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Abstract. In this paper we consider a broad class of distributionally robust optimization (DRO
for short) problems where the probability of the underlying random variables depends on the decision
variables and the ambiguity set is defined through parametric moment conditions with generic cone
constraints. Under some moderate conditions including Slater type conditions of cone constrained
moment system and Hölder continuity of the underlying random functions in the objective and
moment conditions, we show local Hölder continuity of the optimal value function of the inner
maximization problem w.r.t. the decision vector and other parameters in moment conditions, local
Hölder continuity of the optimal value of the whole minimax DRO w.r.t the parameter. Moreover,
under the second order growth condition of the Lagrange dual of the inner maximization problem,
we demonstrate and quantify the outer semicontinuity of the set of optimal solutions of the minimax
DRO w.r.t variation of the parameter. Finally we apply the established stability results to two
particular classes of DRO problems.
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1. Introduction. Consider the following distributionally robust optimization
problem:

(Pu)
min
x

sup
P∈P(x,u)

EP [f(x, ξ(ω))]

s.t. x ∈ X,
(1.1)

where X is a closed set of IRn and U is a Banach space, f : IRn × IRk → IR is a
continuous function, ξ : Ω→ Ξ is a vector of random variables defined on measurable
space (Ω,F) with support set Ξ ⊂ IRk, P(x, u) is a set of distributions which contains
the true probability distribution of random variable ξ, and EP [·] denotes mathematical
expectation with respect to probability measure P ∈ P(x, u).

One of the key ingredients in this formulation is the set of probability distributions
P(x, u). For each fixed (x, u) ∈ X × U , we confine our discussions in this paper to
the case that P(x, u) is constructed through moment conditions:

(1.2) P(x, u) := {P ∈P : EP [Ψ(x, u, ξ(ω))] ∈ K} ,

where Ψ is a random mapping consisting of vectors and/or matrices with measur-
able random components, the mathematical expectation of Ψ is taken w.r.t. each
component of Ψ, P denotes the set of all probability distributions/measures in the
space (Ω,F), and K is a closed convex cone in the Cartesian product of some finite
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dimensional vector and/or matrix spaces. Throughout the paper, we assume without
loss of generality that P(x, u) 6= ∅ for each x ∈ X and u ∈ U .

Note that if we consider (Ξ,B) as a measurable space equipped with Borel sigma
algebra B, then P(x, u) may be viewed as a set of probability measures defined on
(Ξ,B) induced by the random variate ξ. Following the terminology in the literature
of robust optimization, we call P(x, u) the ambiguity set which indicates ambiguity of
the true probability distribution of ξ in this setting. To ease notation, we will use ξ to
denote either the random vector ξ(ω) or an element of IRk depending on the context.

Obviously the ambiguity set depends on Ψ. Two special cases which might be of
interest: (a) Ψ is a vector valued function, (1.2) collapses to classical moment problem.
In that case, u often represents moments such as the mean and variance. (b) Ψ is
a matrix, (1.2) reduces to matrix moments and the parameter u may represent the
convariance matrix of some random vectors. The research on DRO with classical
moments, Wasserstein ball of empirical distribution and Kullback-Leibler divergence
have been well documented, see for instance [6, 21, 8, 11] and the references therein.
In all these works, the ambiguity set is independent of decision vector.

Our interest here is in the case when Ψ takes a general form that depends on
both x and u. We investigate the impact of variation of x and u on problem (Pu).
The dependence on x makes the DRO problem significantly more complicated math-
ematically but it enables us to cover a wider range of applications than the existing
DRO models. This is even so when P(x, u) reduces to a singleton {P (x, u)}, the DRO
problem collapses to a one stage stochastic program

min
x

EP (x,u)[f(x, ξ(ω))]

s.t. x ∈ X,
(1.3)

which differs from standard one stage SP models for the dependence of P (x, u) on x.
The new modelling paradigm means that any decision will have a direct impact on
the likelihood of the underlying random events that occur after the decision is taken.
This is the case in many engineering decision making problems where the likelihood
of failure of a project is closely related to structural design. Similar examples can
also be found in management sciences where a decision maker’s efforts may affect
the likelihood of success or failure of his objective. Indeed, in his influential seminal
work on principal agent model, Mirrlees [13] explicitly considers dependence of the
probability distribution of the agent’s success on his/her efforts. The parameter u
may be used to describe the parameters which characterize a probability distribution
such as the mean and/or variance. Therefore u often takes a functional form of x.
We will give more details in Section 4.

The DRO model (1.1) can also be motivated from robust formulation of one stage
stochastic program with expected stochastic constraints

min
x

EP [f(x, ξ(ω))]

s.t. x ∈ X,
EP [g(x, ξ(ω))] ≤ 0,

(1.4)

where g : IRn × IRk → IRm is a vector-valued function. If we don’t know the true
probability distribution P0, but it is possible to construct a set of distributions P0(u)
such that P0 ∈ P0(u), then it might be sensible to consider the following problem

min
x∈X

sup
P∈P0(u)

EP [f(x, ξ(ω))]

s.t. EP [g(x, ξ(ω))] ≤ 0.
(1.5)
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The parameter u in P0(u) may be interpreted as moments (e.g., the mean and variance
of ξ or some reference random variables) if P0(u) is specified via moment conditions.

Let

P(x, u) := {P ∈ P0(u) : EP [g(x, ξ(ω))] ≤ 0}.

Then we can effectively reformulate problem (1.5) into DRO problem (1.1). The
reformulation differs from a popular DRO formulation

min
x∈X

sup
P∈P0(u)

EP [f(x, ξ(ω))]

s.t. sup
P∈P0(u)

EP [g(x, ξ(ω))] ≤ 0.
(1.6)

The difference is obvious in that the feasible set of solutions to the inner maximization
problem (1.6) is P0(u) as opposed to P(x, u) in the inner maximization problem of
program (1.5). This means the optimal value of the former is smaller than that of the
latter since P(x, u) ⊆ P0(u). Looking at the outer minimization problem, the feasible
set of the former is X whereas the latter is{

x ∈ X : sup
P∈P0(u)

EP [g(x, ξ(ω))] ≤ 0

}

which is a subset of X. This makes the optimal value of program (1.6) even larger.
From practical point of view, model (1.5) imposes constraints on the probability distri-
bution via constraint EP [g(x, ξ)] ≤ 0, which means for some probability distribution
P̃ ∈ P0(u), if EP̃ [g(x, ξ)] > 0, then the inner maximization problem is infeasible and

hence the optimal value is −∞, consequently P̃ is understood as not imposing any
risk to the decision x (or alternatively the particular value x does not incur any risk).
We can also say that the “virtual ambiguity set” depends on x when we calculate
the worst expected value EP [f(x, ξ)] in the inner maximization problem. In contrast,
model (1.6) means any feasible decision x must satisfy constraint EP [g(x, ξ)] ≤ 0 for
every P ∈ P0(u). In other words, any probability distribution will potentially impose
a risk. In that case, decision x does not have direct impact on the ambiguity set. It is
not difficult to show that when all optimal solutions of problem (1.5) satisfy the robust
constraints in (1.6), then the two problems are equivalent. To see the equivalence, let
v(x) denote the optimal value function of the inner maximization problem (1.5) and
X̂ its domain where v takes finite values, let X̃ denote the feasible set of program
(1.6). Then X̃ ⊆ X̂. Moreover v(x) coincides with supP∈P0(u) EP [f(x, ξ(ω))] on X̃.

Thus when the set of optimal solutions of (1.5) lies in X̃, it coincides with the set of
optimal solutions to (1.6).

The purpose of this paper is to investigate how a small variation of the decision
vector x and parameter u affects the optimal value and the optimal solution of the
inner maximization problem of (Pu). This kind of analysis may be traced down
to the earlier research by Breton and Hachem [4, 5] and Takriti and Ahmed [25]
whose stability analyses are carried out for some distributionally robust optimization
problems with finite discrete probability distributions. Riis and Andersen [19] extend
such analysis to continuous probability distributions. More recently, Sun and Xu [24]
present a comprehensive asymptotic analysis of DRO w.r.t variation of the underlying
ambiguity set under total variation metric and pseudo metric. In all these works, the
dependence of the ambiguity set is confined to parameter u. Moreover, the analysis
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is qualitative rather than quantitative and it is carried out directly for the minimax
DRO.

In this paper, we advance the research by considering dependence of the ambiguity
set on the decision vector x as motivated in the earlier discussions and presenting a
detailed quantitative stability analysis for (Pu). Moreover, differing from the existing
research in the literature, part of our stability analysis (for the optimal solutions) is
carried out through the Lagrange dual of the inner maximization problem, a popular
formulation in DRO for its numerical solution.

The rest of the paper is organized as follows. We start in Section 2 with quanti-
tative stability analysis of the ambiguity set P(x, u) w.r.t. variation of the decision
vector x and parameter u. This is essentially about deriving Hölder continuity of
P(x, u) as a set-valued mapping under total variation metric (Theorem 2.1). A key
step towards this is to establish Hoffman’s lemma for the cone constrained moment
system (Lemma 2.1). Section 3 presents a detailed stability analysis for the optimal
value of the inner maximization problem as a function of (x, u) and the optimal value
of (Pu) as a function of u. Specifically, under some moderate conditions such as Slater
type conditions of the cone constrained moment system (1.2) and Hölder continuity
of the underlying random functions in the objective and the moment system, we show
local Hölder continuity of the optimal value of the inner maximization problem as a
function of (x, u) (Theorem 3.1), local Hölder continuity of the optimal value of (Pu)
w.r.t u (Theorem 3.2). Section 4 discusses stability of the optimal solutions. Under
the second order growth condition of the Lagrange dual of the inner maximization
problem of (Pu), we demonstrate and quantify outer semicontinuity of the optimal
solution set mapping to both (Pu) and the Lagrange dual of its inner maximization
problem. Finally we apply the established stability results to two particular classes
of DRO problems in Section 5.

Throughout the paper, we use the following notation. By convention, we use
IRn×n and Sn×n to denote the space of all n×n matrices and symmetric matrices, and
Sn×n+ and Sn×n− the cone of positive semi-definite and negative semi-definite symmetric
matrices. We write x • y for the scalar product of vectors x, y ∈ IRn, and A • B for
the Frobenius inner product of matrices A,B ∈ IRn×n, that is A • B := tr(ATB),
where “tr” denotes the trace of a matrix and the superscript T denotes transpose.
Moreover, we use ‖A‖ for the Frobenius norm of A, that is, ‖A‖ := (A • A)1/2, ‖x‖
for the Euclidean norm of a vector x in IRn, ‖x‖∞ for the infinity norm and ‖ψ‖∞
for the maximum norm of a real valued measure function ψ : Ξ → IR. For a Banach
space X, we write B(x, δ) for the closed ball with center x ∈ X and radius δ and
B for the closed unit ball in X. For a set S ⊆ X, intS denotes the interior of S,
d(x, S) := infx′∈S ‖x − x′‖ denotes the distance from point x ∈ X to a set S ⊂ X.
For two sets S1, S2 ⊂ X,

D(S1, S2) := inf{t ≥ 0 : S1 ⊂ S2 + tB}

signifies the deviation of S1 from S2 and H(S1, S2) := max{D(S1, S2),D(S2, S1)}
denotes the Hausdorff distance between the two sets.

2. Stability of the ambiguity set. In order to study stability of the DRO
problem (Pu), we need to investigate some topological properties of the optimal value
of its inner maximization problem. By taking into account of the structure of the
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ambiguity set in (1.2), we write the inner maximization problem as

(Px,u)
sup
P∈P

EP [f(x, ξ)]

s.t. EP [Ψ(x, u, ξ)] ∈ K.
(2.1)

Note that in this formulation, the probability measure P is a decision variable and the
set of feasible solutions is the ambiguity set P(x, u). This is an infinite dimensional
parametric program with parameters (x, u).

Analogous to standard stability analysis in parametric programming, we begin
by looking into variation of the feasible set of the maximization problem (2.1) w.r.t.
change of the parameters, i.e., the continuity of P(·, ·) as a set-valued mapping from
X × U to P. To this end, we introduce an appropriate metric which can be used to
quantify the change of probability measures in the space P.

2.1. Total variation metric and weak compactness. In probability theory,
various metrics have been introduced to quantify the distance/difference between two
probability measures; see [1, 10]. Here we adopt total variation metric which subsumes
Lipschitz metric and some other metrics; see [10] and references therein.

Definition 2.1. Let P,Q ∈P. The total variation metric between P and Q is
defined as (see e.g., page 270 in [1])

(2.2) dTV (P,Q) := sup
h∈K

|EP [h(ξ)]− EQ[h(ξ)]| ,

where

(2.3) K :=

{
h : IRk → IR : h is B measurable, sup

ξ∈Ξ
|h(ξ)| ≤ 1

}
,

and total variation norm as ||P ||TV = supφ∈K |EP [φ(ξ)]| . If we restrict the measur-
able functions in set K to be uniformly Lipschitz continuous, that is,

(2.4) K̃ = {h ∈ K : L1(h) ≤ 1} ,

where L1(h) = inf{L : |h(ξ′) − h(ξ′′)| ≤ L‖ξ′ − ξ′′‖,∀ ξ′, ξ′′ ∈ Ξ}, then dTV (P,Q)
defined by K̃ reduces to the bounded Lipschitz metric, see e.g. [15] for details.

Using the total variation norm, we can define the distance from a point to a
set, deviation from one set to another and Hausdorff distance between two sets in
the space of P. Specifically, let dTV (Q,P) := infP∈P dTV (Q,P ), DTV (P ′,P) :=
supQ∈P′ dTV (Q,P) and HTV (P ′,P) := max{DTV (P ′,P),DTV (P,P ′)}.Here HTV (P ′,P)
defines Hausdorff distance between P ′ and P under the total variation metric in space
P. It is easy to observe that HTV (P ′,P) = 0 implies DTV (P ′,P) = 0 and

inf
Q∈P

sup
h∈K

|EP [h(ξ)]− EQ[h(ξ)]| = 0

for any P ∈ P.
Let Ξ be a closed subset of IRk and B its Borel sigma algebra. For a set of

probability measures A on (Ξ,B), A is said to be tight if for any ε > 0, there exists
a compact set Ξε ⊂ Ξ such that infP∈A P (Ξε) > 1 − ε. In the case when A is a
singleton, it reduces to the tightness of a single probability measure. A is said to be
closed (under the weak topology) if for any sequence {PN} ⊂ A with PN converging
to P weakly, P ∈ A. A is said to be weakly compact if every sequence {PN} ⊂ A
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contains a subsequence {PN ′} and P ∈ A such that PN ′ → P weakly; see Skorokhod
[23] for the notion and Billingsley [2] for a similar notion called relative compactness.
By the well-known Prokhorov’s theorem (see [1]), a closed set A (under the weak
topology) of probability measures is compact if it is tight. In particular, if Ξ is a
compact set, then the set of all probability measures on (Ξ,B) is compact; see [18,
Theorem 1.12].

2.2. Hoffman’s lemma. We now return to stability analysis of ambiguity set
P(x, u), i.e., change of P(x, u) under the total variation metric as (x, u) varies. Let
M+ denote the positive linear space of all measures generated by P, let

〈P,Ψ(x, u, ξ)〉 :=

∫
Ξ

Ψ(x, u)P (dξ).

Problem (2.1) can be equivalently formulated as

(Px,u)

sup
P∈M+

〈P, f(x, ξ)〉

s.t. 〈P,Ψ(x, u, ξ)〉 ∈ K,
〈P,1〉 = 1,

(2.5)

where 1(ξ) = 1 for all ξ ∈ Ξ. An advantage of the reformulation is that it enables us
to see more clearly that the inner maximization problem is indeed a parametric linear
conic program w.r.t P and also that P is a general positive measure which is not
necessarily a probability measure. We will exploit both formulations interchangeably
in later discussions depending on the context.

The first technical result to be established is a characterization of the distance
from a point to the set of feasible solutions of (2.1), i.e., the distance of any probability
measure Q ∈P to set P(x, u) under the total variation metric in terms of the residual
of the system (1.2). The result is a generalization of the well known Hoffman’s lemma
for linear systems of inequalities in finite dimensional space ([22, Theorem 7.11].

Lemma 2.1 (Hoffman’s lemma for the moment problem (1.2)). Let (x0, u0) be
fixed. Assume that

0 ∈ int {(〈P,Ψ(x0, u0, ξ)〉 − K) : P ∈P},(2.6)

and Ψ is continuous w.r.t. (x, u) near (x0, u0) uniformly for all ξ ∈ Ξ. Assume also
that P(x, u) is weakly compact for (x, u) close to (x0, u0). Then there exists a positive
constant C such that

dTV (Q,P(x, u)) ≤ Cd(EQ[Ψ(x, u, ξ)],K)(2.7)

for any Q ∈P and (x, u) ∈ X × U close to (x0, u0). For brevity, here and later on,
we write 0 for a tuple with 0 components corresponding to those of Ψ.

Before presenting a proof, we make a few comments on the conditions of the
lemma.

Remark 2.1. Condition (2.6) is a kind of Slater constraint qualification which
is widely used in the literature of distributionally robust optimization. It means
the underlying functions Ψ in the definition of the ambiguity set through moment
conditions cannot be arbitrary. We have a few comments in sequel.

(i) Condition (2.6) is equivalent to

0 ∈ int {(1− 〈P,1〉, 〈P,Ψ(x0, u0, ξ)〉 − K) : P ∈M+}.(2.8)
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The latter is first considered by Shapiro [21] (see condition (3.12) there) for
deriving strong Lagrange duality of moment problems and has been widely
used in the literature of distributionally robust optimization, see some de-
tailed analysis of the condition in a recent paper by Xu, Liu and Sun [26]. To
see the equivalence, let U denote an open neighborhood of (0, 0) such that

U ⊂ int {(1− 〈P,1〉, 〈P,Ψ(x0, u0, ξ)〉 − K) : P ∈M+},

let P0 ∈M+ and η0 ∈ K be such that 1−〈P0,1〉 = 0 and 0 = 〈P0,Ψ(x0, u0, ξ)〉−
η0. Let V := {P ∈M+ : (1− 〈P,1〉, 〈P,Ψ(x0, u0, ξ)〉 − K) ⊆ U}. Then

0 = 〈P0,Ψ(x0, u0, ξ)〉 − η0 ∈ (〈P,Ψ(x0, u0, ξ)〉 − K) : P ∈ V, 〈P,1〉 = 1}
⊂ int {(〈P,Ψ(x0, u0, ξ)〉 − K) : P ∈P}.

Conversely if (2.6) holds, then there exists a positive constant δ such that

(0, 0) ∈ int {(1− 〈P,1〉, 〈P,Ψ(x0, u0, ξ)〉 − K) : P ∈
⋃

t∈(1−δ,1+δ)

tP}

⊂ int {(1− 〈P,1〉, 〈P,Ψ(x0, u0, ξ)〉 − K) : P ∈M+}.

(ii) If K has non-empty interior, then it follows by [3, Proposition 2.106] that
condition (2.6) is equivalent to existence of P0 ∈P such that

〈P0,Ψ(x0, u0, ξ)〉 ∈ int K,(2.9)

which is the Slater condition.
(iii) Condition (2.6) implies

{Λ ∈ K∗ : Ψ(x0, u0, ξ) • Λ ≤ 0,∀ξ ∈ Ξ} = {0},(2.10)

where

K∗ := {M : M • V ≥ 0,∀ V ∈ K}.(2.11)

Indeed, if this is not true, then there exists a nonzero Λ̃ ∈ K∗ such that
Ψ(x0, u0, ξ) • Λ̃ ≤ 0,∀ξ ∈ Ξ, which implies that

〈P,Ψ(x0, u0, ξ)〉 • Λ̃ ≤ 0,∀P ∈P.(2.12)

On the other hand, under condition (2.6), there exists an open neighborhood
W of 0 such that W ⊂ {(〈P,Ψ(x0, u0, ξ)〉 − K) : P ∈P}. Since Λ̃ ∈ K∗\{0},
there exists ζ0 ∈ W such that Λ̃ • ζ0 > 0. For the given ζ0, there exist
P0 ∈P, η0 ∈ K such that

ζ0 = 〈P0,Ψ(x0, u0, ξ)〉 − η0.(2.13)

Combining (2.12) and (2.13), we arrive at (ζ0 + η0) • Λ̃ ≤ 0, which leads to a
contraction to Λ̃•ζ0 > 0 because η0•Λ̃ ≥ 0. In the case when Ψ is continuous,
Condition (2.10) implies

{Λ ∈ K∗ : Ψ(x, u, ξ) • Λ = 0,∀ξ ∈ Ξ} = {0}(2.14)

for all (x, u) ∈ X×U close to (x0, u0) because the continuity of Ψ guarantees
condition (2.6) at these points.
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(iv) By Prokohorov’s theorem, the weak compactness condition on P(x, u) may be
fulfilled when P(x, u) is tight and closed under the topology of weak conver-
gence. We refer readers to [24, Section 4] for detailed discussions on sufficient
conditions for the latter.

Proof of Lemma 2.1. The proof is similar to Hoffman’s lemma for classical equality
and inequality constrained moment problem (see [24, Section 4.1, Lemma 4.1]) and
the thrust of the proof is to utilize Shapiro’s duality theorem [21, Proposition 3.4].
Here we give the details of the proof for completeness. We proceed in two steps.

Step 1. We show that there exists a positive constant C0 such that

dTV (Q,P(x0, u0)) ≤ C0d(EQ[Ψ(x0, u0, ξ)],K)(2.15)

for any Q ∈ P. Let P ∈ P(x0, u0). Since Ψ(x0, u0, ξ) is continuous in ξ, each
component of Ψ(x0, u0, ξ) is P -integrable function. By the definition of the total
variation norm, ||P ||TV = sup‖φ‖∞≤1〈P, φ(ξ)〉. Moreover, for any fixed Q ∈P,

dTV (Q,P(x0, u0)) = inf
P∈P(x0,u0)

dTV (Q,P )

= inf
P∈{P :EP [Ψ(x0,u0,ξ)]∈K}

sup
‖φ‖∞≤1

〈Q− P, φ(ξ)〉

= sup
‖φ‖∞≤1

inf
P∈{P :EP [Ψ(x0,u0,ξ)]∈K}

〈Q− P, φ(ξ)〉,(2.16)

where the exchange of infimum and supremum is justified by [9, Theorem 2] with
P(x0, u0) being weakly compact. In what follows, we derive the Lagrange dual of
infP∈{P :EP [Ψ(x0,u0,ξ)]∈K}〈Q− P, φ(ξ)〉. Let M+ denote the cone of positive measures
generated by P. For each P ∈M+, let

L(P,Λ) := 〈Q− P, φ(ξ)〉 − Λ • 〈P,Ψ(x0, u0, ξ)〉+ λ0(〈P, ,1〉 − 1)

denote the Lagrange function of the inner minimization problem at the very right
hand side of (2.16) and K∗ be defined as in (2.11). Then

L(P,Λ) = 〈Q− P, φ(ξ) + Λ •Ψ(x0, u0, ξ)− λ0〉 − Λ • 〈Q,Ψ(x0, u0, ξ)〉.

If there exists some ξ0 such that φ(ξ0) + Λ •Ψ(x0, u0, ξ0)− λ0 > 0, then the infimum
of L(P,Λ) is −∞ because we can choose P = αδξ0(·), where δξ0(·) denotes the Dirac
probability measure at ξ0, and drive α to +∞. Moreover, it follows by Remark 2.1 (i),
condition (2.8) is satisfied. We can then apply [21, Proposition 3.4] to ensure strong
Lagrange duality and consequently obtain

inf
P∈{P :EP [Ψ(x0,u0,ξ)]∈K}

〈Q− P, φ(ξ)〉

=
sup

Λ∈K∗,λ0∈IR
inf

P∈M+

〈Q− P, φ(ξ) + Λ •Ψ(x0, u0, ξ)− λ0〉 − Λ • 〈Q,Ψ(x0, u0, ξ)〉

s.t. φ(ξ) + Λ •Ψ(x0, u0, ξ)− λ0 ≤ 0,∀ξ ∈ Ξ.

=
sup

Λ∈K∗,λ0∈IR
〈Q,φ(ξ)〉 − λ0

s.t. φ(ξ) + Λ •Ψ(x0, u0, ξ)− λ0 ≤ 0,∀ξ ∈ Ξ.

The second inequality is due to the fact that the optimum is attained at P = 0.
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Summarizing the discussions above, we arrive at

dTV (Q,P(x0, u0)) =
sup
‖φ‖∞≤1

sup
Λ∈K∗,λ0∈IR

〈Q,φ(ξ)〉 − λ0

s.t. φ(ξ) + Λ •Ψ(x0, u0, ξ)− λ0 ≤ 0,∀ξ ∈ Ξ.

=
sup

Λ∈K∗,λ0∈IR
〈Q,min{−Λ •Ψ(x0, u0, ξ) + λ0, 1}〉 − λ0

s.t. −1 + Λ •Ψ(x0, u0, ξ)− λ0 ≤ 0,∀ξ ∈ Ξ.

(2.17)

To see how the second equality holds, we may compare the optimal value of the two
programs at each side. Let’s denote the left program by (P) and the right one by (P’).
Observe that (P’) is transferred from (P), it eliminates variable φ with a larger fesible
set and replaces φ in the objective with the largest value that φ can possibly achieve,
this ensures the optimal value of (P’) to be no less than the optimal value of (P). On
the other hand, for any optimal solution (Λ∗, λ∗0), φ∗ := min{−Λ∗•Ψ(x0, u0, ξ)+λ∗0, 1}
is a fesible solution of (P) which means the optimal value of (P’) does not exceed that
of (P).

Step 2. We show that the optimization problem at the right hand side of (2.17)
has a bounded optimal solution. Since 〈Q,min{−Λ • Ψ(x0, u0, ξ) + λ0, 1}〉 ∈ [−1, 1]
and the optimal value the right hand side of the optimization problem is bounded by
2, we can then deduce that |λ0| ≤ 3. Therefore we may add this constraint to the
optimization problem without affecting the optimal value and the optimal solution.
This motivates us to consider the following problem

sup
Λ∈K∗,λ0∈[−3,3]

〈Q,min{−Λ •Ψ(x0, u0, ξ) + λ0, 1}〉 − λ0

s.t. −1 + Λ •Ψ(x0, u0, ξ)− λ0 ≤ 0,∀ξ ∈ Ξ.
(2.18)

Let

F(u0, x0) := {(Λ, λ0) ∈ K∗ × [−3, 3] : −1 + Λ •Ψ(x0, u0, ξ)− λ0 ≤ 0, ∀ξ ∈ Ξ}

denote the feasible set of (2.18). Then we conclude that there exists a positive constant
α such that ‖Λ‖ ≤ α for all (Λ, λ0) ∈ F(u0, x0). Indeed, assume for the sake of a
contradiction that there exists a sequence {(Λk, λk0)} ⊂ F(x0, u0) such that ‖Λk‖ →
∞. Then

−1 + Λk •Ψ(x0, u0, ξ)− λk0 ≤ 0,∀ξ ∈ Ξ.(2.19)

Multiplying 1
‖Λk‖ at both sides of inequality (2.19) and letting Λ̃ denote an accumu-

lation point of 1
‖Λk‖ Λ̃

k, we obtain Λ̃ •Ψ(x0, u0, ξ) ≤ 0, for all ξ ∈ Ξ. By Remark 2.1

(iii), Λ̃ = 0, which contradicts the fact that Λ̃ = 1. This shows F(x0, u0) is bounded.
Observe that

〈Q,min{−Λ •Ψ(x0, u0, ξ) + λ0, 1}〉 ≤ −Λ • (EQ[Ψ(x0, u0, ξ)] + λ0.

Thus we have from (2.17)

dTV (Q,P(x0, u0)) ≤ sup
(Λ,λ0)∈F0

−Λ • (EQ[Ψ(x0, u0, ξ)])

= sup
(Λ,λ0)∈F0

‖Λ‖(−Λ/‖Λ‖) • (EQ[Ψ(x0, u0, ξ)])

≤ sup
(Λ,λ0)∈F0

‖Λ‖d(EQ[Ψ(x0, u0, ξ)],K)

≤ Cd(EQ[Ψ(x0, u0, ξ)],K).(2.20)
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In the last inequality, we use the following fact: if −Λ/‖Λ‖ and EQ[Ψ(x0, u0, ξ)] are
in an obtuse angle, then the product is negative and if they are in a sharp angle, then

(−Λ/‖Λ‖) • (EQ[Ψ(x0, u0, ξ)]) ≤ d(EQ[Ψ(x0, u0, ξ)],K),

which yields (2.20).
To complete the proof, we need to show that (2.20) holds uniformly for all (u, x)

close to (u0, x0). This amounts to show that F(x, u) is contained in a bounded set
for (x, u) close to (x0, u0) using a similar argument to the proof of the boundedness
of F(x0, u0) and (2.14) in Remark 2.1 (iii). We omit the details.

2.3. Hölder continuity of the ambiguity set. With Lemma 2.1, we are ready
to discuss pointwise continuity of the set-valued mapping P(x, u) over set X × U .

We need the following technical assumptions.
Assumption 2.1. There exists a weakly compact set P̂ ⊂P such that P(x, u) ⊂

P̂ for all (x, u) close to (x0, u0) and there exists a positive number τ > 0 such that

sup
P∈P̂

EP [‖Ψ(x0, u0, ξ)‖1+τ ] < +∞.(2.21)

The condition is first used in [24], see [24, Assumption 2] and [24, Remark 3 and
Proposition 7] for moment problems. The weak compactness of P̂ ensures tightness
of P(x, u) whereas condition (2.21) ensures the closedness of P(x0, u0). Thus under
Assumption 2.1, P(x0, u0) is weakly compact.

Assumption 2.2. Ψ(x, u, ξ) is Hölder continuous in (x, u) over a neighborhood
of (x0, u0) uniformly for all ξ ∈ Ξ, i.e., there exist positive constants γ ∈ IR+ and
ν1, ν2 ∈ (0, 1] such that

‖Ψ(x, u, ξ)−Ψ(x′, u′, ξ)‖ ≤ γ(‖x− x′‖ν1 + ‖u− u′‖ν2)

for all ξ ∈ Ξ and (x, u), (x′, u′) ∈ X × U close to (x0, u0).
Assumption 2.2 confines our discussion to a specific class of functions where

Ψ(x, u, ξ) is uniformly Hölder continuous in (x, u) on a neighborhood of a specified
point with constant modulus. A particularly interesting case is

Ψ(x, u, ξ) = A(ξ) +B(x, u),

where A : IRk → Y and B : X × U → Y are single valued mappings. In such a case
random variable ξ can be separated from (x, u) in Ψ. We will come back to this in
Section 5.2.

Under Assumptions 2.1 and 2.2, we conclude that P(x, u) is weakly compact for
all (x, u) close to (x0, u0) in that P(x, u) is tight and closed.

Theorem 2.1 (Hölder continuity of the ambiguity set mapping). Assume that
the Slater type condition (2.6) holds. Under Assumptions 2.1-2.2, there exist positive
constants C and ν1, ν2 ∈ (0, 1] such that

HTV (P(x, u),P(x′, u′)) ≤ C(‖x− x′‖ν1 + ‖u− u′‖ν2)(2.22)

for any (x, u), (x′, u′) ∈ X × U close to (x0, u0).
Proof. As we discussed before, Assumptions 2.1 and 2.2 ensure weak compactness
of P(x, u) for (x, u) close to (x0, u0). Together with condition (2.6), we can apply
Lemma 2.1 and assert that there exists a constant C0 > 0 such that

(2.23) dTV (Q,P(x, u)) ≤ C0d(EQ[Ψ(x, u, ξ)],K)
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for any Q ∈P and (x, u) ∈ X ×U close to (x0, u0). On the other hand, for (x′, u′) ∈
X × U close to (x0, u0) and Q ∈ P(x′, u′), d(EQ[Ψ(x′, u′, ξ)],K) = 0. Taking into
account of Assumption 2.2, we have

d(EQ[Ψ(x, u, ξ)],K) ≤ ‖EQ[Ψ(x, u, ξ)]− EQ[Ψ(x′, u′, ξ)]‖+ d(EQ[Ψ(x′, u′, ξ)],K)

≤ γ(‖x− x′‖ν1 + ‖u− u′‖ν2).(2.24)

Combining the last inequality with (2.23), we obtain

dTV (Q,P(x, u)) ≤ C0γ(‖x− x′‖ν1 + ‖u− u′‖ν2)

for any Q ∈ P(x′, u′) and hence

(2.25) DTV (P(x, u),P(x′, u′)) ≤ C0γ(‖x− x′‖ν1 + ‖u− u′‖ν2).

Exchanging the positions between (x, u) and (x′, u′), we deduce

(2.26) DTV (P(x′, u′),P(x, u)) ≤ C0γ(‖x− x′‖ν1 + ‖u− u′‖ν2).

The rest follows from the definition of HTV .

3. Stability analysis of the optimal values. With the quantitative char-
acterization of the set-valued mapping P(x, u), we are ready to carry out stability
analysis for the inner maximization problem (2.1) or its equivalent (2.5) and (Pu) in
terms of the optimal values. Let v(x, u) denote the optimal value of the two prob-
lems. Our analysis in this section essentially concerns derivation and quantification of
the continuity of v(x, u) in (x, u) and ultimately the continuity of the optimal value
function ϑ(u) := minx∈X v(x, u). The analysis may be viewed as a natural extension
of stability analysis in stochastic programming where P(x, u) is a singleton and is
independent of x.

3.1. Pseudo metric. For the purpose of the proposed analysis, we need to
introduce another metric which is closely related to the objective function f(x, ξ).
Consider the set of random functions: G := {g(·) := f(x, ·) : x ∈ X}. For any two
probability measures P,Q ∈P, let

(3.1) D(P,Q) := sup
g∈G
|EP [g]− EQ[g]|.

Here we implicitly assume that D(P,Q) < ∞. From (3.1), we can see immediately
that D(P,Q) = 0 if and only if EP [g] = EQ[g], for all g ∈ G , which means that conver-
gence of a sequence of probability measures {PN} to P entails uniform convergence of
EPN

[f(x, ξ)] to EP [f(x, ξ)]. This kind of distance has been widely used for stability
analysis in stochastic programming and it is known as pseudometric in that it satisfies
all properties of a metric except that D(Q,P ) = 0 does not necessarily imply P = Q
unless the set of functions G is sufficiently large. For a comprehensive discussion of
the concept and related issues, see [20, Sections 2.1-2.2].

Let Q ∈P be a probability measure and Ai ⊂P, i = 1, 2, be a set of probability
measures. With the pseudometric, we may define the distance from a single probabil-
ity measure Q to a set of probability measures A1 as D(Q,A1) := infP∈A1

D(Q,P ),
the deviation (excess) of A1 from (over) A2 as D(A1,A2) := supQ∈A1

D(Q,A2) and
Hausdorff distance between A1 and A2

H (A1,A2) := max

{
sup
P∈A1

D(P,A2), sup
P∈A2

D(P,A1)

}
.
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In the case when G is bounded, that is, there exists a positive number M such
that supg∈G ‖g‖∞ ≤ M , we are able to establish a relationship between the pseudo
metric and the total variation metric that is introduced in the previous section by
setting G̃ = G /M and consequently

D(P,Q) = M sup
g̃∈G̃

|EP [g̃]− EQ[g̃]| ≤MdTV (P,Q).

Let {PN} ∈ P be a sequence of probability measures. Recall that {PN} is said
to converge to P ∈P weakly if

lim
N→∞

∫
Ξ

h(ξ)PN (dξ) =

∫
Ξ

h(ξ)P (dξ),(3.2)

for each bounded and continuous function h : Ξ→ IR.

3.2. Hölder continuity of v(x, u) and ϑ(u). Let (x0, u0) ∈ X × U be fixed.
We make the following assumptions.

Assumption 3.1. Let f(x, ξ) be defined as in (1.1) and P̂ be a set of probability
measures such that P(x, u) ⊂ P̂ for (x, u) close to (x0, u0). Moreover, the following
hold.

(a) For each fixed ξ ∈ Ξ, f(·, ξ) is Lipschitz continuous on X with Lipschitz mod-
ulus being bounded by κ(ξ), where supP∈P̂ EP [κ(ξ)] <∞.

(b) supP∈P̂ |EP [f(x0, ξ)] <∞.
(c) X is a compact set.
Assumption 3.1 (a) and (b) provide sufficient conditions for the well definedness

of the worst expected values of f at any point x ∈ X. Under the assumption, we
can easily verify that the pseudometric defined in (3.1) is bounded. The compactness
condition on X is imposed for simplicity of analysis, we may weaken the condition to
closedness but would then require some inf-compactness conditions of the objective
function.

Assumption 2.1 provides a sufficient condition for supP∈P̂ EP [κ(ξ)] < ∞ and
supP∈P̂ ‖EP [f(x, ξ)]‖ < ∞ for any x ∈ X by excluding some probability measures
with heavy tail. The following proposition can be established analogous to [24, Propo-
sition 2].

Proposition 3.1. Let κ := supP∈P̂ EP [κ(ξ)] <∞. Under Assumptions 3.1, the
following assertions hold.

(a) EP [f(x, ξ)] is Lipschitz continuous w.r.t. (P, x) on P̂ ×X, that is,

|EP [f(x, ξ)]− EQ[f(y, ξ)]| ≤ D(P,Q) + κ‖x− y‖

for P,Q ∈ P̂ and x, y ∈ X.
(b) If, in addition, Assumption 2.1 holds and {P ◦ f−1(x, ·), P ∈ P̂} is uniformly

integrable for all x close to x0, i.e.,

lim
r→∞

sup
P∈P̂

∫
{ξ∈Ξ:|f(x,ξ)|≥r}

|f(x, ξ)|P (dξ) = 0,

then v(·, u) is equi-Lipschitz continuous on X with modulus being bounded by
κ, that is,

|v(x′, u)− v(x′′, u)| ≤ κ‖x′ − x′′‖,∀x′, x′′ ∈ X(3.3)

for u close to u0.
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We next investigate stability of the parametric program (Px,u) by considering a
perturbation of parameter (x, u) in a neighborhood of (x0, u0) and quantifying its
impact on the optimal value.

Theorem 3.1 (Hölder continuity of v(x, u)). Assume the setting and condi-
tions of Theorem 2.1. Assume further: (a) Assumptions 3.1 (a) holds, (b) f(x, ξ)
is bounded, i.e., there exists a positive constant M such that |f(x, ξ)| ≤ M for all
(x, ξ) ∈ X×Ξ. Then there exists a positive constants Cx0

> 0, depending on x0, such
that

|v(x, u)− v(x′, u′)| ≤ Cx0
(‖x− x′‖ν1 + ‖u− u′‖ν2)(3.4)

for (x, u), (x′, u′) close to (x0, u0), where ν1, ν2 are defined as in Assumption 2.2.
Proof. Under conditions (a) and (b), it follows by virtue of [16, Lemma 6.3]

v(x, u)− v(x′, u′) = sup
P∈P(x,u)

EP [f(x, ξ)]− sup
P ′∈P(x′,u′)

EP [f(x′, ξ)]

= sup
P∈P(x,u)

EP [f(x, ξ)]− sup
P∈P(x,u)

EP [f(x′, ξ)]

+ sup
P∈P(x,u)

EP [f(x′, ξ)]− sup
P ′∈P(x′,u′)

EP [f(x′, ξ)]

≤ sup
P∈P(x,u)

EP [κ(ξ)]‖x− x′‖

+ sup
P∈P(x,u)

inf
P ′∈P(x′,u′)

(EP [f(x′, ξ)]− EP ′ [f(x′, ξ)])

≤ sup
P∈P(x,u)

EP [κ(ξ)]||x− x′||+ sup
P∈P(x,u)

inf
P ′∈P(x′,u′)

D(P, P ′)

= sup
P∈P(x,u)

EP [κ(ξ)]||x− x′||+ D(P(x, u),P(x′, u′)).

In the same manner, we can show v(x′, u′) − v(x, u) ≤ sup
P∈P(x,u)

EP [κ(ξ)]||x − x′|| +

D(P(x′, u′),P(x, u)), a combination of which yields

|v(x, u)− v(x′, u′)| ≤ sup
P∈P(x,u)

EP [κ(ξ)]||x− x′||+ H (P(x′, u′),P(x, u)).(3.5)

On the other hand, under condition (b), there exists a constant M > 0 such that

H (P(x′, u′),P(x, u)) ≤MHTV (P(x′, u′),P(x, u)).(3.6)

With (3.5) and (3.6), we can immediately establish (3.4) by virtue of (2.22) in Theorem
2.1.

Next we investigate stability of (1.1) by considering a perturbation of parameter
u in a neighborhood of u0 and quantifying its impact on optimal value.

Theorem 3.2 (Hölder continuity of ϑ(u)). Let u0 ∈ U be fixed. Suppose for
each x ∈ X that: (a) the Slater type condition (2.6) holds at x, (b) Assumptions
2.1,2.2, 3.1(a) and (c) are satisfied at x, (c) there exists a positive constant M such
that |f(x, ξ)| ≤ M for all (x, ξ) ∈ X × Ξ. Then there exist positive constants C and
ν such that |ϑ(u)− ϑ(u0)| ≤ C‖u− u0‖ν .
Proof. Under conditions (a)-(c), it follows by Theorem 3.1 that for each x ∈ X, there
exists a positive constant Cx > 0, depending on x, such that

|v(x′, u′)− v(x′′, u′′)| ≤ Cx(‖x′ − x′′‖ν1 + ‖u′ − u′′‖ν2)

for (x′, u′), (x′′, u′′) close to (x, u0), where ν1, ν2 are defined as in Assumption 2.2. In
particular, |v(x′, u) − v(x′, u0)| ≤ Cx‖u − u0‖ν2 for (x′, u) close to (x, u0). Since X
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is compact, by applying the finite covering theorem, we deduce that there exists a
positive constant C such that

|v(x, u)− v(x, u0)| ≤ C‖u− u0‖ν2

for all x ∈ X and u close to u0. The rest follows from Klatte’s earlier stability result
[12, Theorem 1].

4. Stability analysis of the optimal solutions. In the preceding section, we
have carried out quantitative stability analysis for the minimax DRO (Pu) and its
inner maximization problem (2.1) in terms of the optimal values. We are short of
stating any property of the optimal solutions of these problems primarily because the
optimal solution to the inner maximization problem is a probability measure which is
relatively difficult to quantify its change against variation of x and u.

To fill out the gap, we take on the challenge in this section by considering the
Lagrange dual of the inner maximization problem. This is also partially motivated by
the fact that with only a few exceptions [17, 14, 26], a majority of numerical methods
for solving minimax distributionally robust optimization with moment constraints are
developed by converting the inner maximization problem into a deterministic semi-
infinite programming problem and then further as a semi-definite programming prob-
lem under some more specific conditions on the structure of the underlying functions
and the support set Ξ.

Let K∗ denote the dual cone of K (see the definition in (2.11)). For fixed Λ ∈ K∗
and λ ∈ IR, let

L(P,Λ, λ) := 〈P, f(x, ξ)〉+ Λ • EP [Ψ(x, u, ξ)] + λ(〈P,1〉 − 1).

Through a simple analysis, the Lagrange dual of problem (2.5) can be written as

(Dx,u)
min

λ∈IR,Λ∈K∗
−λ

s.t. f(x, ξ) + Λ •Ψ(x, u, ξ) + λ ≤ 0,∀ξ ∈ Ξ.
(4.1)

This is a cone constrained semi-infinite programming problem when Ξ is an infinite set.
By eliminating variable λ, we can reformulate (4.1) as a minimax robust optimization
problem

min
Λ

ψ(x, u,Λ) := sup
ξ∈Ξ

[f(x, ξ) + Λ •Ψ(x, u, ξ)]

s.t. Λ ∈ K∗.
(4.2)

Under the regularity condition (2.6), it follows by [21, Proposition 3.4] and Remark
2.1 that problems (2.5) and (4.2) do not have a dual gap for (x, u) close to (x0, u0).
Consequently problem (1.1) can be recast as

min
x,Λ

ψ(x, u,Λ)

s.t. Λ ∈ K∗, x ∈ X.
(4.3)

It is interesting to note that if Ψ is independent of x and f is convex in x for every
fixed ξ, then ψ(x, u,Λ) is convex with respect to (x,Λ) and consequently (4.2) is a
nonsmooth convex minimization problem.

In the rest of this section, we will carry out stability analysis for problem (4.2) in
terms of the optimal solution. The essence of the analysis is to exploit the stability
results for cone constrained parametric programming in our earlier paper [27].
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We start by showing boundedness of the optimal solutions to problem (4.2) under
the Slater type conditions (2.6).

Lemma 4.1 (Uniform boundedness of the optimal solutions to problem (4.2)).
Let (x0, u0) ∈ X × U . Suppose that Ψ(·, ·, ξ) is continuous at (x0, u0) for each ξ ∈ Ξ.
If the Slater type condition (2.6) is satisfied, then the set of optimal solutions to the
dual problem (4.2) is bounded uniformly for all (x, u) close to (x0, u0).
Proof. It suffices to show that problem (4.2) satisfies the inf-compactness condition,
i.e., there exists α0 such that W(α0, x, u) := {Λ ∈ K∗ : ψ(x, u,Λ) ≤ α0} is a compact
set for all (x, u) close to (x0, u0). Assume for the sake of a contradiction that this is
not true. Then for every α ∈ IR, there exists a sequence {αk} satisfying αk ≤ α and
a sequence {(xk, uk,Λk)} such that (xk, uk) → (x0, u0), Λk ∈ W(αk, xk, uk) for each
k, ‖Λk‖ → ∞ as k →∞. Since Λk ∈ W(αk, xk, uk), then

f(xk, ξ) + Λk •Ψ(xk, uk, ξ) ≤ αk ≤ α, ∀ξ ∈ Ξ.

Taking a subsequence if necessary, we may assume without loss of generality that
Λk/‖Λk‖ → Λ̃, which yields ‖Λ̃‖ = 1. Dividing both sides of the above inequality by

‖Λk‖ and driving k to +∞, we obtain Λ̃ • Ψ(x0, u0, ξ) ≤ 0,∀ ξ ∈ Ξ. By Remark 2.1

(iii), the inequalities above imply Λ̃ = 0 under the Slater condition, a contradiction.

In the case when the dual problem (4.1) has a bounded optimal solution uniformly
for all (x, u) close to (x0, u0), we discuss stability of the set of optimal solutions to
problem (4.2). For fixed (x, u) ∈ X × U , let v(x, u) and S(x, u) denote respectively
the optimal value and the set of optimal solutions of problem (4.2).

Theorem 4.1 (Stability of the optimal solutions of the inner maximization prob-
lem (4.2)). Let (x0, u0) ∈ X×U be fixed. Assume: (a) the Slater type condition (2.6)
is satisfied, (b) Ψ(x, u, ξ) is Hölder continuous in (x, u) at (x0, u0) uniformly for all
ξ ∈ Ξ, i.e., there exist positive constants γ ∈ IR+ and ν1, ν2 ∈ (0, 1] such that

‖Ψ(x, u, ξ)−Ψ(x0, u0, ξ)‖ ≤ γ(‖x− x0‖ν1 + ‖u− u0‖ν2)

for all ξ ∈ Ξ and (x, u) ∈ X × U close to (x0, u0), (c) supξ∈Ξ ‖Ψ(x0, u0, ξ)‖ <
+∞, supξ∈Ξ |f(x0, ξ)| < +∞ and there exists a nonnegative function κ(ξ) such that
supξ∈Ξ κ(ξ) < +∞ and

|f(x, ξ)− f(x0, ξ)| ≤ κ(ξ)‖x− x0‖

for x close to x0, (d) ψ(x0, u0,Λ) satisfies first order growth condition at the optimal
solution set S(x0, u0), i.e., there exists a positive constant α > 0 such that

|ψ(x0, u0,Λ)− v(x0, u0)| ≥ αd (Λ,S(x0, u0)) , ∀ Λ ∈ K∗.

Then the following assertions hold.
(i) There exists a positive constant % such that

D (S(x, u),S(x0, u0)) ≤ % (‖x− x0‖ν1 + ‖u− u0‖ν2)(4.4)

for all (x, u) close to (x0, u0).
(ii) If, in addition, the first order growth condition holds at S(x, u) uniformly for

all (x, u) close to (x0, u0), then

H (S(x, u),S(x0, u0)) ≤ % (‖x− x0‖ν1 + ‖u− u0‖ν2)(4.5)

for all (x, u) close to (x0, u0).
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Proof. We use [27, Theorem 2.1] to prove the claims. It is therefore enough to verify
the conditions of the theorem. Observe first that under conditions (a)-(c), it follows
by Lemma 4.1 that there exists a convex and compact set W such that problem (4.2)
is equivalent to

min
Λ
ψ(x, u,Λ) s.t. Λ ∈ K∗ ∩W

if (x, u) is close to (x0, u0). This effectively restricts the feasible set of solutions to a
compact set. The rest of the proof is down to verification of the other conditions of
[27, Theorem 2.1]. Let σ := sup

ξ∈Ξ
|κ(ξ)|+ sup

Λ∈W
γ‖Λ‖. Under conditions (b) and (c),

|ψ(x, u,Λ)− ψ(x0, u0,Λ)| =

∣∣∣∣∣sup
ξ∈Ξ

[f(x, ξ) + Λ •Ψ(x, u, ξ)]− sup
ξ∈Ξ

[f(x0, ξ) + Λ •Ψ(x0, u0, ξ)]

∣∣∣∣∣
≤ sup

ξ∈Ξ
|f(x, ξ)− f(x0, ξ) + Λ •Ψ(x, u, ξ)− Λ •Ψ(x0, u0, ξ)|

≤ sup
ξ∈Ξ

κ(ξ)‖x− x0‖+ γ‖Λ‖ (‖x− x0‖ν1 + ‖u− u0‖ν2)

≤ σ (‖x− x0‖ν1 + ‖u− u0‖ν2)

for every (x, u) close to (x0, u0). On the other hand, under condition (b) and (c),
there exists a constant L := supξ∈Ξ ‖Ψ(x, u, ξ)‖ such that

|ψ(x, u,Λ)− ψ(x, u,Λ′)| =

∣∣∣∣∣sup
ξ∈Ξ

[f(x, ξ) + Λ •Ψ(x, u, ξ)]− sup
ξ∈Ξ

[f(x, ξ) + Λ′ •Ψ(x, u, ξ)]

∣∣∣∣∣
≤ sup

ξ∈Ξ
‖Ψ(x, u, ξ)‖‖Λ− Λ′‖

= L‖Λ− Λ′‖.

Therefore all conditions of [27, Theorem 2.1] are satisfied.

It might be helpful to make some comments on the conditions imposed on Theo-
rem 4.1.

Condition (a) is used in Section 3 whereas condition (b) is slightly weaker than
Assumption 2.2.

Condition (c) is obvious when Ξ is a compact set but it requires some clarification
in general case. From the proof of the theorem, we can see that the condition is
fulfilled if supξ∈Ξ[f(x, ξ) + Λ •Ψ(x, u, ξ)] and supξ∈Ξ[f(x, ξ) + Λ′ •Ψ(x, u, ξ)] achieve
the maximum in a compact subset of Ξ. It is possible to derive sufficient conditions for
the latter using some recent results in variational analysis, see the detailed discussions
in the appendix of the preprint of this paper [28] (we have removed it here due to page
limitation). To see how the first order growth condition may be possibly satisfied, we
consider a simple example.

Example 4.1. Consider the following DRO problem:

min
x∈IR

max
P∈P

EP [x+ ξ]

s.t.

 x+ EP [ξ] u+ EP
[√

1− ξ2
]

u+ EP
[√

1− ξ2
]

5u+ EP [ξ]

 ∈ K,(4.6)
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where ξ is a random variable with support set Ξ = [−1, 1], K = S2×2
+ +

{(
a 0
0 −a

)
: a ∈ IR

}
.

In S2×2, by the definition of the dual cone,{(
a 0
0 −a

)
: a ∈ IR

}∗
=

{(
Λ11 Λ12

Λ12 Λ11

)
: Λ11,Λ12 ∈ <

}
.

Moreover, since K is closed and S2×2
+ is a self-dual cone in S2×2, then by [3, Chapter

2],

K∗ = (S2×2
+ )∗

⋂{(
a 0
0 −a

)
: a ∈ IR

}∗
=

{
Λ ∈ S2×2 : Λ =

(
Λ11 Λ12

Λ12 Λ11

)
,Λ11 ≥ |Λ12|

}
.

Consider x0 = 0, u0 = 1. Through simple calculations, we can derive the Lagrange
dual of the inner maximization problem of (4.6)

min
Λ

ψ(x0, u0,Λ) := sup
ξ∈[−1,1]

[f(x0, ξ) + Λ •Ψ(x0, u0, ξ)]

s.t. Λ =

(
Λ11 Λ12

Λ12 Λ11

)
∈ K∗.

In what follows we derive a closed form for the optimal value function ψ(x0, u0,Λ).

Let F (ξ,Λ11,Λ12) := ξ + 2ξΛ11 + 2
√

1− ξ2Λ12. The maximum of F (·,Λ11,Λ12) is
achieved either at the boundary of [−1, 1] or some stationary point in the interior of
the interval. Since Λ11 ≥ |Λ12|, Λ11 can only take non-negative values. If Λ12 = 0,
the maximum of F (·,Λ11,Λ12) is achieved at ξ = 1. For Λ12 6= 0, the stationary point
can be expressed as

ξ̂ =


−(2Λ11+1)√

(2Λ11+1)2+4Λ2
12

, Λ12 < 0,

2Λ11+1√
(2Λ11+1)2+4Λ2

12

, otherwise,

with corresponding function values

F (ξ̂,Λ11,Λ12) =

{
−
√

(2Λ11 + 1)2 + 4Λ2
12, Λ12 < 0,√

(2Λ11 + 1)2 + 4Λ2
12, otherwise.

Combining with the function values at the boundary, namely F (1,Λ11,Λ12) = 1 +
2Λ11, F (−1,Λ11,Λ12) = −1− 2Λ11, we obtain

ψ(x0, u0,Λ) = 5Λ11 + 2Λ12 +

{
1 + 2Λ11, Λ12 ≤ 0,√

(2Λ11 + 1)2 + 4Λ2
12, otherwise.

From the expression above, we can see clearly that ψ(x0, u0,Λ) achieves its minimum
when Λ11 = 0. The constraint Λ11 ≥ |Λ12| forces Λ12 = 0 giving the optimal solution

S(x0, u0) =

{(
0 0
0 0

)}
with corresponding optimal value 1. The first order growth condition can be conse-
quently verified in that for Λ ∈ K∗

ψ(x0, u0,Λ)− 1 ≥ 5Λ11 ≥
5

2

√
2Λ2

11 + 2Λ2
12 (since Λ11 ≥ |Λ12|)

=
5

2

∥∥∥∥( Λ11 Λ12

Λ12 Λ11

)
−
(

0 0
0 0

)∥∥∥∥
=

5

2
d

((
Λ11 Λ12

Λ12 Λ11

)
,S(x0, u0)

)
.
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Note that in this example, the Slater condition (2.6) holds at (x0, u0). To see
this, let P0 be such that P0(ξ−1(0.5)) = 1. Then EP0

[Ψ(x0, u0, ξ)] ∈ int K due to the
fact that

EP0
[Ψ(x0, u0, ξ)] =

 x0 + EP0
[ξ] u0 + EP0

[√
1− ξ2

]
u0 + EP0

[√
1− ξ2

]
5u0 + EP0

[ξ]

 =

(
0.5 1.5
1.5 5.5

)
,

which is a positive definite matrix.
In the rest of this section, we will discuss stability of the optimal solution of

problem (4.3).
First, let us show that problem (4.3) has a bounded optimal solution set if the

Slater type constraint qualification (2.6) holds at any x0 ∈ X.
Lemma 4.2. Let u0 ∈ U and X be a compact set. Suppose f(·, ξ) and Ψ(·, ·, ξ)

are continuous on X and X×{u0} respectively for each ξ ∈ Ξ. If the Slater constraint
qualification (2.6) is satisfied for any x0 ∈ X, then the problem (4.3) has an optimal
solution set which is bounded uniformly for all u close to u0.

The proof is similar to that of Lemma 4.1, we omit the details here.
In the case when problem (4.3) has a bounded optimal solution uniformly for all

u close to u0, we are able to discuss stability of the optimal solutions to problem (4.3).
For fixed u ∈ U , let ϑ(u) and S(u) denote respectively the optimal value and optimal
solution set of problem (4.3) respectively.

Theorem 4.2 (Stability of the optimal solutions of (Pu) ). Let u0 ∈ U and X
be a compact convex set. Assume: (a) the Slater constraint qualification (2.6) holds
at any x0 ∈ X, (b) there exists x0 ∈ X such that supξ∈Ξ ‖Ψ(x0, u0, ξ)‖ < +∞ and

there exist positive constants γ ∈ IR+ and ν1, ν2 ∈ (0, 1] such that

‖Ψ(x, u, ξ)−Ψ(x′, u′, ξ)‖ ≤ γ (‖x− x′‖ν1 + ‖u− u′‖ν2)

for u, u′ close to u0 and x, x′ ∈ X, (c) there exists κ(ξ) satisfying supξ∈Ξ |κ(ξ)| < +∞
such that

|f(x, ξ)− f(x′, ξ)| ≤ |κ(ξ)|‖x− x′‖

for x, x′ ∈ X, (d) ψ(x, u0,Λ) satisfies the first order growth condition at the optimal
solution set S(u0), i.e., there exists a positive constant α > 0 such that

|ψ(x, u0,Λ)− ϑ(u0)| ≥ αd ((x,Λ),S(u0)) , ∀ (x,Λ) ∈ X ×K∗.(4.7)

Then
(i) there exists a positive constant c such that

D (S(u),S(u0)) ≤ c‖u− u0‖ν2(4.8)

for all u close to u0;
(ii) if, in addition, the first order growth condition holds at S(u) uniformly for all

u close to u0, then

H (S(u),S(u0)) ≤ c‖u− u0‖ν2(4.9)

for all u close to u0.
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Proof. We use [27, Theorem 2.1] to prove the results. It suffices to verify the
conditions of the theorem. Under conditions (a)-(c), it follows by Lemma 4.2 that
there exists a compact and convex set W such that problem (4.3) is equivalent to

min
x,Λ

ψ(x, u,Λ)

s.t. Λ ∈ K∗ ∩W, x ∈ X
(4.10)

if u is close to u0. Consequently, we may analyse stability of the optimal solutions
of problem (4.10) whose feasible set of solutions is compact. Under condition (b), we
obtain

|ψ(x, u,Λ)− ψ(x, u0,Λ)| =

∣∣∣∣∣sup
ξ∈Ξ

[f(x, ξ) + Λ •Ψ(x, u, ξ)]− sup
ξ∈Ξ

[f(x, ξ) + Λ •Ψ(x, u0, ξ)]

∣∣∣∣∣
≤ sup

ξ∈Ξ
|f(x, ξ)− f(x, ξ) + Λ •Ψ(x, u, ξ)− Λ •Ψ(x, u0, ξ)|

≤ γ‖Λ‖‖u− u0‖ν2 ≤ σ‖u− u0‖ν2

for u close to u0 and x ∈ X, where σ := sup
Λ∈W

γ‖Λ‖. Moreover, under conditions (b)

and (c), we have

|ψ(x, u,Λ)− ψ(x′, u,Λ′)| =

∣∣∣∣∣sup
ξ∈Ξ

[f(x, ξ) + Λ •Ψ(x, u, ξ)]− sup
ξ∈Ξ

[f(x′, ξ) + Λ′ •Ψ(x′, u, ξ)]

∣∣∣∣∣
≤ sup

ξ∈Ξ
|f(x, ξ)− f(x′, ξ) + Λ •Ψ(x, u, ξ)− Λ′ •Ψ(x′, u, ξ)|

≤ sup
ξ∈Ξ
|κ(ξ)|‖x− x′‖+ sup

ξ∈Ξ
‖Ψ(x, u, ξ)‖‖Λ− Λ′‖+ γ‖Λ′‖‖x− x′‖ν1

for u close to u0 and x, x′ ∈ X. Therefore all conditions of [27, Theorem 2.1] are
satisfied.

Condition (b) is similar to Assumption 2.2 but it is stronger in that we require the
Hölder inequality hold for all x over X rather than merely in a neighborhood of x0.
The growth condition (4.7) is essential in deriving the stability result. It is difficult
to discuss the condition in a general setting. We will revisit the issue under some
special circumstance in Section 5.1 where we use directional derivative to characterize
the growth condition.

5. Applications. In this section, we apply the stability results established in
the preceding sections to a robust formulation of program (1.3) and program (1.5).
This will enable us better understand the theoretical results and take a scrutiny of
the two important DRO problems.

5.1. Robust one stage stochastic program. We start with program (1.3).
Assume that the true probability distribution P (x, u0) is unknown but it is possible
to obtain the true mean value and covariance of ξ or their approximations. Let µ(x)
and Σ(x) denote these quantities respectively, let µ0(x) and Σ0(x) denote the true
mean and covariance. We consider the ambiguity set

(5.1) {P ∈P : EP [ξ] = µ(x);EP [(ξ − µ(x))(ξ − µ(x))T ] � Σ(x)}.

Obviously the set is uniquely determined by 3-tuples (x, µ(·),Σ(·)).
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If we use u to denote (µ(·),Σ(·)), then the ambiguity set can be written as

P(x, u) := {P ∈P : EP [ξ] = µ(x);EP [(ξ − µ(x))(ξ − µ(x))T ] � Σ(x)}.(5.2)

Let u0 = (µ0(·),Σ0(·)). We can think of parameter u as continuous functions defined
over a compact set X and we carry out our stability analysis as u varies near u0.

We may confine u to the Cartesian product of spaces IRk and Sk×k+ equipped with
infinity norm, i.e.,

‖u‖∞ := max

{
sup
x∈X
|µl(x)|, l = 1, 2 · · · , k; sup

x∈X
|Σij(x)|, i, j = 1, 2 · · · , k

}
,

where µl(·) and Σij(x) denote the i-th component of µ(x) and i-th component of the
j-th column of matrix Σ(x) respectively. To ease the exposition, we write

Ψ(x, u, ξ) := A(ξ) +B(x, u),

where A(ξ) := (ξ, ξξT ) and B(x, u) := (−µ(x),−µ(x)µ(x)T − Σ(x)). The resulting
minimax distributionally robust optimization problem can be written as

min
x∈X

sup
P∈P(x,u)

EP [f(x, ξ)].(5.3)

In what follows, we apply our stability analysis results established in the preceding
sections to program (5.3) when u varies near u0. Our first technical result to be
derived is Lipschitz continuity of the ambiguity set P(x, u) at (x0, u0) under the total
variation metric. For this purpose, we need the following condition.

Assumption 5.1. Let x0 ∈ X be fixed. There is an open neighborhood UE of
µ0(x0) such that UE ⊂ int {EP [ξ] : P ∈ P} and P0 ∈ PE := {P ∈ P : EP [ξ] ∈ UE}
such that

EP0
[(ξ − µ0(x0))(ξ − µ0(x0))T ] ≺ Σ0(x0).(5.4)

To see how the assumption may be possibly satisfied, let us consider a simple case
when Ξ = IRk. Since P contains all Dirac probability measures over IRk (induced
by ξ), we have {EP [ξ] : P ∈ P} = IRk. Consequently the assumption reduces to
existence of P0 ∈P satisfying (5.4) which is guaranteed by [26, Proposition 2.1].

Proposition 5.1. Let P(x, u) be defined as in (5.2) and (x0, u0) ∈ X×U be fixed.
Assume: (a) The true mean value µ0(x) and covariance matrix Σ0(x) are Lipschitz
continuous near x0, (b) Assumption 5.1 holds, (c) there exist positive numbers ρ and
τ such that supP∈P(x,u)

∫
Ξ
‖ξ‖2+τP (dξ) < ρ. Then there exists a positive constant C

such that

HTV (P(x, u),P(x0, u0)) ≤ C(‖x− x0‖∞ + ‖u− u0‖∞)(5.5)

for (x, u) close to (x0, u0).
Proof. We use Theorem 2.1 to prove the result. Therefore it suffices to verify the
conditions of the theorem. Observe first that the second order moment condition
implies P(x, u) is tight, see [24, Proposition 7]. Moreover, under condition (c), it
follows from [24, Proposition 7 (a)] that P(x0, u0) is closed. This verifies Assumption
2.1. In what follows, we verify Assumption 2.2. Since µ(·) and µ0(·) are continuous
on X and X is compact, then there exist positive constants C1 and C2 such that
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‖µ(x)‖∞ ≤ C1 and ‖µ0(x)‖∞ ≤ C2. Moreover, the Lipschitz continuity of µ0 and
Σ0(x) at x0 ensures existence of positive constants C3 and C4 such that ‖µ0(x) −
µ0(x0)‖∞ ≤ C3‖x − x0‖∞ and ‖Σ0(x) − Σ0(x0)‖∞ ≤ C4‖x − x0‖∞ for x near x0.
Therefore

‖B(x, u)−B(x0, u0)‖∞ ≤ ‖µ(x)− µ0(x0)‖∞ + ‖µ(x)µ(x)T − µ0(x0)µ0(x0)T ‖∞ + ‖Σ(x)− Σ0(x0)‖∞
+‖µ0(x)µ0(x)T − µ0(x0)µ0(x0)T ‖∞ + ‖Σ(x)− Σ0(x)‖∞ + ‖Σ0(x)− Σ0(x0)‖∞

≤ ‖u− u0‖∞ + C3‖x− x0‖∞ + (C1 + C2)‖u− u0‖∞ + 2C2C3‖x− x0‖∞
+‖u− u0‖∞ + C4‖x− x0‖∞

≤ max{2 + C1 + C2, C3 + 2C2C3 + C4}(‖x− x0‖∞ + ‖u− u0‖∞).

This verifies Assumption 2.2. On the other hand, under Assumption 5.1,

(Σ0(x0)− µ0(x0)µ0(x0)T ) ∈ int { (EP [ξξT ]− Sk×k− ) : P ∈ PE}

and µ0(x0) ∈ int { EP [ξ] : P ∈ PE}. A combination of these two inclusions gives rise
to

−B(x0, u0) ∈ int { (EP [A(ξ)]− {0}k × Sk×k− ) : P ∈P },

which is the Slater type condition (2.6).
From the proof of Proposition 5.1, we can see that Assumption 5.1 entails Slater

type condition (2.6). Analogous to the discussions in Section 3.2, the latter enables
us to derive the Lagrange dual of the inner maximization problem of program (5.3).
To cut short, let λ ∈ IRk and Λ ∈ Sk×k− , let

(5.6) Fu(x,Λ, λ, ξ) = f(x, ξ) + λT (ξ − µ(x)) + Λ • (ξξT − µ(x)µ(x)T − Σ(x)),

where the subscript u denotes (µ(·),Σ(·)). Through the Lagrange dual, the inner
maximization problem can be written as

min
Λ,λ

ψu(x,Λ, λ) := sup
ξ∈Ξ

Fu(x,Λ, λ, ξ).

s.t. Λ ∈ Sk×k− , λ ∈ IRk,
(5.7)

and consequently the minimax distributionally robust optimization problem (5.3) can
be equivalently written as

min
x,Λ,λ

ψu(x,Λ, λ)

s.t. x ∈ X,Λ ∈ Sk×k− , λ ∈ IRk.
(5.8)

Next, we proceed to quantitative analysis of problem (5.8) as u varies near u0. Let
ϑ(u) and S(u) denote the optimal value and the set of optimal solutions of program
(5.8).

Proposition 5.2. Suppose: (a) Assumption 5.1 holds at every point x ∈ X, (b)
the true mean value µ0(x) and covariance matrix Σ0(x) are Lipschitz continuous on
X and supξ∈Ξ ‖A(ξ)‖ < +∞ holds, (c) there exists a nonnegative function κ(ξ) such
that supξ∈Ξ κ(ξ) < +∞ and

|f(x, ξ)− f(x′, ξ)| ≤ κ(ξ)‖x− x′‖, ∀x, x′ ∈ X,
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(d) ψu0
(·) satisfies the first order growth condition at S(u0), i.e., there exists a positive

constant α such that

ψu0(x,Λ, λ)− ϑ(u0) ≥ αd((x,Λ, λ),S(u0))(5.9)

for all (x,Λ, λ) ∈ X × Sk×k− × IRk. Then there exists a positive constant C such that

D (S(u),S(u0)) ≤ C‖u− u0‖(5.10)

for u close to u0.
Proof. We use Theorem 4.2 to prove the claim. Therefore it suffices to verify the
conditions of the theorem. Under Assumption 5.1, the Slater type condition (2.6)
holds at x0, therefore condition (a) of Theorem 4.2 is satisfied. Condition (b) ensures
the condition (b) of Theorem 4.2. Conditions (c) and (d) coincide with the conditions
(c) and (d) of Theorem 4.2.

Remark 5.1. In some cases, conditions (b), (c) and (d) of Proposition 5.2 may
be weakened. From the proof of Theorem 4.2, we can see that if there exists a set
Θu ⊂ X × Sk×k− × IRm such that problem (5.8) is equivalent to the following:

min
x,Λ,λ

ψ̃u(x,Λ, λ) s.t. (x,Λ, λ) ∈ Θu,

then conditions (b), (c) and (d) of Proposition 5.2 can be replaced by the following:
(b’) ψ̃u(x,Λ, λ) is Hölder continuous w.r.t. u at u0 for (x,Λ, λ) ∈ Θu for u close

to u0.
(c’) ψ̃u(x,Λ, λ) is Lipschitz continuous w.r.t (x,Λ, λ) over Θu.
(d’) There exist positive constants α and θ such that

ψ̃u0
(x,Λ, λ)− ϑ(u0) ≥ αd((x,Λ, λ),S(u0))θ

for all (x,Λ, λ) ∈ Θu0
with θ = 1 or 2.

The weakened conditions are more easily satisfied. We explain this through an
example.

Example 5.1. Consider DRO problem (5.3) with f(x, ξ) = xT ξ, where x ∈ X
and X is a compact set containing 0, ξ is a random vector with support set Ξ = IRk.

The ambiguity set is defined by (5.2) with µ(x) = Bx and µ0(x) = B0x, where
both B,B0 ∈ int Sk×k+ , in other words, we consider variation of µ(·) near µ0(·) via

perturbation of matrix B near B0 in the interior of Sk×k+ . The upper bound of the
covariance matrix Σ(x) in the moment condition is a positive definite matrix, i.e.,
Σ(x) ∈ int Sk×k+ for all x ∈ X.

Let u = (µ(·),Σ(·)) and u0 = (µ0(·),Σ(·)) leaving Σ(·) unchanged to simplify the
discussion.

With these specific details, we can write down (5.8) as
(5.11)

min
x,Λ,λ

ψu(x,Λ, λ) := sup
ξ∈IRk

[
xT ξ + λT (ξ −Bx) + Λ • (ξξT −BxxTB − Σ(x))

]
s.t. (x,Λ, λ) ∈ X × Sk×k− × IRk.

In what follows, we verify the conditions of Proposition 5.2 or their counterparts in
Remark 5.1. First, since Ξ = IRk, it follows by the comments after Assumption 5.1,
that condition (a) holds. Second, we can show that problem (5.11) can be equivalently
written as

(5.12)
min
x,Λ,λ

ψ̃u(x,Λ, λ) := xTBx

s.t. x ∈ X,x = −λ,Λ = 0.
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To see this, we present problem (5.11) in epigraphical form by introducing a new
variable t

min
t,x,Λ,λ

t

s.t. xT ξ + λT (ξ −Bx) + Λ • (ξξT −BxxTB − Σ(x)) ≤ t, ∀ξ ∈ IRk,

(x,Λ, λ) ∈ X × Sk×k− × IRk.

Letting s := −λTBx−Λ •BxxTB −Λ •Σ(x)− t and reformulating the semi-infinite
constraints as a semi-definite constraint, the program above can be further formulated
as

(5.13)

min
s,x,Λ,λ

(
s x+λ

2
(x+λ)T

2 Λ

)
•
(

−1 −Bx
−(Bx)T −(Σ(x) +BxxTB)

)
+ xTBx

s.t.

(
s x+λ

2
(x+λ)T

2 Λ

)
� 0,

(x,Λ, λ) ∈ X × Sk×k− × IRk.

Since Σ(x) � 0, and BxxTB � 0,

(
−1 −Bx

−(Bx)T −(Σ(x) +BxxTB)

)
≺ 0. Thus, the

linear semi-definite programming problem achieves its minimum when

(
s x+λ

2
(x+λ)T

2 Λ

)
=

0, i.e., x = −λ,Λ = 0 and t = xTBx. This shows formulation (5.12). Let

Θu := {(x,Λ, λ) : x ∈ X,λ = −x,Λ = 0}.

Within Θu, ψ̃u(x,Λ, λ) depends on u only through B. Since x is confined to com-
pact set X, ψ̃u(x,Λ, λ) is globally Lipschitz continuous w.r.t. B and hence Lipschitz
continuous in u near u0 uniformly for all (x,Λ, λ) ∈ Θu. Moreover, for fixed u (i.e.
B), ψ̃u(x,Λ, λ) is Lipschitz continuous w.r.t (x,Λ, λ) on Θu because it is a convex
quadratic function of x. This verifies conditions (b’) and (c’) of Remark 5.1. Third,
since 0 ∈ X, through a direction calculation, we obtain ϑ(u0) = 0 and

S(u0) =
{

(x∗, 0,−x∗) : (x∗)TB0x
∗ = 0, x∗ ∈ X

}
= {(0, 0, 0)}.

Therefore there exists constant α > 0 such that

ψ̃u0
(x,Λ, λ)−ϑ(u0) = xTB0x− 0 ≥ α‖x‖2 =

α

2
d((x,Λ, λ),S(u0))2 ∀(x,Λ, λ) ∈ Θu0

.

This verifies condition (d’). Therefore by Proposition 5.2, there exists a positive
constant C such that

D (S(u),S(u0)) ≤ C‖u− u0‖∞(5.14)

for u close to u0. On the other hand, it is easy to derive that ϑ(u) = 0 and

S(u) :=
{

(x∗, 0,−x∗) : (x∗)TBx∗ = 0, x∗ ∈ X
}

= {(0, 0, 0)}

for all B close to B0. Consequently, by ‖u − u0‖∞ ≥ 0, (5.14) holds for every
nonnegative constant C.



24 J. ZHANG, H. XU AND L. ZHANG

5.1.1. The growth condition. The growth condition plays an important role
in Proposition 5.2. Here we take a close look at the condition. Specifically, we will
use the directional derivative to characterize the condition.

Let us consider a generic optimization problem

(5.15) min
y∈Y

g(y),

where g : Y → IR is a function, Y is a Banach space and Y ⊂ Y is a convex and
compact set. Let ϑ and S denote the optimal value and the set of optimal solutions
respectively. The following result says that the directional derivative function of g
implies the first order growth condition.

Lemma 5.1. Assume: (a) g is Fréchet directionally differentiable on S, (b) there
exists a positive constant α such that for any y∗ ∈ S,

g′(y∗, d) ≥ α‖d‖, ∀d ∈ Y − y∗.

Then
(i) the first order growth condition holds at set S locally with rate α

2 , that is,
there exists δ > 0 such that

(5.16) g(y)− ϑ ≥ α

2
d(y, S),∀y ∈ (S + δB) ∩ Y;

(ii) if, in addition, the function g is convex, then the first order growth condition
(5.16) holds for all y ∈ Y.

The results are perhaps known, we provide a proof in the preprint of the paper
[28] which is essentially based on the the finite covering theorem and condition (b).

We now return to discuss the growth condition of Proposition 5.2 using Lemma
5.1. For fixed (x0,Λ0, λ0) ∈ S(u0), let Ξ∗(x0,Λ0, λ0, u0) denote the set of optimal
solutions to the maximization problem

sup
ξ∈Ξ

Fu0
(x0,Λ0, λ0, ξ)(5.17)

and

Lu0
(x0,Λ0, λ0, ξ; dx, dΛ, dλ) := ∇xf(x0, ξ)

T dx + ξT dΛξ + ξT dλ +Hu0
(x0,Λ0, λ0; dx, dΛ, dλ),

where (dx, dΛ, dλ) ∈ IRn × Sk×k × IRk is fixed and

Hu0(x0,Λ0, λ0; dx, dΛ, dλ) =
[
2∇µ0(x0)TΛ0µ0(x0)−∇µ0(x0)Tλ0 −∇x(Σ0(x0) • Λ0)

]T
dx

−µ0(x0)T dλ +
[
µ0(x0)µ0(x0)T − Σ0(x0)

]
• dΛ.(5.18)

Assume that problem (5.17) satisfies sup-compactness condition and Fu0
(·, ·, ·, ξ)

is continuous differentiable on X × Sk×k− × IRk for each ξ ∈ Ξ. Then by the well
known Danskin’s Theorem (see [7]), ψu0 is Fréchet directionally differentiable and its
derivative can be written as

ψ′u0
(x0,Λ0, λ0; dx, dΛ, dλ) = sup

ξ∈Ξ∗(x0,Λ0,λ0,u0)

Lu0
(x0,Λ0, λ0; ξ, dx, dΛ, dλ).(5.19)

Proposition 5.3. Let fixed u0 ∈ U be fixed. Suppose: (a) f(·, ξ), µ0(·) and
Σ0(·) are continuously differentiable on X, (b) the sup-compactness condition holds
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at any (x0,Λ0, λ0) ∈ S(u0), i.e., for each (x0,Λ0, λ0) ∈ S(u0), there exists α ∈ IR and
a compact set Ξ̃ ⊂ Ξ such that

∅ 6= {ξ ∈ Ξ : F (x,Λ, λ, u0, ξ) ≥ α} ⊂ Ξ̃

for every (x,Λ, λ) close to (x0,Λ0, λ0), where F (x,Λ, λ, u, ξ) is defined as in (5.6).
Then the following assertions hold.

(i) ψu0
(x,Λ, λ) is Fréchet directionally differentiable at any (x0,Λ0, λ0) ∈ S(u0)

and its directional derivative is defined as in (5.19).
(ii) If, in addition, Ξ∗(x0,Λ0, λ0, u0) = {ξ0}, then ψu0(x,Λ, λ) is Fréchet differ-

entiable at (x0,Λ0, λ0).
Proof. Note that condition (a) implies the continuous differentiability of Fu0

(x,Λ, λ, ξ)
on X × Sk×k− × IRk for each ξ ∈ Ξ. Then rest follows by virtue of [3, Theorem 4.13].

From the proof of Proposition 5.1, we know that Assumption 5.1 entails the Slater
type condition (2.6), which by Lemma 4.2, means that S(u) is uniformly bounded for
all u close to u0. Therefore, if Assumption 5.1 holds at every point x ∈ X, then there
exists a convex and compact set W such that problem (5.8) is equivalent to

min
x,Λ,λ

ψu(x,Λ, λ)

s.t. (x,Λ, λ) ∈ (X × Sk×k− × IRk) ∩W
(5.20)

for u ∈ U close to u0. Problem (5.20) effectively confines Λ and λ to a compact set.
With Lemma 5.1 and Proposition 5.3, we are ready to characterize the first order

growth condition of problem (5.20) in terms of directional derivatives.
Proposition 5.4. Assume the setting and conditions of Proposition 5.3. If

ψu0(·) is convex on X × Sk×k− × IRk and there exists a positive constant α such that
for each (x0,Λ0, λ0) ∈ S(u0),

sup
ξ∈Ξ∗(x0,Λ0,λ0,u0)

(
∇xf(x0, ξ)

T dx + ξT dΛξ + ξT dλ +Hu0(x0,Λ0, λ0; dx, dΛ, dλ)
)
≥ α‖(dx, dΛ, dλ)‖,

for all (dx, dΛ, dλ) ∈ (X × Sk×k− × IRk) ∩ W − (x0,Λ0, λ0), where Hu0
is defined in

(5.18), then

ψu0
(x,Λ, λ)− ϑ(u0) ≥ α

2
d((x,Λ, λ),S(u0))

for all (x,Λ, λ) ∈ (X × Sk×k− × IRk) ∩W.

5.2. Robust program (1.5). We now turn to discuss problem (1.5) which is
a robust formulation of one stage stochastic program with expected inequality con-
straints. Assume that the ambiguity set P(u) is defined through moment conditions
and g(x, ξ) takes a specific form, i.e., g(x, ξ) = C(ξ)x+ d(ξ) where C(ξ) is a random
matrix and d(ξ) is a random vector. Then we might combine the moment conditions
and the stochastic inequality constraints g(x, ξ) by considering the following robust
optimization problem

min
x∈X

sup
P∈P

EP [f(x, ξ(ω))]

s.t. EP [A(ξ)]x ≤ b(x, u),
(5.21)

where the inequality constraints capture both the moment conditions and inequality
constraints EP [g(x, ξ)] ≤ 0. By slightly abusing the notation, we let

g(x, u, ξ) := A(ξ)x− b(x, u),
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where A(·) : IRk → IRm×n, b(·, ·) : X × U → IRm, f(·, ·) : IRn × IRk → IR.
Proposition 5.5. Let (x0, u0) ∈ X×U be fixed. Suppose: (a) A(·) is continuous

on Ξ and Ξ is a compact set, moreover there exists P0 ∈P such that

(5.22) EP0
[A(ξ)]x0 < b(x0, u0),

(b) b(x, u) is Hölder continuous in (x, u) at (x0, u0), i.e., there exist γ ∈ IR+ and
some positive constants ν1, ν2 ∈ (0, 1) such that

‖b(x, u)− b(x0, u0)‖ ≤ γ(‖x− x0‖ν1 + ‖u− u0‖ν2)

for (x, u) ∈ X ×U close to (x0, u0). Then there exist positive constants C, ν1 and ν2

such that

HTV (P(x, u),P(x0, u0)) ≤ C(‖x− x0‖ν1 + ‖u− u0‖ν2)

for (x, u) close to (x0, u0), where P(x, u) = {P ∈P : EP [g(x, u, ξ)] ≤ 0}.
Proof. Condition (5.22) means that the Slater type condition (2.6) holds. More-
over, since Ξ is a compact set and A(·) is continuous, supP∈P EP [‖A(ξ)‖] < +∞.
Furthermore, under condition (b), we have

‖EQ[g(x, u, ξ)]− EQ[g(x0, u0, ξ)]‖ ≤ ‖EQ[A(ξ)]x− EQ[A(ξ)]x0‖+ ‖b(x, u)− b(x0, u0)‖
≤ sup
Q∈P

EQ[‖A(ξ)‖]‖x− x0‖+ γ(‖x− x0‖ν1 + ‖u− u0‖ν2)

≤ L(‖x− x0‖ν1 + ‖u− u0‖ν2)

for any Q ∈P and (x, u) close to (x0, u0) , where L = supQ∈P EQ[‖A(ξ)‖] + γ. The
rest follows from Theorem 2.1 and the follow-up comments.

Assumption 5.2. For any x0 ∈ X, there exists P0 ∈P such that EP0 [A(ξ)]x0 <
b(x0, u0).

Under Assumption 5.2, it follows from previous discussions that we can recast the
inner maximization problem of program (5.21) through Lagrange dual as min

λ
ψu(x, λ) s.t. λ ∈

IRm
− ,where ψu(x, λ) = sup

ξ∈Ξ
Fu(x, λ, ξ) and

(5.23) Fu(x, λ, ξ) = f(x, ξ) + λT (A(ξ)x− b(x, u)).

Consequently we can reformulate problem (5.21) as

min
x,λ

ψu(x, λ)

s.t. x ∈ X,λ ∈ IRm
− .

(5.24)

Let S̃(u) denote the set of the optimal solutions to problem (5.24), Ξ∗(x0, λ0, u0) the
optimal solution set of sup

ξ∈Ξ
Fu0

(x0, λ0, ξ), and

L̃u0
(x0, λ0, ξ, dx, dλ) = [∇xf(x0, ξ)+A(ξ)Tλ0−∇xb(x0, u0)]T dx+[A(ξ)x0−b(x0, u0)]T dλ.

The following theorem characterizes stability of the problem.
Proposition 5.6. Let u0 ∈ U and X be a compact and convex set. Suppose

(a) Assumption 5.2 holds, (b) f(·, ξ) and b(·, u0) are continuously differentiable on
X, (c) for each (x0, λ0) ∈ S̃(u0), Ξ∗(x,Λ, λ) 6= ∅ for all (x, λ) close to (x0, λ0), (d)
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ψu0
(·) is convex on X × IRm

− (e) there exists positive measurable function κ(ξ) such
that supξ∈Ξ κ(ξ) < +∞ and

|f(x, ξ)− f(x′, ξ)| ≤ κ(ξ)‖x− x′‖,∀x, x′ ∈ X,

(f) there exists a positive constant α such that for any (x0, λ0) ∈ S̃(u0),

sup
ξ∈Ξ∗(x0,λ0,u0)

L̃u0
(x0, λ0, ξ, dx, dλ) ≥ α‖(dx, dλ)‖,

for all (dx, dλ) ∈ (X × IRm
− ) − (x0, λ0). Then there exists a positive constant c such

that

D
(
S̃(u), S̃(u0)

)
≤ c‖u− u0‖(5.25)

for all u close to u0.
Proof. The proof follows directly from Theorem 4.2 and Proposition 5.4.
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