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Abstract
This paper considers distributionally robust formulations of a two stage stochastic
programming problemwith the objective ofminimizing a distortion risk of theminimal
cost incurred at the second stage. We carry out a stability analysis by looking into
variations of the ambiguity set under the Wasserstein metric, decision spaces at both
stages and the support set of the random variables. In the case when the risk measure is
risk neutral, the stability result is presentedwith the variation of the ambiguity set being
measured by generic metrics of ζ -structure, which provides a unified framework for
quantitative stability analysis under various metrics including total variation metric
and Kantorovich metric. When the ambiguity set is structured by a ζ -ball, we find
that the Hausdorff distance between two ζ -balls is bounded by the distance of their
centers and difference of their radii. The findings allow us to strengthen some recent
convergence results on distributionally robust optimization where the center of the
Wasserstein ball is constructed by the empirical probability distribution.

Keywords Distortion risk measure · ζ -ball · Wasserstein ball · Quantitative stability
analysis

Mathematics Subject Classification 90C15 · 60B05 · 62P05

1 Introduction

One of the most important issues in optimization and operational research is how the
underlying data in an optimization problem affect the optimal value and the optimal
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decision. In stochastic programming, the underlying data are often concerned with a
probability distribution of random variables because in many practical instances there
is inadequate information about the true probability distribution. Over the past decade,
effectively quantifying uncertainty and addressing the trade-off between using less
information for approximating the true probability distribution such as samples and
securing specified confidence of the resulting approximate optimal decision have been
a challenging research topic in data-driven optimization problems, either because there
is a limited number of available samples or it is more desirable to use fewer samples
to increase the numerical tractability of the resulting optimization problem.

Research in this direction dates back to Žáčková [60] andDupačová [12]. The recent
monograph Pflug and Pichler [42] presents comprehensive discussions on approx-
imations of probability distributions. An important technical issue which has been
identified is to find an appropriate metric which can be effectively used to quantify the
approximation of probability distributions. They conclude that the Wasserstein metric
is most appropriate particularly in relation to (multistage) stochastic programming
problems.

In an independent research on distributionally robust optimization, Esfahani and
Kuhn [14] construct a ball in the space of (multivariate and non-discrete) probability
distributions centered at the empirical distribution and look for decisions that perform
best in view of the worst-case distribution within this Wasserstein ball. They demon-
strate that, undermild assumptions, distributionally robust optimization problems over
Wasserstein balls can in fact be reformulated as a finite convex program. In a number
of practically interesting cases, the reformulations are even tractable linear programs,
see Zhao and Guan [64] and Gao and Kleywegt [17] for further developments on this
stream of research.

Rachev and Römisch [50] and Römisch [52, p. 487] establish the term ζ -structure
in stochastic optimization for certain semi-norms, while Zhao and Guan [63] seem to
be the first to use the ζ -metric to construct an ambiguity set in distributionally robust
optimization (DRO). Specifically, they consider a ζ -ball centered at the distribution
of independent, identically distributed (iid) samples of the true, unknown probability
distribution. They establish a number of qualitative convergence results for the ζ -ball
and related two stage optimization problems as the sample size increases and the radius
of the ball shrinks. Moreover, they demonstrate that the resulting DRO can be easily
solved by a dual formulation.

In this paper, we extend this important topic of research to a class of distributionally
robust risk optimization (DRRO) problems. Specifically, we consider

inf
y∈Y

sup
P∈P

RS;P

(
inf

z∈Z(y,ξ)
c(y, ξ, z)

)
, (DRRO)

where c : IRn × IRk × IRm → IR is a continuous function, ξ : � → � ⊂ IRk is a
vector of random variables defined on a measurable space (�,F) with state space
�, Y is a closed set in IRn and Z : � × Y ⇒ IRm is a set-valued mapping, P is a
set of probability measures and RS;P is a risk measure parametrized by S and the
probability measures P ∈ P . The supremum is taken to immunize the risk arising
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from ambiguity of the true probability distribution of ξ . The infimum with respect to
z indicates that the robust risk minimization problem involves two stages of decision
making processes: a choice of decision y in the first stage before realization of the
uncertainty and an optimal choice of recourse action z from a feasible set Z(y, ξ) in
the second stage after observation of the uncertainty. Following the terminology in the
literature, we call P ambiguity set and defer the specification of the parameter S to
Sect. 4.

In the case when RS;P (·) = EP [·] is the expectation, (DRRO) reduces to the
ordinary minimax distributionally robust formulation of the two stage stochastic pro-
gramming problem

inf
y∈Y

sup
P∈P

Ep

[
inf

z∈Z(y,ξ)
c(y, ξ, z)

]
. (DRO)

A great deal of research in the literature of robust optimization to date has been
devoted to developing tractable numerical methods for solving distributionally robust
formulations of one stage stochastic optimization problems by reformulating the inner
maximization problem into a semi-infinite programming problem through Lagrange
dualization and further as a semi-definite programming problem via the S-Lemma (cf.
[47]) or dual methods, cf. Zymler et al. [66] or Wiesemann et al. [58]. This kind of
approach requires the underlying functions in the objective and the ambiguity set to
have some specific structure in terms of the variable ξ and the support set of ξ to have
some polyhedral structure, see Wiesemann et al. [58] for a comprehensive discussion.

The approach can be extended to two-stage stochastic optimization problems
after some appropriate approximation treatment of the second stage recourse prob-
lem through linear decision rules, k-adaptability or discretization. The decision rule
approach restricts the second stage solution to a class of linear functions within the set
of measurable functions in the feasible set whereas the k-adaptability approach con-
fines the second stage feasible solutions to a set of k feasible solutions pre-determined
before the realization of uncertainty. On the other hand, the discretization approach
relaxes the constraints at the second stage to a finite number of scenarios. The for-
mer provides pessimistically biased solutions whereas the latter leads to optimistically
biased solutions. We refer readers to Hanasusanto and Wiesemann [22,23], Hanasu-
santo and Kuhn [24] and references therein for this stream of research.

Another important approach pioneered by Pflug and Wozabal [44] is to discretize
the ambiguity set of (DRO) and then to solve the discretized mini-max optimization
problem directly as a saddle point problem in deterministic optimization. The dis-
cretization approach has received increasing attention over the past few years. For
instance, Mehrotra and Papp [38] extend the approach to a general class of DRO prob-
lems and design a process which generates a cutting surface of the inner optimal value
at each iterate. Xu et al. [59] observe that the discretization scheme is equivalent to
discrete approximation of the semi-infinite constraints of the dualized innermaximiza-
tion problem and apply the well known cutting plane method to solve the minimax
optimization (cf. [32]). Under some moderate conditions, they show convergence of
the optimal value of the discretized problem to its true counterpart as the discretization
refines.
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While the convergence result gives some qualitative guarantee for asymptotic con-
sistency of the optimal value, it does not address a quantitative relationship between
the sample size and the error of the optimal value. This paper aims to fill out the gap.
The main contributions can be summarized as follows:

– We present a quantitative analysis for the ζ -ball by looking into how the ζ -ball
evolves as its center shifts and radius changes. Under the ζ -metric, we show that
the Hausdorff distance of two ζ -balls is linearly bounded by the distance of their
centers and the difference of their radii, see Theorem 1 below.

– We consider the case when the ambiguity set P in (DRO) is constructed through
a ζ -ball and investigate how variation of the ζ -ball would affect the optimal value
and the optimal solution in the resulting optimization problem. Some quantitative
stability results are derived undermoderate conditions (see Theorem 3 below). The
research provides a unified framework for the existing research on quantitative
stability analysis of (DRO) under various metrics including the total variation
metric and the Wasserstein metric.

– We present a detailed quantitative stability analysis for (DRRO) in terms of the
optimal value and optimal solution when c is equi-Lipschitz continuous in y and
z and equi-Hölder continuous in ξ (see Theorem 6). Differing from the stability
results established for (DRO)under the ζ -metric,weuse theWassersteinmetric due
to complexity of the model arising from distortion risk measure. Some topological
properties of the Wasserstein ball are also established (see Sect. 2.5).

Nomenclature Throughout the paper, we will use the following notation. For a metric
space (X, d), we write d(x, S) for the distance from a point x to a set S, D(S1, S1; d)

for the excess of S1 over S2 associated with distance d, i.e.,

D(S1, S2; d) = sup
x∈S1

d(x, S2) = sup
x∈S1

inf
y∈S2

d(x, y) (1)

and H(S1, S2; d) for the Hausdorff distance between the two sets, that is,

H(S1, S2; d) = max
{
D(S1, S2; d), D(S2, S1; d)

}
.

By convention, we use IRn to denote the n-dimensional Euclidean space and P(�)

to denote the space of probability measures over �. Depending on the nature of the
metric space, we will use different symbols for the metric. For instance, in a finite
dimensional space IRn , we use the ordinary letter d to denote the distance whereas
dlG , dlK , dr denote the ζ -metric, Kantorovich–Wasserstein metric and Wasserstein
distance, respectively, in the space of probability measuresP(�).

Outline. The rest of the paper is organized as follows. In Sect. 2, we introduce the
definition of ζ -balls and discuss changes of the ball as its center and radius vary.
Particular focus is given to the Wasserstein ball. The discussion is needed to quantify
the change of the ambiguity set in stability analysis of the DRO and DRRO models:
Sects. 3–4 set out stability analysis for the DRO and DRROmodels. Sect. 3 is focused
on the DRO model under ζ -metric and Sect. 4 deals with the DRRO model under the
Wasserstein metric.
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2 Quantifying variation of �-ball andWasserstein ball

Let � be a sample space and F be the associated sigma algebra. LetP(�) be the set
of all probability measures over the measurable space (�,F). We consider a vector
valued measurable function ξ mapping from � to � ⊂ R

k . Let B(�) be the Borel
sigma algebra and P ∈ P(�). For each set A ∈ B, let Pξ (A) := P(ξ−1(A)).
Consequently, we may focus onP(�), the set of all probability measures defined on
space (�,B) with support set contained in�, where each element Pξ is a probability
measure on the space induced by ξ which is also known as push-forward, or image
measure.

2.1 �-metric

In probability theory, various metrics have been introduced to quantify the dis-
tance/ difference between two probability measures; see Athreya and Lahiri [3], Gibbs
and Su [18]. Here, we adopt the ζ -metric.

Definition 1 Let P, Q ∈ P(�) andG be a family of real-valuedmeasurable functions
on �. Define

dlG (P, Q) := sup
g∈G

∣∣EP [g(ξ)] − EQ[g(ξ)]∣∣ . (2)

The (semi-) distance defined as such is called a metric with ζ -structure and covers a
wide range of metrics in probability theory, see Rachev [49] or Zolotarev [65]. For the
simplicity of terminology, we call it ζ -metric throughout this paper.

It is well known that a number of important metrics in probability theory may be
viewed as a special case of the ζ -metric. For instance, if we choose

G :=
{

g : Rk → R | g isB measurable and sup
ξ∈�

|g(ξ)| ≤ 1

}
,

then dlG (P, Q) reduces to the total variation metric, in which case we denote it
specifically by dlT V . If g is restricted further to be Lipschitz continuous with modulus
bounded by 1, i.e.,

G =
{

g : sup
ξ∈�

|g(ξ)| ≤ 1, g is Lipschitz continuous and the Lipschitz modulus L1(g) ≤ 1

}
,

(3)
where L1(g) := sup{|g(u) − g(v)|/d(u, v) : u �= v}, then the resulting metric is
known as bounded Lipschitz metric, denoted by dlBL . If the boundedness of g is lifted
in (3), that is,

G = {g : g is Lipschitz continuous and Lipschitz modulus L1(g) ≤ 1} , (4)
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then we obtain Kantorovich metric,1 denoted by dlK . If we relax the Lipschitz conti-
nuity in (4), that is,

G = {g : g is Lipschitz continuous and Lq(g) ≤ 1
}

with

Lq(g) := inf
{

L : |g(u)−g(v)| ≤ L‖u−v‖max(1, ‖u‖q−1, ‖v‖q−1) ∀ u, v ∈ �
}
,

where ‖ · ‖ denotes the Eucledian norm and q ≥ 1, then we obtain Fortet–Mourier
metric, denoted by dlF M . Finally, if

G =
{

g : g(·) = 1(−∞,t](·), t ∈ R
k
}

,

where

1(−∞,t](ξ) :=
{
1 if ξ ∈ (−∞, t],
0 otherwise,

then we obtain uniform (Kolmogorov) metric, denoted by dlU .

Remark 1 It is evident that dlT V (P, Q) ≤ 2 and when � is bounded, dlK (P, Q) ∈[
0, diam(�)

]
, see Gibbs and Su [18]. Moreover, it follows by Zhao and Guan [63,

Lemmas 1–4], that dlBL(P, Q) ≤ max{dlK (P, Q),dlT V (P, Q)}, dlF M (P, Q) ≤
max{1, diam(�)q−1}dlK (P, Q) and dlU (P, Q) ≤ 1

2dlT V (P, Q).

2.2 Hömander’s theorem

Based on the ζ -metric dlG , we can define the distance from as single distribution to a
set, the deviation fromone set to another and theHausdorff distance between two sets in
the space of probability measuresP(�). We denote them respectively by dlG (Q,S),
D(S ′,S;dlG ) and H(S ′,S;dlG ). It is easy to observe that H(S ′,S;dlG ) = 0 if and
only if EP g(ξ) − EQ g(ξ) = 0 for any P ∈ S ′, Q ∈ S and g ∈ G .

In the theory of set-valued analysis there is a famous theorem, namely Hörmander’s
theorem,which establishes a relationship between the distance of two sets in Euclidean
space and the maximum difference between their respective support functions over the
unit ball of the same space, see Castaing and Valadier [6, Theorem II-18]. Here, we
extend the theorem to the set of probability measures. One of the main reasons behind
this extension is that in minimax distributionally robust optimization problems, the
innermaximization of theworst expected value of a random function over an ambiguity
set of probability distributions is indeed the support function of the random function
over the ambiguity set. Therefore, in order to look into the difference between theworst

1 In some references, it is called Wasserstein metric or Kantorovich–Wasserstein metric, see commentary
by Villani [57]. Here we call it Kantorovich metric to distinguish it from Wasserstein metric to be defined
later on.
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expected values based on two ambiguity sets, it is adequate to assess the discrepancy
between two support functions of the sets.Wewill come back to this in the next section.
To this end, we need the concept of weak compactness of probability measures under
the topology of weak convergence. Recall that a sequence of probability measures
{PN } ⊂ P(�) is said to converge to P ∈ P(�) weakly, if

lim
N→∞

∫
�

h(ξ)PN (dξ) =
∫

�

h(ξ)P(dξ)

for each bounded and continuous function h : � → R. An important property of
Kantorovich’s metric is that it metrizes weak convergence of probability measures on
measures with bounded r -th moment, that is, {PN } converges to P weakly if and only
if dlK (PN , P) → 0 (cf. [18]).

For a set of probability measures A on (�,B), A is said to be tight if for any
ε > 0, there exists a compact set �ε ⊂ � such that inf P∈A P(�ε) > 1 − ε. In the
case whenA is a singleton, it reduces to the tightness of a single probability measure.
A is said to be closed (under the weak topology) if for any sequence {PN } ⊂ A with
PN converging to P weakly, P ∈ A.A is said to be weakly compact if every sequence
{PN } ⊂ A contains a subsequence {PN ′ } and P ∈ A such that PN ′ → P weakly; see
Skorokhod [55] for the notion and Billingsley [5] for a similar notion called relative
compactness. By the well-known Prokhorov’s theorem (see [3]), a closed setA (under
the weak topology) of probability measures is compact if it is tight. In particular, if �

is a compact set, then the set of all probability measures on (�,B) is compact; see
Prokhorov [48, Theorem 1.12].

Proposition 1 (Cf. [30]) Let P,Q ⊂ P(�) be two sets of probability measures and
G the set of all measurable functions from � to IR. Suppose that P and Q are weakly
compact. Then

D(P,Q; dlG ) = sup
h∈G
{
sP (h) − sQ(h)

}
, (5)

and
H(P,Q; dlG ) = sup

g∈G

∣∣sP (g) − sQ(g)
∣∣ , (6)

where sP (g) := supP∈P
∫

gdP is a support function, D, H are excess distance and
Hausdorff distance associated with ζ -metric dlG .

Proof By definition,

D(P,Q;dlG ) = sup
P∈P

dlG (P,Q) = sup
P∈P

inf
Q∈Q

sup
g∈G

(∫
gdP −

∫
gdQ

)
. (7)

Let φ(Q, g) := ∫ gdP − ∫ gdQ. Then φ is linear in g and affine in Q. Thus
it is a convex function of Q and a concave function of g. Moreover, since Q is a
compact set in the metric space of probability measuresP(�) under the topology of
weak convergence and the latter is a Hausdorff space, we may apply Fan’s minimax
theorem, Fan [15, Theorem 2] and obtain
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inf
Q∈Q

sup
g∈G

φ(G, g) = sup
g∈G

inf
Q∈Q

φ(G, g).

Consequently, we have

D(P,Q;dlG ) = sup
P∈P

sup
g∈G

inf
Q∈Q

(∫
gdP −

∫
gdQ

)

= sup
P∈P

(
sup
g∈G

(∫
gdP − sup

Q∈Q

∫
gdQ

))

= sup
g∈G
(
sP (g) − sQ(g)

)
. (8)

This shows (5). Likewise, since P is weakly compact, we have

D(Q,P;dlG ) = sup
g∈G
(
sQ(g) − sP (g)

)
. (9)

Combining (8) and (9) gives rise to (6). �

From the propositionwe can see immediately that for any fixedmeasurable function

g,

|sQ(g) − sP (g)| ≤ H(Q,P;dlG ),

which means the difference between the maximum expected values from sets Q and
P is bounded by the Hausdorff distance of the two sets under ζ -metric.

Note also that in order for us to apply Fan’s minimax theorem in the proof of the
proposition, we imposed weak compactness on the set Q. In Sect. 2.5, we discuss
weak compactness of the Wasserstein ball.

2.3 �-ball

Of particular interest is the set of probability measures defined with ball structure,
that is, all probability measures within a ball centered at some probability measure
with specified radius. In practice, the probability measure at the center is known as
nominal distribution which may be approximated through empirical data or its smooth
approximation (as kernel density approximation).

Definition 2 (The ζ -ball) Let P ∈ P(�) and G be a family of real-valued bounded
measurable functions on �. Let r be a positive number. We call the following set of
probability distributions ζ -ball:

B(P, r) := {P ′ ∈ P(�) : dlG (P ′, P) ≤ r}, (10)

where dlG (·, ·) is defined in (2).

123



Quantitative stability analysis for minimax…

In what follows, we quantify the change of the ζ -ball as its center and radius vary.
To this end, we recall important properties of the ζ -distance dlG (P, Q)when Q varies
over P(�).

Proposition 2 (Convexity of the ζ -metric)Let P, Q1, Q2 ∈ P(�) be three probability
measures and dlG (·, ·) be defined as in (2). Then

dlG
(
P, t Q1 + (1 − t)Q2

) ≤ t dlG (P, Q1) + (1 − t) dlG (P, Q2), for all t ∈ [0, 1]
(11)

and
dlG (P, Q2) ≤ dlG (P, Q1) + dlG (Q1, Q2). (12)

The result follows from the fact that ζ -metric is a semi-distance which satisfies
all axioms of a metric except the property that ζ(P, Q) = 0 if and only if P = Q.
Equations (11) and (12) are no more than convexity and the triangle inequality of the
metric which are retained by the semi-metric.

Corollary 1 Let P, Q1, Q2 ∈ P(�) be three probability measures and dlG (·, ·) be
the ζ -metric defined as in (2).

For t ∈ [0, 1], let

h(t) := dlG
(
P, t Q1 + (1 − t)Q2

)
.

If max(dlG (P, Q1), dlG (P, Q2)) < ∞, then h(·) is continuous on [0, 1] and

h(t) ∈
[
0, max

(
dlG (P, Q1), dlG (P, Q2)

)] ∀ t ∈ [0, 1].

Proof Under the condition that max(dlG (P, Q1),dlG (P, Q2)) < ∞, it follows from
Proposition 2 that h(·) is a proper convex function. By Rockafellar [51, Corollary
10.1.1], h(·) is continuous over [0, 1]. The rest is straightforward. �


From the definition of ζ -ball and Proposition 2 we can see immediately that the
ζ -ball is a convex set in the space of P(�). However, the ball is not necessarily
weakly compact. For example, if G is the set of all measurable functions bounded by
1, then the ζ -metric reduces to the total variation metric. The resulting ball centered
at a discrete probability measure with radius smaller than 1 does not include any
continuous probability measure.

In what follows, we study the quantitative stability of a ζ -ball against variation of
its center and radius.

Theorem 1 (Quantitative stability of the ζ -ball) Let B(P, r) be the ball defined as
in (10). For every P, Q ∈ P(�) and r1, r2 ∈ IR+ it holds that

H
(B(P, r1),B(Q, r2); dlG

) ≤ dlG(P, Q) + ∣∣r2 − r1
∣∣, (13)

where H denotes the Hausdorff distance in P(�) associated with the metric dlG .
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Proof By the definition of the Hausdorff distance, it suffices to show that

D
(B(Q, r2),B(P, r1);dlG

) ≤ dlG(P, Q) + |r2 − r1| (14)

and
D
(B(P, r1),B(Q, r2);dlG

) ≤ dlG(P, Q) + |r2 − r1|. (15)

We start by showing (14). The inequality holds trivially if B(Q, r2) ⊂ B(P, r1). So
we focus on the case whenB(Q, r2) �⊂ B(P, r1). Let Q′ ∈ B(Q, r2)\B(P, r1) and set
λ̂ := r1/dlG(Q′, P). By the definition of the ball, λ̂ ∈ (0, 1). Let P̂ := λ̂Q′+(1−λ̂)P .
By convexity of the distance dlG ,

dlG(P̂, P) = dlG
(
λ̂Q′ + (1 − λ̂)P, P

) ≤ λ̂dlG(Q′, P) = r1.

This shows P̂ ∈ B(P, r1). Hence

dlG(Q′,B(P, r1)) ≤ dlG(Q′, P̂) = dlG(Q′, λ̂Q′ + (1 − λ̂)P)

≤ (1 − λ̂)dlG(Q′, P) = dlG(Q′, P) − λ̂ dlG(Q′, P)

= dlG(Q′, P) − r1

≤ (dlG(Q′, Q) + dlG(Q, P)
)− r1

≤ r2 + dlG (Q, P) − r1. (16)

This shows (14). By swapping the role of the two balls in the proof above, we obtain
the formula for (15). �


The significance of Theorem 1 is that it gives a quantitative description about
the Hausdorff distance of two ζ -balls. The result allows one to easily quantify the
difference between a ζ -ball and its variation incurred by a perturbation of its center
and/or radius. The error bound (13) is tight in the sense that the equality holds under
some special cases, i.e., (i) r1 = 0 and P = Q, and (ii) P and Q are Dirac probability
measures and dlG = dlK , as in that case the Kantorovich metric dlK coincides with
the Euclidean distance.

A particularly interesting case is that when r1 = r2, the error bound in (13) depends
only on the distance between the centers of the balls whichmeans any other probability
measures in the balls have no impact on the bound.

Moreover, let r1 = 0 and P the unknown true probability distribution while Q is an
empirical distribution constructed through samples. When the sample size increases
and the radius shrinks, the ζ -ball converges to the true probability distribution.
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2.4 The empirical measure

For the empirical measure2

PN (·) := 1

N

N∑
k=1

δξk(·) (17)

with iid samples (ξk)
N
k=1, Theorem 1 reads

dlG (P,B(PN , rN )) ≤ dlG (P, PN ) + rN , (18)

where dlG is defined as in (2).
In the literature of probability theory, there aremany results concerning convergence

of PN to P . First, PN converges to P if and only ifdlG (P, PN ) → 0 under the bounded
Lipschitz metric, Kantorovich metric and Fortet–Mourier metric. In particular, if there
exists a positive number ν > 0 such that

M :=
∫

�

exp(‖ξ‖ν)P(dξ) < ∞,

then, for any ε > 0, there exist positive constants c and C such that

P N (dlK (P, PN ) ≥ ε
) ≤ C

[
exp(−cNεmax(k,2)1ε≤1) + exp(−cNεν1ε>1)

]
(19)

for all N , where P N is the probability measure over space � × · · · × � (N times)
with Borel-sigma algebra B ⊗ · · · ⊗ B, and k (k �= 2) is the dimension of ξ , C, c are
positive constants which depend on ν, M and k; in the case when k = 2, the inequality
is slightly more complicated, see Fournier and Guilline [16, Theorem 2] for details.

In the case when P is a continuous probability distribution it is well-known that
dlT V (P, PN ) = 1. In that case, we may use Kernel density estimation (KDE) of
PN , denoted by P̃N , to replace PN . Specifically, let hN be a sequence of positive
constants converging to zero and �(·) be a measurable kernel function with �(·) ≥
0,
∫

�(ξ)dξ = 1. We define the KDE of PN as

fN (z) = 1

Nhk
N

N∑
i=1

�

(
z − ξi

hN

)
, (20)

which is the density function of the measure P̃N . A simple example for�(·) is the den-
sity function of the standard normal distribution. Under some moderate conditions,
[63] established bounds for dlG (P, P̃N ) under a range of metrics with ζ -structure
including dlT V ,dlK ,dlF M ,dlBL and dlU , see Zhao and Guan [63, Proposition 4].

2 The Dirac-measure is defined by δξ (A) = 1A(ξ) =
{
1 if ξ ∈ A,

0 if ξ /∈ A.
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Using the corollary above and the proposition, we can easily derive the rate of con-
vergence for dlG

(
P,B(PN , rN )

)
as N increases and rN decreases. Note that KDE is

widely used in stochastic programming, we refer readers to Shapiro et al. [54, Chap-
ter 4], Gröwe [20] and Norkin and Keyzer [39] for more comprehensive and in depth
discussions on the approach.

Note also that inequality (18) may be extended to the case when the samples are
not necessarily independent. Indeed, one may use Quasi-Monte Carlo method or even
a deterministic approach for developing an approximation of P , see Pflug and Pichler
[41] and references therein.

2.5 Wasserstein ball

One of the most important metrics with ζ -structure is the Kantorovich metric. At this
point, it might be helpful to introduce the definition of Wasserstein distance/metric
and relate it to the Kantorovich metric. To this end we endow the set � with a metric
d and consider the Polish space (�, d) in the rest of discussions.

Definition 3 (Wasserstein distance/metric) For probability measures P and P̃ , the
Wasserstein distance/metric of order r ≥ 1 is

dr (P, P̃) =
(
inf
π

∫∫
d
(
ξ, ξ̃
)r

π(dξ, dξ̃ )

)1/r

, (21)

where π is among all probability measure with marginals P and P̃ , i.e.,

P(A) = π(A × �), A ∈ B(�) and

P̃(B) = π(� × B), B ∈ B(�). (22)

We remind readers that the distance dr (P, P̃) should be distinguished from themetrics
of ζ -structure discussed in the preceding subsections where we used the notation dlG ,
dlK and dlT V etc.

One of the main results concerning the Wasserstein distance is the Kantorovich–
Rubinstein Theorem [31], which establishes a relationship between the Kantorovich
metric of two probability measures and the Wasserstein distance when r = 1, i.e.,

d1(P, P̃) = dlK (P, P̃), (23)

where dlK (P, P̃) is defined as in Definition 1. The identity (23) recovers the metric
d1 as metric with ζ -structure, but the general Wasserstein metric with order r > 1
does not have the structure; indeed, the Wasserstein metric dr is r -convex rather than
convex as ζ -metric (see Shapiro et al. [54, Definition 4.7] or Pflug and Pichler [42,
Lemma 2.10]).

The Wasserstein metric is a very well established concept in applied probability
theory for quantifying the distance between two probability distributions. A simple
and intuitive explanation of the metric is that if we regard d(ξ, ξ ′) as a cost of moving
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masses from ξ to ξ ′, then the metric may be interpreted as the minimal transportation
cost of moving masses placed over a set of locations (represented by one probability
distribution) to another set of locations (represented by another probability distribu-
tion), which is known as Kantorovich’s formulation of Monge’s mass transference
problem (cf. [49]). The concept has found wide applications in applied probabil-
ity (e.g., Gini index of dissimilarity of two random variables), partial differential
equations, functional inequalities or Riemannian geometry and image processing, see
commentary by Villani [57].

Here we establish a technical result which ensures weak compactness of the set
of probability measures defined through the Wasserstein metric for further reference
later on.

Proposition 3 Let P(IRm) denote the set of all probability measures on R
m, let

d(·, :) = dr (·, :) be the Wasserstein distance of order r ≥ 1 and let P ⊆ P(IRm) be a
subset of probability measures. If P is tight, then the ρ-enlargement under the Wasser-
stein metric Pρ := {Q ∈ P(IRm) : dr (Q, P) ≤ ρ for some P ∈ P} is also tight for
every ρ ≥ 0 and Pρ is weakly compact.

Proof Let ε ∈ (0, 1
2

)
be fixed. Since P is tight, there is a compact set K ε ⊂ Rm such

that P(K ε) > 1 − ε for every P ∈ P . This means

P
(
K εc) = 1 − P

(
K ε
)

< 1 − (1 − ε) = ε, (24)

where we write Sc for the complement of a set S. Let

K ε
ρ/ε

:= {x ∈ R
m : ‖x − y‖ ≤ ρ/ε, y ∈ K ε

}
.

Then K ε
ρ/ε

is a compact subset of IRm . In what follows, we shall show that Q(K ε
ρ/ε

) ≥
1 − 2ε for each Q ∈ Pρ , from which the assertion follows.

Assume for the sakeof a contradiction that Q(K ε c
ρ/ε

) ≥ 2ε. For the given Q, it follows
by the definition of setPρ that there exists P ∈ P such thatdr (P, Q) ≤ ρ. For this pair
of P and Q, let π be a transport plan such that dr (P, Q)r = ∫∫ ‖y − x‖r π(dx, dy).
Existence of π is guaranteed by Villani [57, Theorem 1.3].

To proceed the proof, let us define a subset of IRm × IRm , A := K ε × K ε c
ρ/ε
. It is

easy to see that ‖y − x‖ >
ρ
ε
for very point (x, y) ∈ A. Moreover,

π(A) ≥ π
(
R

m × K ε c
ρ/ε

)
− π
(
K ε c × R

m) = Q(K ε c
ρ/ε

) − P
(
K ε c) ≥ 2ε − ε = ε,

where the last inequality is due to (24). By the definition of the Wasserstein distance

ρr ≥ dr (P, Q)r ≥
∫∫

A
‖y − x‖r π(dx, dy) >

(ρ
ε

)r
π(A) ≥

(ρ
ε

)r
ε ≥ ρr ,

which is a contradiction as desired. This shows Q(K ε
ρ/ε

) ≥ 1 − 2ε for every Q ∈ Pρ

and in turn that the enlargement Pρ is tight.
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The weak compactness of the set {Q ∈ P(IRm) : dr (Q, P) ≤ ρ for some P ∈ P}
follows from the fact that the set is closed under the topology of weak convergence
and Prokhorov’s theorem. �


Before concluding this section, we note that it is possible to establish a similar
result to Theorem 1 for the balls defined under the Wasserstein metric. The theorem
below states this.

Theorem 2 (Quantitative stability of the general Wasserstein ball) Let B(P,�) =
{Q : dr (P, Q) ≤ �}. For every P, Q ∈ P(�) and �1, �2 ∈ IR+ it holds that

H
(B(P,�1),B(Q,�2); dr

)
≤ (max

{
(�2 + dr (Q, P))r − �r

1, (�1 + dr (P, Q))r − �r
2

}) 1
r , (25)

where H denotes the Hausdorff distance in P(�) associated with dr .

The proof is analogous to that of Theorem 1 but requires r -convexity which is
elaborated in Pflug and Pichler [42, Lemma 2.10]. We omit the details.

Observe that when r = 1, dr collapses to the Kantorovich metric dlK and (25)
coincides with (13). In the case when �1 = 0, and P lies in B(Q,�2), (13) reduces
to

H
(
P,B(Q,�2);dr

) ≤ �2 + dr (Q, P). (26)

This covers the case when the true probability distribution lies in some confidence
region of an empirical probability measure.

3 Stability of the distributionally robust optimization problem (DRO)

With the technical results about quantitative description of the set of probability mea-
sures defined under ζ -metric and the Wasserstein metric in the preceding section, we
are now ready to investigate stability of the problems (DRRO) and (DRO) in terms of
the optimal value and the optimal solutions w.r.t. variation of the ambiguity set. The
variation may be driven by increasingly available information about the true probabil-
ity distribution or the need for numerical approximation of the distributionally robust
optimization problem, see discussions in Sun and Xu [56] and Zhang et al. [61].
This kind of research may be viewed as an extension of classical stability analysis in
stochastic programming (see [50,52]).

We start by considering the DRO problem in this section because (i) it is relatively
easier to handle, (ii) it allows us to do the analysis under generic ζ -metric and (iii) the
model is of independent interest. In the next section, we will deal with the DRRO
problem which heavily relies on the Wasserstein metric.

Let us consider the perturbation

inf
y∈Y

sup
P∈P̃

EP

[
inf

z∈Z(y,ξ)
c(y, ξ, z)

]
(27)
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of problem (DRO), where P̃ is a perturbation of P . Let ϑ(P̃) (ϑ(P), resp.) denote
the optimal value of (27) ((DRO), resp.), and Y ∗(P̃) and Y ∗(P) denote the respective
set of the optimal solutions. The following theorem states the relationship of these
quantities.

Theorem 3 (Quantitative stability of the (DRO) problem) Let

v(y, ξ) := inf
z∈Z(y,ξ)

c(y, ξ, z) (28)

be the objective of the inner problem and H := {v(y, ·) : y ∈ Y }. Assume that

max

{
sup
P∈P

EP [v(y, ξ)], sup
P∈P̃

EP [v(y, ξ)]
}

< ∞.

Then the following assertions hold.

(i) If P̃ and P are weakly compact, then

|ϑ(P̃) − ϑ(P)| ≤ H(P̃,P; dlH ), (29)

where H is the Hausdorff distance of two sets in P(�) under ζ -metric dlH
associated with the class of functions H . In particular, if P = B(P, r) and
P̃ = B(P̃, r ′), then

|ϑ(P̃) − ϑ(P)| ≤ dlH (P, P̃) + |r ′ − r |. (30)

If the functions in the set H are Lipschitz continuous with modulus κ , then
H(P̃,P; dlG ) ≤ κ H(P̃,P; dlK ) and dlG (P, P̃) ≤ κ dlK (P, P̃), where dlK is
the Kantorovich metric. If the functions in H are bounded by a positive constant
C, then the above two inequalities hold with κ being replaced by C and dlK
replaced by dlT V .

(ii) If, in addition, supP∈P EP [v(y, ξ)] satisfies the second order growth condition
at Y ∗(P), that is, there exist positive constants C and υ such that

sup
P∈P

EP [v(y, ξ)] ≥ ϑ(P) + υ d
(
y, Y ∗(P)

)2
, y ∈ Y , (31)

then

D
(
Y ∗(P̃), Y ∗(P)

) ≤
√

3

υ
H(P̃,P; dlG ), (32)

where H(P̃,P; dlG ) is the Hausdorff distance between P̃ and P under ζ -metric.

Proof Part (i). It is well-known that

|ϑ(P̃) − ϑ(P)| ≤ sup
y∈Y

∣∣∣∣∣ sup
P∈P̃

EP [v(y, ξ)] − sup
P∈P

EP [v(y, ξ)]
∣∣∣∣∣ .
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For each y, by the definition ofH , there is a corresponding random function h ∈ H
such that h(ξ) = v(y, ξ) and

sup
P∈P̃

EP [v(y, ξ)] = sP̃ (h),

where sP̃ (h) = supP∈P̃
∫
�

h(ξ)P(dξ) is a support function. Thus

|ϑ(P̃) − ϑ(P)| ≤ sup
y∈Y

∣∣∣∣∣ sup
P∈P̃

EP [v(y, ξ)] − sup
P∈P

EP [v(y, ξ)]
∣∣∣∣∣

≤ sup
h∈H

|sP̃ (h) − sP (h)|. (33)

Since H forms a subset of measurable functions, by Proposition 1

sup
y∈Y

∣∣∣∣∣ sup
P∈P̃

EP [v(y, ξ)]− sup
P∈P

EP [v(y, ξ)]
∣∣∣∣∣ ≤ sup

h∈H
|sP̃ (h) − sP (h)|=H(P̃,P;dlH ).

When the ambiguity set is structured through a ζ -ball, the conclusion follows
directly from Theorem 1.

In the case when the set of functions inH are Lipschitz continuous with modulus
κ , we can scale the set of functions by 1/κ to Lipschitz continuous with modulus being
bounded by 1. This will allow us to tighten the estimation (29) by

sup
h∈H

|sP̃ (h) − sP (h)| ≤ κ sup
g∈G1

|sP̃ (g) − sP (g)| = κ H(P̃,P;dlK ), (34)

where G1 denotes all Lipschitz continuous functions defined over � with modulus
being bounded by 1. A similar argument holds whenH is bounded in which case we
may use the definition of the total variation metric.

Part (ii). With uniform Lipschitz continuity of the function supP∈P EP [v(y, ξ)] in
P as established in (34), we obtain (32) by virtue of Liu and Xu [36, Lemma 3.8] . �


At this point it might be helpful to link the stability results to the well-established
stability results in stochastic programming (see, e.g., [52]) and some recent stability
results about DRO. Notice that our stability results may be viewed as a generalization
of similar results, where perturbation of a single probability distribution is considered
(which corresponds to r = r ′ = 0 in our setting), see for instance Römisch [52,
Theorem 5]. Indeed, we can establish (29) by using the fact that

∣∣EP [v(y, ξ)] − EQ[v(y, ξ)]∣∣ ≤ dlH (P, Q).

Our main interest here, however, is to present the error bounds for the optimal value
and optimal solutions in terms of the Hausdorff distance of the two ambiguity sets P
and P̃ which have a ball structure under the generic ζ -metric dlH and look into the
particular case when the ambiguity sets are constructed with ball structure. In the case
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when r = r ′, we find that the error bounds depend only on the distance of the centers
of the two balls. Note also that instead of assuming metric regularity at the optimal
solution as in Römisch [52, Theorem 5], we involve a second order growth condition
which is more likely to be fulfilled in our setting.

Compared to the existing results on stability analysis for DRO problems (see, e.g.,
[61]), Theorem 3 exhibits something new in that (i) the stability results are established
under any metric of ζ -structure including the total variation metric and Kantorovich
metric when H is bounded or uniformly Lipschitz continuous and (ii) when the
ambiguity set is structured via ζ -ball, the variation of the optimal value is bounded by
the distance of the centers of the balls and the difference of their radii. In a particular
case when r = 0 and P is the true unknown probability measure of ξ and P ′ is
constructed through empirical data PN , we can use Theorem 3 and inequality (18)
to estimate the rate of convergence of ϑ(B(PN , rN )) as the sample size increases,
see (19). Of course, this estimation is not particularly good when k, the dimension
of the random vector ξ , is large, because the bound in (19) depends on k (the curse
of dimensionality). Note also that when the functions in the set H are Lipschitz
continuous with modulus κ , dlH (P, PN ) ≤ κ dlK (P, PN ). Through (19) and (30),
we may obtain a confidence interval for the true unknown optimal value ϑ(P); we
refer readers to a similar result in Guo and Xu [21, Corollary 1]

Finally, we note that it is possible to derive some verifiable sufficient conditions
for the second order growth condition (31). Consider the case that v(y, ξ) is strongly
convex in y for every ξ , that is, there exist an integrable vector-valued function η(ξ)

and a positive integrable function α(ξ) such that for any fixed y ∈ Y ,

v(y′, ξ) ≥ v(y, ξ) + η(ξ)�(y′ − y) + α(ξ)‖y′ − y‖2, ∀ y′ ∈ Y , ξ ∈ �, (35)

where aT b denotes the scalar product of two vectors a and b,α(ξ) is a positive function
with inf P∈P EP [α(ξ)] > 0. Let

φ(y′) := sup
P∈P
(
EP [v(y, ξ)] + EP [η(ξ)]�(y′ − y)

)

and ν := inf P∈P EP [α(ξ)]. Then

sup
P∈P

EP [v(y′, ξ)] ≥ φ(y′) + ν‖y′ − y‖2, ∀ y′ ∈ Y . (36)

Moreover, φ(·) is a convex function and φ(y) = supP∈P EP [v(y, ξ ]. Thus there
exists some deterministic vector η̂ (depending on y) such that

sup
P∈P

EP [v(y′, ξ)] ≥ sup
P∈P

EP [v(y, ξ)]+ η̂�(y′− y)+ν‖y′− y‖2, ∀ y′ ∈ Y . (37)

Since the inequality holds for any y, this shows supP∈P EP [v(y′, ξ)] is strongly convex
and hence Y ∗(P) is a singleton, we denote it by {y∗(P)}. This immediately implies
the second order growth condition (31) because supP∈P EP [v(y∗(P), ξ)] = ϑ(P)

and we can choose η̂ = 0 at y∗.
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3.1 Robust optimization

In a particular case when the ambiguity set P = P(�), the DRO model collapses to
the robust optimization problem

inf
y∈Y

sup
ξ∈�

inf
z∈Z(y,ξ)

c(y, ξ, z), (RO)

where the optimal decision on the first stage is based on the worst scenario of ξ . There
is a vast literature on robust optimization, see the monograph [4] for a comprehensive
overviewof themodel, numericalmethods and applications.Unfortunately, Theorem3
does not cover this important case. Below,wemake a separate statement about stability
of the problem (RO) for the case when both Y and � are perturbed. Perturbation of
Y may stem from change of problem data in the constraints of the first stage decision
variables and/or removal of some constraints of first stage decision variables such as
integer constraints whereas perturbation of � may result from discretization of ξ in
the minimax optimization, see for instance Xu et al. [59, Section 3] and Chen et al.
[7].

Theorem 4 (Quantitative stability of problem (RO)) Let v(y, ξ) be defined as in (28).
Assume that there exist positive constants L�, LY such that

v(y, ξ) − ṽ(ỹ, ξ̃ ) ≤ LY · d(y, ỹ) + L� · d(ξ, ξ̃ ) ∀ ξ̃ ∈ �̃, ỹ ∈ Ỹ . (38)

Then

inf
y∈Y

sup
ξ∈�

v(y, ξ) − inf
ỹ∈Ỹ

sup
ξ̃∈�̃

ṽ(y, ξ̃ ) ≤ L� · D(�, �̃) + LY · D(Ỹ , Y ). (39)

If, in addition, v is Lipschitz continuous in both y and ξ , i.e.,

∣∣∣v(y, ξ) − v(ỹ, ξ̃ )

∣∣∣ ≤ LY · d(y, ỹ) + L� · d(ξ, ξ̃ ), (40)

then
∣∣∣∣∣ infy∈Y

sup
ξ∈�

v(y, ξ) − inf
ỹ∈Ỹ

sup
ξ̃∈�̃

v(y, ξ̃ )

∣∣∣∣∣ ≤ LY · H(Y , Ỹ ) + L� · H(�, �̃). (41)

Proof By taking the infimum in (38) with respect to ξ̃ ∈ �̃ it follows that

v(y, ξ) − sup
ξ̃∈�̃

ṽ(ỹ, ξ̃ ) ≤ LY · d(y, ỹ) + L� · inf
ξ̃∈�̃

d(ξ, ξ̃ ),

and consequently

sup
ξ∈�

v(y, ξ) − sup
ξ̃∈�̃

ṽ(ỹ, ξ̃ ) ≤ LY · d(y, ỹ) + L� · sup
ξ∈�

inf
ξ̃∈�̃

d(ξ, ξ̃ ).
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By taking infimum w.r.t. y ∈ Y , it yields

inf
y∈Y

sup
ξ∈�

v(y, ξ) − sup
ξ̃∈�̃

ṽ(ỹ, ξ̃ ) ≤ LY · inf
y∈Y

d(y, ỹ) + L� · D(�, �̃)

and a further operation of supremum w.r.t. ỹ ∈ Ỹ gives rise to

inf
y∈Y

sup
ξ∈�

v(y, ξ) − inf
ỹ∈Ỹ

sup
ξ̃∈�̃

ṽ(ỹ, ξ̃ ) ≤ LY · sup
ỹ∈Ỹ

inf
y∈Y

d(y, ỹ) + L� · D(�, �̃)

= LY · D(Ỹ , Y ) + L� · D(�, �̃),

which is (39), the first assertion.
The second assertion is immediate by interchanging the roles of (y, ξ) and (ỹ, ξ̃ )

as the distances d on Y and � are symmetric. �

The condition on Lipschitz continuity of v(y, ξ)w.r.t. (y, ξ) is essential in deriving

the stability result. In what follows, we give a sufficient condition for this.
Consider the feasible set-valued mapping Z : Y × � ⇒ IRm at the second stage.

Let (y0, ξ0) ∈ Y × � be fixed, z0 ∈ Z(y0, ξ0). We say Z is pseudo-Lipschitzian at
(y0, ξ0), if there are neighbourhoods

V of z0, U of (y0, ξ0) and positive constant L Z such that

Z(y, ξ) ∩ V ⊂ Z(y0, ξ0) + L Z d((y, ξ), (y0, ξ0))B

and

Z(y0, ξ0) ∩ V ⊂ Z(y, ξ) + L Z d((y, ξ), (y0, ξ0))B

for all (y, ξ) in U , where B denotes the unit ball in the space IRm × IRk . In the case
when the feasible set at the second stage is defined by a cone constrained system, a
sufficient condition for the desired Lipschitzian property is the Slater condition w.r.t.
the variable z, see Zhang et al. [62, Lemma 2.2]. Here we make a generic assumption
on the desired property of Z(y, ξ) rather than look into its concrete structure so that
we can focus on the fundamental issues about stability.

Proposition 4 (Lipschitz continuity of v(y, ξ)) Assume: (i) Z(y, ξ) is pseudo-
Lipschitzian at every pair of (z0, (y0, ξ0)) ∈ Z(y0, ξ0) × {(y0, ξ0)}, (ii) there exists a
positive constants Lc and β such that

|c(y, ξ, z) − c(y0, ξ0, z0)| ≤ Lc[d(y, y0) + d(ξ, ξ0)
β + d(z, z0)] (42)

for (y, ξ) ∈ U and z ∈ V . Then there exists a positive constant L such that

|v(y, ξ) − v(y0, ξ0)| ≤ L
[
d(y, y0) + d(ξ, ξ0) + d(ξ, ξ0)

β
]

(43)

for (y, ξ) ∈ U.
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Proof The conclusion follows directly from Klatte [33, Theorem 1]. �

It is important to note that the error bound in (43) is determined by the term d(ξ, ξ0)

when ξ is close to ξ0 and the term d(ξ, ξ0)
β otherwise (in the case when β > 1).

Note that in the case when Ỹ = Y , (41) reduces to

∣∣∣∣∣ infy∈Y
sup
ξ∈�

v(y, ξ) − inf
y∈Y

sup
ξ̃∈�̃

v(y, ξ̃ )

∣∣∣∣∣ ≤ L� · H(�, �̃)

when v is uniformly Lipschitz continuous in ξ , i.e.,

∣∣∣v(y, ξ) − v(y, ξ̃ )

∣∣∣ ≤ L� · d(ξ, ξ̃ ) ∀ y ∈ Y . (44)

In that case, we regard v(y, ξ̃ ) as a perturbation of v(y, ξ).

4 Stability of the problem (DRRO)

We now move on to discuss stability of the distributionally robust risk optimization
problem (DRRO). To this end we need to give a detailed description about the risk
measure RS;P in problem (DRRO).

4.1 Risk functionals

Let X be a random variable. Recall that the value at risk at level α ∈ [0, 1) is defined
as

V@Rα(X) := inf{x ∈ IR : P(X ≤ x) ≥ α}.

It is well known that the V@Rα(X) is a lower semicontinuous quantile function of α

over [0, 1). The average value at risk is an upper average value at risk defined as

AV@Rα(X) := 1

1 − α

∫ 1

α

V@Rt (X)dt .

Obviously, AV@R0(X) = EP [X ].
Let σ : [0, 1) → IR+ be a nonnegative, nondecreasing functionwith

∫ 1
0 σ(t)dt = 1.

We call

Rσ (X) :=
∫ 1

0
σ(α)V@Rα(X)dα (45)

the distortion risk measure of X associated with the distortion functional σ . Clearly,
Rσ (X) is a weighted average of the value at risk and the average value at risk is a
special distortion risk measure because
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AV@Rα(X) :=
∫ 1

0
V@Rt (X)σα(t)dt

with

σα(t) =
{
0 if t ∈ [0, α],
1

1−α
if t ∈ (α, 1]. (46)

The distortion risk measure coincides with the spectral risk measure introduced by
Denneberg [8], Acerbi [1] whereby σ is called risk spectrum. The risk measure is
coherent and law invariant in that it satisfies monotonicity, positive homogeineity,
subadditivity and translation invariance, and it depends only on the distribution of X .
The non-decreasing property of σ is vital to ensure the coherence property as “it
assigns bigger weights to worse cases” [1]. For more concrete examples of σ and the
resulting distortion/spectral risk measures, see Dowd et al. [11].

For a set S of distortion functionals, we can define

RS;P (X) := sup
σ∈S

Rσ (X),

where P is the probability measure. By employing RS;P in the model (DRRO)
we are concerned not only with ambiguity of the true probability distribution of the
underlying random variables but also with ambiguity of the risk profile σ to be used
in the definition of risk measure Rσ (X). The latter may be related to ambiguity of a
decision maker’s risk preference [2,25].

The following result is a combination of the well-known Kusuoka representation
theoremKusuoka [35] and its implication in terms of the connectionwith the distortion
risk measure, see Pflug and Pichler [42, Theorem 3.13, Corollary 3.14]. For further
examples of risk measures and respective Kusuoka representations we refer readers
to Dentcheva et al. [9].

Theorem 5 (Kusuoka representation theorem) Let (�,F , P) be a nonatomic prob-
ability space and L ∞ be a set of random variables mapping from � to IR. Let
R : L ∞ → IR be a law invariant coherent risk measure. Then there exists a set
of probability measures M on [0, 1) equipped with Borel sigma algebra such that

R(X) = sup
μ∈M

∫ 1

0
AV@Rα(X)dμ(α).

Moreover, R has the representation

R(X) = sup
σ∈S

Rσ (X), (47)

where S is a set of continuous and bounded distortion densities.

The theoremmeans that any law invariant coherent risk measure can be represented
as the supremum of a class of the distortion risk measures. Without loss of generality,
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wemay assume fromhere on that the riskmeasureRS;P in problem (DRRO) is defined
as in (47) and hence it is a law invariant conherent risk measure.

Note that for each fixed σ ∈ S, it follows by the convex duality (cf. [46,53] or [45]
for the appropriate space) that the risk measureRσ (·) has a dual representation which
is given by

Rσ (X) = sup

{
EP [Xζ ] : ζ ≥ 0, EP [ζ ] = 1,

AV@Rα(ζ ) ≤
∫ 1

α

σ (u)du for all α ∈ (0, 1)

}
(48)

and hence

RS,P (X) = sup

{
EP [Xζ ] : ζ ≥ 0, EP [ζ ] = 1,

AV@Rα(ζ ) ≤
∫ 1

α

σ (u)du for all α ∈ (0, 1), σ ∈ S

}
. (49)

We will use the latter in the forthcoming stability analysis.

4.2 Stability analysis

Weproceed the analysis in a slightly differentmanner fromwhat we did in the previous
section by considering a variation not only of the ambiguity set but also of the space of
the decision variables and the support set of the random variables. This will allow our
results to be applicable to a broader class of problems including multistage stochastic
programming problems. We need the following intermediate result, which allows
comparing risk functionals, evaluated for different random variables and probability
measures.

Proposition 5 Let X, X̃ : � → R be real valued random variables and S be a compact
set of distortion functionals in Lebesgue space L q . Assume that there are positive
constants L > 0 and β ∈ (0, 1] such that

X(ξ) − X̃(ξ̃ ) ≤ L · d(ξ, ξ̃ )β . (50)

Then
RS;P (X) − RS;P̃ (X̃) ≤ L sup

σ∈S
‖σ‖q dβ p(P, P̃)β, (51)

where RS;P is the risk functional induced by S as defined in (47), q ≥ 1 is the Hölder
conjugate exponent to p ≥ 1, 1

p + 1
q = 1 and dr is the Wasserstein distance of order

r ≥ 1 (see 21). The bound in (51) is tight in the case that σ is uniformly bounded,
β = 1 and p = 1, i.e., dβ p(P, P̃)β reduces to the Kantorovich metric.

Before providing a proof, we make some comments on condition (50). In practice,
X(ξ) may be regarded as the optimal value of the original second stage problem
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whereas X̃(ξ̃ ) is the optimal value of the approximate second stage problem where
the approximation may result from discretization, application of decision rules or
k-adaptability. Such approximation will usually affect the space of the second stage
decision variables. This motivates us to write the optimal value X̃(ξ̃ ) rather than X(ξ̃ ).

Proof We shall employ the dual representation (49) to prove the result. Let ζ , ζ̃ ∈ L 1

be the dual variables so that

RS;P (X) = EP [Xζ ] and RS;P̃ (X̃) = EP̃ [X̃ ζ̃ ].

Let π be a bivariate probability measure with marginals P and P̃ . Note that X , ζ
and X̃ , ζ̃ are coupled in a comonotone manner so that we can derive by Hoeffding’s
Lemma (cf. [28])

RS;P (X) − RS;P̃ (X̃)=EP [Xζ ] − EP̃ [X̃ ζ̃ ]=
∫∫

[X(ξ)ζ(ξ) − X̃(ξ̃ )ζ̃ (ξ̃ )]π(dξ, dξ̃ )

≤
∫∫ (

X(ξ) − X̃(ξ̃ )
)

ζ(ξ)π(dξ, dξ̃ )

≤ L
∫∫

ζ(ξ)d(ξ, ξ̃ )βπ(dξ, dξ̃ ).

The first inequality is due to the fact that EP̃ [X̃ ζ̃ ] ≥ EP̃ [X̃ζ ] because ζ̃ gives the
maximum value of R·;P̃ (X̃) over S, see (47). By applying Hölder’s inequality, we
obtain

RS;P (X) − RS;P̃ (X̃) ≤ L ·
(∫

ζ qdπ

) 1
q
(∫

d(ξ, ξ̃ )β pπ(dξ, dξ̃ )

) 1
p

.

Moreover, by taking infimumwith respect to all probabilitymeasuresπ withmarginals
P and P̃ , we deduce

RS;P (X) − RS;P̃ (ζ̃ ) ≤ L · ∥∥ζ∥∥qdβ p(P, P̃)β,

from which the conclusion follows, as the cumulative distribution function of ζ is σ

for some σ ∈ S. �

We are now ready to state the main stability result of this section.

Theorem 6 (Quantitative stability of the problem (DRRO)) Let v(y, ξ) be defined as
in (28),

ϑ := inf
y∈Y

sup
P∈P

RS;P
(
v(y, ξ)

)
and ϑ̃ := inf

ỹ∈Ỹ
sup
P∈P̃

RS;P
(
v(ỹ, ξ)

)
.

The following assertions hold.
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(i) If there are positive constants L�, LY and L Z and β ∈ (0, 1] such that

|c(y, ξ, z) − c̃(ỹ, ξ̃ , z̃)| ≤ L� d(ξ, ξ̃ )β + LY d(y, ỹ) + L Z d(z, z̃), (52)

for all (y, ξ, z), (ỹ, ξ̃ , z̃) ∈ Y × � × Ẑ , where Ẑ is a set of IRm containing
Z(y, ξ) for all (y, ξ) ∈ Y ×�, and the feasible set-valued mapping Z is pseudo-
Lipschitzian at (z, (y, ξ)) ∈ Z(y, ξ) × {(y, ξ)} for every (y, ξ) ∈ Y × �, then
there exists a positive constant L such that

|ϑ̃ − ϑ | ≤ L ·
[
sup
σ∈S

‖σ‖q

(
H

(
P, P̃; dp

)
+ H

(
P, P̃; dpβ

)β)+ H(Ỹ , Y )

]
,

(53)
where p and q are Hölder conjugate exponents, i.e., 1

p + 1
q = 1;

(ii) let Y ∗(P) denote the set of optimal solutions of the problem (DRRO). If the
function supP∈P RS,P (v(y, ξ)) satisfies the second order growth condition at
Y ∗(P), that is, there exists a positive constant υ such that

sup
P∈P

RS;P (v(y, ξ)) ≥ ϑ(P) + υd(y, Y ∗(P))2, ∀ y ∈ Y , (54)

then

D(Y ∗(P̃), Y ∗(P)) ≤
√

3

υ
H

(
P, P̃; dpβ

)
; (55)

(iii) in the case when P = {P}, where P is the true probability distribution and
P = B(PN , rN ) (where B(PN , rN ) is defined as in inequality (18),

H

(
P, P̃; dp

)
≤ dp(PN , P) + rN .

Proof Part (i). Observe first that under condition (52), it follows by Proposition 4 that
there exists a positive constant L such that

|v(y, ξ) − v(ỹ, ξ̃ )| ≤ L[d(y, ỹ) + d(ξ, ξ̃ ) + d(ξ, ξ̃ )β ]. (56)

For fixed y and ỹ, define random variables

X(ξ) := v(y, ξ) and X̃(ξ̃ ) := v(ỹ, ξ̃ ) + Ld(y, ỹ).

Then X(ξ) − X̃(ξ̃ ) ≤ L[d(ξ, ξ̃ ) + d(ξ, ξ̃ )β ], which enables us to use Proposition 5
to derive

RP (X) − RP̃ (X̃) ≤ L sup
σ∈S

‖σ‖q

(
dp(P, P̃) + dβ p(P, P̃)β

)
.
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Moreover, by exploiting the property of translation invariance of the risk measure, we
obtain

RP (v(y, ξ))−RP̃

(
v(ỹ, ξ̃ )

)
≤ L

[
sup
σ∈S

‖σ‖q

(
dp(P, P̃)+dβ p(P, P̃)β

)
+ d(y, ỹ)

]
.

Taking infimum w.r.t. P̃ ∈ P̃ and supremum w.r.t. P ∈ P , we obtain

sup
P∈P

RP (v(y, ξ)) − sup
P̃∈P̃

RP̃

(
v(ỹ, ξ̃ )

)

≤ L

[
sup
σ∈S

‖σ‖q sup
P∈P

inf
P̃∈P̃

(
dp(P, P̃) + dβ p(P, P̃)β

)
+ d(y, ỹ)

]

= L

[
sup
σ∈S

‖σ‖
(
D

(
P, P̃;dp

)
+ D

(
P, P̃;dβ p

)β)+ d(y, ỹ)

]
.

Finally, taking infimum with respect to y ∈ Y and then the supremum with respect to
ỹ ∈ Ỹ , we arrive at

inf
y∈Y

sup
P∈P

RP (v(y, ξ)) − inf
ỹ∈Ỹ

sup
P̃∈P̃

RP̃

(
v(ỹ, ξ̃ )

)

≤ L

[
sup
σ∈S

‖σ‖
(
D

(
P, P̃;dp

)
+ D

(
P, P̃;dβ p

)β)+ sup
ỹ∈Ỹ

inf
y∈Y

d(y, ỹ)

]

= L

[
sup
σ∈S

‖σ‖
(
D

(
P, P̃;dp

)
+ D

(
P, P̃;dβ p

)β)+ D(Ỹ , Y )

]
.

The conclusion follows by swapping the position between y, P and ỹ and P̃ .
Part (ii) follows from a similar argument to Part (ii) of Theorem 3. We omit the

details of the proof.
Part (iii) follows from Theorem 1. �

Theorem 6 gives a quantitative description on the impact of the optimal value of

the problem (DRRO) upon the change of the ambiguity set P and the space of the
first stage decision variables Y . It might be helpful to give a few comments about this
result.

– As far as we are concerned, this is the first stability result for the distributionally
robust risk optimization model. Compared to Theorem 3, Theorem 6 requires
additional condition on uniform Lipschitz/Hölder continuity of v(y, ξ) in ξ . The
condition allows us to use a less tighter metric than ζ -metric. In the case when the
set S of distortion functionals consists of a unique function which takes constant
value 1 and β p = 1, Theorem 6 recovers part of Theorem 3 (with Kantorovich–
Wasserstein metric).

– In (56), the term d(ξ, ξ̃ ) arises from pseudo-Lipschitzian continuity of the feasible
set of the second stage problem Z(y, ξ) w.r.t. ξ whereas the term d(ξ, ξ̃ )β arises
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from Hölder continuity of the cost function c w.r.t. ξ , see Proposition 4. When
β = 1, (53) simplifies to

|ϑ̃ − ϑ | ≤ L ·
{
2 sup

σ∈S
‖σ‖q · H

(
P, P̃;dp

)
+ H(Ỹ , Y )

}
.

– The variation of decision variables y, z and ξ in the stability results allows one
to apply the result to multistage decision making process where change of the
underlying uncertainty arises not only from probability distribution at leaves of
the random process but also the tree structure (filtration). In that case, the variation
of ξ must be distinguished from that ofP . The former will also affect the structure
of the decision variable via nonanticipativity conditions, see Liu et al. [37] and
references therein.

– An important case that Theorem 6 may cover is when P is defined by some prior
moment conditions whereas P̃ is its discretization. The discretization is important
because when P is a set of discrete probability measures, the problem (DRRO)
becomes an ordinary minimax optimization problem in finite dimensional space,
consequently we can apply some existing numerical methods in the literature such
as the cutting plane method in Xu et al. [59, Algorithm 4.1] to solve the problem.
Liu et al. [37] derived an error bound for such ambiguity set and its discretization,
see Liu et al. [37, Section 3] for details. Our Theorem 6 applies to such a case when
the ambiguity set in problem (DRRO) is defined and discretized in that manner.

– Dentcheva et al. [10] considered a class of composite risk measures and pre-
sented some asymptotic convergence results when the underlying probability is
approximated by the empirical measure. Our results do not apply to composite
risk measures as they are not law invariant and consequently do not have Kusuoka
representation.

5 Applications

In this section, we outline potential applications of the stability results established in
the preceding sections. We focus on (DRRO) as similar conclusions can be drawn for
(DRO).

5.1 Distretization of (DRRO) through empirical probability distribution

Let us consider problem (DRRO) with the ambiguity set P being defined by
Kantorovich-ball centered at the true probability distribution P with radius �. Con-
sider a perturbation of the problem where P is replaced by the empirical distribution
PN defined in (17) and � is replaced by �N (depending on the data). We denote
the resulting ambiguity set by PN and the corresponding distributionally robust risk
minimization problem by (DRRO’).

This kind of perturbation is often considered for data-driven problems where the
true probability distribution is unknown but it is possible to use empirical data to
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construct an empirical probability distribution, see Esfahani and Kuhn [14]. When
� = 0, problem (DRRO) reduces to an ordinary two-stage riskminimization problem.
In that case, we may interpret PN as a confidence interval of the empirical probability
distribution. We refer readers to Dentcheva et al. [10] for asymptotic convergence of
this kind of approach applied to a class of composite risk functionals.

Our focus here is on the difference between the optimal values of (DRRO) and
(DRRO’). Under the conditions of Theorem 6, we are able to obtain from part (i) of
the theorem and Corollary 1 that

|ϑ̃ − ϑ | ≤ L ·
[
sup
σ∈S

‖σ‖q

(
H
(P,PN ;dp

)+ H
(P,PN ;dpβ

)β)+ H(Ỹ , Y )

]
. (57)

In the case when Ỹ = Y and β = 1, we have from (57) and (25)

|ϑ̃ − ϑ | ≤ 2L · sup
σ∈S

‖σ‖q H (P,PN )

≤2L · sup
σ∈S

‖σ‖q max
(
�N +dr (PN , P))r −�r , (�+dr (P, PN ))r −�r

N

) 1
r .

(58)

Two sub-cases might be of special interest. One is that � = 0 and dr (P, PN ) ≤ �N ;
in this case the above inequality yields

|ϑ̃ − ϑ | ≤ 2L · sup
σ∈S

‖σ‖q (�N + dr (PN , P)) . (59)

This is the case when true probability distribution P lies in the confidence region
of PN . The other is the case when � = �N = 0. In that case, (DRRO) reduces to
the classical risk minimization problem and its perturbation is no more than the well
known sample average approximation. Consequently, (58) can be simplified as

|ϑ̃ − ϑ | ≤ 2L · sup
σ∈S

‖σ‖q dr (PN , P). (60)

5.2 Optimal quantization

Dupačová et al. [13] propose scenario reduction methods, which aim at simplifying a
given discrete probability measure. The underlying techniques are based on heuristics
involving the Wasserstein distance and the methods have been developed further by
Heitsch and Römisch [26,27] and other authors. The approach typically reduces the
number of scenarios by cutting atoms from a discrete probability distribution with
small probability or by merging neighboring probability distributions. The heuristics
thus successively produce new probability measures, which are distinct, but close
in the Wasserstein distance to the preceding measure. Some of the algorithms allow
monitoring the Wasserstein distance to the genuine probability measure throughout.

In case that monitoring the distance is not possible or just bounds are available,
the distance dr

(
P, P̃
)
between the genuine measure PN = ∑N

i=1 piδξi (say) and its
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approximation P̃N =∑Ñ
i=1 p̃ jδξ̃ j

can be computed explicitly, it is the objective of the
linear program

min
π

N∑
i=1

Ñ∑
j=1

πi, j · d
(
ξi , ξ̃ j

)r

s.t.
Ñ∑

j=1

πi, j = pi , i = 1, . . . N , (61)

N∑
i=1

πi, j = p̃ j , j = 1, . . . , Ñ and

πi, j ≥ 0, (62)

which is the discrete equivalent of (21)–(22). In this formulation the supporting points
ξi and ξ̃ j possibly differ for both measures PN and PÑ .

For a fixed number Ñ of approximating scenarios, the problem (61)–(62) can also
be considered as optimization problem with variables πi, j and ξ j simultaneously
(i = 1, . . . , N , j = 1, . . . Ñ ).

The problem of finding optimal locations ξ̃ j is occasionally referred to as the facility
location problem. This extended problem is nonlinear and combinatorial, but many
algorithms are discussed in the literature to find optimal, or nearly optimal locations
or quantizers. We refer readers to the work Pagès [40] or to the monograph Graf and
Luschgy [19] for a comprehensive survey. Efficient techniques also employ stochastic
approximation. Kovacevic and Pichler [34] generalize the techniques to stochastic
processes, whilst Pflug and Pichler [43] also propose probabilistic approaches.

We now turn to look into the case when PN is discrete and of the form PN =∑N
i=1 piδξi obtained through an optimal quantization method as outlined above, or

obtained through scenario reduction or a quasi-Monte Carlo method (cf. [29]). For the
support �N = {ξ1, . . . , ξN } of PN , let

βN := max
ξ∈�

min
1≤i≤N

d(ξ, ξi ). (63)

Since �N ⊂ �, it is easy to see that βN is indeed the Hausdorff distance between �

and �N . By Pflug and Pichler [42, Lemma 4.9],

dlK (P, PN ) =
∫

min
1≤i≤N

d(ξ, ξi )P(dξ) ≤ βN . (64)

This upper bound can be employed directly in inequality (57), which establishes a
comparison of the objectives of the stochastic programs in the case when p = 1 and
β = 1 by
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|ϑ̃ − ϑ | ≤ L ·
[
sup
σ∈S

‖σ‖∞ (dlK (P, PN ) + |�N − �|

+ (dK (P, PN ) + |�N − �|)) + H(Ỹ , Y )
]

= L ·
[
2 sup

σ∈S
‖σ‖∞ (βN + |�N − �|) + H(Ỹ , Y )

]
.

In the case when �N = � = 0, the right hand side of the inequality reduces to

L ·
[
2 sup

σ∈S
‖σ‖∞ βN + H(Ỹ , Y )

]
,

which gives rise to an error bound for the ordinary risk minimization problem.
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