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Abstract. In electricity wholesale markets, generators often sign long
term contracts with purchasers of power in order to hedge risks. In
this paper, we consider a market where demand is uncertain, but
can be represented as a function of price together with a random
shock. Each generator offers a smooth supply function into the mar-
ket and wishes to maximize his expected profit, allowing for his
contract position. We investigate supply function equilibria in this set-
ting, using a model introduced by Anderson and Philpott. We study
first the existence of a unique monotonically increasing supply curve
that maximizes the objective function under the constraint of limited
generation capacity and a price cap, and discuss the influence of the
generator’s contract on the optimal supply curve. We then investigate
the existence of a symmetric Nash supply function equilibrium, where
we do not have to assume that the demand is a concave function of
price. Finally, we identify the Nash supply function equilibrium which
gives rise to the generators’ maximal expected profit.
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1. Introduction

In this paper, we study the impact of contracts and price caps on
the bidding behavior of electricity generators in a wholesale spot market.
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Such wholesale spot markets now operate in many different parts of
the world. Though the detailed market rules vary, the majority of mar-
kets operate some sort of pool system in which generators bid differ-
ent quantities of power into the market at different prices, and then an
independent system operator decides how actual demand is to be met by
dispatching cheaper power first. There is a single price at which the mar-
ket clears and this is the price paid to each generator for all the power
they supply. Actual electricity markets have to operate within the con-
straints of an electricity network, and moreover have a number of fea-
tures designed to ensure continuity of supply, but in this paper we will
consider a very simple market setup in which all the generators bid at
a single node. Generators compete with each other, with each generator
offering a supply schedule usually made up of tranches of power at differ-
ent prices. We will abstract from this situation to suppose that generators
each offer an arbitrary nondecreasing supply function. We are interested in
equilibrium behavior which leads to a supply function equilibrium (SFE)
Model.

The SFE concept was originally developed by Klemperer and Meyer
(Ref. 1) to model a situation when each player’s supply function is optimal
in every realization of a random demand in an oligopoly market. Green
and Newbery (Ref. 2) noted that the uncertainty of the demand is equiv-
alent to a daily time-varying demand, when a single supply schedule is
applied over a whole day and used SFE to model optimal supply functions
in the electricity market in England and Wales. Since then, the SFE model
has been used widely to study the bidding behavior in electricity spot mar-
ket; see for instance Refs. 3–6 and the references therein. Recently, Baldick
and Hogan (Ref. 7) have discussed the existence of supply function equi-
libria when there are price caps. A number of authors have considered
restricted forms of SFE, in which the generator’s bids are constrained, per-
haps having price as an affine function of quantity. As pointed out by
Baldick (Ref. 8), the way that supply functions are parametrized can have
a significant effect on the equilibrium. The model that we use does not
involve any prior parametrization, and so does not suffer from this weak-
ness.

In electricity markets, generators often sign contracts to hedge risks.
Newbery (Ref. 9) has investigated the effect of contracts on SFE and
hence on market behavior in an electricity spot market. When there are
constant marginal costs, limited capacities, and linear demand, Newbery
derives a symmetric nonlinear SFE in the spot market and uses it to
explain why generators have incentives to sell contracts, even though that
makes the spot market more competitive and hence lowers the total
profits.
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Green (Ref. 10) discusses also how contracts can affect the optimal
supply function and the resultant SFE. He shows that a generator should
offer at prices which depend on the amount covered by the contracts
held by the generator. When the generator’s output is greater (less) than
the contract amount, the generator’s sale price should be greater (less)
than his marginal cost. This generalizes one of the conclusions derived by
Allaz and Vila (Ref. 11) in a more general context. Further, by assuming
that the generators commit to a linear asymmetric SFE in the spot mar-
ket, Green derives equilibria in the contract market: in a Cournot-Nash
equilibrium, generators will sell no contracts, while in a Bertrand-Nash
equilibrium, generators will cover all of their expected output in their con-
tracts. Similar conclusions are also drawn by Newbery (Ref. 9).

We note that there have been other models discussing the influence
of contracts on the bidding behavior in the spot markets. An early paper
on this topic is by Von der Fehr and Harbord (Ref. 12) who model a
spot market as a multi-unit auction and demonstrate how contracts tend
to put downward pressure on spot market prices. Gans, Price, and Woods
(Ref. 13) and Wolak (Ref. 14) both discuss the way that hedge contracts
reduce a generator’s market power. Borenstein (Ref. 15) discusses the role
of long-term contracting in his recent analysis of the problems afflicting
the California electricity market.

In this paper, we extend the work of Green and Newbery by study-
ing the influence of contracts and price caps on the (Nash) SFE in a mar-
ket with just two strategic generators. There may be other generators in
the market, but they are assumed to be price takers: hence they influ-
ence the residual demand as a function of price, but otherwise can be
left out of the analysis. We consider a spot market where the demand is
uncertain, but can be represented as a function of price and a random
shock. Each generator offers a smooth supply function into the spot mar-
ket and may sign contracts in a contract market in order to hedge risks in
the spot market. Since a generator offers a supply function into the spot
market before demand is realized, he will maximize his expected profit,
rather than the actual profit. Anderson and Philpott (Ref. 16) prove that
the expected profit for a generator can be expressed as a line integral of a
market distribution function along his offer supply curve, where the mar-
ket distribution function captures the information about the probability
distribution of uncertain residual demand.

Our model differs from that of Refs. 9–10 in a number of ways. First,
our model is less restrictive than previous supply function treatments of
the contract case. We take the market demand to be nonlinear in the price
and subject to a bounded random shock. In dealing with symmetric equi-
libria in the spot market, we do not assume that the demand is concave,
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which has been a restrictive assumption in previous analyses. Second, as
well as allowing for generators with capacity limits, we model also a spot
market in which there is a price cap. Such price caps exist in most markets
and are often the focus of considerable debate. These restrictions, together
with the boundedness of the random shock in the market demand, imply
that a generator’s supply function is effective only on a part of the price
range and hence the optimality of a supply function is considered only
in such a region. This makes our analysis somewhat more complicated
than those in the literature. Finally, we derive the optimal supply func-
tion of a generator by considering the maximization of the expected profit.
Previous work in this area has derived the optimal continuously differen-
tiable supply function by considering the maximization of a generator’s
profit on every realization of the random shock in the market demand.
We will show that, in the cases that we consider, the two approaches coin-
cide.

Our belief is that the treatment that we give is close to being as com-
plete as possible for the symmetric duopoly case with both generators at
a single node.

In practice, the case where generators supply power at different nodes
in a large transmission system is of great interest. There have been a
number of papers in the literature which discuss the way that genera-
tors compete over a network. Most of these papers (Refs. 17–23) consider
Cournot competition, with only a few papers (Refs. 24–26) using a supply
function model. Berry et al. (Ref. 24) consider a supply function model to
study how generators might exercise market power by using networks. In
their model, the generators submit linear supply functions to the indepen-
dent system operator (ISO) at the nodes where they are located and the
node prices are determined by the ISO from the solution of a maximum
welfare problem under the constraints on the network flows. Strategic gen-
erators have a full knowledge of the ISO’s price clearing mechanism and
try to maximize their profit. Mathematically, each generator’s optimiza-
tion problem is a bilevel programming program: at the first level, a sup-
ply function is chosen; at the second level, the node prices are determined
given the supply and fixing the other generators’ supply (through the Nash
conjecture).

Unfortunately, it is difficult to extend the discussion of Berry et al. to
the case where the supply functions are nonlinear. In this case, the lower-
level solution, which is a function of the supply function under consider-
ation, is not a linear functional. We will no longer know that the generator’s
objective function is concave. Thus, it is unclear whether or not an individ-
ual generator’s optimal supply function exists and whether it is unique if it
does exist. It is even more difficult to obtain a Nash equilibrium in this case.
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2. Model

We write Ri(q,p) for the profit obtained by generator i if this gener-
ator is dispatched an amount q and the spot price is p, where 0≤q≤qMi
and 0 ≤ p ≤ pM,qMi is the maximum generation capacity of generator i
and pM is the price ceiling in the spot market. We assume that the cost of
generating a quantity q of electricity is given by Ci(q), which we assume
to be an increasing convex function. Besides the money pq paid to the
generator and the costs incurred in that level of generation, we must con-
sider also the contracts entered into by the generator. These are financial
instruments which do not involve the actual generation of electricity, but
the money paid under the contract is tied to the pool price. If generator
i enters into a contract at a strike price f for a quantity Qi and if the
actual spot price is p, then the generator will pay an amount Qi(p− f )
to the other party in the contract. The contracts that we consider are
two-way contracts for differences; so, if the spot price is lower than the
contract strike price, then the generator will receive an amount Qi(f −p).
Contracts of this sort are a common feature of electricity markets oper-
ating with a pool structure in which the prices for all traded electricity
are determined through a combined pricing and dispatch mechanism (such
as the markets operating in Australia and New Zealand and the old pool
arrangements in England and Wales). This is quite a different environment
than that of markets which are based on bilateral contracts, such as in the
new trading arrangements in England and Wales.

Thus, we arrive at the following expression for the profit to generator
i as a function of the spot price p and dispatched quantity q:

Ri(q,p)=pq−Ci(q)+Qi(f −p). (1)

Throughout this paper, we assume that the spot market demand
D(p, ε) is dependent on the price p and is subject to some random shock
ε with known distribution. We denote by g the density function of the
distribution of the random shock and assume that g is well defined and
has the complete interval [ε1, ε2] as support set. We assume also that
D′′
pε(p, ε) = 0 [this is one of the assumptions made by Klemperer and

Meyer (Ref. 1) and by others who have looked at the supply function
model]. This amounts to a restriction that demand is translated horizon-
tally by the random shock ε. It is convenient to reparametrize ε so that
we can write

D(p, ε)=D(p)+ ε;
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this can be done without any loss of generality once we assume that
D′′
pε(p, ε)= 0. We take the demand to be continuously differentiable and

strictly decreasing in price, that is, D′(p)<0.
In the spot market, each generator makes an offer into the market:

in many cases, this takes the form of an offer stack, being a set of quanti-
ties at increasing prices. We use a supply function Si to describe the price-
quantity relationship, so that Si(p) denotes the quantity offer of generator
i at price p. The way that the market operates means that we must restrict
the supply functions to be nondecreasing. The supply function is defined
on [0, pM ], where pM is the price ceiling that operates in the spot market.
In many markets, it is possible to bid at a negative price. In the middle
of the night, it can happen occasionally that the spot prices are negative.
This occurs when the demand is very low and the generators have to carry
the cost of turning equipment on and off: sometimes, it makes sense for a
generator to pay for the privilege of being left on. However in our model,
for simplicity, we normalize the prices so that the lower limit is zero. There
is no loss of generality in doing this.

We will use the graph of a supply function which is defined as

si =
{
(Si(p),p) : 0≤p≤pM}

.

The graph si is a curve in the price-quantity plane, which we call the sup-
ply curve. Anderson and Philpott (Ref. 16) prove that the expected return
for player i by offering a supply function Si(p) can be expressed as a line
integral over the supply curve si ,

Ei(si )=
∫

si
Ri(q,p)dψi(q,p),

where ψi is a continuous market distribution function for player i;ψi(q,p)
represents the probability that generator i is not fully dispatched if it
offers a quantity q of power at price p [equivalently, ψi(q,p) is the prob-
ability that the residual demand left after other generators are dispatched
at price p is strictly less than q].

Let Sj (p) be the aggregate supply function offered by the other gen-
erators on the market. Under our assumption on the market demand, we
can write the market distribution function as

ψi(q,p)=Pr(D(p)+ ε−Sj (p)<q)
=G(q+Sj (p)−D(p)),
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where G(·) is the distribution function of the random shock ε. Conse-
quently,

(ψi)
′
p=g(q+Sj (p)−D(p))

(
S′
j (p)−D′(p)

)
,

(ψi)
′
q =g(q+Sj (p)−D(p)).

Clearly, provided that Sj is continuously differentiable, then ψi will also
be continuously differentiable.

Note that Ei(si ) depends only on the part of the curve si where

dψi(Si(p),p) �=0,

or equivalently,

g(q+Sj (p)−D(p)) �=0.

Let �i denote the set of points (q,p) where

g(q+Sj (p)−D(p)) �=0;
thus,

�i ={(q,p) : ε1 ≤q+Sj (p)−D(p)≤ ε2}.
In choosing a supply curve, the generator i need only consider the part of
this curve located in �i .

3. Optimality Conditions

Suppose that generator i holds contracts for a total quantity Qi ,
where 0<Qi ≤ qMi , and then offers into the spot market a supply curve
si . Since generator i cannot offer more than qMi and since the highest
offer price cannot exceed pM , any supply curve from generator i must
be located in the region [0, qMi ] × [0, pM ]. On the other hand, as we dis-
cussed above, the expected profit Ei(si ) depends only on the part of curve
si located within �i . Therefore, our discussion of the optimality conditions
for si is focused on the region �i ∩ [0, qMi ] × [0, pM ]. Let �oi denote the
interior of the set �i ∩ (0, pM)× (0, qMi ). Let �i denote the set of curves
si such that Si(·) is continuous and strictly increasing.

Suppose that Sj is strictly increasing and continuously differentiable
on (0, pM) and that si ∈�i maximizes Ei(·), so the maximizing offer curve
is strictly increasing. Anderson and Philpott (Ref. 16) prove that

Zi(Si(p),p)=0,
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for all p∈ (0, pM) such that (Si(p),p)∈�oi , where

Zi(q,p)≡ (Ri)′q(q,p)(ψi)′p(q,p)− (Ri)′p(q,p)(ψi)′q(q,p).
Since

g(q+Sj (p)−D(p))>0,

we can rewrite the necessary optimality condition above as
(
p−C′

i (Si(p))
)(
S′
j (p)−D′(p)

)
)−Si(p)+Qi =0, (2)

for (Si(p),p)∈�oi .
Green (Ref. 10) derives a similar condition to (2) for a supply func-

tion to be optimal. In his paper, the demand is a linear function of price,
that is,

D(p)=A−bp,
where A and b are constant. He shows that, if generator i supplies Si(p)
at price p and wishes to maximize his profit for every p (market clearing
price), then Si(p) must satisfy the condition

(
p−C′

i (Si(p))
)(
S′
j (p)+b

)−Si(p)+Qi =0.

In Green’s framework, the supply function Si(p), if it turns out to be
monotonic and hence feasible, will be an optimal offer for every demand
realization in a range of demands. Essentially, each demand instance picks
out one point on the Si(p) curve. Our framework is different, allowing a
weaker notion of optimality (that is, optimality in expectation). However,
the difference between these two approaches turns out to be minimal in
this context. Observe that the defining equation (2) is independent of the
distribution g and so must also apply to the optimal choice of offer when
the demand is deterministic. In other words, the offer curve will lead to an
optimal dispatch whatever the demand. This demonstrates that, in the case
that the only uncertainty relates to a demand shock involving a transla-
tion of the demand curve, the extra generality given by the expected profit
framework is only of value when the optimal offer curve contains either
horizontal or vertical segments (and hence is constrained by the monoto-
nicity condition).

From (2), we see that, for an optimal supply function Si , if p is
chosen so that Si(p)=Qi , then we must have

p=C′
i (Si(p))=C′

i (Qi),
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since Sj is increasing and D is strictly decreasing, and thus

S′
j (p)−D′(p)>0.

Hence, an optimal supply curve si must pass through the point (Qi,C
′
i

(Qi)) in the (q,p) plane, so that

Si
(
C′
i (Qi)

)=Qi.

Moreover, as Si is increasing, we can see that, when p<C′
i (Qi), we must

have Si(p)≤Qi . Since S′
j (p)−D′(p)>0, we have from (2),

p≤C′
i (Si(p)).

Similarly, when p>C′
i (Qi), we can show that

p≥C′
i (Si(p)).

This means that, if Qi > 0, then in order to obtain the maximum profit,
player i will supply electricity up to the contract amount Qi at a price
lower than its marginal cost, but will offer at higher than the mar-
ginal cost for amounts greater than the contract amount. This has been
observed also by Green (Ref. 10). This result is not surprising, since from
(1) if the generator is dispatched less than the contract quantity Qi , then
the generator makes more profit when the price is lower, and the reverse
if the generator is dispatched more than the contract amount.

Though (2) can be used to find a function Si(p), it can only be a sup-
ply function if it is nondecreasing. The next result gives conditions for the
function defined in this way to be monotonic and shows also what hap-
pens to the solution at the boundaries of the region [0, qMi ] × [0, pM ]. In
order to prove this result, we need to use a framework which does not
assume the existence of a function S(p) at the outset. Thus, it is conve-
nient to consider the following system:

Z̃i(q,p)≡
(
p−C′

i (q)
)(
S′
j (p)−D′(p)

)−q+Qi

=0, (3)

for (q,p)∈ (
0, qMi

)× (0, pM). Here,

Zi(q,p)=g(q+Sj (p)−D(p))Z̃i(q,p), for (p, q)∈�oi .
We will show that the solution to (3), when appropriately extended, will
trace out the optimal offer curve in the (q,p) plane. This result extends
previous work which has dealt with the symmetric case (Ref. 2) or inelas-
tic demand (Ref. 27).
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Proposition 3.1. Suppose that Sj and D are twice continuously differ-
entiable on (0, pM) and that

(
Qi,C

′
i (Qi)

) ∈ (0, qMi ) × (0, pM). Suppose
that, for p∈ [0, pM ],

[A(p)]2 ≥−QiA
′(p), (4)

A(p)≤−pA′(p), (5)

where A(p)=D′(p)−S′
j (p) is the slope of the residual demand curve and

is negative. Then, the locus of points satisfying (3) intersects the rectan-
gle (0, qMi )× (0, pM) in a single continuous monotonic curve. If we write
AL= (qL,pL) and AH = (qH ,pH ) for the points through which this curve
passes on the boundary of the rectangle, then we can represent the curve
as a supply function Si(p) defined on (pL,pH ), or equivalently as an offer
function Ti(q) = S−1

i (q) defined on (qL, qH ). We extend Ti by defining
Ti(q)=0, for 0≤q≤qL, and Ti(q)=pM , for qH ≤q≤qMi . Then, Ti is the
unique optimal offer function up to changes outside �i .

Proof. By assumption, for all (p, q)∈ (0, pM)× (0, qMi ),
C′′
i (q)≥0 and A(p)<0.

Thus,

(Z̃i)
′
q(q,p)=−1+C′′

i (q)A(p)<−1, (6)

for all (p, q)∈ (0, pM)× (0, qM). On the other hand,

Z̃i
(
Qi,C

′
i (Qi)

)=0

and by assumption
(
Qi,C

′
i (Qi)

)∈�oi .
By the implicit function theorem, there exists a unique continuous and
differentiable function Si(p) in a neighborhood N of C′

i (Qi) such that
Si(C

′
i (Qi))=Qi and (Si(p),p) satisfies (3) for all p∈N .
We prove now that Si(p) is increasing over N (and hence can be used

as a supply function). The derivative of Si is given by

S′
i (p)=

[−A′(p)
(
p−C′

i (Si(p))
)−A(p)]/ [

1−C′′
i (Si(p))A(p)

]
. (7)

Observe that the denominator of this expression is always positive. When
A′(p)>0, we have from (5)

−A′(p)
(
p−C′

i (Si(p))
)−A(p)≥A′(p)C′

i (Si(p))

>0,



JOTA: VOL. 124, NO. 2, FEBRUARY 2005 267

which implies S′
i (p)>0.

Now, consider the case that A′(p)≤ 0. Using (2), we can rewrite (7)
as

S ′
i (p)=

[−A′(p)(Si(p)−Qi)+ [A(p)]2
]/ [−A(p)(1−C ′′

i (Si(p))A(p)
)]
. (8)

Thus, from (4),

−A′(p)(Si(p)−Qi)+A(p)2 ≥A′(p)Qi + [A(p)]2

>0,

which implies that S′
i (p)>0.

It is easy to see that we can continue to extend the function Si(p)

out to the edges of the rectangle (0, qMi )× (0, pM). Essentially, all we need
do is to apply the implicit function theorem again at any point (Si(p),p)
which is on the boundary of N to keep on extending the range. The
uniqueness of Si(p) follows from (6); the fact that every solution goes
through (Qi,C

′(Qi)) ensures that Ti(q) is also unique . We can observe
also that, when treated as a supply curve si , our extension amounts to
joining AL to the origin and AH to the top corner of the rectangle
(qMi ,p

M).
All that remains is to check the second-order sufficient conditions

for a local optimum. We have already shown that (Z̃i)′q(q,p) < 0. Since
the curve Z̃i(q,p))= 0 is monotonic increasing, we can deduce from the
implicit function theorem that (Z̃i)′p(q,p)> 0 along that part of the sup-
ply function in �oi .

Observe that, since under the conditions of the theorem we have only
one line where Zi(q,p)= 0, if qL = 0 then Zi(0, p)≤ 0 for p<pL and if
pL=0 then Zi(q,0)≥0 for q <qL. Similarly, if qH =qMi , then Zi

(
qMi ,p

)≥
0 for p > pH , and if pH = pM then Zi

(
q,pM

) ≤ 0 for q > qH . It is not
hard to check from these observations that the sufficient conditions for a
local optimum hold, as established in Ref. 28, Theorem 7. The global opti-
mality of the solution follows, since there is an optimal solution (see Ref.
28) and no other solution can exist satisfying the necessary conditions for
optimality.

We make some comments on the assumptions (4) and (5) which are
used to prove the monotonicity of Si .

If the residual demand function is concave in p [that is, A′(p) < 0],
then (5) is trivially satisfied. On the other hand, when the residual demand
function is convex in p [that is, A′(p) > 0], condition (4) becomes triv-
ial. In either case, the other constraint imposes a restriction that the abso-
lute size of A′(p)is not too large in comparison with A(p). Condition (5)
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is the generalization to this case of the restriction that Sj (p) be inverse
log concave that was used by Anderson and Philpott (Ref. 27). On its
own, it guarantees only that Si(p) is monotonic for points to the right of
(Qi,C

′
i (Qi)). Note that these are general sufficient conditions which might

not be necessary in specific examples: see Example 3.1.
We note also that the proposition assumes explicitly Qi < q

M
i ; that

is, generator i’s contracted quantity is below the generator’s generation
capacity. There is no reason why this restriction has to hold in prac-
tice. Provided that the implicit function curve defined by (3) crosses the
region �oi , then we can still derive the same optimal supply function curve,
although the starting point where we apply the implicit function theorem
is no longer (Qi,Ci(Qi)). In this case the unique optimal supply function
will be entirely located below the marginal cost curve.

A sufficient condition for the optimal supply curve to cross �oi is that
both the points (qMi ,0) and (D(0) + ε2 − Sj (0),0) (the highest possible
demand at price 0) are located on the right-hand side of the supply func-
tion curve defined by (3). If we define

q0
i =min

(
qMi ,D(0)+ ε2 −Sj (0)

)
,

then we can write this condition as

C′
i

(
q0
i )

)(
S′
j (0)−D′(0)

)+q0
i >Qi.

Finally, we discuss the sensitivity of Si with respect to the contracted
amount Qi .

Proposition 3.2. Let Si(p,Q) be defined as in (3) for a given value
of Q, and suppose that the conditions of Proposition 3.1 are satisfied. If
0≤Q1

i <Q
2
i ≤qM , then Si(p,Q

1
i )<Si(p,Q

2
i ).

Proof. By a simple calculation, we have

dSi(p,Qi) /dQi =1/ [1+ (
S′
j (p)−D′(p)

)
C′′
i (Si(p,Qi))]>0.

The result follows.

From Proposition 3.2, we can show that, the greater the amount
of contract Qi , the lower the prices that the generator offers in the
spot market. We write Ti(q,Qi) for the inverse function for Si(·,Qi).
As Qi increases, Si(·,Qi) increases and hence Ti(·,Qi) decreases. This is
an observation which has been made by a number of authors (Refs. 10,
13–15) using a variety of different models.
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To conclude this section, we present an example to illustrate our dis-
cussion in this section.

Example 3.1. Suppose that generator i faces a residual demand

Di(p, ε)=0.5 log(1+p)−p+ ε
and that ε varies randomly from 0.5 to 4. Then,

A(p)=−1+ [0.5/(1+p)],
A′(p)=−0.5/(1+p)2<0.

Suppose that the generator’s marginal cost for producing a quantity q of
electricity is q, i.e., C′

i (q)=q and so C′′
i (q)=1. Suppose that

Qi =1, qMi =5, pM =5.

From the proof of Proposition 3.2, we see that there exists a unique
function Si satisfying (2). In what follows, we show Si is monotonically
increasing.

Note first that, when p<0.5
(√

2−1
)
,

[A(p)]2/
(−A′(p)

)=2(p+0.5)2<1, (9)

violating (4). Therefore, we cannot apply Proposition 3.2 directly and we
will establish that S′

i (p)>0 directly. By (2),

Si(p)−Qi = [−A(p)/(1−A(P ))](p−Qi).

Notice that

−A(p)/(1−A(p))= (1+2p)/(3+4p)∈ (0,0.5).
We want to show that

−A′(p)(Si(p)−Qi)+ [A(p)]2>0.

This is immediate when p ≥ 1, since then Si(p)−Qi > 0 and A′(p) < 0.
When 0<p<1, we have

Si(p)−Qi >0.5(p−Qi)>−0.5,

whereas −[A(p)]2/A′(p) > 0.5 from (9). This is enough to establish the
inequality, and this in turn establishes that S′

i (p) > 0, since (7) can be
rewritten as (8) in this case.
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4. Nash Supply Function Equilibrium

In this section, we consider interactions between generators in the
spot market. We will consider two players each of whom maximises its
expected profit through the choice of its supply functions. In order to
carry the analysis through, we will need to assume that the two players
are identical, and hence that we have a symmetric SFE.

First, suppose that two generators i and j have contracts for the same
quantity Q in the contract market and then compete in the spot mar-
ket. We assume that the two players have identical cost function C and
capacity qM . Each generator chooses a supply function to maximize his
expected return given the other’s choice. We consider a Nash equilibrium,
so that no generator can increase his expected profit by unilaterally chang-
ing his supply function. One problem that we face is that we do not know
if each generator’s optimal response supply function is increasing in price,
since our sufficient conditions (4) and (5), which guarantee the monoto-
nicity of the optimal response supply function for generator i depend on
generator j ’s supply function and vice versa. In what follows, we assume
that both generators offer increasing supply functions over [0, pM ]. We
consider symmetric equilibria, Si(p) = Sj (p) = S(p) for [0, pM ]; that is,
after observing generator j ’s supply function S(p), generator i’s optimal
response supply function is also S(p) and vice versa.

We assume that the total demand is always positive when prices are
set at the lowest marginal cost, and that the total supply is sufficient to
meet demand when the price is set at the highest marginal cost. Finally,
we assume that the marginal cost of production is smaller than the price
cap even at the highest output levels. Notice that these last two assump-
tions are slightly stronger than just assuming that supply at the price cap
level is sufficient to meet demand. This can be expressed algebraically as
follows.

Assumption 4.1. We assume that

D
(
C′(0)

)+ ε1>0,

D
(
C′(qM)

)+ ε2<2qM,

C′(qM
)
<pM.

Theorem 4.1. Let Assumption 4.1 hold, let 0<Q<qM, 0<C′(Q)<
pM , and S′(p)>0 for p∈ (0, pM). Then, S(p) is a symmetric Nash supply
function equilibrium if and only if
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(
S′(p)−D′(p)

)(
p−C′(S(p)

)−S(p)+Q=0, (10)

for all p∈�∗, where

�∗ ={
p : ε1 ≤2S(p)−D(p)≤ ε2, 0≤p≤pM}

.

Proof. Suppose that S satisfies (10) throughout the region �∗. We
shall prove that given the supply function S of generator j , the best
response of generator i is also S, and vice versa. Given Sj =S, it is clear
that Si satisfies (2) and so

Z(S(p),p)=0,

for p∈�∗. It remains only to show the second-order conditions for opti-
mality. Here, we can use the same argument as in the proof of Proposi-
tion 3.1 to show that Zq(S(p),p)<0 and since S is monotonic increasing
as a function of p, the implicit function theorem implies Zp(S(p),p)>0.
This is enough to show from Ref. 28, Theorem 7 that S(·) is locally opti-
mal. Global optimality follows, since there is no other local optimal sup-
ply curve in the considered region.

On the other hand, for any symmetric equilibrium, (10) follows from
(2) provided that (S(p),p) is in �oi = �oj . The only remaining case
occurs when a symmetric equilibrium satisfying (10) hits the boundary of
[0, qM ] × [0, pM ], within the region �∗ and thus fails to satisfy the deriv-
ative condition of (10) at the boundary. But this is ruled out by Lemma
4.1 below.

The lemma below deals with some issues around the boundaries of
the area in which the supply function is defined. We can summarize this
result by observing that it amounts to showing that a symmetric equilib-
rium cannot hit the boundaries of the box [0, qMi ] × [0, pM ] before it hits
the boundary of �i =�j . The cases where the solution to (10) hits the
p=0 or p=pM constraints while still in the interior of the region �∗ pro-
vides some difficulties for the modeling approach that we have adopted.
For example, suppose that the solution to (10) has S(0)=qL with D(0)+
ε1< 2qL. Then, for the low demand realizations, the generators will both
be dispatched at price 0, with insufficient total demand for the total sup-
ply available at that price. The market mechanism will decide on an alloca-
tion of demand to the two generators, and it is natural to assume that this
allocation is symmetric, with each generator being dispatched an amount
(D(0)+ ε)/2 if this is less than qL. However, the formal model that we
have used allocates to generator i an amount equal to D(0)+ ε − Sj (0),
which produces the wrong result if we take Sj (0)=qL. The problem here
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is that the offer of a block of energy at zero price is equivalent to a verti-
cal section in the definition of the function Sj ; hence, it gives some inde-
terminacy in the definition of Sj (0). Thus, we will need to treat these cases
more directly with a perturbation argument.

Lemma 4.1. Under Assumption 4.1, if S(p) is a symmetric Nash
supply function equilibrium and �∗ = {p : ε1 ≤ 2S(p)−D(p)≤ ε2, 0 ≤p≤
pM}, then, S(p) ∈ (0, qM) for p ∈�∗ and S(0)≤ (ε1 +D(0))/2, S(pM)≥
(ε2 +D(pM))/2.

Suppose that a solution to (10) has S(pL)=0 for some pL∈�∗. Thus,
D(pL) ≤ −ε1 < D(C

′(0)) using Assumption 4.1. Hence, pL > C′(0). But
from (10),

(
S′(pL)−D′(pL)

)(
pL−C′(0)

)+Q=0,

and this gives a contradiction since S′ is nonnegative and D′ is non-
positive.

On the other hand, suppose that a solution to (10) has S(pH ) =
qM for some pH ∈�∗. Thus,

D(pH )≥2qM − ε2>D
(
C′(qM)

)

using Assumption 4.1. Hence, pH <C′(qM
)
. But from (10),

(
S′(pH )−D′(pH )

)(
pH −C′(qM

))−qM +Q=0,

and this gives a contradiction as Q < qM and S′(pH ) − D′(pH ) is
nonnegative.

Now, consider the case S(0)=qL with D(0)+ ε1<2qL. We show that
this cannot be an equilibrium solution. We choose a perturbation of Si , by
letting Si be any continuous function with Si(0)= (D(0)+ ε1)/2), Si(p)<
S(p), for 0<p < δ, and Si(p)= S(p) for p≥ δ. While making a change
to Si , we leave Sj = S unchanged. Notice that, since C′(0)≥ 0 and D is
decreasing, Assumption 4.1 implies that Si(0) > 0. We can think of this
perturbation as arranging for player j to be given some greater priority
in the dispatch when the price is zero or very near it.

If ε ∈ [ε1, qL + (ε1 −D(0))/2], then the market still clears at price 0.
For this range of ε, the improvement in profit for player i is greater than

C((D(0)+ ε)/2)−C((D(0)+ ε1)/2)>0;
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the exact change in profit will be affected by the exact rule for sharing dis-
patch between the two generators. If

ε ∈ (qL+ (ε1 −D(0))/2, 2S(δ)−D(δ)),
then the market clears at a price pε ≤δ. It is easy to see that, in this case,
the perturbation will make the clearing price greater and the amount dis-
patched by generator i less. Hence, the cost of generation is reduced and
the change in profit for player i, which we write as � is bounded below
by the reduction in the market payments to generator i together with the
loss due to the effect of increased prices on the contract payments. So,

�≥−δS(δ)−pεQ≥−δ(qM +Q)
.

For other values of ε, there is no change in the outcome. Since the
improvement in payoff which occurs for some values of ε is independent
of the choice of δ, we will obtain an overall improvement in expected
profit if δ is chosen small enough.

The argument when S(pM)=qH with D(pM)+ε2>2qH is similar. We
show that this cannot be an equilibrium solution by considering a pertur-
bation of Si , with Si(pM)= (D(pM)+ε2)/2, Si(p)>S(p), for pM −δ<p<
pM and Si(p)=S(p) for p≤pM −δ. Observe that Assumption 4.1 implies
that Si(pM)<pM. In this case, if

ε ∈ (
qH + (

ε2 −D(
pM

))
/2, ε2

)
,

then the perturbed solution dispatches strictly more than S and the clear-
ing price remains at pM , giving an improvement which is independent
of δ. On the other hand, if

ε ∈ (
2S

(
pM − δ)−D(

pM − δ)qH + (
ε2 −D(

pM
))
/2

)
,

then the perturbation will make the clearing price smaller and increase the
amount dispatched by generator i. Suppose that a particular value of ε in
this range is associated with price pε under S and that p′

ε ≤pε under the
perturbed solution Si , with an amount dispatched of x under S and x′ ≥x
under Si .

Then, using the same notation as before, this realization gives a
change in profit of

�=p′
εx

′ −C(
x′)−Qp′

ε −pεx+C(x)+Qpε
≥pM(

x′ −x)− (
C

(
x′)−C(x))− δx′

≥ (
pM −C′(qM

))(
x′ −x)− δx′,
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where we have used the fact that p′
ε ≥pM −δ and that C is increasing and

convex on (0, qM). Now, using Assumption 4.1, we have

�≥−δqM.
For other values of ε, there is no change in the outcome. Since the
improvement in payoff, which occurs for values of ε in the first range
is independent of the choice of δ, as before we will obtain an overall
improvement in the expected profit if δ is chosen small enough.

We give now a more detailed analysis of the possible symmetric sup-
ply function equilibria. We start by defining two functions. Let S0(p) be
the solution of

S0(p)−Q+D′(p)(p−C′(S0(p)))=0. (11)

We will be interested in the solution of this equation for p ∈ [0, pM ]. To
ensure a solution for every value of p, we choose a smooth extension of
C for negative arguments, with C′(x)=C′(0)+x for x <0. Then, the left-
hand side of (11), when treated as a function of S0(p), is continuous and
changes sign as S0(p) moves from −∞ to +∞.

From (10), we have S′(p) = 0 if any equilibrium solution S(p)

crosses S0(p) [except in the case that p = C′(S(p)], i.e., at the point
(Q,C′(Q))). Setting Sj (p) = 0 in (2), we see that S0(p) is the opti-
mal offer curve for a monopolist when faced with demand D(p) +
ε, as has been observed by Green and Newbery in the case without
contracts.

We define also S∞(p) to be the marginal cost curve; thus, S∞(p)=
(C′)−1(p). Using the same extension of C as defined above ensures that
S∞(p) is defined for p∈ [0, pM ]. Observe from (10) that S′(p)=∞ if any
equilibrium solution S(p) crosses S∞(p) [unless this occurs at S(p)=Q,
i.e., at the point (Q,C′(Q))].

These two curves intersect at
(
Q,C′(Q)

)
, as is illustrated in Figure 1.

When p < C′(Q), then S0(p) > S∞(p), while the reverse is true when
p > C′(Q). No equilibrium solution S(p) can exist outside the region
between these two curves, since this would imply a negative derivative at
this point. There will be multiple equilibria lying in the region between
the two curves. We work toward identifying which of these multiple
equilibria achieves the maximum expected profit for the generators. This
maximum profit equilibria will be a prime candidate for the two gener-
ators to coordinate upon. We will need to show first of all that S0(p)

is increasing. To establish this we need to make one further assump-
tion.
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Fig. 1. Possible symmetric supply function equilibria.

Assumption 4.2.
(
p−C′(Q)

)
D′′(p)+D′(p)<0, for p∈ (0, pM).

Most previous research in this area has assumed that the demand is
a concave function, i.e. D′′(p)< 0. Notice that, when the demand is con-
cave, Assumption 4.2 will automatically be satisfied for that part of the
solution lying to the right of the crossover point. But for the rest of the
curve [when p<C′(Q)], we need instead that D′′(p) is positive or at least
not too negative. In general, the result we give below will not hold for an
arbitrary concave demand function when Q>0.

Lemma 4.2. Under Assumption 4.2, the function S0(p) is strictly
increasing on [0, pM ].

Proof. Observe first that, from (11), S′
0(p) satisfies

S′
0(p)

(
1−D′(p)C′′(S0(p))+D′(p)+D′′(p)

(
p−C′(S0(p))

)=0. (12)

Suppose that S0(p)<Q. Then, from (11), p<C′(S0(p)). In the case that
D′′
p(p)≥0, we have

D′(p)+D′′(p)
(
p−C′(S0(p))

)
<0 (13)

immediately. In the case that D′′(p)<0, then using C′(S0(p))≤C′(Q), this
inequality follows from Assumption 4.2.
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Now, suppose that S0(p)≥Q. From (11), p≥C′(S0(p)). Hence, (13)
holds immediately if D′′(p)<0; since C′(S0(p))≥C′(Q), the inequality fol-
lows from Assumption 4.2 if D′′(p)≥0. In either case, once we have estab-
lished (13), then S′

0(p)>0 follows from (12).

We write W for the region between the two curves. Specifically, we let
W1 denote the region surrounded by the curves

s1
0 ={

(S0(p),p) : 0<p<C′(Q)
}
,

s1
∞ ={

(S∞(p),p) : 0<p<C′(Q)
}
,

and the lines p=0 and q=0. Let W2 denote the region surrounded by the
curves

s2
0 ={

(S0(p),p) :C′(Q)<p<
(
C′)−1(

qM
)}
,

s2
∞ ={

(S∞(p),p) :C′(Q)<p<PM
}
,

and the lines p=pM and q=qM . Then, W =W1 ∪W2.
Define

f̃ (S,p)= [
S−Q+D′(p)(p−C′(S))

]/[
p−C′(S)

]
.

Observe that f̃ (S,p) > 0, for any (S,p) ∈ intW , and that f̃ (S,p) < 0,
for (S,p)∈ [0, qM ] × [0, pM ] \ W . For any point (S,p) in intW such that
(S,p) �= (Q,C′(Q)), since f̃ is Lipschitz near the point, by a standard
existence theorem in ordinary differential equation theory, there exists a
unique solution S(p) for (10) within a neighborhood of the point.

The lemma below shows that the possible solutions for (10) are
exactly defined by just two points on the trajectory: one in W1 and one
in W2. The part of the trajectory lying in W1 is essentially independent
of that lying in W2, though their slopes coincide at the crossover point
(Q,C′(Q)). In the case that there are no contracts, then only the region
W2 occurs and this is the case considered by Green and Newbery (Ref. 2).

Lemma 4.3. Under Assumption 4.2, the following results hold:

(i) For any point (S,p) in W such that S<Q, there exists a unique
solution S(p) for (10) which is increasing and remains in W
between (S,p) and (Q,C′(Q)). Similarly, for any point (S,p) in
W such that S >Q, there exists a unique solution S(p) for (10)
which is increasing and remains in W between (Q,C′(Q)) and
(S,p).
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(ii) Any solution trajectory of (10) must pass through (Q,C′(Q)) at
a slope given by (when C′′(Q)>0)

S ′(C ′(Q)
)=1/2

[
D′(C ′(Q))+

√
D′(C ′(Q))2 − [4D′(C ′(Q))/C ′′(Q)]

]
.

(14)

Proof. Part (i) follows easily by considering tracing a curve which
leaves W and obtaining a contradiction. For example, suppose that a
curve starts at (S,p) with S < Q and leaves W on the S0 boundary
before reaching (Q,C′(Q)). Then, near to crossing the boundary, S′
approaches 0, but S′

0 > 0 which gives a contradiction, since S(p) < S0(p)

in this case. The other three cases can be dealt with similarly.
For part (ii), we note from (10) that, unless p=C′(S(p)), and hence

p=C′(Q), S(p) has derivative

[S(p)−Q]/[p−C′(S(p))]+D′(p)

Let α be the left derivative of S at C′(Q). As S approaches Q and p

approaches C′(Q) from below, we have

p�C′(Q)−�, S�Q−α�,
for � small and positive. Hence,

α�−α�/ [C′(Q)−�−C′(Q−α�)]+D′(C′(Q)−�).
This gives a quadratic equation for α. This equation has exactly one pos-
itive root and this is (14). Moreover, the argument can be repeated for p
approaching C′(Q) from above to obtain the same limiting value.

Note that, as C′′(Q) approaches zero, the value of the slope of S at
C′(Q) goes to infinity. This corresponds to a flat offer curve which is used
at Q in the limit when C′′(Q)=0.

We have been able to give an analysis of the symmetric duopoly for
the spot market equilibrium without the assumption that the demand is
concave in the price. We should note that Assumption 4.2, which is new,
can be dispensed with for the analysis of that part of the solution lying
above the crossover point, if we assume instead that the demand is con-
cave. This is the approach taken in the analysis of the case with fixed mar-
ginal costs carried out by Newbery (Ref. 9). He assumes that the demand
is always greater than the contract amount Q; but this assumption is
restrictive, as generators in practice are often contracted at a level close to
their normal output.
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Fig. 2. SFE with maximum expected profit.

We let ρ0 be the smallest nonnegative price p at which the total
demand could be as small as 2S0(p); thus,

ρ0 =min{p≥0 :D(p)+ ε1 ≤2S0(p)}.

As D is decreasing and S0 is increasing, there is at most one price p where
D(p)+ ε1 = 2S0(p). This will be the value of ρ0 unless D(0)+ ε1 ≤ 2S0(0)
when ρ0 =0. We define also

ρM =max{p≤pM :D(p)+ ε2 ≥2S0(p)}.

This is the largest price p≤ pM at which the total demand could be as
high as 2S0(p). Figure 2 shows the definitions of ρ0 and ρM , but note that
the price and quantity axes have been reversed from Figure 1.

The theorem below defines the Nash supply function equilibrium in
the price range (ρ0, ρM). Before giving the proof of this result, we note
that the definition of the offer curve outside the price range defined in the
theorem is irrelevant. Since the total demand will be split equally between
the two generators, the offer curve outside the price range (ρ0, ρM) cor-
responds to demand values which will not occur. We write T (q) for the
inverse of the equilibrium supply function, so T (q)= S−1(q). Then, we
may define a continuation of S, by setting

T (q)=ρ0, for q ∈ (0,D(ρ0)+ ε1)),

T (q)=ρM, for q ∈ (D(ρM)+ ε2, qM)).



JOTA: VOL. 124, NO. 2, FEBRUARY 2005 279

The values of the offer curve in these ranges are not important, since they
lie outside �o.

Theorem 4.2. Under Assumptions 4.2 and 4.1, the Nash supply func-
tion equilibrium which achieves the maximum expected profit for both
players is the trajectory solving (10) and passing through the points

A0 = ((D(ρ0)+ ε1)/2, ρ0), AM = (D(ρM)+ ε2)/2, ρM).

Proof. We consider first that part of the equilibrium solution that
lies below (Q,C′(Q)). The proof proceeds in two stages. First, we will
show that the solution suggested is a well-defined equilibrium, and then
we will show that it achieves the maximum possible profit amongst these
equilibria.

We need to start by establishing that A0 ∈W1. First, consider the case
that ρ0> 0, so A0 lies on (S0(p),p). We need S0(ρ0)> 0 (or equivalently
that D(ρ0)+ ε1>0). Note that

S0(C
′(0))>S∞(C′(0))=0.

Now, if ρ0 >C
′(0), then since S0 is increasing, S0(ρ0) > 0. On the other

hand, if ρ0 < C′(0), then since D is decreasing D(ρ0) + ε1 > 0 from
Assumption 4.1 above. In the case that ρ0 = 0, to show A0 ∈W1 we need
to check that

S∞(0)<(D(0)+ ε1)/2,

but this follows immediately since

C′((D(0)+ ε1)/2)>0.

Hence, we have a feasible equilibrium solution S defined through the
point A0.

The next step is to show that any other equilibrium S̃ achieves
a smaller profit. We do this by establishing that S̃(p)<S(p) for p ∈
[0,C′(Q)]. Later, we will show that the reverse occurs when p∈ [C′(Q),pM ].

We know that S̃ is an increasing curve passing through the point
(Q,C′(Q)). First, consider the case that ρ0 > 0. If S̃(p) > S(p) for some
p ∈ [0,C′(Q)], then since S̃ and S cannot cross, S̃(p̂)= S0(p̂) for some
p̂ >ρ0. But then, it is not possible to define a continuation of S̃ in [0, p̂],
which will be an equilibrium solution. Notice that

D(p̂)+ ε1<D(ρ0)+ ε1 =2S0(ρ0),

and so the definition of S̃ in this range will affect the final profit.
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In the case that ρ0 = 0 (which is the case that is illustrated in
Figure 2), then a curve S̃ may have a value between (D(0)+ ε1)/2 and
S0(0) at zero price. This is a slightly different case than that considered
above: S̃ now has to be viewed as a function that has a vertical section at
0, corresponding to an offer of an amount S̃(0) at zero price. This initial
zero price bid will be used to set the price for some demands since

S̃(0)>(D(0)+ ε1)/2.

The offer curve S̃ will not satisfy the conditions (10) and cannot be an
equilibrium.

Having established that any other equilibrium offer curve S̃ must lie
below S we show that the profit is less. If demand is given by D(p)+ε and
we use S̃(p), then the clearing price p̃ will be higher than that obtained
with S(p) [provided (D(p) + ε)/2 passes below the point (Q,C′(Q))].
Moreover the clearing price with S(p) is itself higher than the clearing
price p∗, which is obtained if both generators use S0(p).

We write π for the profit in the event that demand is given by
D(p)+ ε and the clearing price is p, so

π =p([D(p)+ ε]/2)−pQ−C([D(p)+ ε]/2),
dπ/dp= (1/2)[pD′(p)+D(p)+ ε−C′([D(p)+ ε]/2)D′(p)]−Q.

Since

[D(p∗)+ ε]/2=S0(p
∗),

we can use (11) to see that, at p∗,

dπ/dp= (1/2)[Q−S0(p
∗)]+S0(p

∗)−Q<0.

We will show that d2π/dp2<0 between p∗ and p̃,

d2π/dp2 = (1/2)[pD′′(p)+2D′(p)−C′([D(p)+ ε]/2)D′′(p)
−(1/2)D′(p)2C′′([D(p)+ ε]/2)].

Now, from Assumption 4.2,
(
p−C′(q)

)
D′′(p)+D′(p)<0, for q <Q,

using the same argument as in the proof of Lemma 4.2, and this is enough
to show that dπ/dp is decreasing since the other terms are negative. Thus,
dπ/dp < 0 throughout the range (p∗, p̃). Hence, the profit under S is
higher than that under S̃. This conclusion holds independently of the
value of the demand shock ε.
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The argument for the other case (when the offer curve is above and
to the right of (Q,C′(Q))) is similar.

So far, we have considered only symmetric equilibria, that is, the opti-
mal supply strategies of both generators coincide. It is interesting to ask
whether there is an asymmetric Nash supply function equilibrium. In fact,
if both generators have the same marginal cost and contract, then it can
be shown that no asymmetric equilibrium exists. This can be proved using
a similar technique to that employed by Klemperer and Meyer (Ref. 1) to
establish the equivalent result in their setting.

5. Conclusions

In this paper, we address the existence of an optimal monotonic sup-
ply function response in a wholesale electricity market and give conditions
on the slope of the residual demand curve that are sufficient to ensure this.
We give also a complete treatment of the symmetric supply function equi-
librium in the case with price caps and limits on generator capacity. We
are able to do this without assuming that the demand is concave. Our dis-
cussion is limited to a duopoly, but the extension to more than two iden-
tical players is not very difficult (see Newbery (Ref. 9) for a discussion of
this issue in a similar context).

The fact that our detailed results apply only to the symmetric case is
clearly a major restriction. An extension to the asymmetric case is prob-
lematic primarily because, in constructing nonsymmetric equilibria, the
restriction to monotonic supply functions becomes very hard to ensure:
we can no longer achieve this simply by giving conditions on the deriv-
ative of the residual demand. However, there are some observations that
we can make on an equilibrium in the asymmetric case. If an equilibrium
exists between supply the functions Si(p) for generator i and Sj (p) for
generator j , then these will satisfy equation (2) and its equivalent with
i and j reversed. It is not hard to show the equivalents of some of the
observations we have made in the symmetric case. If we define Si0(p)

to be the monopolist offer for generator i [which is obtained by solv-
ing (2) with S′

j (p)= 0] and Si∞(p)= (C′
i )

−1(p) to be the marginal cost
curve, then Si(p) will lie somewhere between these two curves, and will go
through the point where they cross at (Qi,C

′
i (Qi)). The equivalent holds

also for Sj (p). However, it is no longer the case that we can give a simple
condition sufficient to ensure the existence of an appropriate monotonic
equilibrium offer throughout the region between these curves.
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Because our discussion is in the context of price caps and limited
generator capacity, we need to be careful in considering the behavior of
the supply function equilibria at points where it crosses these boundaries.
Here, the use of analysis from Refs. 16 and 28 is helpful. The issue of
boundaries is important also in our derivation of the supply function equi-
librium which achieves the maximum profit for the generators.
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