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Abstract. Since the pioneering work [7] by Dentcheva and Ruszczyriski, stochastic programs
with second order dominance constraints (SPSODC) have received extensive discussions over
the past decade from theory of optimality to numerical schemes and practical applications. In
this paper, we investigate discrete approximation of SPSODC when (a) the true probability is
known but continuously distributed and (b) the true probability distribution is unknown but
it lies within an ambiguity set of distributions. Differing from the well-known Monte Carlo
discretization method, we propose a deterministic discrete approximation scheme due to Pflug
and Pichler [20] and demonstrate that the discrete probability measure and the ambiguity set of
discrete probability measures approximate their continuous counterparts under the Kantorovich
metric. Stability analysis of the optimal value and optimal solutions of the resulting discrete
optimization problems is presented and some comparative numerical test results are reported.

Key words. Second order dominance, probability discretization, Kantorovich metric, stability
analysis

1 Introduction

Consider the following stochastic program with second order dominance constraints (SPSODC):

min f(z) (1.1)
st. G(x,&(w)) =2 Y({(w)),

where X is a nonempty convex compact set of IR", £ :  — IR™ is a vector of random variables
defined on space (€2, F, P) with support set Z, f,G,Y are continuous functions mapping from
R", R" x R™ and IR™ to IR. The notation =2 means G(z,¢) dominates Y (£) in second order
in the sense

/t P{w € Q: Gla,€(w)) < n))dn < /t PUweQ:YW) <nldy, VteR,  (1.2)
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or equivalently (see [6])
Ep[(t = G(z,§(w)))+] < Ep[(t = Y(w))4], VI € R, (1.3)

where (t)4 := max{0,t}, Ep[-] denotes the mathematical expectation with respect to probability
distribution P, and this is indeed a unique feaure of the stochastic optimization problem.

The SPSODC model was first introduced by Dentcheva and Ruszczynski in their pioneering
work [7] and has received wide attention over the past decade for its extensive applications
particularly in portfolio optimization [8] and energy planning [5].

With (1.3), we can rewrite problem (1.1) as

min  f(z) (1.4)
st. Ep[H(z,t,¢(w))] <0, Vt € R,

where

H(z,t,&w)) = (t = G(2,£(w)))+ — (t =Y (§(w)))+-

This is a mathematical program with the stochastic semi-infinite constraint. Note that if we
consider (Z, %) as a measurable space equipped with Borel sigma algebra %, then P may be
viewed as a probability measure defined on (=, #) induced by £. Throughout the paper, we will
use & to denote the set of all probability measures on (£, %) and use the terms probability
measure and probability distribution interchangeably. Moreover, to ease notation, we will use &
to denote either the random vector £(w) or an element of IR™ depending on the context.

An important issue concerning problem (1.4) is that it does not satisfy the well-known Slater
constraint qualification (SCQ), a condition that is often needed for deriving first order optimality
conditions and developing a numerically stable method for solving the problem. Subsequently,
a so-called relazed form of problem (1.4) is proposed:

min f(x)
zeX (15)
st. Ep[H(z,t,§)] <0, VteT,

where T is a closed interval in IR. If the support set = is compact, T can be chosen as the
bounded set {Y(£) : £ € E}, and then problems (1.4) and (1.5) are equivalent.

In the case when ¢ is discretely distributed, that is, P(¢ = ¢) = p; with p; > 0 for

i =1,...,N, and Zfi 1 pi = 1, problem (1.5) can be reformulated as an ordinary nonlinear
programming problem with finite number of constraints:

min f(x)

zeX (16)

s.t. ZfilpiH(x,tk,gi) <0,Vk=1,...,N,

where t* = Y (¢¥) for k = 1,..., N. When f and G are linear in =, Dentcheva and Ruszczyniski [8]
reformulate problem (1.6) as a linear programming (LP) problem by introducing new variables
which represent positive parts in each constraint of problem (1.6). The reformulation effectively
tackles the nonsmoothness in the second order dominance constraint and the approach can easily
be applied to the case when f and G are nonlinear.

Rudolf and Ruszczyriski [26] and Fabidn et al [11] propose cutting-plane methods for solving
a stochastic program with second order dominance constraints. A crucial element of the method



in [11] is based on the observation that when f and G are linear with respect to = and the
probability space (2 is finite, the constraint function in the second order dominance constraint
is the convex envelope of finitely many linear functions, which is called cutting-plane represen-
tation and observed by Haneveld and van der Vlerk in [13]. Subsequently, an iterative scheme
which exploits the fundamental idea of the classical cutting-plane method is proposed where at
each iterate “cutting-plane” constraints are constructed and added. This also effectively tackles
the nonsmoothness issue caused by the plus function. While the method displays strong numer-
ical performance, it relies on discreteness of the probability space as well as the linearity of f
and G. Hu, Homem-de-Mello and Mehrotra [15] and Homem-de-Mello and Mehrotra [14] also
propose a cut generation algorithm for solving a sample average approximation (SAA) problem
of a stochastic program with multivariate stochastic dominance constraints. Different from the
cutting-plane method in [26] and [11], they reformulate every subproblem as a linear program-
ming problem by introducing some new variables when f and G are linear. In a more recent
development, Sun et al [28] propose a modified cutting-plane method for solving problem (1.5)
where the underlying functions may be nonlinear.

In all these works, cutting-plane methods are applied after problem (1.5) is discretized and
the discretization is based on Monte Carlo sampling of £ over =. In other words, if problem (1.6)
is regarded as a discretization of problem (1.5), then p; = % for all 4. This is not necessarily the
best approach in terms of quality of approximation as Pflug and Pichler [20] observe because
by choosing ¢ and p; more carefully we may achieve a better effect of approximation. This is
indeed one of the main reasons motivating this work.

The purpose of this paper is twofold: (a) we propose a discretization scheme for solving
problem (1.5) when P is continuously distributed; (b) if the true probability distribution P is
unknown, we construct an ambiguity set of distributions which contains the true probability
distribution. Consequently, we consider a robust formulation of problem (1.5) to hedge risks
arising from ambiguity of the true probability distribution:

min f(z)
s.t. supsup Ep[H (z,t,£)] <0,
teT PP

where P denotes an ambiguity set containing all distributions consistent with the known partial
information concerning P. This kind of robust formulation is first considered by Dentcheva
and Ruszczynski [9] whose focus is on necessary and sufficient optimality conditions. Here we
concentrate on numerical methods for solving problem (1.7) as we believe this is an important
gap to be filled out. Again, our focus will be on a discretization scheme stemming from Pflug
and Pichler [20].

Of course, the structure of problem (1.7) and the necessity of discretization depend heavily
on the ambiguity set P. In the literature of distributionally robust optimization, various ways
have been proposed to construct P depending on availability of information on P. Here we
consider a popular approach where P is defined through moments, that is,

P:={P e 2 :Ep[p(¢)] <0},

where ¢ : & — IR! is a measurable function.

Note that problem (1.7) does not satisfy the Slater constraint qualification in general, so we



may consider a relaxation of problem (1.7):

min f(x)
s.t.  supsup Ep[H (z,t,£)] < T,
teT PP

where 7 is a small positive constant. As far as we are concerned, the main contributions of this
paper can be summarized as follows.

e When the true probability distribution P is known and continuous, we propose to apply the
optimal quantization scheme due to Pflug and Pichler [20] to approximate it (see Section
2.1) as opposed to Monte Carlo method. This scheme is preferable when either the range
of Y (&) is large or G(z,&) does not have an analytic form, or the sample size is small. We
establish convergence of the optimal value and optimal solutions against variation of the
probability measure (Theorem 3.1).

e We consider the case that the true probability distribution is unknown but it lies in an
ambiguity set of distributions defined through moment conditions. Under some moder-
ate conditions, we derive convergence of the discretized ambiguity sets to P under the
Kantorovich metric (Theorem 2.2), and establish a key stability result (Theorem 3.2)
underpinning the approximation. Based on the approximation schemes, we apply the
well-known cutting-plane method to solve the resulting discretized optimization problems
(Section 4.1) and report some comparative numerical results (Section 4.2).

Throughout this paper, we use the following notations. IR™ and IR/ represent the n-
dimensional Euclidean space and its nonnegative part respectively. 2y denotes the scalar prod-
uct of two vectors z and y, ||-|| denotes the Euclidean norm of a vector. d(z, A) := inf¢ca ||z—2||,
denotes the distance from a point z to a set A in the Euclidean norm. For two compact
sets A and B in IR", we write D(A, B) := sup,c4 d(x, B) for the deviation of A from B and
H(A, B) := max{D(A, B),D(B, A)} for the Hausdorff distance between A and B.

2 Discrete approximation of probability measures

In this section, we discuss discrete approximation of the true probability distribution P in
problem (1.5) and the ambiguity set P in problem (1.8). In doing so, we may develop an
approximation of the semi-infinite constraints in these two problems. To this end, we introduce
two metrics in the set of probability measures &2: Kantorovich metric and pseudo-metric. The
former is used for quantifying approximation of probability measures whereas the latter is used
for stability analysis of discrete counterparts of problems (1.5) and (1.8).

Let . denote the space of all Lipschitz continuous functions h : = — IR with Lipschitz
constant no larger than 1 and P,Q € & be two probability measures, the Kantorovich metric
(or distance) of P and @, denoted by dx (P, Q), is defined by

1(P,@) = swp { [ m@pae) - [ neae |
hey \J= =
By the Kantorovich-Rubinstein theorem [16],

. is the joint distributi f d
die(P.Q) = mf{faxangl_§2H7T(d§1ad§2)5 7 is the joint distribution of & and & }

with marginals P and @, respectively



The latter formulation is also known as Kantorovich formulation of Monge’s transportation
problem if we view P as goods spread over = to be relocated with new spread Q) over = and
I€&1 — &2|| as unit transportation cost [23]. Using the Kantorovich metric, we can quantify the
distance between two sets of probability measures. Let P, Q C & be two sets of probability
measures, we can define

Dg (P, Q) := sup C?éfg dx (P, Q)

which quantifies the deviation of P from O and
HK(Pa Q) ‘= Inax {DK(P7 Q)7 ]DK(Qv P)}

that quantifies the distance between P and Q.

An important property of the Kantorovich metric is that it metrizes weak convergence of
probability measures when the support set is bounded, that is, a sequence of probability measures
{Pn} converges to P weakly if and only if dx(Pyn, P) — 0 as N tends to infinity.

Recall that {Py} is said to converge to P € & weakly if

i [ hepe(as) = / h(E)P(de),

for each bounded and continuous function h : = — IR.

For a set of probability measures A on (£, %), A is said to be tight if for any € > 0, there
exists a compact set =, C Z such that infpc g P(E.) > 1 — e. In the case when A is a singleton,
it reduces to the tightness of a single probability measure. A is said to be closed (under the
weak topology) if for any sequence { Py} C A with Py converging to P weakly, we have P € A.
A is said to be weakly compact if every sequence { Py} C A contains a subsequence { Py} and
P € A such that Pn» — P weakly; see Billingsley [2].

By the well-known Prokhorov’s theorem (see [1]), a closed set A (under the weak topology)
of probability measures is compact if it is tight. In particular, if = is a compact metric space,
then the set of all probability measures on (2, %) is compact; see [22, Theorem 1.12].

We now turn to define another metric which is needed for stability analysis later on. Define
the set of functions:

4G :={9():=H(x,t,"):xe€ X,t €T}.
The distance function for the elements in & is defined as

2(P,Q) = sup |Ep[g] — Eqlg]|-

By definition, Z(P,Q) = 0 if and only if Ep[g] = Eglg] for all ¢ € ¢. However it does not
necessarily mean that P = @ unless the set ¢ is sufficiently large. For this reason, Z(P, Q) is
called pseudo-metric in that it satisfies all other properties of a metric. This type of pseudo-

metric is widely used for stability analysis in stochastic programming; see an excellent review
paper by Rémisch [25].

Let P € & be a probability measure and A; C &, i = 1,2, be two sets of probability
measures. With the pseudo-metric, the distance from a single probability measure P to a set of



probability measures A; may be defined as Z(P, A1) := infge 4, Z(P,Q), the deviation (excess)
of A; from (over) Az as

P (A1, A2) := sup Z(P, Az).
PecA;

It is easy to verify that Z(A;, A2) = 0 when A; C A. We can also define the Hausdorff distance
between A; and Ay under the pseudo-metric:

H (A1, Ag) = max{ sup (P, As), sup @(Q,Al)}.
PeA; Qe A,

2.1 Pflug and Pichler’s optimal quantization scheme

As we discussed in the introduction, a key step towards solving problem (1.5) is to discretize
the probability measure if it is continuously distributed. Let us treat problem (1.6) as an
approximation regime. There are essentially three techniques which can be used for this purpose:
Monte Carlo methods, Quasi-Monte Carlo methods and the optimal quantization of probability
measures due to Pflug and Pichler [20].

Monte Carlo methods are based on drawing independent and identically distributed random
samples {¢1, ..., &N} of € to construct the empirical measure Py := % Zf\i 1 0¢i which approxi-
mates the true distribution, Here d¢: denotes the Dirac probability measure at £'. This has been
extensively investigated in the literature so we will not discuss it in this paper. Quasi-Monte
Carlo methods are based on the basic idea of replacing the random samples in Monte Carlo
methods by deterministic points generated by a low-discrepance recursion; see [19]. Again, we
will not focus on this method in this paper.

The third approach is to find a discrete probability measure which approximates P optimally
under the Kantorovich metric. Compared to the other two methods, this method has the highest
approximation quality with relatively fewer samples; see comprehensive discussion by Pflug and
Pichler [20]. In our context, there are at least two cases that a good discrete approximation
with smaller samples is preferable. One is that the range of Y (&) is large. By adopting a small
set of samples we may effectively reduce the number of constraints in problem (1.5). The other
is that G(z,£) does not have an analytic form. This may happen when G(z,§) is the optimal
value of a second stage programming problem, see Claus and Schultz [4] where they consider a
two stage stochastic program with first order dominance constraints.

In what follows, we present some known results about optimal discrete approximation of
probability measures, most of which are extracted from Pflug and Pichler [20].

Let Py denote the set of all probability measures Zfi 1 Pidgi on IR™ sitting on at most N
points {¢1,. .. LN }. The optimal probability measure, denoted by Py, satisfies

dg (P, Py) is close to inf{dg(P,Q) : Q € Pn}. (2.9)

As discussed in [20], in some special cases such as when P is Laplace distribution in IR or
exponential distribution in IR, the optimal solution can be found in an analytic manner. In



general cases, if N points {¢!,..., ¢V} are given, we can define a Voronoi partition {Z1,...,Zx}
of Z, where =; are pairwise disjoint with

=< {us Iy =€l =mpnlly - €1
The possible optimal probability weights p; for minimizing dg (P, Zi\il Pidgi) can then be found
by
p=(p1,...,pn) with p; = P(E;), (2.10)
and the optimal probability weights are unique iff
P(y:|ly = €|l = lly — €"|l, for some s # k) = 0.

Since P is assumed to be absolutely continuous with respect to the Lebesgue measure, then
the optimal weights are unique and do not depend on the choice of a partition. = However,
choosing optimal N points {¢!,..., &N} is difficult. Following [12, Lemma 3.1], it requires to
solve a nonconvex optimization problem:

min {de(z) 1z € {fl,...,fN} € (]Rm)N}a

where
D (2)i= [ miné - €'|aP(e).

We refer interested readers to Chapter 4 in [21] for some algorithms for solving the above
problem.

Let gy, 4, (P) be the N-th quantization error of P when it is approximated by Py, that is,
N ‘ N
qN.dy (P) := inf {dK (P,Zpi55i> (P ER™ P >0, pi= 1} . (2.11)
i=1 i=1
The following theorem states the rate at which gy 4, (P) converges to zero as N tends to infinity.
Theorem 2.1 ([12],/21, Corollary 4.21]) Suppose P has a density p with |- |€]M 0 p(€)dE < oo
for some & > 0, then the following assertions hold.
()

m—+1
m

G, (P) i=inf Ny 0, (P) =00 ([ p(&)7i7de) (2.12)

where qf];) = infy NY™qp 4, (U[0,1]™) and U[0,1]™ is the uniform distribution on the
m-dimensional unit cube [0, 1]™.

(11) There exists an approzimation PF; sitting on no more than N points such that

dg (P, Py) = O(N~"m). (2.13)



Remark 2.1 Based on formula (2.12), the optimal asymptotic point density for & is propor-
tional to pm+1. In IR! it means to solve the following quantile equations:

& 2i — 1
| rhede=2

l\.‘)\»ﬂ

p2 (§)d¢,

—0oQ
fori=1,...,N. From the result in (2.10), we know

ettt

o),

pl = gifl_‘_{i
2

with €0 := —oo0 and ¢V*! := 400. Then Zfilpiég converges to P weakly; see [21, Page 148|.

It can be seen from Theorem 2.1 that in order to obtain an approximating measure with
distance dx no more than €, a total of at least N = O(e™™) supporting points is needed.
Suppose there exists a nondecreasing function A : IRy — IR \{0} such that for each x € X and

§ ¢ €E,
|G(,€) — Gz, &)| < h(|l=l)ll€ — €l (2.14)
then it follows from [10, Page 499] that

9(Py, P) < h(®)d (Py, P) = O(N ), (2.15)
where 0 := sup,cx ||z||. This implies at least N = O(e~™) supporting points are necessary to
obtain an approximating measure such that the distance to the original measure with respect
to the pseudo-metric is at most €.

2.2 Discrete approximation of the ambiguity set

We now return to discuss discrete approximation of the ambiguity set in problem (1.8). The
technique and the necessity for discretization depend largely on the structure of the ambiguity
set. Here we focus on the case when P is defined via moments, that is,

Pi={Pec P Eplp(€)] <0}, (2.16)

where ¢ : £ — IR is continuous function and = is a compact set. Let EN := {et,... Ny cE
be a subset of =, we consider the discrete set of probability distributions

P —{szégz szw <02p$—1p1201—1 N}. (2.17)

=1

Obviously Py C P.  Our purpose is to use Py to approximate P under some metric. Of
course, the approximation depends on the choice of ZV: its elements can be independent and
identically distributed samples or drawn in deterministic manner. We will come back to this
later.

The following theorem states convergence of Py to P under the Kantorovich metric.
Theorem 2.2 Assume: (a) there ezists a probability measure Py € & such that Ep,[p(§)] < 0;

(b) the sequence {&'}ien C = is such that for any € > 0 and & € = there exists an index N' € N
satisfying ||€ — EN'|| < e. Then Hy (P, Py) tends to zero as N tends to infinity.



Condition (a) is the well-known Slater constraint qualification which is widely used for mo-
ment problems, for example [27, 30, 31] and references therein. Condition (b) means any point
in Z may be approximated by a point in ZV when N is sufficiently large. The approximation
scheme (using Py to approximate P) is considered by Xu, Liu and Sun [30], where they propose
a cutting-plane method for solving a minimax distributionally robust optimization problem di-
rectly. However, they are short of stating convergence of Py to P explicitly. Here we fill out
the gap by showing the convergence under the Kantorovich metric.

Proof of Theorem 2.2. Since Py C P, we have Dg(Py,P) = 0. Thus, we only need to
show D (P,Pn) — 0.

Since P is a convex set, for any fixed P € P and any positive number A € (0,1), P*:=
AP+ (1 = AN)Py € P and Epa[p(§)] < 0. Let E1,...,=n be a Voronoi partition with each cell
=, centered at £ Let Py = Ef\il pidgi with p; := P)‘(ii). Since = is a compact set, condition
(b) ensures the largest diameter of Voronoi cells tends to zero as N increases. Following the
discussions of [20, Section 2.1], we deduce that PK, converges to P* under the Kantorovich
metric. Since convergence with respect to the Kantorovich metric implies weak convergence,
we conclude that Pj\\, converges to P* weakly.

Next, we show that Pj} satisfies the moment condition in (2.17). Since ¢(-) is a continuous
function and = is bounded, the weak convergence guarantees

lim Epy [0(6)] = Ep[p(€)].

N—oo

Moreover, since Epx[p(§)] < 0, the limit above ensures Epy [0(€)] < 0 for N sufficiently large,

which means P]@ € Pn. By driving X\ to one and € to zero, we deduce from the discussions
above that there exists a sequence {Py} depending on A and e with Py € Py such that Py
converges to P under the Kantorovich metric. Since P is drawn from P arbitrarily, we conclude
that Dg (P, Pn) — 0. |

Note that Theorem 2.2 is established under the condition that = is compact. It might
be interesting to extend the result to the case where = is unbounded under some tightness
conditions. We leave this for our future work as it is beyond the main scope of this paper.

In order to ensure convergence of probability measures under the pseudo-metric, we need
additional conditions on function G.

Assumption 2.1 For each § € E, G(-,§) is Lipschitz continuous on X with Lipschitz modulus
being bounded by k(§), where supgez K(§) is finite.

Corollary 2.1 Assume the setting and conditions of Theorem 2.2 hold. Under Assumption 2.1,
H(Pn,P) tends to zero as N tends to infinity.

Proof. Since Py C P, then it is easy to verify that Z(Py,P) = 0. So it is enough to show
that Z(P,Pn) converges to zero as N tends to infinity. By Theorem 2.2, for any P € P, there
exists a sequence {Py} C Py such that Py converges to P under the Kantorovich metric.
Furthermore, Py converges to P weakly.

Next, we prove Py converges to P under the pseudo-metric. Assume for the sake of a
contradiction that there exist a positive number § > 0 and a sequence {zy,tny} C X X T such



that

‘EPN[H(J:‘N,tN,f)] — EP[H(.%'N,tN,{)H > 0. (2.18)

Since X x T is compact, by taking a subsequence if necessary, we may assume for the simplicity
of notation that (xy,txy) converges to a point (z,t) € X x T. By the triangle inequality, we
obtain

|EPN[H(xN7tN7§)]_EP[H<$N7tN7£)H < ‘EPN[H(xNvtNV’g)]_EPN[H(x7t7€>H
+|EPN [H(l‘,t,{)] - EP[H(xatag)H
+Ep[H(z,t,6)] — Ep[H(an, tn, )] (2.19)

Under Assumption 2.1,

[Epy [H(zn,tn,8)] = Epy[H(z,t,8)]| < [loy — 2] Sup K(§) + 2ty —t| = 0. (2.20)
€=

The continuity and boundedness of H in & and the weak convergence of Py to P means the
second term at the right hand side of (2.19) goes to zero. Likewise the third term converges to
zero due to continuity of H in x,t and Assumption 2.1. All these lead to a contradiction to
(2.18) as desired. [ |

Corollary 2.1 essentially tells us that the convergence of Py to P under the Kantorovich
metric may be translated into convergence under the pseudo-metric. It might be interesting to
draw a similar conclusion for a generic class of functions G in the definition of the pseudo-metric.
We leave this for future research.

With Py being defined as in (2.17), we may consider an approximation of problem (1.8):

min f(z)
vex (2.21)
s.t. sup sup Ep[H(x,t,&)] <T.

teT PeEPyN

3 Stability analysis

In the preceding section, we present details about discrete probability approximations for the
true probability distribution P in problem (1.5) and the ambiguity set P in problem (1.8). In
this section, we investigate the respective problems (1.6) and (2.21) where the true probabil-
ity /ambiguity set is replaced by its discrete counterpart.

3.1 Program (1.6)

Let us start with problem (1.5) and regard problem (1.6) as its approximation. Let Py be defined
as in (2.9), F(Py),S(Pyn) and ¥(Py) denote the feasible set, the set of optimal solutions and
the optimal value of problem (1.6) respectively. The following theorem summarizes qualitative
convergence of these quantities to their true counterpart F(P), S(P), and ¥(P) of problem (1.5)
as N goes to infinity.

10



Theorem 3.1 (Stability of program (1.6)) Suppose problem (1.5) satisfies the Slater con-
straint qualification, that is, there exist a positive number v and a point & € X such that

R
max Bp[H (3,1, €)] < —

Then the following assertions hold.
(i) The solution set S(P) is nonempty and compact, and there exists N1 > 0 such that S(Pn)
is also nonempty for N > Nj.

(ii) There exist positive constants 5 and Na such that
H(F(P),F(Pn)) < BZ(Pn,P),
for N > No.
(11i) lim D(S(Pyn),S(P)) = 0.
N—o0
(iv) There exist positive numbers C' and N3 such that
[9(Pn) —9(P)| < CZ(Pn, P),

for N > Ns.

Proof. The results follow straightforwardly from [18, Proposition 2.6 and Theorem 2.7]. [ |

The strength of Theorem 3.1 lies in the fact that approximations of the feasible set and
the optimal value are all bounded linearly by Z(Px, P). The latter is linearly upper bounded
by dg (P, P) following Remark 2.1. Therefore we can plug all existing results on quantitative
description of di (Py, P) outlined in Section 2.1 into Theorem 3.1. For instance, in order to
ensure H(F(P), F(Py)) < € and |J(Pn) — I(P)| < €, we need at least N = O(e™™) supporting
points.

3.2 Program (2.21)

We now turn to investigate stability of program (2.21). Since the objective function is not
affected by the discrete approximation, we concentrate our analysis on the constraint function.
To facilitate the exposition, let

vy (x) :=sup sup Ep[H(z,t,§)], (3.22)
teT PePyn
and
v(x) :=sup sup Ep[H (x,t,§)]. (3.23)
teT PcP

Notice that the support set = considered here is compact, the set 7' can be chosen as {Y (£) :
¢ € E}, which is also compact under continuity of Y'(-).  Our first step is to establish the
uniform convergence of vy (+) to v(-) and Lipschitz continuity of v(-).

11



Proposition 3.1 Under the setting and conditions of Theorem 2.2, the following assertions
hold.

(i) vn(z) <v(zx) for all x € X and vy (z) converges uniformly to v(x) over X as N tends to
nfinity, that is,

lim sup v(z) — vy (x) = 0.

(i) If, in addition, Assumption 2.1 holds, then v(-) is Lipschitz continuous on X with modulus
being bounded by suppcp Ep[k(§)], that is,

[v(z) —v(y)| < sup Ep[(]]|z - yl, Yo,y € X.
pPeP

Proof. Part (i). First, the assertion vy(z) < v(x) for all z € X holds due to the fact
Py C P. Now, let x € X be fixed. Define ¥ := {sup,crEp[H(x,t,§)] : P € P} and
N = {supyer Ep[H (z,t,€)] : P € Py}. Since = is a compact set, both ¥" and ¥ are bounded
subsets in IR. Let

a:=inf ¥, b:=sup?, an :=inf ¥y, by := sup ¥v.
Since Py C P, ¥y C ¥, we have

max{b—by,an —a} <H(¥,¥n) =D(¥, ¥N).

Note that
b—by = supsupEp[H(z,t,£)] — sup supEp[H(x,t,§)],
PeP teT PePy teT
and
D(¥,¥y) =supD(v, ¥y) = sup inf |v—1/
veY vey V'EIN

= sup inf |supEp[H(xz,t,&)] —supEqg[H(z,t,&)]
PeP QEPN |teT teT

< sup inf supsup|Ep[H(z,t,§)] — Eq[H (z,t,¢)]]
PeP QEPN zeX teT

= 9(P,Pn),
we obtain for any x € X that
v(x) —on(x) = supsupEp[H(z,t,¢)] — sup supEp[H(z,t,¢)]
PeP teT PePy teT

= b—by <DV, %) < 2(P,Py).

Since x is any point in X and the right hand side of the inequality above is independent of z.
By taking supremum w.r.t. x on both sides, we arrive at the conclusion.

Part (ii). The boundedness of ¥ implies boundedness of v(x). In what follows, we prove that
¥ is closed. Let {vx} C ¥ be a sequence such that vy, — ¥ and P, € P with sup;crEp, [H(x,t,£)] =
vk, we show the inclusion ¢ € ¥. Since P is weakly compact, we may assume without loss of
generality that Py converges to P € P weakly. Now we claim that

lim sup [Ep, [H (2, 1, )] — Ep[H (2, ,€))| = 0. (3.24)
k—o0 e
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We establish (3.24) by contradiction, suppose that there exist a positive number § > 0 and a
sequence {t;} C T such that

Ep, [H(x, ty, €)] — Ep[H (z, ty, €)]] > 6, k. (3.25)

Since T is compact, by taking a subsequence if necessary, we assume for the simplicity of notation
that t; converges to a point ¢ € T'. By the triangle inequality,

[Ep [H (x,tk,€)] — Ep[H(z,t,€)]| < |Ep[H(z tka )] - Ep,[H(z,t,6)]|
+|Ep, [H(z,t,8)] — Ep[H (z,1,£)]|
+}Ep (x,t f)] Ep[H (z, t, )]}

< Afty, —t| + |Ep, [H (2, t,&)] — Ep[H (2,t,€)]],

where the last inequality comes from the fact that H is globally Lipschitz continuous in ¢ with
modulus 2. As the second term at the right hand side of the last inequality goes to zero under
the weak convergence of Py to P, together with ¢ — ¢, a contradiction to (3.25) is obtained as
desired. Therefore, we have

= lim vy = lim supEp, [H(z,t,&)] =supEp[H(z,t,§)] € ¥V
k—o0 k—00 T teT

namely 7 is closed.

For any = € X, define ®(z) := {P € P : v(z) = sup;er Ep[H(z,t,£)]}. The compactness of
¥ ensures the set ®(x) is nonempty. Let P(y) € ®(y), then

v(x) > supEpg,)[H(z,t,)]

teT

> supEpy) [H(y,t,£)] — | sup Ep(y)[H (z,t,8)] — sup Ep,) [H(y,t,£)]]
teT teT teT

> sup IE’P( [H(ya t 5)] — sup ‘Ep(y) [H(.’E, t, 5)] - P(y)[ (y7 t, g)”
teT teT

= supBp)[H(y,t,8)] = supEp,)[|(t — G(2,8))+ — (t = G(y,£))+]]
teT teT

> Sup IE‘:P( [H(ya t 5)] EP(y)HG(xa f) - G(y7 g)”

> (y) ~ sup Ep[r(©)]llz — yll-

Exchanging the role of x and y, we can obtain the conclusion. [ |

To ease the exposition, we rewrite problems (1.8) and (2.21) in abstract forms:

min x
in - f(x) (3.26)
s.t. x € F,
and
e 1) (3.27)
st. x € Fn,
where

F={zeX:v(r)<7} and Fy:={r € X :ony(x) <7}

13



denote the feasible sets of the two problems respectively. Since vy (x) < v(x) for all z € X (see
Proposition 3.1 (i)),
F C Fy and D(F, Fy) = 0.

Let ¥ := inf{f(x) : x € F} denote the optimal value of problem (3.26) and S the corresponding
set of optimal solutions, that is, S := {x € F : ¥ = f(z)}. Likewise, let

Iy :=inf{f(x) :z € Fy} and Sy :={x € Fn: 9y = f(x)}.

Theorem 3.2 (Stability of program (2.21)) Suppose that Assumptions 2.1, conditions of
Theorem 2.2 hold and F is nonempty, then

(1) lim H(Fy,F)=0;
N—o0
(ii) J\;gnooﬁN =1;

(iii) lim D(Sy,S) = 0.
N—oo

Proof. Since D(F, Fy) = 0 for any fixed N € N, it suffices to show that limy_,o D(Fn, F) = 0.
By virtue of [29, Lemma 4.2(i)], the latter follows from uniform convergence of vy (+) to v(-) and
continuity of v(-) over X. This proves assertion (i).

Now we prove assertions (ii) and (iii). Since F is nonempty and F C Fp, we have Fy is also
nonempty for all N € N. Similar to the proof of Proposition 3.1 (ii), we can easily obtain that
vn(+) is also continuous over X. Together with compactness of X, we have that F is nonempty
compact and by [24, Theorem 1.9], the solution set Sy is nonempty.

Let {zN} C Sy be a sequence satisfying limy_,oo 2 = Z € F and an arbitrary y* € S.
Then for any N € N, we have y* € F C Fy, which implies f(y*) > f(zV). Consequently, the
continuity of f yields f(y*) > f(%) and hence T € S, limy_y00 Un = limy 00 f(2V) = f(T) = 9.
Therefore, we obtain assertions (iii) and (ii). [ |

4 Numerical methods

In this section, we will discuss how to solve discretized problems (1.6) and (2.21). Through-
out this section, we assume that f is convex and G(z,&) is concave in x for every fixed .
Consequently, both problems (1.6) and (2.21) are convex optimization programs.

We plan to apply the well-known cutting-plane method [17] to solve these problems. Note
that problem (1.6) is an ordinary NLP, so we use the cutting-plane method directly. However,
the structure of the robust constraints of problem (2.21) is complex, we need some reformulations
before applying the cutting-plane method.

To facilitate discussion, let us rewrite here the robust constraints of problem (2.21) as

sup sup Ep[H(z,t,£)] <, (4.28)
teTN PeEPN
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where TV = {t!,... t"V} with t* = Y(¢¥) for k = 1,...,N. For fixed t € TV, the inner
maximization in P can be formulated as a LP:

N
sup pH($7t>£Z)
(PPN )EAN ; 1 (4.29)
8.t S pip(€l) <0,

where Ay = {p € RY : Zfil pi = 1}. The dual of the LP is

)\i%f/\ Ao
ZU,A0 ) '
s.t. sup H(ﬁ’tafl) - )‘0 - )‘Tsp(gl) < 07 (430)
i=1,..,N
or equivalently,
inf H(x,t,&') = Ap(&h).
g, e Hw b8 = Aele) (431)

Equivalence between problem (4.29) and problem (4.30) can be easily obtained under the Slater
condition of the moment system defining Py, that is, there exists p* € Ay satisfying

N
> pie(€’) <. (4.32)
=1

Based on the discussions above, we can recast problem (2.21) as

min f(x)

reX ) )
st. inf sup H(x, t* &) = XTp() <7 fork=1,...,N,
A204=1.. N

which is equivalent to

min f(z)
zE€X A, AN>0 . 4 (4.33)
s.b. H(x,th ) = M) <7, fori,k=1,...,N.

At this point, it might be helpful to discuss briefly sufficient conditions for the boundedness
of the feasible set of problem (4.33). Note that we assume explicitly that x is restricted to a
compact set X, so it is enough to discuss sufficient conditions for the boundedness of A uniformly
wr.t. z e X.

Proposition 4.1 Assume the homogeneous system of inequalities
—Ap(¢) <0,6 e =N (4.34)

has a unique solution 0. Then the feasible set of A\1,..., An of problem (4.33) is bounded uni-
formly w.r.t. x € X.

Proof. Define F : X x [a,b] — R/,

Fla,t)={Ae R H(z,t,€) — XN'p(&) <7, V¢ € 2N},
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where [a, b] is a bounded set including t!,...,¢". We show that Uzex tefapF (2,t) is compact.
Assume for the sake of a contradiction that this is not true, then there exists a sequence {xs,ts}
with (zs,ts) — (zo,t0) € X X [a,b], and \* € F(zs,ts) such that ||| — oo as s — oco. Since
A € F(xs, ts), we know

[H (25,t5,6) = (W) (I IN] < 7/IIX°], ¥€ € =V,

By taking a subsequence if necessary, we may assume that A*/[|A%|| — A with |A|| = 1. Letting
s — 00, we have
—Mp(€) <0, v e 2V,

which contradicts the assumption of the proposition. Following the uniform compactness of
F(z,t), we can easily obtain the conclusion. [ |

Note that condition (4.34) in Proposition 4.1 is guaranteed by the Slater condition (4.32),
see [31, Remark 2.1] for details.

4.1 A cutting-plane method

We now turn to discuss the cutting-plane method for solving problem (4.33). By introducing a
new variable y, we can write (4.33) in an epigraphical form:

min Y
zeX,yeY,A1,..,An>0
s.t. i@, A1, y) <7, forik=1,...,N, (4.35)

where ' ' '

Yige(@, Aty AN) = (7 = G, €)= (F =Y (€)+ = MT ()
fori,k =1,...,N,Y is a compact and convex set including { f(z) : x € X}. Existence of Y is due
to the fact that f(-) is continuous and X is a compact set. We apply the classical cutting-plane
method to both f(z) —y and 9; x(x, A1,..., An). For convenience, let A := (A,...,AN) € R,
Algorithm 4.1 (Cutting-plane method) Set t := 0, Sp:= X x Y x Z with Z ¢ R'Y.

Step 1. Solve the following convex optimization problem:
min y
z,y,A (4.36)
sit. (z,y,A) €Sy,

and let (x4, y¢, A¢) denote the optimal solution. If problem (4.36) is infeasible, stop: the original
problem is infeasible.

Step 2. Find {i}, kf} such that

{if, k{} == argmax{v; p(x¢, A¢), i,k =1,...,N}.

Step 3. If ¢y ks (2, Ar) < 7 and f(xy) — yr < 0, stop, return (x4, ys, A¢) as an optimal
solution. Otherwise, construct feasible cuts

Vi) e —y < Viz) o — fz),
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and

G(@) + wi(A) < Glae) + wie(Ae) — Yig oy (2, Ae) + 7

with (¢i, wi) € Oz kr (7, A), where 0t denotes subdifferential of a convex function . Set

._ C Vi) e —y < V() o — fa),
Bt = 5 ﬂ {(x, wA): G(z) +wi(A) < Gle) + wi(Ar) — Yz (e, Ae) + 7 } '

Proceed with iteration ¢ + 1.

Let us make a few comments on the subdifferential operation in Step 3 of Algorithm 4.1. Let
0(z) := max{0, z} for z € R. It is well known that the subdifferential of #(z) can be written as

0,1], if z =0,
2.0(z) =4 1, if z > 0,
0, if z < 0.

By [3, Proposition 2.3.6 and Theorem 2.3.10], we have

va(x7€)T[07 ]7 if¢— (QJ,{) =0,
0:0(t — G(2,€)) = { VaG(2,6)7, ift — G(z,€) >0,
0, ift — G(z,€) < 0.

The following theorem states convergence of Algorithm 4.1 which can be easily established
similarly to Kelley [17], we omit the details here.

Theorem 4.1 Let {zy,yi, A¢} be the sequence generated by Algorithm 4.1. Let
S:={(z,y,A) e X xY xZ: f(x) —y <0, p(x,\) <1, fori,k=1,...,N}.

Assume: (a) f(x) is continuously differentiable and convex, G(x,&) is continuously differentiable
and concave w.r.t x for almost every & € Z; (b) X XY X Z is a compact set; (c) there exists
a positive constant L such that the Lipschitz moduli of f(-) and v;x(-,A) are bounded by L
on X; (d) S is nonempty. Then {(z¢,yt,\t)} contains a subsequence converging to a point
(x*,y*,A*) € S, where (x*,y*, A*) is the optimal solution and y* is the optimal value of problem

(4.35).

4.2 Numerical experiments

We have carried out some numerical experiments on the cutting-plane method for solving prob-
lem (1.6) and Algorithm 4.1 for solving problem (4.35) and report some preliminary results. The
tests are carried out in MATLAB 8.5 installed on a Dell-PC with Windows 7 operating system
and Intel Core i7-3770 processor.

Example 4.1 Consider problem (1.5) with f(z) = —Ep[z¢], G(z,€) = 26— 322 Y (§) =£—1,
X = [0,20], where the true distribution of ¢ is uniform distribution over [2, 3]. Here we compare

the optimal quantization scheme with the Monte Carlo method (where p; = %) in terms of
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the optimal solutions and optimal value. Specifically, the approximation problem (1.6) can be
presented as

eX i1 Pie (4.37)

st S pi(Y(€h) —agl + Ja?)y — (V(€H) - V(§)1) <0, Vk=1,...,N.

Here we need to point out that the optimal discrete distribution Py can be obtained from
Remark 2.1, that is, ' = 2 + 2;&1 fori=1,..., N, and the corresponding probability is p; = %
for all 7. Note that in this problem any point in the interval [1, 3] is feasible, and z = 3 is the
optimal solution with corresponding optimal value —7.5. The results are depicted in Figure 1.
As we can see clearly that the optimal quantization scheme displays faster convergence as N

increases.

= PN S e e S S A G
[} ,0/-‘0'— &
= .
© -76.7 -
<_>“ - - Optimal quantization
= —#&— SAA
= 1.7 .
=%

@) 5
_7-8 1 1 1 1 1
20 50 100 150 200 250 300
N
31 T T T T T
L —-&-— Optimal quantization
—#— SAA

3.05

Optimal solution

Figure 1: Optimal value and solution w.r.t N.

Next, we report our experiments on Algorithm 4.1 for a portfolio optimization problem.

Example 4.2 Consider the portfolio optimization problem with robust second order dominance

constraints (1.8):

min  —Ep[¢]'x
st.  sup Ep[(t—&Tz) —(t—-Y(€)4] <, (4.38)
teT,PEP

where X ={z € R": """ ;@& =1,2; > 0,i=1,...,n}. Here, the ambiguity set is defined by

P:={Pe P :Epl¢] = u|[Ep[(€ — p)(§ — )" = Xl < 6},
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where ;1 and ¥ are estimated from empirical data, and || A||« := max |a;;| for matrix A = (a;j).
Note that by setting Ep[¢{] = p, we make the objective function deterministic so that this test
problem fits into our robust model. We collect historical data of 5 assets (Admiral Group PLC,
Anglo American PLC, Antofagasta PLC, AstraZeneca PLC and Aviva PLC) over a time horizon
of 3 years (from 26th Nov 2010 to 18th Nov 2013) with a total 750 records on the historical stock
returns (these are obtained from http://finance.google.com with adjustment for stock splitting).
We have carried out out-of-sample tests with a rolling window of 400 days, that is, we use first
400 data to calculate the optimal portfolio strategy for day 401 and move on a rolling basis.

In implementing the numerical scheme, we use the equally weighted portfolio as a bench-
mark strategy Y (£) and set positive numbers 7 = 0.001, 6 = 2. We compare the portfolio
returns between model (4.33) and stochastic programming model (1.5) with sample average
approximation over investment period of 350 days. Figure 2 depicts the performance of the
three models/strategies: the robust model, the stochastic model with SAA and the benchmark.
It shows that the robust model displays slightly better performance in comparison with the
stochastic model although at this point, we do not have theoretical guarantee for this phenom-
ena. We envisage that when the data contains significant fluctuations, the robust model may
display a more stable performance and we will continue our research on this in our future work.

12 T T T T T T
————— SAA
1.15 Tl = = = Benchmark
e FH Model (1.8)

Wealth

0.75 .

0-7 1 1 1 1 1 1
0 50 100 150 200 250 300 350

Trade times

Figure 2: Wealth evolution w.r.t the trading times.
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