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Abstract

The short-term unit commitment and reserve scheduling decisions are made in the face

of increasing supply-side uncertainty in power systems. This has mainly been caused by a

higher penetration of renewable energy generation that is encouraged and enforced by the

market and policy makers. In this paper, we propose a two-stage stochastic and distribution-

ally robust modeling framework for the unit commitment problem with supply uncertainty.

Based on the availability of the information on the distribution of the random supply, we

consider two specific models: (a) a moment model where the mean values of the random

supply variables are known, and (b) a mixture distribution model where the true probability

distribution lies within the convex hull of a finite set of known distributions. In each case,

we reformulate these models through Lagrange dualization as a semi-infinite program in the

former case and a one-stage stochastic program in the latter case. We solve the reformulated

models using sampling method and sample average approximation, respectively. We also es-

tablish exponential rate of convergence of the optimal value when the randomization scheme

is applied to discretize the semi-infinite constraints. The proposed robust unit commitment

models are applied to an illustrative case study, and numerical test results are reported in

comparison with the two-stage non-robust stochastic programming model.

Key words: Unit commitment problem; distributionally robust optimization; mixture dis-

tribution; sample average approximation; convergence analysis
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1 Introduction

The recent increase in the deployment of renewable energy resources such as wind power is

having a significant impact on the short-term operational and long-term investment decisions

in power systems due to their non-dispatchability and intermittent nature. In the short term,

the higher penetration of wind power and the lack of efficient storage facilities have an adverse

effect on the stability of generation output. One of the most crucial decision problems that

are affected by the short-term supply uncertainty is the unit commitment (UC for short)

problem [29, 43]. The objective of the UC problem is to minimize the overall generation cost

by determining the hourly unit commitment and the reserve schedule for the day ahead given

the demand and wind forecasts.

Classical models for the UC problem are often deterministic and consider supply and de-

mand for electricity in the day ahead to be known in advance. Whilst the demand forecast

for the day ahead can be reasonably estimated, the high reliance of the generation output

on the unreliable wind power potentially renders optimal solutions of a deterministic model

either heavily infeasible or non-optimal under realized supply [27]. Stochastic and robust

optimization models provide an alternative approach to incorporating the increased uncer-

tainties associated with the wind and load forecasts into power system operations. In this

sense, approaches to account for the uncertainty in renewable energy generation in the UC

problem fall into three categories: (two-stage) stochastic programming, chance-constrained

stochastic programming, and robust optimization.

The first approach of two-stage stochastic optimization [39] has been used widely for

solving the UC problem [30, 44, 46], where energy and reserve generation are jointly scheduled

to meet demand under stochastic wind supply. Pozo and Contreras [32] and Qianfan et al. [33]

propose a chance-constrained programming approach to deal with the joint energy and reserve

scheduling UC where one or several constraints must be satisfied with a given probability.

One of the key assumptions in two-stage stochastic programming and chance-constrained

programming is that the decision maker has complete information on the distribution of the

uncertain parameters. However, limited predictability and high volatility of the renewable

supply often make this assumption unrealistic.

In the third approach of classical robust optimization, the only available information on

the uncertain parameters is its support, i.e., the set of all scenarios or possible realizations of

the unknown parameters [4, 7, 41]. For the basic concept and a thorough survey of robust

optimization, we refer the interested readers to review papers by Aissi et al. [1], Kouvelis

and Yu [22] and Ben-Tal et al. [5]. In the context of the UC problem, Jiang et al. [20]

and Bertsimas et al. [9] provide a robust optimization formulation and an adaptive robust

optimization to address the wind power and demand uncertainty, respectively.

The min-max robust optimization approach is often criticized for being over conservative

and/or not utilizing available partial information about the distribution of the uncertainty

such as the mean and variance. Distributionally robust optimization, as part of the robust

modeling framework, is considered a powerful remedy where the optimal decision is based

on the worst probability distribution rather than worst scenario from a set of distributions

constructed through the partial information.

There is extensive research published on UC models where energy and reserve are sched-

uled together. Table 1 summarizes some of those references that are closely related to the

models proposed in this paper.
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Table 1: A survey of UC models with security criteria

Reference Multi-period Network Security Model Uncertainty Available information

[10] no no n− 2 Det. with prob. constr. contingencies probability of outage

[3] no yes n− 1 Det. MILP contingencies set of plausible outages

[12] no yes n− 1 TS-SP∗ and MILP ref.† contingencies probability of outage

[13, 14] yes yes n− 1 TS-SP and MILP ref. contingencies probability of outage

[11] yes no n− 1 TS-SP and MILP ref. contingencies probability of outage

demand and wind demand and wind pdf

[42] yes no n−K Det. with WC§ contingency contingencies set of plausible outages

[34] yes no n− 1 TS-SP and MILP ref. demand and wind wind and demand pdf

[21] yes yes n− 1 TS-SP and MILP ref. contingencies probability of outage

[9] yes yes n− 1 Det. ARO‡ demand demand bound uncertainty

[32] yes no n−K CC-SP� and MILP ref. demand and wind demand and wind pdf

Current paper yes no n− 1 distributionally robust wind distributional information

∗ → Two-stage stochastic programming † → Mixed integer linear programming reformulation § → Worst-case

‡ → Adaptive robust optimization � → Chance-constrained stochastic programming

For a comparison between the existing models in the literature and the proposed distri-

butionally robust UC model in this paper, we provide some classification criteria as follows.

• The uncertainty sources and their available information. Contingencies, demand and

wind production are some common sources of uncertainty in the UC problem with

security criterion. Contingency events are usually considered as scenarios to include

a deterministic or stochastic UC constraint. A bunch of post-contingency power flow

operation equations are included in the problem to model how the system remains stable

under the loss of one or more unit or line (see [3, 10, 12–14, 21, 34]). Probability of

the contingencies may be known (e.g. in [10, 12, 21, 34]) or may not be known (e.g.

in [3, 32, 42]). Bouffard and Galiana [11], Restrepo and Galiana [34] and Pozo and

Contreras [32] include stochastic demand and wind with full knowledge of probability

distributions of the uncertainties. Bertsimas et al. [9] include stochastic demand with

partial information, where the uncertainty set is defined as box uncertainty with a

budget constraint.

Here we model the wind production as the only uncertain parameter with partial in-

formation on its probability distribution such as moments and scope of the distribution

(representation as a mixture of some know distributions).

• The number of simultaneous contingencies. The purpose of security criteria is to keep

the system stable in case of one (n − 1 criterion) or more outages (n − K criteria) of

a generating unit or line, where reserve planning is justified to compensate for possible

outages. The n − 1 criterion has been extensively applied to the UC problem [3, 11–

14, 21, 34]. Street et al. [42] and Pozo and Contreras [32] extend the security criterion up

to K simultaneous contingencies. However, more strict criteria increases the complexity

of the model and its tractability.

Here we propose a model where a n− 1 security criterion is included in the sense that

if one unit is lost, the demand is met with the scheduled reserve from the first stage

under any wind scenario.
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• Modeling of contingencies. Outages can be treated as deterministic parameters and

the preventive actions are taken pre-contingency and through inclusion of deterministic

constraints. These security constraints will ensure sufficient resources for the normal op-

eration of the system in the event of a contingency (see Arroyo and Galiana [3]). On the

other hand, outages can be treated as stochastic parameters, in which case the objective

function includes expected value of the second-stage recourse costs. Contingencies prob-

abilities should be known for this model, and the set of post-contingencies equations,

one for each outage, is incorporated into the model (see Bouffard and Galiana [11], Bouf-

fard et al. [13]). Note that, when other sources of uncertainty exist, post-contingencies

equations should be extended for each scenario, which may lead to an intractable prob-

lem. Because of that, some authors limit the scenarios of contingencies to an umbrella

of credible contingencies [3, 11–14, 21]. Another approach to deal with security criteria

is posing an optimization problem to determine the worst contingency/contingencies.

The works by Street et al. [42] and Pozo and Contreras [32] propose a worst-case op-

timization problem embedded into a deterministic and chance-constrained UC model,

respectively.

Here we formulate the security criterion as a deterministic constraint for the worst-case

outage. We show that this worst-case outage is always the worst in any wind scenario.

In this sense, we do not need to add up post-contingency equations for each plausible

outage (all generating units) and each wind scenario. There is no cost term in the

objective function to account for the extra cost of the corrective actions taken in the

event of a contingency. This is a reasonable approach because contingencies have a very

low probability of occurrence.

• Mathematical model and numerical methodology. Bouffard and Galiana [10] and Arroyo

and Galiana [3] propose a deterministic modeling framework, Bouffard and Galiana [11]

and Bouffard et al. [13] develop a two-stage stochastic programming model, Pozo and

Contreras [32] consider a chance-constrained problem, and Street et al. [42] Bertsimas

et al. [9] present a robust optimization formulation. Most of these models are solved

through their deterministic counterparts and further as mixed integer programming

(MILP for short).

Here we propose a two stage stochastic programming model to describe the decision

making process and then develop a distributionally minimax robust optimization formu-

lation of the two stage stochastic program to address the risks arising from uncertainty

of wind power supply. Monte Carlo sampling methods have been applied to solve the

resulting mathematical models. Compared to the existing minimax robust optimization

model, the distributionally robust minimax model is less conservative.

Bertsimas et al. [9] propose a two-stage deterministic robust optimization model for UC

problems, where the uncertainty set is defined through a deterministic set. The solution of the

proposed adaptive robust model provides immunity against all realizations of the uncertain

data within the deterministic uncertainty set. However, this robust model does not take

into account the distributional information of the random variables. In contrast, our model

accounts for the available, or partially available, information on the probability distribution

of the uncertain data. Furthermore the first-stage decision variables in [9] consist of the on/off

commitment variables and the second stage solves an economic dispatch; therefore, they do
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not need to schedule reserve for the second-stage uncertainty deviations (North American’s

UC outlook). However, in our model, the first-stage decision variables are the set of on/off

decisions and scheduled energy and reserve (European’s UC outlook). Scheduled reserve is

used in the second stage as a corrective action to meet the demand under wind production

deviations and/or the outage of one generating unit.

Despite the fact that there is a rich body of literature focussing on two-stage stochastic and

robust UC with endogenous reserve scheduling and wind-generation models, a distributionally

robust UC approach has not been presented yet. The main contributions of this paper are

summarized as follows:

• We propose a distributionally robust approach for UC problems with n − 1 security

criteria to tackle the risks arising from day-ahead wind uncertainty. Two specific models

are considered: i) a moment model where the mean values of the random wind power

supply are known, and ii) a mixture distribution model where the true probability

distribution can be represented as a convex combination of some known distributions.

• For the moment model, we reformulate the distributionally minimax two stage robust

problem as a semi-infinite programming problem through Lagrange duality and propose

a random discretization approach for solving the latter. Under some moderate condi-

tions, we demonstrate exponential rate of convergence of the randomization scheme as

sample size increases. For the mixture distribution model, we reformulate the robust

model as a one-stage stochastic program through duality, and develop a solution method

based on sample average approximation (SAA) to reformulate the problem as a mixed

integer linear programming problem (MILP).

• We have undertaken numerical experiments for the proposed new mathematical model

carried out comparative analysis with two-stage stochastic UC model in terms of sta-

bility of the optimal solutions against variation of the mean and covariance.

The remainder of this paper are organized as follows. Section 2 sets out a standard two-

stage stochastic programming model for the unit commitment problem with uncertainty in

wind power generation and a distributionally robust formulation by explicitly considering

ambiguity of the true probability distribution of the underlying uncertainty. Sections 3 and 4

detail the robust formulations and reformulations by considering some specific structures of

the ambiguity set and develop corresponding numerical schemes for solving the mathematical

models. Section 5 presents some case studies and comparative analysis of the new models

and numerical schemes. Some conclusions are drawn in Section 6.

2 Stochastic unit commitment problem

The unit commitment and generation scheduling problems involve inherent uncertainties

stemming from the short-term volatility of demand and unpredictability of wind power. The

recent progress in the field of stochastic programming makes it an attractive approach for

modeling the UC problem under uncertainty. Research carried out by Carpentier et al.

[16], Takriti et al. [43] and Dentcheva and Römisch [18] were amongst the first which formu-

late the UC problem as a two-stage stochastic program. In this section, we first introduce

a two-stage stochastic unit commitment problem (Sto-UC) by taking into account the wind

uncertainty and additional technical information. We then further extend the stochastic
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framework to include the uncertainty on the distribution of the uncertainty and develop a

two-stage distributionally robust model.

2.1 Two-stage stochastic UC with uncertain net load

Consider a unit commitment problem with a set of conventional generating units, denoted

by I = {1, · · · , I}, over a time horizon denoted by T = {1, · · · , T}. The net load at time

t ∈ T is stochastic and denoted by ξt. The stochasticity of the load reflects uncertainty of

renewable power supply such as wind power. Mathematically, we denote by ξ = (ξt), t ∈ T a

vector of random variables defined over measurable space (Ω,F) with sigma-algebra. We use

Ξ to denote the support set of ξ. In this context, we can assume with out loss of generality

that Ξ is a compact set (bounded and closed).

A standard two-stage stochastic programming model for the UC problem includes a first-

stage decision on the planning of unit power operation before realization of the uncertainty

and a second-stage adjustment (recourse action) after the uncertainty is observed. The system

operator aims to minimize the total generation costs which comprising the planned generation

cost and the expected ‘adjustment’ cost. Specifically, the framework for the two-stage UC

problem can be described as follows.

The first-stage (here and now) decisions are taken prior to realization of uncertain net

load ξ. These include the on/off decisions denoted by uit, for generator i and time period t,

i.e.,

uit =

{
1, if generator i is turned on in time period t,

0, otherwise,

the energy dispatch variable qit, and the up and down scheduled reserves rupit , r
dw
it for generator

i at time t. Each generator i ∈ I has a fixed on cost of cfi and, if on, it has a unit generation

cost of cli. The upper and lower generation capacities of generator i are given by qi and q
i

while the upper and lower limits for reserve up/down for generator i are given by rupit /r
dw
it

and rupit /r
dw
it , respectively. The unitary costs of scheduling reserve up cr,upi and reserve down

cr,dwi for generator i are given as an input of the problem.

The second stage decisions include deployed actual up and down reserves, denoted by

r̂upit (ξ), r̂dwit (ξ). The unitary costs for the actual deployment of the reserve up and down are

denoted by ĉupi and ĉdwi .

To avoid imbalance in the supply and demand for energy in the second stage, we introduce

additional auxiliary variables for load shedding and wind spillage. The load-shedding variable

is denoted by St(ξ) and represents the excess demand which cannot be met by the total

generation output at time period t and has to be shed at high penalty cost of clst . On the

other hand, the wind-spillage variable, denoted by Wt(ξ), is equal to the excess wind power

that cannot be utilized upon the realization of the net load. Wind spillage incurs an unitary

opportunity cost of cwst .

The resulting mathematical model of the two-stage stochastic UC problem with n − 1
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security criterion and ramping constraints can be presented as follows,

(Sto-UC) min
u,q,r

∑
i

∑
t

[
cfi uit + cliqit︸ ︷︷ ︸

Generation Cost

+ cr,upi rupit + cr,dwi rdwit︸ ︷︷ ︸
Reserves Cost

]
+ EP [g(u,q, r, ξ)]︸ ︷︷ ︸

Expected variation cost

s.t. qit + rupit ≤ qiuit, ∀t, i, (2.1)

qit − rdwit ≥ qiuit, ∀t, i, (2.2)

rupi ≤ r
up
it ≤ r

up
i , ∀t, i, (2.3)

rdwi ≤ rdwit ≤ rdwi , ∀t, i, (2.4)

qit, r
dw
it , r

up
it ∈ R+, uit ∈ {0, 1}, ∀t, i, (2.5)

where EP denotes the mathematical expectation w.r.t. the distribution of ξ over probability

space (P,Ω,F), and g(u,q, r, ξ) is the optimal value of the second-stage problem defined as

g(u,q, r, ξ) : min
r̂,W,S

∑
i

∑
t

{
ĉupi r̂

up
it (ξ) + ĉdwi r̂dwit (ξ)

}
+
∑
t

{
clst St(ξ) + cwst Wt(ξ)

}
s.t.

∑
i

q̂it(ξ) + St(ξ)−Wt(ξ) = lt(ξ), ∀t, (2.6)

0 ≤ r̂upit (ξ) ≤ rupit , ∀t, i, (2.7)

0 ≤ r̂dwit (ξ) ≤ rdwit , ∀t, i, (2.8)

Qt − (qit + rupit ) + St(
¯
ξ) ≥ lt(

¯
ξ), ∀t, i, (2.9)

q̂it(ξ) = qit + r̂upit (ξ)− r̂dwit (ξ), ∀t, i, (2.10)

q̂it(ξ)− q̂i(t−1)(ξ) ≤ RUiui(t−1) + SUi(1− ui(t−1)), ∀t, i, (2.11)

q̂i(t−1)(ξ)− q̂it(ξ) ≤ RDiuit + SDi(1− uit), ∀t, i. (2.12)

In the first stage, constraints (2.1) and (2.2) represent the generation limits including the

up and down scheduled reserves. The constraints (2.3) and (2.4) bound the minimum and

maximum reserves to be scheduled.

In the second-stage problem, constraint (2.6) represents the energy balance for each hour

t and net load wind scenario ξ. Constraints (2.7) and (2.8) ensure that the actual up and

down reserves used are within the limits of the nominal reserve scheduled in the first stage.

Furthermore, constraint (2.9) represents the n− 1 reliability requirement which ensures that

the demand will be met under the failure of up to one generating unit, where Qt is the

total generation upper limit and
¯
ξt is the worst (lowest) realization of wind output at time t.

When the time index t is clear from the context, we use
¯
ξ as a shorthand notation for

¯
ξt. For

example, St(
¯
ξ) is equivalent to St(

¯
ξt) and denotes the load shedding that corresponds to the

worst realization of the wind output at time t. Constraint (2.10) provides the formulation

for the actual power output of unit i at time t and scenario ξ. Finally, constraints (2.11) and

(2.12) represent the ramp constraint with RUi, RDi, SUi, SDi are the ramp up, ramp down,

starting up and starting down ramps, respectively. Details about how the reliability and n−1

security constraints and the ramp constraints are formed are presented in Appendix A.
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2.2 Distributionally robust UC problem

Under the stochastic programming framework (Sto-UC), we assume that the “true” prob-

ability distribution P of the random wind variables is known. In practice, however, such

distribution is often unknown and hence it has to be estimated through partial information

or subjective judgements. One of the possible ways to deal with this issue is to use available

information to construct a set of distributions, denoted by P, in which the true probability

distribution is assumed to lie. The robust optimization approach for the two-stage stochastic

problem with respect to this ambiguity aims to make a decision which is optimal for the worst

probability distribution from P.

To ease the exposition, we write x for the first stage decision variables (u,q, r) with

feasible domain X . Likewise we write y for the second stage decision variables (r̂,W,S).

Furthermore, we denote the first-stage cost parameters by c = (cf , cl, cr,up, cr,dw) and the

second-stage cost parameters by h = (ĉup, ĉdw, cls, cws). The corresponding mathematical

model can be formulated as

(R-UC) min
x

cTx+ sup
P∈P

EP [g(x, ξ)]

s.t. x ∈ X ,
(2.13)

where g(x, ξ) is the optimal value of the second-stage problem

g(x, ξ) = min
y

hT y

s.t. y ∈ Y(x, ξ),
(2.14)

and Y(x, ξ) is the second-stage feasible set depending on x and ξ. In the literature of robust

optimization, (2.13) is known as a distributionally robust formulation where the robustness

is in the sense that the worst probability distribution rather than the worst scenario of the

random vector ξ is taken into account. This kind of robust optimization framework can be

traced back to the earlier work by Scarf [37] which was motivated to address incomplete

information on the underlying uncertainty in supply chain and inventory control problems.

In such problems, historical data may be insufficient to estimate future distribution either

because sample size of past demand is too small or because there is a reason to suspect that

future demand will come from a different distribution that governing past history. Compared

to minimax robust optimization model, the distributionally robust formulation is obviously

less conservative and hence more compelling in the circumstances where an optimal decision

based on the former model may incur excessive economic and/or computational costs to

prevent a rare event. Over the past few decades, DRO models have found many applications

in operations research, finance and management sciences, see for instances Bertsimas and

Popescu [8], Delage and Ye [17], Goh and Sim [19], Mehrotra and Papp[26], Wiesemann,

Kuhn and Rustem [47, 48] and Wozabal [49] for various applications and numerical schemes.

In particular, Bertsimas et al [6] propose a distributionally robust formulation of two stage

linear programming model with applications in finance and facility location planning.

A key element in (R-UC) is the ambiguity set P. Various statistical methods have been

proposed in the literature for constructing ambiguity set. Here we consider two popular ones

where P is constructed through moments and mixture distribution.
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3 Moment model and sample approximation ap-

proach

In this section, we investigate the robust unit commitment problem where the first moment

condition of the underlying random wind generation is known. Let µ ∈ RT denote the mean

of ξ. We consider the ambiguity set P being defined as follows:

P = {P ∈P : EP [ξ] = µ} , (3.1)

where P denotes the set of all probability measures of measurable space (Ξ,B) induced by

ξ. For each fixed x ∈ X , we consider the worst expected value of g(x, ξ) over the ambiguity

set P:

H(x) := sup
P∈P

EP [g(x, ξ)]. (3.2)

Using the moment conditions, we can write H(x) as the optimal value of the following max-

imization problem

H(x) = sup
P∈M+

∫
Ξ
g(x, ξ)P (dξ),

s.t.

∫
Ξ
ξtP (dξ) = µt, for all t = 1, · · · , T,∫

Ξ
P (dξ) = 1,

(3.3)

where M + denotes the set of all non-negative finite measures on measurable space (Ξ,B),

and µt is the tth component of µ. Problem (3.3) is a typical form of classical moment problem.

We refer interested readers to a monograph by Landau [23] for a comprehensive discussion

of the historical background of the latter. In order to deal with difficulties associated with

solving such an infinite dimensional problem, duality theory is often used; for example, see

Rockafellar [35]. Here we follow Shapiro [38, Proposition 3.1] to derive the Lagrange dual

associated with the moment problem (3.3).

Proposition 3.1 For a given x ∈ X , the Lagrange dual of problem (3.2) is

HD(x) := min
α

α0 +

T∑
t=1

αtµt

s.t. g(x, ξ) ≤ α0 +

T∑
t=1

αtξt, for all ξ ∈ Ξ,

(3.4)

where αt ∈ R, t = 0, 1, · · · , T , denotes the dual variables corresponding to moment problem

constraints and Ξ ⊂ RT is the support set of ξ, and HD(x) = H(x).

Proof: The derivation of the dual formulation is standard and can be found in Shapiro,

Dentcheva and Ruszczyński [39]. Since Ξ is compact and the underlying function are con-

tinuous in ξ, the strong duality follows from [39, page 308].

�
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Using Proposition 3.1, we can reformulate (R-UC) as

(SIP-UC) min
x,α0,α

cTx+ α0 + αTµ

s.t. x ∈ X ,
g(x, ξ) ≤ α0 + αT ξ, for all ξ ∈ Ξ.

(3.5)

Moreover, through a simple analysis, we can show that problem (3.5) is equivalent to the

following program which incorporates the details of the second-stage problem

min
x,y(.),α0,α

cTx+ α0 + αTµ

s.t. x ∈ X ,
hT y(ξ) ≤ α0 + αT ξ, for all ξ ∈ Ξ,

y(ξ) ∈ Y(x, ξ), for all ξ ∈ Ξ.

(3.6)

In the rest of the paper, we discuss numerical methods for solving (3.5) or (3.6). If we

are able to obtain a closed form of g(x, ξ) and show that g is a linear or a quadratic function

of ξ, then we may reformulate the semiinfinite constraints of problem (3.5) as a semidefinite

constraint and consequently solve the resulting semidefinite programming (SDP) problem

with existing methods for SDP. Indeed, this is the main stream work for distributionally

robust optimization, see for instance [47, 48] and references therein. Unfortunately, here

g is not linear or quadratic in ξ. Likewise, the underlying functions in the constraints of

problem (3.6) are also nonlinear, non-quadratic which makes it impossible to reformulate the

semiinfinite constraints as semidefinite constraints. This motivates us to solve (3.6) through

other methods

3.1 Sample approximation scheme

One of the well-known solution approaches for semi-infinite programs is random discretization.

The basic idea is to construct a tractable sub-problem by considering a randomly drawn finite

subset of constraints. The approach has been shown numerically efficient and it has been

widely applied to various stochastic and robust programs ( see Calafiore and Campi [15]). In

a more recent development, Anderson et al. [2] propose a CVaR approximation scheme to a

semi-infinite constraint system, and then apply the well-known sample average approximation

to the CVaR (of the constraint function); see also Liu and Xu [24] where the approach is

applied to mathematical programs with semi-infinite complementarity constraints.

Let ξ1, · · · , ξS be random variables which are independent and follow identical distribution

to that of ξ. Let S = {1, · · · , S}. We consider the following discretization problem as an

approximation to problem (3.6):

min
x,y(ξs):s∈S,α0,α

cTx+ α0 + αTµ

s.t. x ∈ X ,
hT y(ξs) ≤ α0 + αT ξs, for all s ∈ S,
y(ξs) ∈ Y(x, ξs), for all s ∈ S,

(3.7)

where ξs is a realization of ξ for s ∈ S. In what follows, we show the convergence of the

optimal value of (3.7) to its true counterpart as the sample size increases. To this end, we
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consider an equivalent form of (3.7) which is presented in terms of the optimal value function

of the second-stage problem:

min
x,α0,α

cTx+ α0 + αTµ

s.t. x ∈ X ,
g(x, ξs) ≤ α0 + αT ξs, for all s ∈ S.

(3.8)

A clear benefit of the formulation above is that the decision variables are independent of the

sample and this will particularly facilitate the convergence analysis.

To minimize the dependence on the specific details of the objective and constraints func-

tions of problem (3.8) for the convergence analysis and also for the purpose of potential

applications of the convergence result, we consider the following general optimization prob-

lem
min
x∈X

ψ(x)

s.t. f(x, ξ) ≤ 0, for all ξ ∈ Ξ,
(3.9)

where X is a compact set in a finite dimensional space, ψ and f are continuous functions

which map from Rn and Rn × Rk to R respectively, ξ is the parameter which takes values

over a compact set Ξ.

Let ξ1, · · · , ξN be independent and identically distributed random variables with the same

distribution as ξ. We consider the discretized problem

min
x∈X

ψ(x)

s.t. f(x, ξi) ≤ 0, i = 1, · · · , N.
(3.10)

Let v and vN denote, respectively, the optimal values of program (3.9) and program (3.10).

Lemma 3.1 Assume that (a) ψ is Lipschitz continuous, (b) Ξ is a compact set, (c) ξ is a

continuously distributed 2 and there exist positive constants K and τ independent of x, such

that for each x ∈ X there exist α0(x) < f∗(x) := max
y∈Ξ

f(x, y) with

1− Fx(α) ≥ K (f∗(x)− α)τ , for all α ∈ (α0(x), f∗(x)), (3.11)

where Fx denotes the cumulative distribution function of f(x, ξ) 3, and (d) f is Lipschitz

continuous in x with integrable Lipschitz modulus (w.r.t. the distribution of ξ). Then for any

positive number ε, there exist positive constants C(ε) and A(ε) such that

Prob(|vN − v| ≥ ε) ≤ C(ε)e−A(ε)N (3.12)

for N sufficiently large.

Proof: The thrust of the proof is to use CVaR and its sample average approximation to

approximate the semi-infinite constraints of (3.9) which is similar to the convergence analysis

2Although ξ is a deterministic parameter here, we may regard it as a random variable, and by writing f(x, ξ) ≤ 0
we mean that, for every realization of ξ, the inequality holds.

3 Note that ξ could be any random variable which follows a continuous distribution with support set Ξ and the
cumulative distribution function satisfying (3.11).
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in Anderson et al. [2]. However, there are a few important distinctions: (a) the convergence

here is for the randomization scheme (3.10) rather than the sample average approximation of

the CVaR approximation of the semi-infinite constraints, (b) the underlying functions in the

objective and constraints are not necessarily convex, and (c) the decision vector may consist

of some integer variables.

Let

Φ(x) := sup
ξ∈Ξ

f(x, ξ) and ΦN (x) := sup
i=1,··· ,N

f(x, ξi),

and let F and FN denote the feasible set of problem (3.9) and problem (3.10) respectively.

Then

F = {x : Φ(x) = 0} and FN = {x : ΦN (x) = 0}.

Moreover, since ΦN (x) ≤ Φ(x), F ⊂ FN . For β ∈ (0, 1), let

CVaRβ(f(x, ξ)) := sup
η

{
η +

1

1− β

∫
y∈Y

(f(x, y)− η)+ρ(y)dy
}

and

ΨN
β (x) := sup

η

{
η +

1

(1− β)N

N∑
j=1

(f(x, ξj)− η)+

}
where ρ(·) denotes the density function of the random variable ξ, (a)+ = max(0, a) for a ∈ IR.

In the literature, CVaRβ (f(x, ξ)) is known as conditional value at risk and ΨN
β (x) is its sample

average approximation (see Rockafellar and Uryasev [36] and Anderson et al. [2]). It is well

known that the maximum w.r.t. η in the above formulation is achieved at a finite η. In

other words, we may restrict the maximum to be taken within a closed interval [−a, a] for a

sufficiently large, see Rockafellar and Uryasev [36]. It is easy to verify that

ΨN
β (x) ≤ ΦN (x) ≤ Φ(x). (3.13)

We proceed the rest of the proof in four steps.

Step 1. By the definition of CVaR,

CVaRβ (f(x, ξ)) ≤ Φ(x)

for any β ∈ (0, 1) (see [2]). Moreover, under condition (c), it follows by [2, Theorem 2.1] that

|CVaRβ (f(x, ξ))− Φ(x)| ≤ 1

K1/τ

τ

1 + τ
(1− β)1/τ . (3.14)

Therefore by driving β to 1, we obtain

sup
x∈X
|CVaRβ (f(x, ξ))− Φ(x)| → 0.
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Step 2. Using the inequalities (3.13), we have

|ΦN (x)− Φ(x)| ≤ |ΨN
β (x)− Φ(x)|

≤ |ΨN
β (x)− CVaRβ (f(x, ξ)) |+ |CVaRβ (f(x, ξ))− Φ(x)|. (3.15)

Let δ be a small positive number. By (3.14), we may set β sufficiently close to 1 such that

sup
x∈X
|CVaRβ (f(x, ξ))− Φ(x)| ≤ δ

2
.

On the other hand, since Ξ is compact and f is Lipschitz continuous in x with integrable

modulus, by virtue of [40, Theorem 5.1], there exist positive constants C(δ) and A(δ) such

that

Prob
(

sup
x∈X
|ΨN

β (x)− CVaRβ (f(x, ξ)) | ≥ δ/2
)

≤ Prob
( 1

1− β
sup
x∈X

sup
η∈[−a,a]

∣∣∣∣∣∣ 1

N

N∑
j=1

(f(x, ξj)− η)+ − EP [(η − f(x, ξ))+]

∣∣∣∣∣∣ ≥ δ/2
)

≤ C(δ)e−A(δ)N

when N is sufficiently large. Here, in the first inequality, we are using the fact that the

maximum w.r.t. η is achieved in [−a, a] for some appropriate positive constant a; see similar

discussions in Xu and Zhang [50]. Therefore,

Prob
(

sup
x∈X
|ΦN (x)− Φ(x)| ≥ δ

)
≤ Prob

(
sup
x∈X
|CVaRN

β (f(x, ξ))− CVaRβ (f(x, ξ)) | ≥ δ/2
)

≤ C(δ)e−A(δ)N . (3.16)

Step 3. For small positive number t, let

R(t) = min
x

{
Φ(x) : d(x,F)

}
≥ t,

where d(x,F) denotes the distance from point x to set F . Obviously R(t) > 0, it is mono-

tonically increasing, and R(t)→ 0 as t ↓ 0. Therefore, it is easy to observe that

d(x,F) ≥ t⇐⇒ Φ(x) ≥ R(t).

Let

D(FN ,F) := sup
x∈FN

d(x,F)

and

H(FN ,F) := max
(
D(FN ,F),D(F ,FN )

)
,

where H is the Hausdorff distance between FN and F . Since both FN and F are bounded,

the Hausdorff distance is well defined. Moreover, since F ⊂ FN , H(FN ,F) = D(FN ,F). In

what follows, we estimate Prob
(
D(FN ,F) ≥ δ

)
. For any xN ∈ FN , since ΦN (xN ) = 0, then

Φ(xN ) ≥ R(t)⇐⇒ Φ(xN )− ΦN (xN ) ≥ R(t).
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Therefore,

Prob
(
D(FN ,F) ≥ t

)
≤ Prob

(
sup
x∈FN

|Φ(x)| ≥ R(t)

)

≤ Prob

(
sup
x∈X
|Φ(x)− ΦN (x)| ≥ R(t)

)
. (3.17)

Step 4. Let x∗ ∈ F and xN ∈ FN be the optimal solutions to (3.9) and (3.10). Then, by

the Lipschitz continuity of ψ,

|vN − v∗| = |ψ(xN )− ψ(x∗)| ≤ L‖xN − x∗‖ ≤ LH(FN ,F)

where L denotes the Lipschitz modulus of ψ. By (3.17), we deduce

Prob(|vN − v∗| ≥ ε) ≤ Prob
(
H(FN ,F) ≥ ε/L

)
≤ Prob

(
sup
x∈X
|Φ(x)− ΦN (x)| ≥ R(ε/L)

)
.

The rest follows from (3.16) with δ = R(ε/L). The proof is complete. �
With Lemma 3.1, we are ready to state the convergence of problem (3.8).

Theorem 3.1 Let ϑ and ϑN denote the optimal value of (SIP-UC) and (3.8) respectively.

Assume that ξ follows a uniform distribution 4. Then for any positive number ε, there exists

positive constants C(ε) and β(ε) such that

Prob(|ϑN − ϑ| ≥ ε) ≤ C(ε)e−β(ε)N (3.18)

for N sufficiently large.

Proof: It suffices to verify the conditions of Lemma 3.1. Conditions (a) and (b) are obvious

since the objective function is linear and Ξ is compact problem (3.8). Condition (c) is sat-

isfied because g(x, ξ) also follows a uniform distribution for each fixed x and the cumulative

distribution function of g(x, ξ) is a linear function. Let us verify condition (d). Following

Walkup et al. [45] and Nožička [28] (see also Liu et al. [25, Lemma 4.3]) that g(x, ξ) is Lip-

schitz continuous w.r.t. x and ξ and since Ξ is compact, g(x, ξ) is Lipschitz continuous in x

with integrable Lipschitz modulus. The proof is complete. �
In Theorem 3.1, we assume that ξ follows a uniform distribution. It might be interesting

to show the conclusion when ξ follows a general continuous distribution with positive density

function in the interior of Ξ; that is, g(x, ξ) satisfies (3.11). We leave this for our future work.

The detailed formulation for the sample approximation of (SIP-UC) problem is given by

4 Following the comments at a footnote of Lemma 3.1, the distribution of ξ can be any so long as its support set
coincides with Ξ and it satisfies consistent tail condition (3.14) because the distribution is only used for generating
samples of the random discretization scheme. We make it easier by considering uniform distribution which obviously
satisfies the tail condition as the density is a postive constant.
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the mixed integer linear program below,

min
u,q,r,̂r(.),α

cfi uit + cliqit + cr,upi rupit + cr,dwi rdwit + α0 +

T∑
t=1

αtµt

s.t. qit + rupit ≤ qiuit, ∀t, i,
qit − rdwit ≥ qiuit, ∀t, i,
rupi ≤ r

up
it ≤ r

up
i , ∀t, i,

rdwi ≤ rdwit ≤ rdwi , ∀t, i,
qit, r

dw
it , r

up
it ∈ R+, uit ∈ {0, 1}, ∀t, i,∑

i

∑
t

{ĉupi r̂
up
it (ξs) + ĉdwi r̂dwit (ξs)}+

∑
t

{clst St(ξs) + cwst Wt(ξ
s)} ≤

α0 +
T∑
t=1

αtξ
s
t , ∀s,∑

i

q̂it(ξ
s) + St(ξ

s)−Wt(ξ
s) = lt(ξ

s), ∀t, s,

0 ≤ r̂upit (ξs) ≤ rupit , ∀t, i, s,
0 ≤ r̂dwit (ξs) ≤ rdwit , ∀t, i, s,
Qt − (qit + rupit ) + St(

¯
ξ) ≥ lt(

¯
ξ), ∀t, i,

q̂it(ξ) = qit + r̂upit (ξ)− r̂dwit (ξ), ∀t, i,
q̂it(ξ

s)− q̂i(t−1)(ξ
s) ≤ RUiui(t−1) + SUi(1− ui(t−1)), ∀t, i, s,

q̂i(t−1)(ξ
s)− q̂it(ξs) ≤ RDiuit + SDi(1− uit), ∀t, i, s,

where the first five constraints are the first-stage constraints, and the last six constraints

represent the remaining constraints in problem (3.7).

4 Mixture distribution approach

In the absence of complete information on the underlying distribution of random variables, the

decision maker could integrate information obtained through various channels to construct

a mixture probability distribution. The use of mixture distribution in the context of robust

optimization could be traced back to Peel and McLachlan [31] and more recently in Zhu and

Fukushima [51] for portfolio optimization problems.

To define the ambiguity set corresponding to the robust problem (2.13), let Pj , j =

1, · · · , L be a set of probability measures such that EPj [g(x, ξ)] is well defined for j = 1, · · · , L.

The ambiguity set under mixture distribution can then be defined as follows,

P :=
{ L∑
j=1

γjPj :

L∑
j=1

γj = 1, γj ≥ 0, ∀j = 1, · · · , L
}
,

where γj denotes the weight of distribution j. The probability distributions P1, · · · , PL are

assumed to be known and true probability distribution is assumed to be in their convex hull.

For any realization of the distribution P :=
∑
j

γjPj we have

EP [g(x, ξ)] =

L∑
j=1

γjEPj [g(x, ξ)].
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Under the mixture distribution, the inner maximization problem in (2.13) can then be rewrit-

ten as follows,

H(x) = sup
γ

L∑
j=1

γjEPj [g(x, ξ)]

s.t.
∑
j

γj = 1,

γj ≥ 0, ∀j = 1, · · · , L.

(4.1)

Let λ be the dual variable corresponding to the first constraint in (4.1). Then the dual of

the above problem can be written as

HD(x) = min
λ∈R

λ

s.t. EPj [g(x, ξ)] ≤ λ, ∀j = 1, · · · , L.
(4.2)

Proposition 4.1 In the case when ξ has a finite discrete distribution with the support set

containing a finite number of values ξ1, · · · , ξN and for a given first-stage decision x, model

(4.2) is equivalent to

min
y1,··· ,yN ,λ

λ

s.t.
N∑
k=1

pkj (h
T yk) ≤ λ,∀j = 1, · · · , L,

yk ∈ Y(x, ξk), ∀k = 1, · · · , N,

(4.3)

where pkj is the probability measure of Pj in scenario k.

Proof: If ξ has a discrete distribution with a finite number of scenarios ξ1, · · · , ξN , then

model (4.2) can be written as

min
λ

λ

s.t.

N∑
k=1

pkj g(x, ξk) ≤ λ, ∀j = 1, · · · , L,

where g(x, ξk) refers to the second-stage problem

g(x, ξk) = min
y

hT y

s.t. y ∈ Y(x, ξk).

Let us denote the optimal solution of the above problem as

ŷk = arg min
y∈Y(x,ξk)

hT y,∀k.

Then we have g(x, ξk) = hT ŷk. Let us define λ̂ =

N∑
k=1

pkj (h
T ŷk). It is clear that (λ̂, ŷ) is

a feasible solution to problem (4.3). Let (λ̃, ỹk : k = 1, · · · , N) be an optimal solution to
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problem(4.3). Then hT ỹk ≥ hT ŷk for all k by the definition of ŷk. Thus, we have

N∑
k=1

pkj (h
T ỹk) ≥

N∑
k=1

pkj (h
T ŷk), ∀j.

Therefore

min
j

{
N∑
k=1

pkj (h
T ỹk)

}
≥ min

j

{
N∑
k=1

pkj (h
T ŷk)

}

and λ̃ ≥ λ̂. Since (λ̂, ŷ) is a feasible solution of (4.3), it must also be an optimal solution. �
Thus, when ξ has a finite discrete distribution, the original robust problem (2.13) can be

rewritten as

(Mix-UC) min
x,y(.),λ

cTx+ λ

s.t. x ∈ X ,
N∑
k=1

pkj (h
T yk) ≤ λ,∀j = 1, · · · , L,

yk ∈ Y(x, ξk),∀k = 1, · · · , N.

(4.4)

Note that when Pj follows a continuous distribution, it might be difficult to compute the

expected value of the functions in the constraints of (4.2). A well-known approach to resolving

this issue is to use sample average approximation (SAA). For a fixed j, let ξ1
j , · · · , ξ

Nj

j denote

independent and identically random sampling of ξ. Then Epj [g(x, ξ)] can be approximated

by

1

Nj

Nj∑
k=1

g(x, ξkj ).

Consequently, problem (4.4) can be approximated by

min
x,y(.),λ

cTx+ λ

s.t. x ∈ X ,

1

Nj

Nj∑
k=1

hT ykj ≤ λ, ∀j = 1, · · · , L,

ykj ∈ Y(x, ξkj ),∀k = 1, · · · , Nj , j = 1, · · · , L.

(4.5)
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The overall SAA of the Mix-UC problem can be written as follows,

min
u,q,r,̂r,W,S,λ

cfi uit + cliqit + cr,upi rupit + cr,dwi rdwit + λ

s.t. qit + rupit ≤ qiuit, ∀t, i,
qit − rdwit ≥ qiuit, ∀t, i,
rupi ≤ r

up
it ≤ r

up
i , ∀t, i,

rdwi ≤ rdwit ≤ rdwi , ∀t, i,
qit, r

dw
it , r

up
it ∈ R+, uit ∈ {0, 1}, ∀t, i,

1

Nj

Nj∑
k=1

[∑
i

∑
t

{ĉupi r̂
up
it (ξkj )+

ĉdwi r̂dwit (ξkj )}+
∑
t

{clst St(ξkj ) + cwst Wt(ξ
k
j )}
]
≤ λ ∀j,∑

i

q̂it(ξ
k
j ) + St(ξ

k
j )−Wt(ξ

k
j ) = lt(ξ

k
j ) ∀t, k, j,

0 ≤ r̂upit (ξkj ) ≤ rupit ∀t, i, k, j,
0 ≤ r̂dwit (ξkj ) ≤ rdwit ∀t, i, k, j,
Qt − (qit + rupit ) + St(

¯
ξ) ≥ lt(

¯
ξ), ∀t, i,

q̂it(ξ) = qit + r̂upit (ξ)− r̂dwit (ξ), ∀t, i,
q̂it(ξ

k
j )− q̂i(t−1)(ξ

k
j ) ≤ RUiui(t−1) + SUi(1− ui(t−1)), ∀t, i, k, j,

q̂i(t−1)(ξ
k
j )− q̂it(ξkj ) ≤ RDiuit + SDi(1− uit), ∀t, i, k, j.

Note that the SAA approach for Mix-UC results in a mixed integer linear program (MILP).

5 Case study

In this section, we carry out some numerical experiments to evaluate the proposed math-

ematical methods and numerical schemes. To facilitate further exposition and reading, we

develop a list of models in Table 2.

Table 2: Reference of the methodologies

Abbreviations Problem Method Known information on uncertainty

Sto-UC (2.1)-(2.12) Stochastic UC Probability distribution (P )

SIP-UC (3.5) Robust UC with semi-infinite formulation First moments (µ)

Mix-UC (4.4) Robust UC with mixture distribution A set of known distributions

5.1 Data

We consider an illustrative case study based on a system with 10 generating units. The data

for the generators are based on work by Pozo and Contreras [32] and includes the cost and

limitation of the generation and reserve utilization as summarised in Table 3.
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Table 3: Ten-unit system: generation and reserve cost and capacities

Costs [$/MW] Capacities [MW]

Unit Fixed [$] Variable Reserve up/down Reserve up Reserve down Minimum Maximum Reserve

cost cost (scheduled) (actual) (actual) output output up/down

i cfi cli cr,upi / cr,dwi ĉupi ĉdwi q
i

qi rupi /r
dw
i

1 2,550 16.19 1.80 17.81 -14.57 150 455 153

2 2,550 17.26 1.92 18.99 -15.53 150 455 153

3 1,300 16.60 1.84 18.26 -14.94 70 180 55

4 1,300 16.50 1.83 18.15 -14.85 70 180 55

5 1,620 19.70 2.19 21.67 -17.73 50 165 58

6 800 22.26 2.47 24.49 -20.03 30 90 30

7 850 27.74 3.08 30.51 -24.97 40 85 23

8 550 25.92 2.88 28.51 -23.33 20 60 20

9 550 27.27 3.03 30.00 -24.54 20 60 20

10 550 27.79 3.09 30.57 -25.01 20 60 20

Stochastic base case

The hourly power demand is assumed to be known, and under the two-stage stochastic setting

(Sto-UC) the wind output is assumed to follow a multivariate normal distribution N (µ,Σ)

with mean µ, standard deviation σ, correlation C and covariance Σ = σCσT . The hourly

demand, wind output mean values µ, and the standard deviations σ for a 24-hour period

are given in Table 4. The corresponding mean values for the stochastic net load are also

presented in Figure 1.

Table 4: Hourly demand and mean/standard deviation of the wind

Hour Demand Wind Hour Demand Wind

t dt Mean (µt) SD(σt) t dt Mean (µt) SD(σt)

1 1127 282 42.3 13 2254 564 126.8

2 1208 302 47.2 14 2093 523 121

3 1369 342 55.6 15 1932 483 114.7

4 1530 383 64.5 16 1691 423 103

5 1610 403 70.4 17 1610 403 100.6

6 1771 443 80.2 18 1771 443 113.5

7 1852 463 86.8 19 1932 483 126.8

8 1932 483 93.6 20 2254 564 151.4

9 2093 523 104.7 21 2093 523 143.9

10 2254 564 116.2 22 1771 443 124.5

11 2335 584 124 23 1449 362 104.1

12 2415 604 132.1 24 1288 322 94.6
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Figure 1: Nominal values of demand and mean wind

The correlation matrix C is based on the hourly Danish wind output data5 for the year

2013 and is given by

C =



1 0.994 0.979 0.962 0.942 0.913 0.88 0.844 0.812 0.778 0.744 0.705 0.665 0.629 0.597 0.566 0.54 0.51 0.479 0.462 0.449 0.428 0.399 0.372

0.994 1 0.994 0.982 0.965 0.937 0.905 0.87 0.838 0.806 0.774 0.735 0.697 0.66 0.627 0.595 0.568 0.535 0.504 0.486 0.471 0.449 0.42 0.391

0.979 0.994 1 0.995 0.982 0.957 0.927 0.893 0.862 0.829 0.797 0.759 0.719 0.682 0.648 0.616 0.587 0.553 0.522 0.505 0.489 0.467 0.439 0.411

0.962 0.982 0.995 1 0.994 0.975 0.949 0.919 0.888 0.856 0.823 0.784 0.744 0.706 0.672 0.64 0.611 0.576 0.544 0.527 0.511 0.487 0.459 0.43

0.942 0.965 0.982 0.994 1 0.992 0.974 0.949 0.922 0.892 0.86 0.821 0.781 0.741 0.705 0.673 0.643 0.608 0.576 0.558 0.54 0.515 0.486 0.454

0.913 0.937 0.957 0.975 0.992 1 0.993 0.976 0.953 0.926 0.895 0.858 0.817 0.776 0.74 0.707 0.677 0.641 0.609 0.59 0.57 0.542 0.511 0.477

0.88 0.905 0.927 0.949 0.974 0.993 1 0.993 0.976 0.953 0.924 0.888 0.847 0.805 0.768 0.735 0.705 0.669 0.636 0.616 0.594 0.563 0.53 0.494

0.844 0.87 0.893 0.919 0.949 0.976 0.993 1 0.992 0.974 0.947 0.913 0.873 0.831 0.795 0.762 0.731 0.696 0.663 0.642 0.619 0.586 0.55 0.511

0.812 0.838 0.862 0.888 0.922 0.953 0.976 0.992 1 0.992 0.969 0.939 0.902 0.862 0.827 0.796 0.766 0.731 0.699 0.678 0.652 0.616 0.577 0.536

0.778 0.806 0.829 0.856 0.892 0.926 0.953 0.974 0.992 1 0.99 0.967 0.935 0.899 0.866 0.836 0.806 0.77 0.735 0.711 0.683 0.644 0.604 0.562

0.744 0.774 0.797 0.823 0.86 0.895 0.924 0.947 0.969 0.99 1 0.991 0.969 0.94 0.91 0.882 0.854 0.819 0.78 0.754 0.723 0.682 0.641 0.598

0.705 0.735 0.759 0.784 0.821 0.858 0.888 0.913 0.939 0.967 0.991 1 0.991 0.971 0.946 0.922 0.895 0.861 0.822 0.794 0.761 0.719 0.677 0.635

0.665 0.697 0.719 0.744 0.781 0.817 0.847 0.873 0.902 0.935 0.969 0.991 1 0.993 0.976 0.957 0.933 0.901 0.863 0.835 0.801 0.759 0.719 0.679

0.629 0.66 0.682 0.706 0.741 0.776 0.805 0.831 0.862 0.899 0.94 0.971 0.993 1 0.994 0.98 0.961 0.933 0.899 0.871 0.837 0.796 0.757 0.719

0.597 0.627 0.648 0.672 0.705 0.74 0.768 0.795 0.827 0.866 0.91 0.946 0.976 0.994 1 0.995 0.981 0.958 0.928 0.901 0.867 0.827 0.789 0.753

0.566 0.595 0.616 0.64 0.673 0.707 0.735 0.762 0.796 0.836 0.882 0.922 0.957 0.98 0.995 1 0.994 0.977 0.952 0.927 0.894 0.855 0.818 0.783

0.54 0.568 0.587 0.611 0.643 0.677 0.705 0.731 0.766 0.806 0.854 0.895 0.933 0.961 0.981 0.994 1 0.993 0.974 0.951 0.92 0.882 0.847 0.814

0.51 0.535 0.553 0.576 0.608 0.641 0.669 0.696 0.731 0.77 0.819 0.861 0.901 0.933 0.958 0.977 0.993 1 0.991 0.973 0.944 0.908 0.875 0.845

0.479 0.504 0.522 0.544 0.576 0.609 0.636 0.663 0.699 0.735 0.78 0.822 0.863 0.899 0.928 0.952 0.974 0.991 1 0.992 0.969 0.937 0.905 0.876

0.462 0.486 0.505 0.527 0.558 0.59 0.616 0.642 0.678 0.711 0.754 0.794 0.835 0.871 0.901 0.927 0.951 0.973 0.992 1 0.989 0.964 0.935 0.906

0.449 0.471 0.489 0.511 0.54 0.57 0.594 0.619 0.652 0.683 0.723 0.761 0.801 0.837 0.867 0.894 0.92 0.944 0.969 0.989 1 0.99 0.969 0.944

0.428 0.449 0.467 0.487 0.515 0.542 0.563 0.586 0.616 0.644 0.682 0.719 0.759 0.796 0.827 0.855 0.882 0.908 0.937 0.964 0.99 1 0.992 0.975

0.399 0.42 0.439 0.459 0.486 0.511 0.53 0.55 0.577 0.604 0.641 0.677 0.719 0.757 0.789 0.818 0.847 0.875 0.905 0.935 0.969 0.992 1 0.992

0.372 0.391 0.411 0.43 0.454 0.477 0.494 0.511 0.536 0.562 0.598 0.635 0.679 0.719 0.753 0.783 0.814 0.845 0.876 0.906 0.944 0.975 0.992 1


SIP formulation

In the SIP formulation, we assume that only the first moment of the uncertain wind power is

known and is given by µ. Based on this assumption, we implement the first proposed model

and formulate the problem as a robust SIP (SIP-UC). In solving the SIP problem, we limit

5Available online at http://energinet.dk
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the support set of random hourly wind to 150 values generated from a multivariate uniform

distribution.

Mixture distribution formulation

In the second approach of mixture distribution, we consider a case where the information

on the uncertain net load is received through various resources, e.g. advice from a group of

experts. While each alternative net load model provides a specific distribution and parameters

such as the mean and the covariance, there is no consensus among the decision makers on

which model contains the true distribution. Therefore, instead of relying on a particular

expert model, we use the mixture model (Mix-UC) to combine all these potential distributions.

Specifically, we assume that we are given three different distributions for the stochastic net

load, shown in Table 5. We assume that three distributions are equally relevant and therefore

they have equal weights in the construction of the mixture distribution. We construct the

uncertainty set by drawing 50 random samples from each distribution.

Table 5: Potential distributions for wind power

Distribution Mean Covariance Weight

Multivariate Normal 0.8µ Σ 1
3

Multivariate Normal 1.2µ Σ 1
3

Multivariate Uniform µ Σ 1
3

5.2 Numerical results

We compare the solutions produced by three different models: (a) a two-stage stochastic UC

that uses the known distribution of the random supply as described in Section 2.1, (b) the

robust UC that uses only information on the mean value of the random supply as described

in Section 3, and (c) the robust UC that ‘knows’ only a convex hull of a finite set of known

distributions containing the true probability distribution as described in Section 4. Table 6

shows the size of each problem as well as the running time for solving each problem. The

models have been tested on an MacBook Air Intel Core i5 processor at 1.6 GHz and 4 GB of

RAM memory using CPLEX 12.6.1 under MATLAB R2014a.

Table 6: Problems size and computational times

Model Scenarios (#) Constraints (#) Total variables (#) Binary variables (#) CPU time (s)

Sto-UC 150 148,320 80,160 240 539.16

SIP-UC 150 148,470 80,185 240 1894.1

Mix-UC 150 148,322 80,161 240 196.70

The sizes of the three models are dependent on the number of scenarios generated and

are very similar to each other in this case study. We generate 150 scenarios for each of the

models so that the computational time is reasonable. Our main interest lies in assessing the

quality of the solutions proposed by the stochastic model and their robust counterparts.
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The cumulative first-stage decisions as well as the second-stage decisions and the total

costs for each solution are presented in Table 7. It can be observed that robust solutions

result in higher expected costs than the stochastic solution in both the first stage and the

second stage. This is contributed to mostly by the increase in the first-stage generation to

hedge against the ambiguity of the distribution of the underlying net load uncertainty. The

increase of the expected costs makes sense because the stochastic solution was produced by

using the truth distribution of the net load; i.e. the truth information is known, while the

robust solutions only have the uncertainty set containing the truth distribution. Note that, in

practice, we often do not have the truth distribution and hence the stochastic solution must

use some ‘guess’ distribution in the uncertainty set. In that case, the resulting expected cost

might be higher than those suggested by the robust solutions as we will demonstrate in the

sensitivity analysis later on.

Table 7: Stochastic versus robust solutions

Model

First-stage decisions [Total MW] Cost [$]

Generation Reserve up Reserve down
First stage Second stage Total expected∑

t

∑
i

qit
∑
t

∑
i

rupit

∑
t

∑
i

rdwit

Sto-UC 32,098 3,701 3,882 821,260 50,870 872,130

Mix-UC 33,633 2,910 2,390 854,660 118,270 972,940

SIP-UC 32,661 5,391 7,231 882,740 195,930 1,078,680

The hourly cumulative first-stage generation and reserve levels are presented in Figure

2. It can be observed that, in the case of the Mix-UC solution, the hourly pattern of total

generation is generally higher than the base Sto-UC solution. Additionally, the SIP-UC

solution provides a greater flexibility for the second stage through a higher level of up and

down reserves. It can also be observed that the hourly patterns of the generation and the

reserve schedule are similar to the net load quantities, and at the peak hours the maximum

generation capacity of generators are scheduled either in term of generation (Mix-UC) or

generation with reserve (Sto-UC and SIP-UC).
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(a) Sto-UC
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(b) Mix-UC
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(c) SIP-UC

Figure 2: UC first-stage solutions

Sensitivity of solutions to variation of the wind distribution

The first-stage decisions of the UC models determines the flexibility of the solution to changes

in the actual realization of the wind distribution in the second stage, i.e. we expect the robust

solutions to provide greater flexibility if the actual distribution of the uncertainty was different

from the assumed distribution. To compare the performance of the Sto-UC model, MIX-UC

model, and SIP-UC model, we analyze the effect of deviation of the distribution parameters

such as the mean and the covariance matrix from the nominal values. In doing so, we consider

a two-stage stochastic structure for each instance, in which the first stage unit commitment

and reserve schedules are fixed as the first-stage solutions of the Sto-UC model, MIX-UC

model, and SIP-UC model. In each instance, we then solve the second-stage problem using a

distribution with different means or covariances for the uncertain wind.

We first study the sensitivity of solution to changes in the actual mean of the distribu-

tion. We compare the Sto-UC, Mix-UC, and SIP-UC for instances with the following wind

distributions: N (aµ,Σ), a = {0.5, 0.6, 0.7, 0.8, 0.9, 1, 1.1, 1.2, 1.3, 1.4, 1.5} bounded away from
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zero (i.e. truncated normal distributions). For each choice of a, we carry out 100 independent

runs, each generating 150 i.i.d samples from the corresponding distribution, and use these

i.i.d samples as input to solve the second-stage problem. The solutions of 100 runs for each

instance are summarised as a box plot and are presented in Figures 3a-3c. The average values

of the objective function (total expected cost) for the 100 runs of each instance are also shown

in Figure 3d.

0.8

0.9

1

1.1

1.2

1.3

1.4

x 10
6

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
a mean scaler

 

 

1.5

O
b
je
ct
iv
e
fu
n
ct
io
n
($
)

Total cost for the distibutions N (aµ,Σ)

Mean Sto-UC

(a) Sto-UC

0.9

1

1.1

1.2

1.3

1.4

x 10
6

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
a mean scaler

 

 

1.5

O
b
je
ct
iv
e
fu
n
ct
io
n
($
)

Total cost for the distibutions N (aµ,Σ)

Mean Mix-UC

(b) Mix-UC

0.8

0.85

0.9

0.95

1

1.05

1.1

1.15

1.2

1.25

1.3

x 10
6

0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4
a mean scaler

 

 

1.5

O
b
je
ct
iv
e
fu
n
ct
io
n
($
)

Total cost for the distibutions N (aµ,Σ)

Mean SIP-UC

(c) SIP-UC

0.50.60.70.80.911.11.21.31.41.5
0.7

0.8

0.9

1

1.1

1.2

1.3

1.4
x 10

6

a mean scaler

O
b
je
ct
iv
e
fu
n
ct
io
n
($
)

Total cost for the distibutions N (aµ,Σ)

 

 

Mean STO-UC
Mean MIX-UC
Mean SIP-UC

(d) Mean objective values for 100 runs

Figure 3: Sensitivity of solutions to variation in mean

It can be observed that when the actual wind distribution is N = (µ,Σ), i.e. when

a = 1, the Sto-UC solution performs better than Mix-UC and SIP-UC solutions as expected

since the assumed distribution in Sto-UC coincides with the actual distribution. The Sto-UC

solution also performs better for all the instances with the mean of distribution greater than

µ, i.e. when the mean of wind level is greater than expected in Sto-UC model. This is due

to the ability of the system operator to dispatch higher levels of energy using the excess wind

power rather than utilizing the costly reserve. On the other hand, the Mix-UC (SIP-UC)

solution performs better when the mean of the wind distribution is less than 90% (80%) of
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the anticipated value in the Sto-UC model. In other words the Mix-UC and SIP-UC robust

solutions have lower total costs than the Sto-UC solution when the wind output is less than

what decision maker assumed under the Sto-UC model.

In the second set of sensitivity test instances, we compare the performances of the Sto-

UC, Mix-UC, and SIP-UC solutions to the possible changes in the covariances of the wind

distribution.
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(d) Mean objective values for 100 runs

Figure 4: Sensitivity of solutions to variation in covariance

We specifically consider the following truncated normal distributions for the second-stage

uncertain wind N (µ, (b)2Σ), where b = {0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8, 2, 2.2, 2.4, 2.6}. Simi-

lar to previous tests, we draw 150 i.i.d samples from the corresponding distribution in each

instance and repeat each instance for 100 runs. The corresponding box plots for test in-

stances for all three models are presented in Figures 4a-4c. Furthermore, the mean value of

the objective function for 100 tests in each instance and each model is shown in Figure 4d.

It can be observed that the SIP-UC solution has the least sensitivity to change in covariance

of the distribution, since the only available information for the SIP-UC model was the first
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moment condition of the distribution and there was no assumption on the covariance of the

distribution. However, this additional flexibility comes at a cost and it can be observed that

the SIP-UC solution is more conservative and costly for instances with covariance coefficients

around 2, when compared to the Sto-UC solutions. For the instances with b ≥ 2.2 the SIP-UC

performs better than both the Sto-UC and Mix-UC solutions.

The sensitivity of the Mix-UC and Sto-UC solutions to changes in covariance are very

similar and the difference between the two curves is almost unchanged across the test in-

stances. This is due to the covariance assumptions in construction of the mixture model, i.e.

covariance of all distributions used to construct the mixture model was equal to Σ. We have

also constructed the mixture distribution using the following distributions:

N
(
µ, (0.8)2Σ

)
,N
(
µ,Σ

)
,N
(
µ, (1.2)2Σ

)
.

The solution of this mixture model was very similar to the solutions of the Sto-UC model.

The final sensitivity test that we have performed is to randomly draw the wind input from

historical Danish wind data. Specifically, we perform 100 independent runs, each includes 150

daily wind speed data drawn out of 263 historical daily wind speed by using sampling with

replacement. For each of these 100 independent runs, the first stage solutions of the STO-UC,

the MIX-UC and the SIP-UC are tested for performance against the corresponding 150 daily

wind data. We then report the corresponding total costs of these solutions on the 100 runs.

Figure 5a shows the box-plot of these total costs and Figure 5b shows their quantile plots.

These quantile plots provide us with the relative comparison between STO-UC, MIX-UC and

SIP-UC on different quantiles. For example, at quantile 1, the figure shows us the worst total

cost among these three strategies while at quantile 0 it shows the best cases. We can see

from the Figure 5b that MIX-UC does not performs well compared to the others. This could

be because of the belief on mixed distribution does not apply to the Danish wind data. The

SIP-UC, on the other hand, always outperforms STO-UC in all the quantiles. This implies

that using only a belief on the mean is more ‘robust’ against sampling with replacement on

the Danish wind data.
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Figure 5: Sensitivity of solutions to variation in samples from historical wind data
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Medium and Large Cases

We have also tested the limit of the models computationally by considering a medium-sized

problem with 50 generator and a large-sized problem with 100 generators. The time period

T is set to equal to 12. We set the stopping criteria as either 5 hours computer-running time

or an optimality gap of no more than 1%, whichever reaches first. Sensitivity results for these

cases are included in the Appendix B. Table 8 shows the computational times and optimality

gaps on these two instances in addition to the small instance with 10 generators.

STO-UC MIX-UC SIP-UC
(n = 10, t = 24) 539.16 seconds 196.7 seconds 1894 seconds

0.79% optimality gap 0.91% optimality gap 0.5% optimality gap
(n = 50, t = 12) 2457.51 seconds 1050.46 seconds 18000 seconds

0.94% optimality gap 0.84% optimality gap 2.09% optimality gap
(n = 100, t = 12) 18000 seconds 6202.39 seconds · · ·

1.01% optimality gap 0.99% optimality gap · · ·

Table 8: Computational performance on different problem sizes.

We can see that the computational time increases significantly when the number of gen-

erator increases. This is because the number of binary variables, the number of continuous

variables and the number of constraints in each of the STO-UC, MIX-UC and SIP-UC in-

crease proportionally with the number of generators. For the case of 50 generators, the

STO-UC can reach 0.94% optimality gap within around 40 minutes. The MIX-UC took less

than 18 minutes to reach 0.85% optimality gap while the STO-UC stops after 5 hours when

it reached 2.09% optimality gaps. For the case of 100 generators, only the MIX-UC reach

the 1% optimality gap stopping criteria after 104 minutes while the STO-UC stops slightly

higher at 1.01% optimality gap after 5 hours. There was no sign of the SIP-UC to reach

reasonable optimality gap after 5 hours.

One interesting observation is that the MIX-UC actually took less time compared to the

STO-UC. This is a bit counter-intuitive as the distributionally robust optimization models

are build on the two-stage with one extra layer of optimization, i.e. a min-max-min problem

with a worst-case max operator in the middle, and hence, we would generally expect it to

be more difficult to solve than the stochastic counterpart. In fact, through dualization, the

reformulated models for the MIX-UC and the SIP-UC are actually not much bigger than

the stochastic counterpart. Specifically, the MIX-UC has one additional variables and two

additional constraints compared to the STO-UC. The corresponding numbers of additional

variables and constraints for the SIP-UC are 25 and 150, respectively.

We have programmed the entire models for the STO-UC, MIX-UC and SIP-UC into MAT-

LAB and calling the CPLEX solver directly. It is possible to apply techniques for solving

stochastic programming (e.g. by using Bender’s decomposition) to improve the performance

of these models and we expect that these could improve the numerical computation signifi-

cantly. Using that method, we envisage that the increase in the number of generators would

not impose significant computational issues as the number of binary variables only grow

linearly. Nevertheless, we leave this enhanced methods for future research direction.
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6 Conclusion

In this paper, we present a two-stage distributionally robust model that provides a novel and

practical approach to deal with the uncertainty of the distribution of random wind output

in the unit commitment problem. The model includes the technical ramping constraints as

well as reliability condition against failure of up to one generating unit. The robustness

takes into account the available information on uncertainty in two alternative ways. First, we

assume that only the first-moment information of the random wind is given and use duality

theory to formulate the problem as a linear semi-infinite program. The SIP model is then

solved using sampling because the structure of the problem does not allow us to reformulate

the semiinfinite constraints as semidefinite constraints. We establish exponential rate of

convergence of the optimal value when the randomization scheme is applied to discretize the

semi-infinite constraints.

Second, we assume that the information on probability distribution of uncertain wind is

received through various sources, and we construct a mixture model to include these into

decision making. The mixture model is also reformulated using duality theory and solved

through the sample average approximation approach. Empirical tests have been carried out

using an illustrative UC case study, taken from the literature, in order to illustrate the

performance of the proposed robust models. The robust UC solutions may lose the potential

of utilizing the wind power in high-wind climate; however, they perform much better in a

low-wind climate as compared to the solutions that do not consider the uncertainty of the

distribution (Sto-UC).

As one of the referees observed, the model has some limitations in absence of network

constraints and second order moment information. In the unit commitment literature, trans-

mission network has a very important impact on the UC decisions, particularly when there

is significant wind power generation. Moreover, transmission line outages are an important

factor for the (n-1) security constraints. Likewise, if we interpret the first order moment µ

as a persistence forecast for each time period of the planning horizon, then the forecast rou-

tines used to generate µ may constitute standard deviations. We envisage that these are new

directions for further research of the model but require significant new work on numerical

schemes to cope with the additional complexity from network constraints and higher order

moment conditions.
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A Ramp constraints and reliability and n− 1 secu-

rity constraint

Ramp constraints

For conventional generation units, it is important to take into account the short-term dynam-

ics of generation output over the consecutive periods. Such requirements are often referred to

as ramp constraints which limit the maximum increase or decrease of generated power from

one time period to the next, reflecting the thermal and mechanical inertia which need to be

overtaken in order for the generating unit to increase or decrease its output.

In a two-stage stochastic framework, we need to define the ramp constraints for any

possible realization of the net load ξ. At the second stage after the realization of the uncertain

net load, the scheduled energy qit does not change and the generating units adapt their

production to accommodate the realized net load. To do this, up and down reserves (r̂upit (ξ),

r̂dwit (ξ)) are used. We denote the actual power output of unit i at time t and scenario ξ by

q̂it(ξ) which is defined as follows:

q̂it(ξ) = qit + r̂upit (ξ)− r̂dwit (ξ), ∀t, i, ξ.
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Note that up and down reserves should not be simultaneously positive. We consider the ramp

constraints for all four combinations of on-off decisions between any two consecutive periods

t− 1 and t as follows,

1. If ui(t−1) = 1 and uit = 1, then the generating unit i is coupled for both hours, and

ramp limitations in hour t are bounded by the ramp up and down rates, RUi and RDi,

respectively. The ramp constraints will then be as follows:

q̂it(ξ)− q̂i(t−1)(ξ) ≤ RUi, ∀t, i, ξ, (R1)

q̂i(t−1)(ξ)− q̂it(ξ) ≤ RDi, ∀t, i, ξ. (R2)

2. If ui(t−1) = 0 and uit = 1, generating unit i starts up at the beginning of period t

and hence the limitation for hour t should be the starting up ramp SUi. The ramp

constraints will then be

q̂it(ξ)− q̂i(t−1)(ξ) ≤ SUi, ∀t, i, ξ, (R1)

q̂i(t−1)(ξ)− q̂it(ξ) ≤ RDi, ∀t, i, ξ. (R2)

Note that (R2) always holds because q̂i(t−1)(ξ) = 0, q̂it(ξ) ≥ 0 and RDi ≥ 0.

3. If ui(t−1) = 1 and uit = 0, generating unit i shutdowns at the beginning of time period t

and hence limitation during the hour t should be the shut-down ramp SDi. The ramp

constraints then become

q̂it(ξ)− q̂i(t−1)(ξ) ≤ RUi, ∀t, i, ξ, (R1)

q̂i(t−1)(ξ)− q̂it(ξ) ≤ SDi, ∀t, i, ξ. (R2)

Note that (R1) always holds because the left hand side is always negative whereas the

right hand side is always positive.

4. If ui(t−1) = 0 and uit = 0, then generating unit i is off during both periods and the

ramp constraints are

q̂it(ξ)− q̂i(t−1)(ξ) ≤ SUi, ∀t, i, ξ, (R1)

q̂i(t−1)(ξ)− q̂it(ξ) ≤ SDi, ∀t, i, ξ. (R2)

A summary of ramp limitations for all of the scenarios discussed above is presented in Table

9:

Table 9: Ramp limitations

ui(t−1) ut RHS of (R1) RHS of (R2)

Uncoupled 0 0 SUi SDi

Starting up 0 1 SUi RDi

Shutting down 1 0 RUi SDi

Coupled 1 1 RUi RDi
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Having defined the ramp constraints for all on/off decision scenarios over two time periods,

we can generalize them in relation to decision variable uit as follow,

q̂it(ξ)− q̂i(t−1)(ξ) ≤ RUiui(t−1) + SUi(1− ui(t−1)), ∀t, i, ξ,
q̂i(t−1)(ξ)− q̂it(ξ) ≤ RDiuit + SDi(1− uit), ∀t, i, ξ.

Reliability and n− 1 security constraint

To ensure the secure operation of the system under the failure of up to one scheduled gener-

ator, we consider the worst-case scenario that the system could possibly face; that is, for any

given time period, the generator with the highest total scheduled generation and actual up

reserve fails under the lowest level of wind (highest net load) available. This can be modeled

as ∑
i

(qit + rupit )−max
i
{qit + r̂upit (ξ)}+ St(ξ) ≥ dt −min

ξ
{wt(ξ)}, ∀t, ξ. (A.1)

In the literature of energy management, this is known as n − 1 criteria. Let us denote the

worst (lowest) realization of wind output at time t by

¯
ξt = arg min

ξ
{wt(ξ)},

and let St(
¯
ξ) denote the corresponding load shedding for this realization. Since the actual up

reserve used has to be less than the scheduled up reserve, i.e. r̂upit (ξ) ≤ rupit for every scenario

ξ, the inequality (A.1) can be rewritten as∑
i

(qit + rupit )−max
i
{qit + rupit }+ St(

¯
ξ) ≥ dt − wt(

¯
ξ), ∀t. (A.2)

Let us denote the upper limit of total generation and reserve schedules at time t as

Qt =
∑
i

(qit + rupit ) , ∀t.

The inequality constraint (A.2) can be rewritten as

Qt − (qit + rupit ) + St(
¯
ξ) ≥ lt(

¯
ξ), ∀t, i.
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B Numerical Results for Medium and Large Cases
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(a) Mean objective values for 100 runs
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Figure 6: Sensitivity of solutions to variation in mean and variance for a medium-sized problem
with 50 generators (with T = 12, S = 150.)
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Figure 7: Sensitivity of solutions to variation in mean and variance for a medium-sized problem
with 100 generators (with T = 12, S = 150.)
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