY �Þ:
Now suppose that Y 1 is a small perturbation of Y � in UðY �Þ. Then the best
response from player A is X 1 ¼ uðY 1Þ and
kX 1 � X �k ¼ kuðY 1Þ � uðY �Þk � ðkruðY �Þk þ dÞkY 1 � Y �k:

Given X 1, the best response from player B is Y 2 ¼ vðX 1Þ and
kY 2 � Y �k ¼ kvðX 1Þ � vðX �Þk � ðkrvðX �Þk þ cÞkX 1 � X �k
� ðkrvðX �Þk þ cÞðkruðY �Þk þ dÞkY 1 � Y �k:

Let a ¼ ðkrvðX �Þk þ cÞðkruðY �Þk þ dÞ. By the choice of d, a < 1 and con-
sequently kY 2 � Y �k < kY 1 � Y �k. Thus Y 2 2 UðY �Þ. For Y 2, the best re-
sponse from player A is X 2 ¼ uðY 2Þ and
kX 2 � X �k � ðkruðY �Þk þ dÞkY 2 � Y �k
� aðkruðY �Þk þ dÞkY 1 � Y �k < ðkruðY �Þk þ dÞkY 1 � Y �k:
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Continuing with this process, we obtain two sequences fX kg and fY kg such
that fX kg � V and fY kg � U with

kY k � Y �k < ak�1kY 1 � Y �k;
and

kX k � X �k < ak�1ðkruðY �Þk þ dÞkY 1 � Y �k:
Since a < 1, we have shown that fX kg ! X � and fY kg ! Y � as k !1. In the
case that player A makes a first perturbation, we can present a similar
analysis and draw the same conclusion. h

Example 8. Suppose that demand is uniformly distributed between zero and
one, CAðX Þ ¼ X and CBðY Þ ¼ Y , and r1 ¼ 2, p1 ¼ 3, r2 ¼ 4, p2 ¼ 5 , r3 ¼ 6,
p3 ¼ 7, r4 ¼ 8, p4 ¼ 9, r5 ¼ 10, p5 ¼ 11. Let

X �ðtÞ ¼ ð0:1294; 0:2373; 0:3409; 0:4429; tÞ;
Y � ¼ ð0:1294; 0:2157; 0:3107; 0:4081; 0:5065Þ;

where 0:4935 < t � 1. Then we can show that ðX �ðtÞ; Y �Þ is a Nash equilib-
rium.

Note that the equilibria we obtain in this example do not satisfy the
conditions of the theorem. Indeed, none of the set of equilibria ðX �ðtÞ; Y �Þ is
stable. We have coded a Matlab program and tested the Nash equilibrium
with t0 ¼ 0:4935 (note that any value of t greater than this obviously gives the
same result). We start with ðX �ðt0Þ; Y �Þ and then player A makes its best
response to the given strategy Y � by player B: this is X 1. Then player B reacts
to X 1 optimally by playing Y 1 and so on. Now note that ðX �ðt0Þ; Y �Þ can only
be an approximate Nash equilibrium, since the equilibrium is obtained
numerically. Thus we will not have ðX 1; Y 1Þ being exactly the same as
ðX �ðtÞ; Y �Þ. In the case that the equilibrium is stable then we would find that
multiple iterations of this process would leave the solution very close to its
starting point. However if the equilibrium is not stable, then starting with an
approximate solution will, over a number of iterations of the process, lead
away from the Nash equilibrium. This latter pattern is exactly what we
observe. After 1 iteration, we have

X 1 ¼ ð0:1295; 0:2375; 0:3409; 0:4426; 0:4935Þ;

Y 1 ¼ ð0:1295; 0:2161; 0:3102; 0:4076; 0:5065Þ:

After 5 iterations, the sequences ðX k; Y kÞ enters cycling with

(a) X 6þ5k ¼ ð0:0015; 0:8315; 0:8315; 0:8315; 0:8315Þ;

Y 6þ5k ¼ ð0:0015; 0:7988; 0:7988; 0:7988; 0:7988Þ;

(b) X 7þ5k ¼ ð0:7489; 0:7489; 0:7489; 0:7489; 0:7489Þ;
Y 7þ5k ¼ ð0:6667; 0:6667; 0:6667; 0:6667; 0:6667Þ;
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(c) X 8þ5k ¼ ð0; 0:001; 0:002; 0:003; 0:3333Þ;
Y 8þ5k ¼ ð0; 0:002; 0:003; 0:004; 0:9064Þ;

(d) X 9þ5k ¼ ð0:002; 0:003; 0:004; 0:8964; 0:8965Þ;
Y 9þ5k ¼ ð0:0013; 0:0023; 0:0033; 0:8853; 0:8853Þ;

and

(e) X 10þ5k ¼ ð0:0015; 0:0025; 0:8721; 0:8721; 0:8721Þ;
Y 10þ5k ¼ ð0:0013; 0:0023; 0:855; 0:855; 0:855Þ;

for k ¼ 0; 1; 2; . . . .
We should note that the fact that cycling can occur for some initial con-

ditions does not in itself make a Nash equilibrium unstable.

6 Discussion

Other than our discussion of the single price example in section 2 we have said
nothing about the equilibrium solution in stage 1 of the game, when prices are
set. The question of which price points should be selected by the generators is
interesting, but very complex when multiple prices are involved. The under-
lying structure of the problem makes it probable that an equilibrium solution
will involve a continuous distribution over prices. Not only is this the
behaviour we observe in the one price case, but it also occurs in the price-
setting game considered by von der Fehr and Harbord (1993). However any
type of exact analysis seems out of reach.

The usual market models involve the choice of prices and the choice of
quantities at the same time. However participants in actual markets may
choose to limit the variation in prices that they offer. This is because a market
in which prices are freely adjusted, and in which power is offered in blocks,
has the characteristics of a Bertrand equilibria in which there is a tendency to
push towards a competitive outcome even with only two players. This arises
because generators have the capacity to observe a competitor’s bid and then
to undercut that bid by a small amount. Though this is a result which might
be welcomed by market regulators, there is no long term incentive for par-
ticipants in the market to adopt this strategy. In fact in most actual electricity
market contexts this would be perceived as a very aggressive pricing strategy.
It may be that a type of collusive outcome in which there is a voluntary
decision to limit the extent to which different prices are utilised makes it more
likely that an equilibrium with relatively higher prices will be reached. There
have been suggestions that in the early years of the England and Wales
electricity pool the two dominant players bid prices that were interleaved in
exactly the fashion indicated by Proposition 2.

If we consider our fixed price point model as the number of price points
increases, then the restrictions imposed by this form of bid structure lessen.
As an extreme example we might simply restrict prices offered to be at a whole
number of cents. However, as the number of possible price points multiplies,
the assumption we have made that there are no prices in common between the
two players becomes harder to justify.
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One important observation from the work discussed here is the key role
played by the distribution of demand. The equilibria we study do not occur
when there is no uncertainty in demand. This approach supports previous
work by the authors (Anderson and Philpott (2002b), Anderson and Xu
(2002)) in which stochastic demand is an important ingredient in the analysis.

Our final result, in which we show a link between the stability of a Nash
equilibrium and the extent to which the generator bids differ from their mar-
ginal costs, is of interest, but ismuchweaker thanwemight wish: first because of
the very restrictive conditions under which it is proved (uniform demand,
expanding price gaps) and second because we have not established the reverse
implication. Thus we have found a case where stability is ensured by sufficiently
competitive bidding in an equilibrium, but we have not shown that an equi-
librium that has bids far above marginal costs is necessarily unstable. Never-
theless this result is interesting from a policy perspective because it suggests that
generators in an oligopoly may find it hard to support a non-competitive
equilibrium because of stability issues. However to verify whether or not this is
truewould requiremuchmorework, perhaps including considerable simulation
testing. For the continuous supply function equilibrium approach Baldick and
Hogan (2001) give an extensive treatment of the issue of stability. Their results
go beyond ours in demonstrating both theoretically and empirically that many
non-competitive equilibria will not be stable.

One limitation of this paper is the restriction to the case with just two
generators. Unfortunately the situation with three or more generators is very
much harder to analyse. The tools we have used are very closely tied to the
two player case. Equally it is very hard to generalise our results to a situation
in which demand is price sensitive. Finally, we note that it is possible to
introduce in our discussion hedging contracts that generators may sign prior
to entering spot markets. Anderson and Xu (2001) consider this situation and
derive different forms of some of the results here.
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