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Abstract

Discrete approximation of probability distributions is an important topic in stochastic
programming. In this paper, we extend the research on this topic to distributionally
robust optimization (DRO), where discretization is driven by either limited availability
of empirical data (samples) or a computational need for improving numerical tractability.
We start with a one-stage DRO where the ambiguity set is defined by generalized prior
moment conditions and quantify the discrepancy between the discretized ambiguity
set and the original one by employing the Kantorovich/Wasserstein metric. The
quantification is achieved by establishing a new form of Hoffman’s lemma for moment
problems under a general class of metrics, namely ζ-structures. We then investigate
how the discrepancy propagates to the optimal value in one-stage DRO and discuss
further the multistage DRO under nested distance. The technical results lay down a
theoretical foundation for various discrete approximation schemes to be applied to solve
one stage and multistage distributionally robust optimization problems.
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1 Introduction
A key step in decision making under uncertainty is to quantify the probability distribution
of the underlying uncertain parameters. In some cases we can obtain a sufficiently large
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number of samples or empirical data and use them to construct an approximation of the
true distribution. An advantageous side effect of the latter is that it leads to discretization
of a stochastic programming problem which is an indispensable step for numerical solutions
in many cases. The well-known sample average approximation method in stochastic
programming is fundamentally based on this (cf. Shapiro [27]). A significant drawback
of this approach is that when the sample size is large, solving the resulting optimization
problem may be difficult particularly in a multistage decision making process (cf. Pflug
and Pichler [17]). On the other hand, in his recent monograph, Savage [24] points out
that the number of discretization points must not be too small to ensure sufficiently good
approximations.

In other cases such as signal processing of mobile ad hoc networks, the number of
samples is relatively small and consequently an additional measure may have to be taken to
hedge the risk of inadequate information for approximating the true probability distribution.
These are indeed some main motivations behind scenario models in stochastic optimization
and distributionally robust optimization (see also the recent monograph by Pflug and
Pichler [18] and references therein).

Over the past decade, effectively quantifying uncertainty and addressing the trade-off
between using less information for approximating the true probability distribution such as
samples and securing specified confidence of the resulting approximate optimal decision
has been a challenging research topic in data-driven optimization problems, either because
there is limited number of available samples or it is more desirable to use fewer samples to
increase numerical tractability of the resulting optimization problem as we discussed before.

In this paper, we extend this important topic of research to distributionally robust
optimization. To explain the idea, we consider the following one-stage distributionally
robust minimization problem

min
x∈X

sup
P∈P

EP [f(x, ξ(ω))], (1)

where x is decision vector taking values from a closed set X of IRn, f : IRn × IRk → IR is
a continuous cost function, ξ : Ω → Ξ ⊂ IRk is a vector of random variables defined on
a measurable space (Ω,F), the expectation in (1) is with respect to ω ∈ Ω, P is a set of
probability measures defined by a set of generalized moment conditions

P :=
{
P ∈P(Ω) : EP [Ψ(ξ(ω))] ∈ K

}
, (2)

where Ψ is a random mapping consisting of vectors and/ or matrices with measurable
random components, the mathematical expectation of Ψ is taken w.r.t. each component
of Ψ, P(Ω) denotes the set of all probability measures on Ω and K is a closed convex cone
in the Cartesian product of some finite dimensional vector and/ or matrix spaces.

The DRO model (1) differs from the standard one stage stochastic minimization for-
mulation in that here the true probability distribution of ξ is unknown but there is some
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partial information revealing that it satisfies the generalized prior moment condition (2). To
immunize the risk arising from ambiguity of the true probability distribution, the optimal
decision is taken on the basis of the worst probability measure from P, which is called
the ambiguity set. This kind of robust optimization framework can be traced back to
earlier work of Scarf [25], whose primary aim was to address incomplete information on the
underlying uncertainty in supply chain and inventory control problems. DRO models have
found many applications in operations research, finance and management sciences and the
research on DRO has grown rapidly over the past few decade, see Bertsimas and Popescu
[4], Delage and Ye [5], Wiesemann et al. [33] and references therein.

A great deal of research in the literature to date is devoted to developing tractable
numerical methods for solving DRO by reformulating the inner maximization problem
into a semi-infinite programming problem through Lagrange dualization and further as an
semi-definite programming problem through S-Lemma or dual method, cf. Zymler et al.
[40], Wiesemann et al. [33]. This kind of approach requires the underlying functions in the
objective and moments to have some specific structure in terms of the variable ξ and also
the support set of ξ to have some structure, see Wiesemann et al. [33] for a comprehensive
discussion.

Another important approach pioneered by Pflug and Wozabal [19] is to discretize the
ambiguity set of DRO and then solve the discretized mini-max optimization problem directly
as a saddle point problem in deterministic optimization. The discretization approach has
received increasing attention over the past few years. For instance, Mehrotra and Papp
[14] extend the approach to a general class of DRO problems and design a process which
generates a cutting surface of the inner optimal value at each iterate. Xu et al. [35] observe
that the discretization scheme is equivalent to discrete approximation of the semi-infinite
constraints of the dualized inner maximization problem and apply the well known cutting
plane method (Kelley [12]) to solve the minimax optimization. Under some moderate
conditions, they show convergence of the optimal value of the discretized problem to its
true counterpart as the discretization refines.

While the convergence result gives some qualitative guarantee for asymptotic consistency
of the optimal value, it does not address a quantitative relationship between the sample
size and error of optimal value. This paper aims to fill out the gap. The main contributions
in this regard can be summarized as follows:

We derive a new form of Hoffman’s lemma for the moment problem (2) by showing that
the distance between any probability measure and the ambiguity set P under a generic
metric with ζ-structure (cf. Rachev [21, Chapter 4]) is linearly bounded by the residual of
the moment system (Theorem 2 below) under the Slater condition. These metrics include
the Kantorovich/Wasserstein metric, the total variation metric and Fortet–Mourier metric.
The new Hoffman’s lemma (Section 3) complements the existing results established by Sun
and Xu [31] and Zhang et al. [36], where the distance of probability measures is characterized
by the total variation metric.

We propose a general discretization scheme for the ambiguity set defined by the moment
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problem (2) where the probability measures in the discretized ambiguity set are supported at
a finite subset of Ξ. By exploiting an earlier result due to Pflug and Pichler [18] and the new
Hoffman’s lemma, we establish a quantitative relationship between the distance of P and its
discretized counterpart under Kantorovich (Wasserstein) metric and the Hausdorff distance
between the support sets of the two ambiguity sets of probability measures (Theorem 12,
Section 4).

We investigate the relationship between the DRO problem (1) and its discretization
in terms of the optimal value and quantify the difference of the latter by the Kan-
torovich/Wasserstein distance of P and its discretized counterpart (Theorem 14). The
result lays down a theoretical foundation for a wide range of discretization schemes including
data-driven optimization problems where there is limited availability of samples/ empirical
data.

A key condition that we impose in deriving the new Hoffman’s lemma under ζ-metric is
the Slater condition. This implicitly excludes moment problems with equality constraints.
While this may be viewed as a significant limitation, we note that a number of interesting
moment based ambiguity sets in the literature only involve inequality constraints.

Having established the desired results for one stage stochastic programing problems, we
ask ourselves whether the established results can be extended to multistage setting. As far as
we are concerned, the research on multistage distributionally robust optimization (MDRO)
seems to be still in its infancy with only a few papers appearing on some specific topics. For
instance, Analui and Pflug [1] consider a MDRO model for multistage stochastic programs
where the data and information structure of the baseline model is a tree and the “ambiguity
neighborhoods” around this tree is defined through nested distance. By reformulating the
MDRO as a deterministic minimax saddle point problem, they propose a numerical method
for solving the latter and apply the MDRO model to stochastic production/ inventory
control problem with weekly ordering. Xin et al. [34] propose a distributionally robust
optimization model for multistage news vendor problems where there is an ambiguity in the
distribution of uncertain demand at each stage. They investigate time consistency of the
decision making process. Shapiro [28] formulates the MDRO associated with risk measure
and discuss conditions for time consistency of such formulations of stochastic problems.
Iyengar [10] and Nilim and Ghaoui [15] study the distributionally robust Markov chain
where the ambiguity set is defined through Cartesian product of independent marginal sets
where time consistency follows. Wiesemann et al. [32] study the distributionally robust
Markov decision processes with a new class of ambiguity sets, which contains the above
Cartesian product ambiguity sets as a special case.

In Section 5, we consider a class of multistage distributionally robust minimization
problems with ambiguity at each stage being constructed by conditional prior moments.
We concentrate on investigating the difference between a discretized distributionally robust
minimization problem and its true counterpart in terms of optimal values (Theorem 19,
Section 5). A key difference between Theorem 19 and Theorem 14 is that the error bound
in the former is derived through nested distance of two processes rather than ambiguity sets
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and this prevents us from obtaining Hoffman-type error bound in the multistage setting.

Notation. Throughout the paper, we use the following notation. We use Sn, Sn+ and
Sn− to denote the space of symmetric matrices, the cone of positive semidefinite matrices
and the cone of negative semidefinite matrices in Rn×n. Rn+ denotes the cone of vectors
with non-negative components in Rn. 〈·, ·〉 denotes a bilinear representation of the expected
value, ‖ · ‖ denote the 2-norm for a vector or the Frobenius norm for a matrix.

2 Metrics of probability measures
Let Ω be a sample space set and F be the associated sigma algebra. Let P(Ω) be the set
of all probability measures over the measurable space (Ω,F). We consider a vector valued
measurable function ξ mapping from Ω to Ξ ⊂ Rk. Let B be the Borel sigma algebra in
Rk ∩ Ξ and P ∈ P(Ω). For each set A ∈ B, let P ξ(A) := P (ξ−1(A)) denote the image
measure, which is also known as push-forward measure. Consequently we may focus on
P(Ξ), the set of all probability measures defined on the measurable space (Ξ,B) with
support set contained in Ξ.

In probability theory, various metrics have been introduced to quantify the distance/ dif-
ference between two probability measures; see Athreya and Lahiri [3], Gibbs and Su [7].
Here we adopt the metrics with ζ-structure which subsume a number of interesting metrics.

Let P , Q ∈P(Ξ) and G be a family of real-valued bounded measurable functions on Ξ
and define

dlG (P,Q) := sup
g∈G
|EP [g(ξ)]− EQ[g(ξ)]| . (3)

The distance defined as such is called a metric with ζ-structure which covers a wide range of
metrics in probability theory including the total variation metric, Kantorovich/Wasserstein
metric, bounded Lipschitz metric and some other metrics; see Gibbs and Su [7], Rachev
[21] or Zolotarev [39] and references therein. Specifically, if

G :=
{
g : Ξ→ R| g is B measurable, sup

ξ∈Ξ
|g(ξ)| ≤ 1

}
,

then dlG (P,Q) reduces to the total variation metric, denoted by dlTV .1
If g is restricted further to be Lipschitz continuous with modulus bounded by 1, i.e.,

G =
{
g : sup

ξ∈Ξ
|g(ξ)| ≤ 1, g is Lipschitz continuous with Lipschtiz constant L1(g) ≤ 1

}
,

(4)
1 Note that in some references such as Gibbs and Su [7], the total variation metric is defined by the

maximal difference of two probability measures over all measurable sets of Ξ which is equal to 2dlTV .
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where L1(g) := sup{|g(u)− g(v)|/d(u, v) : u 6= v}, then the resulting metric is known as
bounded Lipschitz metric, denoted by dlBL. If the boundedness of g is lifted in (4), that is,

G = {g : g is Lipschitz continuous and Lipschtiz modulus L1(g) ≤ 1} , (5)

then we arrive at Kantorovich/Wasserstein metric, denoted by dlK . If we relax the Lipschitz
continuity in (5), that is,

G = {g : g is Lipschitz continuous and Lq(g) ≤ 1} ,

with

Lq(g) := inf{L : |g(u)− g(v)| ≤ L‖u− v‖max(1, ‖u‖q−1, ‖v‖q−1)}, u, v ∈ Ξ,

then we obtain Fortet–Mourier metric, denoted by dlFM . If

G =
{
g : g(·) := 1(−∞,t](·), t ∈ Rk

}
,

where
1(−∞,t](ξ) :=

{
1, if ξ ∈ (−∞, t]
0, otherwise,

then we obtain uniform (Kolmogorov) metric, denoted by dlU . It is well-known that
dlTV (P,Q) ∈ [0, 1] and when Ξ is bounded dlK(P,Q) ∈ [0,diam(Ξ)], see Gibbs and Su [7].
Moreover, it follows by Zhao and Guan [37, Lemmas 1–4], that

dlBL(P,Q) ≤ max{dlK(P,Q), dlTV (P,Q)}, (6)
dlFM (P,Q) ≤ max{1, diam(Ξ)q−1} · dlK(P,Q) (7)

and dlU ≤ 1
2dlTV (P,Q).

Based on the ζ-metric, we can define the distance from a point to a set, deviation from
one set to another and the Hausdorff distance between two sets in the space of probability
measures P(Ξ). Specifically, for subset C and C′ of P(Ξ) set

dlG (Q, C) := inf
P∈C

dlG (Q,P ), (8)

D(C′, C; dlG ) := sup
Q∈C′

dlG (Q, C) (9)

and
H(C′, C; dlG ) := max

{
D(C′, C; dlG ), D(C, C′; dlG )

}
. (10)

Here H(C′, C; dlG ) defines the Hausdorff distance between C′ and C under the ζ-metric dlG in
the space of P(Ξ). It is easy to observe that H(C′, C; dlG ) = 0 implies D(C′, C; dlG ) = 0 and

inf
Q∈C

sup
g∈G
|EP [g(ξ)]− EQ[g(ξ)]| = 0
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for any P ∈ C. Recall that {PN} is said to converge to P ∈P weakly if

lim
N→∞

∫
Ξ
h(ξ)PN (dξ) =

∫
Ξ
h(ξ)P (dξ)

for each bounded and continuous function h : Ξ → R. An important property of the
Kantorovich/Wasserstein metric is that it metrizes weak convergence of probability measures,
that is, a sequence of probability measures {PN} converges to P weakly if and only if
dlK(PN , P )→ 0 (cf. Gibbs and Su [7]).

3 Discrete approximation of the ambiguity set
In some practical instances, we might have some additional partial information other than
samples about the true probability distribution P in a decision making problem. Moment
information is one of them. We consider a set of probability distributions defined by (2),
where the unknown true probability distribution P is characterized by the moments of the
reference mapping Ψ. In general P is a set and we know the true probability distribution
lies in the set.

Recall that for each given P ∈P(Ω), the random variable ξ induces the image probability
measure (denoted by P ξ) on Ξ such that EP [Ψ(ξ(ω))] = EP ξ [Ψ(ξ)]. We may thus view the
ambiguity set P as being defined on Ξ, i.e.,

C := {P ∈P(Ξ) : EP [Ψ(ξ)] ∈ K} , (11)

where P(Ξ) denotes the set of all probability measures on the measurable space (Ξ,B)
with Borel sigma-algebra.

The moment condition (11) is considered by Zhang et al. [36]. It covers a wide range of
moment conditions in the literature of distributionally robust optimization by choosing a
specific structure for K, see Zhang et al. [36], Xu et al. [35] for details.

Here we consider a discrete approximation of the ambiguity set C. To streamline the
idea of discretization, let ΞN := {ξ1, . . . , ξN} ⊂ Ξ be a set of points in Ξ. These points
may be samples of ξ or selected in deterministic manner. We look into the ambiguity set of
probability distributions in P(ΞN ) satisfying the moment condition

CN :=
{
P ∈P(ΞN ) : EP [Ψ(ξ)] ∈ K

}
. (12)

This kind of discretization was considered in [35]. Our focus here is to quantify the difference
between CN and C. It is easy to observe that any probability measure in P(ΞN ) can be
presented as P (·) :=

∑N
i=1 pi δξi(·), where δξ(·) denotes the Dirac probability measure

located at ξ and the moment condition reduces to

CN :=

P =
N∑
j=1

pjδξj ∈P(ΞN ) :
N∑
j=1

pjΨ(ξj) ∈ K

 .
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Thus CN ⊂ C. What is unclear is the difference between CN and C and this is indeed one of
the main issues to investigate in this section.

3.1 Hoffman’s Lemma

To quantify the difference between CN and C we first need to study the error bound condition
for the moment system in (11) which quantifies the deviation of any probability measure
Q ∈ P(Ξ) from C. Observe first that if we regard C as the set of solutions to system
EP [Ψ(ξ)] ∈ K, then this is essentially about Hoffman’s lemma (Hoffman [9]) in the space of
probability measures P(Ξ).

For the simplicity of notation, we write 〈P,Ψ(ξ)〉 for EP [Ψ(ξ)] so that we can see P
more clearly as a variable in the moment system and the expected value depends on P
linearly. We need the following condition.

Assumption 1 (The Slater condition). The system (11) satisfies the Slater condition,
that is, there exist P0 ∈P(Ξ) and a constant α > 0 such that

〈P0,Ψ(ξ)〉+ αB ⊂ K, (13)

where B is the unit ball in the space of K.

At this point, it might be helpful to remind readers that the Slater condition (13) differs
from the Slater type condition

αB ⊂ −{〈P,Ψ(ξ)〉 : P ∈P(Ξ)}+K. (14)

The latter has been widely used in the literature of distributionally robust optimization, see
for example Shapiro [26], Xu et al. [35], Zhang et al. [36] and the references therein. It is
well known that the Slater condition is stronger than the Slater type condition in that the
former implies the latter but not conversely. In particular, the latter may hold in moment
problems with equality constraints whereas the former does not.

For the given P0 in Assumption 1, let

∆ := max
P∈P(Ξ)

dlG (P, P0). (15)

Following our discussions in Section 2, it is easy to figure out a bound for ∆ when the
ζ-metric takes a specific form. For instance, ∆ is bounded by 1 under the total variation
metric dlTV and the Bounded Lipschitz metric dlL, by 1/2 under the uniform (Kolmogorov)
metric dU . In the case when the support set Ξ is bounded, the constant is bounded by
diam(Ξ) under the Kantorovich/Wasserstein metric and the Fortet–Mourier metric.

The theorem below states that the distance between Q and C under ζ-metric is linearly
bounded by the residual of the moment system.
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Theorem 2 (Hoffman’s Lemma). Let ∆ be defined as in (15). Suppose that Assumption 1
holds. Then

dlG (Q, C) ≤ C inf
K∈K
‖K − 〈Q,Ψ(ξ)〉‖ (16)

for any Q ∈ P(Ξ), where C := ∆
α and α is the positive constant defined in the Slater

condition (Assumption 1).

Proof. Let ρQ := infK∈K ‖K − 〈Q,Ψ(ξ)〉‖. Since K 6= ∅, ρQ <∞. Define

Q :=
(

1− ρQ
ρQ + α

)
Q+ ρQ

ρQ + α
P0.

Obviously Q ∈ P(Ξ). Moreover, by the definition of ρQ, for any ε > 0, there exists
W ∈ K − 〈Q,Ψ(ξ)〉 such that ‖W‖ ≤ ρQ + ε. Thus (ρQ + ε)−1W ∈ B, the unit ball in the
space where K is defined. The Slater condition (13) ensures

−α(ρQ + ε)−1W ∈ K − 〈P0,Ψ(ξ)〉.

The inclusion, and the fact that W ∈ K − 〈Q,Ψ(ξ)〉 and K is convex, give rise to

K − 〈Q,Ψ(ξ)〉 3
(

1− ρQ
ρQ + α

)
W − ρQ

ρQ + α
α(ρQ + ε)−1W = αε

(ρQ + ε)(ρQ + α)W.

Driving ε to zero, we arrive at 0 ∈ K − 〈Q,Ψ(ξ)〉, which means Q ∈ C. Subsequently,

dlG (Q, C) ≤ dlG (Q,Q) = sup
g∈G

{
〈Q, g〉 −

〈(
1− ρQ

ρQ + α

)
Q+ ρQ

ρQ + α
P0, g

〉}
= ρQ
ρQ + α

sup
g∈G
{〈Q, g〉 − 〈P0, g〉}

≤ ∆
α

inf
K∈K
‖K − 〈Q,Ψ(ξ)〉‖.

The last inequality is derived by replacing ρQ + α in the denominator with α, the definition
of the ζ-metric in (3), and the definitions of ∆ and ρQ. The proof is complete.

It might be helpful to make a few comments about Theorem 2. Through ∆, the constant
C in (16) depends on the ζ-metric whereas the residual error infK∈K ‖K − 〈Q,Ψ(ξ)〉‖ does
not. For instance, C equals to 1/α under total variation metric dlTV and the Bounded
Lipschitz metric dlL, and 1/2α under uniform (Kolmogorov) metric dlU . If the support set
Ξ is bounded, the constant is bounded by diam(Ξ)/α under the Kantorovich/Wasserstein
metric and the Fortet–Mourier metric dlFM .

Hoffman’s lemma for the moment problem is first established by Sun and Xu [31] for
classical moment problems with equality and inequality constraints and matrix moment
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constraints. The authors employ the total variation metric for characterizing the distance of
probability measures and use the result for stability analysis of a general class of one stage
distributionally robust optimization and equilibrium problems with moment constraints,
see Sun and Xu [31] for details. Zhang et al. [36] extend the discussion to a general cone
constrained moment system defined as in (32) below. In both works, the proof of Hoffman’s
lemma depends on the total variation metric in that it requires some delicate reformulation
of the distance as a minimax linear programming problem through Lagrange duality. It
is unclear whether or not similar results can be established under other metrics such as
Kantorovich/ Wasserstein metric and Fortet–Mourier metric. Moreover, the total variation
metric has its limitation particularly when it is used to measure the discrete approximation
of a continuous probability measure because the distance is always equal to 2.

Theorem 2 is partly motivated to address the challenge. It turns out that by adopting
Robinson [22], we are able to derive Hoffman’s lemma for the moment system (see (11)
directly without resorting to Lagrange duality as in Sun and Xu [31], Zhang et al. [36].
This is primarily because under the Slater condition, we can explicitly find a probability
measure Q̄ in the ambiguity set whose distance from P can be described through (3).

On one hand, this allows us to establish a new version of Hoffman’s lemma under generic
ζ-metric and this will serve us for the rest of the discussion on discrete approximation in
this paper. On the other hand, as we can see from the proof, Theorem 2 requires stronger
conditions, that is, the Slater condition (13) as opposed to the Slater type conditions in
Sun and Xu [31], Zhang et al. [36], which means our new result cannot be applied to a
moment problem with equality constraints. Moreover, we implicitly require boundedness of
the support set Ξ of ξ to ensure boundedness of ∆ in order for the result to be valid for the
Kantorovich/Wasserstein metric and Fortet-Mourier metric. Another important difference
between this new Hoffman’s lemma and the earlier ones in Sun and Xu [31], Zhang et al.
[36] is that no explicit assumption on the weak compactness of the ambiguity set C is needed.
This allows us to lift some integrability conditions on Φ(ξ) such as Assumption 2.1 in Zhang
et al. [36].

In what follows, we explain how the constant C in the error bound (16) can be figured
out in some concrete moment problems and show the limitations of Theorem 2.
Example 3 (Moment system due to Delage and Ye [5], So [30]). Consider the ambiguity set

C :=
{
P ∈P(Ξ) : EP [ξ − µ0]TΣ−1

0 EP [ξ − µ0] ≤ γ1
EP [(ξ − µ0)(ξ − µ0)T ] � γ2Σ0

}
, (17)

where γ1 and γ2 are nonnegative constants, µ0 and Σ0 are the sample mean and sample
covariance. The ambiguity has been first considered by Delage and Ye [5] and further
studied by So [30]. We may reformulate C in the form of (2) by employing Schur complement
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with

Ψ(ξ) :=


[
−Σ0 µ0 − ξ
(µ0 − ξ)T −γ1

]
(ξ − µ0)(ξ − µ0)T − γ2Σ0

 ,
K = K1 ×K2 where K1 = Sk+1

− and K2 = Sk−, k is the dimension of ξ. Let γ1 > 0, γ2 > 1
and P0 be the empirical probability measure. Then (17) satisfies the Slater constraint
qualification with α = min{γ1, (γ2 − 1)λk, λk}, where λk denotes the smallest eigenvalue of
Σ0. Subsequently, the constant modulus of (16) is

C = ∆
min{γ1, (γ2 − 1)λk, λk}

and the corresponding norm of the residual is sum of spectral norm ‖ · ‖2 on Sk and Sk+1.
Example 4 (Variation of the moment system (17)). Consider the following ambiguity set

C =
{
P ∈P(Ξ) : |EP [ξ − µ0]| ≤ γ1

‖EP [(ξ − µ0)(ξ − µ0)T ]− Σ0‖2 ≤ γ2

}
,

where γ1 and γ2 are small positive numbers, µ0 and Σ0 are the sample mean and sample
covariance, |a| denotes the absolute value of a vector a with the absolute value taken
componentwise. Using the property of the norm, we can reformulate Ψ in the form of (2)
with

Ψ(ξ) =


ξ − µ0 − γ1
µ0 − ξ − γ1
(ξ − µ0)(ξ − µ0)T − Σ0 − γ2I
−(ξ − µ0)(ξ − µ0)T + Σ0 − γ2I


and K = Rk− × Rk− × Sk− × Sk−, where k is the dimenstion of random variable ξ. If γ1 > 0
and γ2 > 0, Slater condition holds with α = min{γ1, γ2} and then the constant modulus
of (16) is

C = ∆
min{γ1, γ2}

.

Similarly, the norm of the residual is the sum of L1-norm on R2k and two spectral norms
on Sk.
Example 5 (Moment system due to Liu et al. [13]). Let

C :=
{
P ∈P(Ξ) : |EP [ξ − µ0]| ≤ γ1,

‖EP [(ξ − µ0)(ξ − µ0)T ]− Σ0‖max ≤ γ2

}
,

where ‖A‖max = max |aij |. It is easy to verify that ‖ · ‖max is a norm for the matrix but
without the sub-multiplicative property. The ambiguity set has been considered in Liu et al.
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[13]. Let k be the dimension of random vector ξ, q = 1
2(k2 + 3k), ψI(ξ) = ξ − µ̄ and ψJ(ξ)

denote the elements of the upper triangular of matrix (ξ − µ0)(ξ − µ0)T − Σ0. We may
reformulate C in the form of (2) with

Ψ(·) =


ΨI(·)− γ1
−ΨI(·)− γ1
ΨJ(·)− γ2
−ΨJ(·)− γ2


and K = R

k2+3k
2

− . Analogously to Example 4, the Slater condition is satisfied when γ1 > 0
and γ2 > 0. The constant modulus of (16) is

C = ∆
min{γ1, γ2}

and the norm of the residual is the L1-norm in the space of R
k2+3k

2 .
Note that there is a limitation on the application of the established Hoffman’s lemma.

Consider for example an ambiguity set

P :=
{
P ∈P(IRm1 × IRm2) : EP [Aξ + Bξ̃] = b, P{(ξ, ξ̃) ∈ Ξi} ∈ [pi,pi], i ∈ I

}
, (18)

where P represents a joint probability distribution of the random vector ξ ∈ IRm1 and some
auxiliary random vectors ξ̃ ∈ IRm2 , A ∈ IRk×m1 , B ∈ IRk×m2 , I = {1, · · · , I}

Ξi = {(ξ, ξ̃) : Ciξ + Diξ̃ �Ki ci}

with Ci ∈ IRli×m1 , Di ∈ IRli×m1 , ci ∈ IRli , Ki being proper cone and y′′ �Ki y′ means
y′ − y′′ ∈ Ki. The ambiguity set was first considered by Wiesemann, Kuhn and Sim [33].
Unfortunately, Lemma 2 is not applicable here as the moment system contains equality
constraints and it remains an open question if similar error bounds can be established for
the moment system. On a positive footnote, the DRO problems with the ambiguity set
defined as such can be reformulated as a numerical tractable optimization problem (see
[33]) which does not require discretization approach as what Lemma 2 is aimed for in the
later section.

A direct application of Hoffman’s lemma is to the case when the ambiguity set is defined
by a parametric moment system

Ct := {P ∈P(Ξ) : EP [Ψt(ξ)] ∈ K} , (19)

where t is a parameter in Banach space and Ψ0(ξ) = Ψ(ξ). In practice, the parameter t
may represent some statistical quantities of ξ such as mean value and standard deviation
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calculated through samples, for instance, in Example 4, the true mean value µ0 and co-
variance matrix Σ0 may be unknown but it is possible to obtain an estimate of them through
empirical data. It is of both theoretical and computational interest to see how changing
these estimates affects the ambiguity set; see Delage and Ye [5], Sun and Xu [31], Zhang
et al. [36] for more comprehensive discussions.

Corollary 6 (Application of the Hoffman’s lemma to parametric moment sys-
tems). Suppose that

(a) Assumption 1 holds for the system (19) with t = 0, that is, there exists a positive
number α and P0 ∈P(Ξ) such that (13) holds,

(b) there exist positive constants ρ0, L and a measurable function k(ξ) such that

‖Ψt1(ξ)−Ψt2(ξ)‖ ≤ k(ξ)‖t1 − t2‖,

for all t1, t2 with ‖ti‖ ≤ ρ0 for i = 1, 2 and 〈Q, κ(ξ)〉 ≤ L for all Q ∈ Ct with ‖t‖ ≤ ρ0.

Then there exist positive numbers α̃ < α and ρ∗ ≤ ρ0 such that

H(Ct1 , Ct2 ; dlG ) ≤ ∆
α̃
L‖t1 − t2‖ for all t1, t2 with ‖t1‖, ‖t2‖ ≤ ρ∗,

where ∆ is defined in (15).

Proof. Observe first that under condition (b),

〈P0,Ψt(ξ)〉 ≤ 〈P0,Ψ0(ξ)〉+ ‖t‖〈P0, κ(ξ)〉

and 〈P0, κ(ξ)〉 ≤ L. Thus we can set ρ∗ sufficiently small such that for any t ∈ B(0, ρ∗), the
ball centered at 0 with radius ρ∗, the moment system (19) satisfies the Slater condition

〈P0,Ψt(ξ)〉+ α̃B ⊂ K.

With the Slater condition above, we can apply Theorem 2 to the parametric moment system,
that is, for any t ∈ B(0, ρ∗) and P ∈P(Ξ),

dlG (Q, Ct) ≤
∆
α̃

inf
K∈K
‖K − 〈Q,Ψt(ξ)〉‖.

Let t1, t2 ∈ B(0, ρ∗). For any Q ∈ Ct1 ,

dlG (Q, Ct2) ≤ ∆
α̃

inf
K∈K
‖K − 〈Q,Ψt2(ξ)〉‖

≤ ∆
α̃
‖〈Q,Ψt1(ξ)〉 − 〈Q,Ψt2(ξ)〉‖ ≤ ∆

α̃
L‖t1 − t2‖,
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where the second inequality follows from 〈Q,Ψt1(ξ)〉 ∈ K and the last inequality follows
from condition (b) of the corollary. Exchanging the position between t1 and t2 we deduce

dlG (Q, Ct1) ≤ ∆
α̃
L‖t1 − t2‖ for all Q ∈ Ct2 .

The rest follows from the definition of H(·, ·, dlG ).

Corollary 6 gives an error bound on change of of ambiguity set Ct against perturbation
of parameter value t. Compared to a similar result, i.e., Zhang et al. [36, Theorem 2.1], our
new error bound is established for all metrics with ζ-structure. Of course, our results are
derived under the Slater condition rather than Slater type conditions, which means that
they are not necessarily applicable to moment problems with equality constraints.

3.2 Discrete approximation of the ambiguity set under Kantorovich met-
ric

With the new Hoffman’s lemma, we are ready to discuss quantification of the difference
between the ambiguity sets C and CN . Here we give a sketch of ideas. Since CN ⊂ C, it
suffices to estimate the deviation of C from CN , that is, to estimate the distance (metric)
from any P ∈ C to CN . We proceed the discussion in two steps:

(a) estimate the distance from P ∈P (Ξ) to P
(
ΞN
)
and

(b) estimate the distance from a point in P
(
ΞN
)
to CN .

The distance from P to CN is then bounded by the sum of the two distances described
above through triangle inequality.

The quantification is not possible under generic ζ-metric because the total variation
metric between a continuous probability measure and a discrete probability measure over Ξ
is always equal to 1 (see, e.g., Gibbs and Su [7]). Thus, we restrict our discussion to the
Kantorovich/Wasserstein metric.

Recall that in the literature of probability theory, the Kantorovich/Wasserstein metric
is also defined as

dlK(P,Q)r = inf
π∈Π

{∫∫
Ξ×Ξ

d(ξ, ξ′)rπ(dξ, dξ′)
∣∣∣∣∣ P (A) = π(A× Ξ′), ∀A ∈ B,
Q(B) = π(Ξ×B), ∀B ∈ B′

}
(20)

where Π denotes the set of all probability measures in the space (Ξ,B)× (Ξ′,B′), r ≥ 1
and d is a metric on Ξ, which is usually assumed to be induced by the Euclidean norm.

By the Kantorovich–Rubinstein theorem, the collection of all Lipschitz-1 functions
(cf. (5)) induces the Kantorovich/Wasserstein metric dlK whenever r = 1; see Rachev
[21] for this duality relation. A nice interpretation of formulation (20) is Kantorovich’s
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representation of Monge’s transportation problem where dlK(P,Q) represents the minimal
cost of transference of goods spread over Ξ under distribution P to that of Q.

The formulation (20) highlights an important property of the Wasserstein distance.
Indeed, the problem formulation (20) is linear in π, and thus the complete machinery from
linear programming is available to compute or investigate the distance. The Kantorovich–
Rubinstein theorem provides the dual formulation, which is linear as well. This setting is
perfectly adapted to stochastic optimization problems, as the bounds obtained are tight,
which is particularly important for numerical approximations. This is in significant contrast
to other metrics (as the Prokhorov metric), which metrize weak convergence as well.

Discrete approximations

Let ΞN := {ξ1, . . . , ξN} be a subset of Ξ and set

βN := max
ξ∈Ξ

min
1≤i≤N

d(ξ, ξi). (21)

Since ΞN ⊂ Ξ, it is easy to see that βN is indeed the Hausdorff distance between Ξ and ΞN .
For a given ΞN = {ξ1, . . . , ξN}, let {Ξ1, . . . ,ΞN} be a Voronoi tessellation of Ξ, that is,

Ξi ⊆
{
y ∈ Ξ : ‖y − ξi‖ = min

k
‖y − ξk‖

}
for i = 1, . . . , N

are pairwise disjoint subsets forming a partition of Ξ. For a fixed P ∈P(Ξ), let pi = P (Ξi)
for i = 1, . . . , N and define

PN (·) :=
N∑
i=1

pi δξi(·). (22)

The following result provides an upper bound for the discrete approximation.

Proposition 7 (cf. Pflug and Pichler [18, Lemma 4.9]). Let P ∈P(Ξ) be fixed and PN be
defined as in (22). Then

dlK(P, PN ) =
∫

min
1≤i≤N

d(ξ, ξi)P (dξ) =
N∑
i=1

∫
Ξi
d(ξ, ξi)P (dξ) ≤ βN . (23)

In what follows, we call PN defined by (22) the Voronoi projection of the probability
measure P on space P(ΞN ). PN converges to P under Kantorovich metric when βN tends
to zero.
Remark 8 (Quantizers). The centers ξ1, . . . , ξN may be samples or selected in a deterministic
manner. In either case, we are able to estimate the rate of convergence for βN .

Note that finding the best locations of ξ1, . . . , ξN is a facility location problem which is
non-convex, non-linear and NP hard. However, Dudley [6, p. 42] establishes a tight bound
for dlK(P, PN ) as follows:

dlK(P, PN ) ∼ N−1/n,
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where n is the dimension of the state space, i.e., ξi ∈ Rn. This bound cannot be improved
asymptotically as N goes to infinity. Graf and Luschgy [8, Section 7.2] gave a description
on the density of the optimal quantization points ξ1, . . . , ξN .

There are other schemes which provide sub-optimal locations (i.e., Graf and Luschgy [8,
Example 4.17] establish the error bound for equi-partition case). Convergence is guaranteed
as long as the diameter of the largest ball tends to 0. Specific tessellations such as power
diagrams and multiplicatively weighted Voronoi diagrams are therefore reasonable choices
with lower computational costs.

We shall investigate the case of randomly chosen quantization points further. For
example, if ξ1, . . . , ξN is an independent and identically distributed (iid) sample, then we
are able to employ a large deviation theorem to establish an exponential rate of convergence
as stated in the proposition below.

Proposition 9. Let ξ1, . . . , ξN be iid copies of ξ. Assume:

(a) Ξ is bounded and

(b) the true probability distribution of ξ is continuous and there exist positive constants
C, ν and δ0 such that

P (‖ξ − ξ0‖ ≤ δ) > Cδν

for any fixed point ξ0 ∈ Ξ and δ ∈ (0, δ0).

Then for any small number ε > 0, there exist positive constants β(ε) and C(ε) depending on
ε such that

Prob(βN ≥ ε) ≤ C(ε)e−β(ε)N (24)

when N is sufficiently large. Here the probability measure “Prob” is understood as the
product of the true (unknown) probability measure of P over the measurable space Ξ×Ξ× . . .
with product Borel sigma-algebra B ×B × . . . .

Proof. We use Xu et al. [35, Lemma 3.1] to prove the result with G(x, ξ) = −‖x− ξ‖. It
suffices to verify the conditions there. Condition (a) is satisfied when Ξ is bounded. The
so-called tail behaviour condition is guaranteed by our condition (b) through Anderson
et al. [2, Proposition 1]. The rest follows from Xu et al. [35, Lemma 3.1].

Remark 10. It might be interesting to note that using the samples generated by the true
probability distribution P as we described above is not the most efficient way to reduce βN ;
Graf and Luschgy [8, Section 7.2] describe the most efficient distribution.

Further, if ξ1, . . . , ξN are generated by a uniform distribution over the support Ξ,
denoted by P ′, then βN follows an extreme value distribution (a Gumbel distribution) with

lim
N→∞

N(2βN )d − logN
log logN = d− 1 with probability 1;
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see Zhigljavsky and Žilinskas [38, Section 2.2] and the details on the theory of maximum
spacing. This means that βN depends on the dimension of ξ. In the case when ξ has several
components, we might need a large N to get a moderate bound for βN .

We now move on to estimate the distance between P ∈P(ΞN ) to CN . This amounts to
Hoffman’s lemma for the discretized moment system (12).

Corollary 11 (Hoffman’s lemma for the discrete moment problem (12)). Let βN
be defined as in (21). Suppose:

(a) Assumption 1 holds,

(b) Ξ is bounded and βN tends to zero as N →∞, and

(c) Ψ(·) is continuous and bounded on Ξ.

Then for any positive number α̂, there exists a positive integer N0 such that when N ≥ N0

dlK(Q, CN ) ≤ δΞ
α̂

inf
K∈K
‖K − 〈Q,Ψ(ξ)〉‖ for all Q ∈P(ΞN )

where δΞ denotes the diameter of Ξ.

Proof. Let PN be the Voronoi projection of P0 where P0 is the probability measure satisfying
the Slater condition (13). Since βN converges to zero as N tends to infinity, it follows
by (23), dlK(PN , P0)→ 0. The latter implies that PN converges to P0 weakly because the
Kantorovich metric metrizes weak convergence. Moreover, under the Slater condition (13),
there exists a sufficiently large N∗ such that for N ≥ N∗,

〈PN ,Ψ(ξ)〉+ α̂B ⊂ K, (25)

which means that the system (12) satisfies the Slater condition when N is sufficiently large.
By Theorem 2, for any Q ∈P(ΞN )

dlK(Q, CN ) ≤ ∆
α̂

inf
K∈K
‖K − 〈Q,Ψ(ξ)〉‖ ≤ δΞ

α̂
inf
K∈K
‖K − 〈Q,Ψ(ξ)〉‖,

where ∆ is defined in (15) (with G being defined by (5)) and δΞ is the diameter of Ξ. This
completes the proof.

With Proposition 7 and Corollary 11 we are ready to present our main result in this
section which quantifies the approximation of CN to C under Kantorovich metric.

Theorem 12 (Quantification of discrete approximation of the ambiguity set). Suppose:

(a) Assumption 1 holds,
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(b) Ξ is bounded and βN tends to zero as N →∞ and

(c) each component of Ψ(·) is Lipschitz continuous on Ξ with Lipschitz modulus L.

Then for N sufficiently large

HK(CN , C; dlK) ≤
(

1 + LρδΞ
α̂

)
βN , (26)

where βN is defined in (21), δΞ denotes the diameter of Ξ, ρ = ‖E‖ and E denotes a matrix
of size Ψ(ξ) with each component being 1.

Proof. By the definition of C and CN , CN ⊂ C in that ΞN ⊂ Ξ. It is sufficient to show (26)
for D(C, CN ; dlK). For fixed P ∈ C, let PN be the Voronoi projection of P . If PN ∈ CN , then

dlK(P, CN ) ≤ dlK(P, PN ) ≤ βN , (27)

where the second inequality follows from (23). Thus, we are left to the case with that
PN 6∈ CN . Let QN ∈ arg min dlK(PN , CN ). Existence of QN is due to the fact that CN is a
compact set. By the definition of QN , PN and the triangle inequality of the Kantorovich
metric,

dlK(P, CN ) ≤ dlK(P,QdN ) ≤ dlK(P, PN )+dlK(PN , QN ) = dlK(P, PN )+dlK(PN , CN ). (28)

From (27), dlK(P, PN ) is bounded by βN . On the other hand, by Corollary 11,

dlK(PN , CN ) ≤ δΞ
α̂

inf
K∈K
‖K − 〈PN ,Ψ(ξ)〉‖ (29)

for N sufficiently large (such that (25) holds). Combining (28) and (29) and observing that
〈P,Ψ(ξ)〉 ∈ K, we have

dlK(P, CN ) ≤ βN + δΞ
α̂

inf
K∈K
‖K − 〈PN ,Ψ(ξ)〉‖

≤ βN + δΞ
α̂
‖〈P,Ψ(ξ)〉 − 〈PN ,Ψ(ξ)〉‖. (30)

Moreover, under condition (c), every component Ψi,j of Ψ is Lipschitz continuous on Ξ with
modulus being bounded by L, which means Ψi,j/L is Lipschitz continuous with modulus
bounded by 1. By the definition of Kantorovich metric (cf. (3) and (5)), we obtain

〈Q,Ψi,j(ξ)/L〉 − 〈P,Ψi,j(ξ)/L〉 ≤ dlK(Q,P ),

hence
‖〈PN ,Ψ(ξ)〉 − 〈P,Ψ(ξ)〉‖ ≤ Lρ dlK(PN , P ) ≤ LρβN , (31)

where ‖ · ‖ denotes the Frobenius norm. Combining (30) and (31) we arrive at

dlK(P, CN ) ≤ βN + LρδΞ
α̂

βN =
(

1 + LρδΞ
α̂

)
βN .

This completes the proof.

18



P

PN
PN

QN

P

PN

Figure 1: dlK(P, CN ) ≤ dlK(P, PN ) + dlK(PN , QN )

Figure 1 gives a geometric interpretation of the relationship between CN and C. Clearly
the distance between P and CN is bounded by dlK(P,QN ). On the other hand, dlK(P,QN )
is bounded by the sum of dlK(P, PN ) and dlK(PN , QN ) which are respectively bounded by
βN and δΞ

α infK∈K ‖K − 〈PN ,Ψ(ξ)〉‖ through Hoffman’s Lemma (Theorem 2).
Remark 13. The significance of Theorem 12 is that it gives a quantitative description for
difference between two ambiguity sets CN and C in terms of Kantorovich/Wasserstein metric
and an explicit bound for the discrepancy in terms of Hausdorff distance between ΞN and Ξ.

If ΞN is constructed in a deterministic way, then we can easily figure out βN . On the
other hand, if ΞN is composed of iid samples, then, through Proposition 9, we can establish
an exponential rate of convergence for CN → C under the Kantorovich/Wasserstein metric.

Theorem 12 may be applied to parametric moment system (19). Under the conditions
of Corollary 6, we may establish

HK(CtNN , Ct0 ; dlK) ≤ HK(CtNN , CtN ; dlK)+HK(CtN , Ct0 ; dlK) ≤
(

1 + LρδΞ
α̂

)
βN+∆

α̃
L‖tN−t0‖.

Here we write the parameter tN explicitly to indicate that the parameter may also depend
on {ξ1, · · · , ξN}. We leave the details to the interested reader.

4 One-stage distributionally robust optimization problem
With quantification of the difference between CN and C in the preceding section, we now move
on to investigate how the discrepancy propagate in the resulting one-stage distributionally
robust optimization problems in terms of the optimal value.

Let us start by rewriting (1) as

(DRO) min
x∈X

max
P∈C

EP [f(x, ξ)] (32)

so that we can focus on probability measures over Ξ. In the literature of distributionally
robust optimization, a lot of research has been focused on the case that f , Ψ and K
take a specific structure, and problem (32) is reformulated as a tractable semidefinite
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programming (SDP) problem, see for instance Delage and Ye [5], Popescu [20], Wiesemann
et al. [33], Zymler et al. [40] and references therein. Here we consider general cases without
assuming any specific structure of f , Ψ or Ξ. Let CN be defined as in (12). We consider a
discrete distributionally robust optimization problem

(DDRO) min
x∈X

max
P∈CN

EP [f(x, ξ)] (33)

and regard DDRO (33) as an approximation of DRO (32).
The program DDRO (33) can be written as

(DDRO’)

min
x∈X

max
(p1,...,pN )∈IRN+

∑N
j=1pjf(x, ξj)

s.t.
N∑
j=1

pjΨ(ξj) ∈ K,∑N
i=1 pi = 1.

The latter is a deterministic saddle point problem for which various existing numerical
methods can be applied, see Xu et al. [35] and references therein. Our focus here is not
on numerical solutions of DDRO (33), instead we are interested in deriving a quantitative
description on the difference between DDRO (33) and DRO (32) in terms of the optimal
value.

For the purpose of the stability analysis, we need to introduce another metric which is
closely related to the objective function f(x, ξ). Let

G := {g(·) := f(x, ·) : x ∈ X}. (34)

For any two probability measures P,Q ∈P(Ξ), let

D(P,Q) := sup
g∈G

|EP [g]− EQ[g]|. (35)

Here we implicitly assume that D(P,Q) < ∞. From (35), we can see immediately that
D(P,Q) = 0 if and only if

EP [g] = EQ[g] for all g ∈ G ,

which means that weak convergence of a sequence of probability measures {PN} to P
entails uniform convergence of EPN [f(x, ξ)] to EP [f(x, ξ)]. This kind of distance has been
widely used for stability analysis in stochastic programming and it is known as pseudometric
in that it satisfies all properties of a metric except that D(Q,P ) = 0 does not necessarily
imply P = Q unless the set of functions G is sufficiently large (in this case, the distance D
is said to be strict). For a comprehensive discussion of the concept and related issues, see
Römisch [23, Sections 2.1–2.2]. Obviously the pseudo-metric is a special case of a metric
with ζ structure (3).
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Employing the pseudometric instead of a metric in (8) one may define a pseudo-distance
from a single probability measure Q ∈P(Ξ) to a set of probability measures A1 ⊂P(Ξ).
This setting generalizes the deviation (excess, cf. (9)) and the Hausdorff (pseudo)distance
between two sets of probability measures A1 and A2, cf. (10).

We are now ready to state our main stability result.

Theorem 14. Let ϑ and ϑN denote the optimal values of (32) and (33) respectively, and
they are attained by the corresponding optimal solutions x∗, P ∗ and xN , PN . Assume the
setting and conditions of Theorem 12. Assume further:

(a) for each fixed x, there exists a positive constant κ independent of x such that for all
x ∈ X it holds

|f(x, ξ′)− f(x, ξ′′)| ≤ κ‖ξ′ − ξ′′‖ for all ξ′, ξ′′ ∈ Ξ;

(b) X is bounded and for each x ∈ X, EP [f(x, ξ)] <∞ for all P ∈ C.

Then

(i) there exists a positive constant C1 such that

|ϑ− ϑN | ≤ C1βN (36)

where βN is defined as in (21).

(ii) If, in addition, EP ∗ [f(·, ξ)] satisfied the second order growth condition at point x∗,
that is,

EP ∗ [f(x, ξ)]− EP ∗ [f(x∗, ξ)] ≥ r‖x− x∗‖2 for all x ∈ X, (37)

for a positive constant r, then there exists a positive constant C2 such that

‖x∗ − xN‖ ≤ C2β
1
2
N . (38)

Proof. Part (i). Under condition (a), f(x, ·)/κ is uniformly Lipschitz continuous over Ξ
with modulus bounded by 1. By the definition of pseudometric

H (CN , C) ≤ κ H(CN , C; dlK).

On the other hand, under the condition of Theorem 12, we have from the theorem

H (CN , C) ≤ κ
(

1 + LρδΞ
α̂

)
βN . (39)
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Consequently,
ϑ− ϑN = sup

P∈C
EP [f(x∗, ξ)]− sup

P∈CN
EP [f(xN , ξ)]

≤ sup
P∈C

EP [f(xN , ξ)]− sup
P∈CN

EP [f(xN , ξ)]

≤H (CN , C)
≤ κ

(
1 + LρδΞ

α̂

)
βN .

Note that since CN ⊂ C it holds that ϑ− ϑN ≥ 0. This shows (36) with C1 = κ
(
1 + LρδΞ

α̂

)
.

Part (ii). By definition

ϑ− ϑN = EP ∗ [f(x∗, ξ)]− EPN [f(xN , ξ)]
= EP ∗ [f(x∗, ξ)]− EP ∗ [f(xN , ξ)] + EP ∗ [f(xN , ξ)]− EPN [f(xN , ξ)]
≤ −r‖x∗ − xN‖2 + EP ∗ [f(xN , ξ)]− EPN [f(xN , ξ)]
≤ −r‖x∗ − xN‖2 + sup

P∈C
EP [f(xN , ξ)]− sup

P∈CN
EP [f(xN , ξ)]

≤ −r‖x∗ − xN‖2 + κ
(
1 + LρδΞ

α̂

)
βN ,

where the first inequality follows from the growth condition (37), the third inequality follows
from (39). The last inequality is due to the fact that

sup
P∈C

EP [f(xN , ξ)]− sup
P∈CN

EP [f(xN , ξ)] = sup
P∈C

inf
Q∈CN

EP [f(xN , ξ)]− EQ[f(xN , ξ)]

≤ sup
P∈C

inf
Q∈CN

sup
x∈X

EP [f(x, ξ)]− EQ[f(x, ξ)]

≤ sup
P∈C

inf
Q∈CN

κdlK(P,Q)

≤ D(C, CN ; dlK).

Recall that ϑ− ϑN ≥ 0, we have

‖x∗ − xN‖ ≤
√
κ/r

(
1 + LρδΞ

α̂

)
βN ,

which means (38) holds with C2 =
√
κ/r

(
1 + LρδΞ

α̂

)
.

Theorem 14 is a step forward from Xu et al. [35, Theorem 4.2], where the former presents
an explicit bound for |ϑ− ϑN | in terms of βN , whereas the latter only states that |ϑ− ϑN |
tends to zero as N increases. It also complements the stability results in Sun and Xu
[31, Section 4] where the bound established for |ϑ− ϑN | does not apply to the case when
PN is a discretization of P. Note that since βN depends on the dimension of ξ, the error
bounds established in this theorem may be coarse when ξ has several components unless
N is sufficiently large. In other words, the discretized DRO might suffer from curse of
dimensionality [16]. This differs from the well-known sample average approximation method
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in stochastic programming where the error bounds are independent of the dimension of the
underlying random vector, see [29].

Note also that in the statement of Theorem 14 we explicitly assume existence of optimal
solutions x∗ and P ∗. The existence is guaranteed by compactness of X, weak compactness
of C and continuity of the function f in (x, ξ). The assumption can be avoided by using an
ε-optimal solution argument but the latter will perhaps blur up the key arguments in the
proof. We leave interested readers to verify.

5 On the distributionally robust multistage problem
This section extends the discussion to multistage distributionally robust optimization. Mul-
tistage stochastic programming has wide applications such as long term financial planning,
pension fund management, energy production and trading, supply chain management and
inventory control. Compared to one stage and two stage stochastic programming, the
mathematical structure of multistage stochastic programming is far more complicated due
to its nested structure in the decision making process and hence requires new numerical
methods and underlying theory including discrete approximation, scenario reduction and
stability analysis (see the recent monograph by Pflug and Pichler [18] for a comprehensive
treatment of the topic).

Mathematical approach. The following treatment of the multistage situation follows a
similar strategy as for the two stage problem in the previous section. We discuss the general
multistage problem formulation first, which we then extend to the ambiguous situation
including moment conditions.

Our main result is an upper bound for multistage problem, which is formulated in terms
of the Hausdorff distance with respect to the nested distance.

Increasing information, which gets known to the decision maker gradually, is intrinsic to
multistage stochastic optimization. The evolution of information is modelled by a filtration

F := (F0, . . .FT )

of increasing sigma-algebras, Ft ⊂ Ft+1; F0 := {∅, Ω} is the trivial sigma algebra. The
multistage stochastic optimization problem is thus formulated on the filtered probability
space (Ω,F , P ) as

inf
x(·)∈X

E f
(
x(ω), ξ(ω)

)
, (40)

where X collects all feasible control processes. In particular, the controlling process x =
(x0, . . .xT ) needs to be adapted, i.e., each component xt satisfies the nonanticipativity
constraint

xt is measurable with respect to Ft.
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Alternatively, one may also consider a stochastic process ξ : Ω→ Ξ, where

ξ = (ξ0, . . . ξT )

represents the vector of sequential observations. In this situation the natural filtration is
generated by the process ξ itself, that is,

Ft = σ(ξ0, . . . ξt). (41)

It follows from the Doob–Dynkin Lemma (cf. Kallenberg [11, Lemma 1.13]) that x(·), which
is measurable with respect to the sigma algebra (41), can be expressed as a function of
(ξ0, . . . , ξt),

xt(ω) = xt(ξ0(ω), . . . ξt(ω)).
The multistage stochastic optimization problem thus reads

inf
x(·)∈X

E f
[
(x(ξ), ξ)

]
(42)

on the state space Ξ.
To formulate a robust version of the multistage stochastic optimization problem it

is essential to separate the process ξ and the filtration F . To this end we consider the
projection

πt : Ξ→ Ξ0 × · · · × Ξt, (43)
(ξ0, . . . ξT ) 7→ (ξ0, . . . ξt)

so that xt(·) is a function of the coordinates only,

xt = xt(ξ0, . . . , ξt)

and the natural filtration is generated by the projections,

Ft := σ(π1, . . . , πt) = B
(
Ξ0 × · · · × Ξt

)
× Ξt+1 × · · · × ΞT , (44)

where B is the Borel sigma-algebra.
In the literature of stochastic programming, the true probability measure P is either

known or can be approximated through samples. In many practical applications, the true
probability distribution of the stochastic process may be unknown at each stage but it
is possible to use partial information such as samples and prior moment conditions to
construct a set of distributions which either contains the true probability distribution or
approximates it with some confidence.

Specifically, we may formulate the robust multistage stochastic optimization problem as

inf
x(·)∈X

sup
P∈P

EP f
(
(x(ξ), ξ)

)
, (45)

where P is a collection of probability measures.
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Remark 15 (Formulation of the robustified, multistage problem). To formulate a
robustified version of the multistage stochastic optimization problem it is notably essential
to fix the filtration. Indeed, the robust control policy x(·) has to remain measurable for
every inner model, cf. (45). The particular choice (44) and the formulation (45) ensure,
that x(·) stays measurable in this sense.
Remark 16 (Discrete measures and tree structures). Discrete measures have a finite
support and are thus often considered together with a filtration consisting of finite sigma
algebras. This is indeed the standard numerical implementation of trees (i.e., finite-space
and finite-time processes).

However, discrete measures are well-defined even on the power set. Here we consider all
measures on the Borel filtration (44) induced by the projection (43). Note that this setting
includes tree structures. Indeed, individual elements of the support set are vectors of length
T . If any of these vectors have the first t, say, components in common, then they share a
common history up to time t. These vectors cannot be distinguished under the filtration Ft
induced by the projection πt. The tree structure thus is naturally encoded by considering
the filtration (44). Even more, the support of a discrete measure and the filtration (44)
naturally constitute a tree process.

Moment conditions. To provide an example of a robust multistage problem formulation
we consider the robust formulation (45) with moment conditions imposed. To this end one
specifies the set P further by

P := {P ∈P(Ξ) : EP [φt(ξ)|Ft] ≤ µt for t = 1, . . . , T} , (46)

where µt : Ξt → IRd is a continuous function on Ξt, t = 1, . . . , T , φ : Ξ→ Rd is a continuous
function on Ξ and∫

At
EP [φt(ξ)|Ft]dP =

∫
At
φt(ξ)dP ≤

∫
At
µt(ξt)dP for all At ∈ Ft, t = 1, . . . , T. (47)

For a discrete probability measure P , in particular, the latter moment conditions (47) are
equivalent to∫

{ω:ξt(ω)=ξt}
EP [φt(ξ)|Ft]dP =

∫
{ω:ξt(ω)=ξt}

φt(ξt, ξt+1(ω), . . . , ξT (ω))P (dω)

and consequently∫
{ξt(·)=ξt}

φ
(
ξt, ξt+1(ω), . . . , ξT (ω)

)
P (dω) ≤ µt(ξt) · P

(
ξt(·) = ξt

)
for t = 1, . . . , T.

The moment condition means that the conditional expected value of φt(ξ) at stage t
does not exceed µ(ξt), a quantity which depends only on the realization of ξt up to stage t.
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If we regard ξt as a loss and set φt(ξ) := 1
t+1

∑t+1
τ=1 ξτ and µ(ξt) := C

t

∑t
τ=1 ξτ , then the

condition means that the average expected loss up to stage t+1 does not exceed C times the
average expected loss up to stage t. In other words, we are looking at events (corresponding
to probability distributions) where at each stage the expected loss of reference index in
future falls within the range of the observed average up to the stage.
Remark 17 (Example). An example of a moment condition introduced in (46) is an extension
of the classical Markowitz model for portfolio optimization; this model minimizes the risk,
given that a certain return is to be achieved. The problem formulation (46) includes
formulations which require a minimal return at each intermediate stage.

In what follows we investigate the multistage, distributionally robust optimization
problem (45) (MDRO) further.

Definition 18 (Nested distance). Let P :=
(
Ξ,F , P

)
and P̃ :=

(
Ξ̃, F̃ , P̃

)
be filtered

probability spaces. The nested distance of order r ≥ 1, denoted by dlr
(
P, P̃

)
, is defined as

dlr(P, P̃) =
(

inf
π

∫∫
Ξ×Ξ̃

d
(
ξ, ξ̃
)r
π(dξ,dξ̃)

)1/r

,

where π is a probability measure defined over space Ξ× Ξ̃ with conditional marginals P
and P̃ , i.e.,

P (A| Ft) = π(A× Ξ̃| Ft × F̃t) for all A ∈ FT and
P̃ (B| F̃t) = π(Ξ×B| Ft × F̃t) for all B ∈ F̃T .

From the definition, we see that a positive nested distance is influenced by different
filtrations F and F̃ .

Note that for fixed F , each pair of P ∈ C and P̃ ∈ C̃ from two sets of reference
probability measures (C and C̃) gives rise to a value of the nested distance dlr(P, P̃). We
can imagine there are two sets of processes induced by C and C̃.

What we are interested in is

D(C̃, C; dlr) := sup
P̃∈C̃

inf
P∈C

dlr(P, P̃), (48)

which is a kind of excess nested distance of the set of processes induced by C̃ over the set of
processes induced by C.

Theorem 19. Let f be uniformly continuous in ξ, that is, there is a positive constant L
such that

f(x, ξ̃)− f(x, ξ) ≤ L d(ξ, ξ̃) for all ξ, ξ̃ and x
and uniformly convex in x,

f
(
(1− λ)x+ λx̃, ξ

)
≤ (1− λ)f

(
x, ξ

)
+ λf

(
x̃, ξ

)
for all λ ∈ [0, 1] and ξ ∈ Ξ. (49)
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If X is a convex set, then

inf
x(·)∈X

sup
P∈C

EP [f(ξ, x(ξ))]− inf
x(·)∈X

sup
P̃∈C̃

EP̃ [f(ξ, x(ξ))] ≤ D
(
C̃, C; dlr

)
,

where the Hausdorff deviation D is with respect to the nested distance, dlr.

Proof. Let x∗(·) ∈ X be a feasible solution and P ∗ ∈ P be chosen so that

inf
x(·)∈X

sup
P∈C

EP [f(ξ,x(ξ))] > EP ∗ [f(ξ,x∗(ξ))]− ε.

Given P̃ ∈ C̃, let π have all conditional marginals from P ∗ and P̃ . Then

EP ∗ [f
(
ξ,x∗(ξ)

)
] =

∫∫
f
(
ξ,x∗(ξ)

)
π(dξ,dξ̃) = Eπ[f

(
ξ,x∗(ξ)

)
]. (50)

Define now
x̃t
(
ξ̃
)

:=
∫

x∗t (ξ)π(dξ| ξ̃) (51)

and note that x̃t is measurable with respect to the filtration F̃t by x̃’s definition. Then we
derive from uniform convexity (49) and Jensen’s inequality that

f
(
ξ̃, x̃(ξ̃)

)
= f

(
ξ̃,

∫
x∗(ξ)π(dξ| ξ̃)

)
≤
∫
f
(
ξ̃,x∗(ξ)

)
π(dξ| ξ̃),

where Jensen’s inequality is applied on each fiber separately. Integrating the latter inequality
with respect to P̃ one obtains that

EP̃ [f
(
ξ̃, x̃(ξ̃)

)
] =

∫
f
(
ξ̃, x̃(ξ̃)

)
P̃ (dξ̃) ≤

∫ ∫
f
(
ξ̃,x∗(ξ)

)
π(dξ| ξ̃) P̃ (dξ̃)

=
∫∫

f
(
ξ̃,x∗(ξ)

)
π(dξ,dξ̃) = Eπ[f

(
ξ̃,x∗(ξ)

)
],

and together with (50) it follows that

EP̃ [f
(
ξ̃, x̃(ξ̃)

)
]− EP [f

(
ξ,x∗(ξ)

)
] ≤

∫∫
f
(
ξ̃,x∗(ξ)

)
− f

(
ξ,x∗(ξ)

)
π(dξ,dξ̃)

≤ L ·
∫∫

d
(
ξ, ξ̃
)
π(dξ,dξ̃),

and by taking the infimum with respect to π over all probability measures with adapted
conditional marginals finally

EP̃ [f
(
ξ̃, x̃(ξ̃)

)
]− EP [f

(
ξ,x∗(ξ)

)
] ≤ L · dl

(
P, P̃

)
.

Now recall that x̃ depends on x∗, P ∗ and P̃ by means of (51). We can hence take the
infimum over P and then the supremum over P̃
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and we get

sup
P̃∈C̃

EP̃ [f
(
ξ̃, x̃(ξ̃)

)
]− sup

P∈C
EP [f

(
ξ,x∗(ξ)

)
] ≤ L · sup

P̃∈C̃
inf
P∈C

dlr
(
C̃, C

)
= D

(
C̃, C; dlr

)
,

where D
(
C̃, C; dlr

)
is defined in (9). Finally note that by taking the supremum among x ∈ X

to get
sup
P̃∈C̃

EP̃ f [
(
ξ̃, x̃(ξ̃)

)
]− inf

x(·)∈X
sup
P∈C

EP [f
(
ξ,x(ξ)

)
] ≤ L · D

(
C̃, C; dlr

)
+ ε,

and consequently

inf
x̂(·)∈X

sup
P̃∈CN

EP̃ [f
(
ξ̃, x̂(ξ̃)

)
]− inf

x(·)∈X
sup
P∈C

EP [f
(
ξ,x(ξ)

)
]

≤ inf
x̃(·)∈X

sup
P̃∈C̃

EP̃ [f
(
ξ̃, x̂(ξ̃)

)
]− inf

x(·)∈X
sup
P∈C

EP [f
(
ξ,x(ξ)

)
]

≤ L · D
(
C̃, C; dlr

)
+ ε,

from which we conclude the assertion.

Theorem 19 gives a quantitative description on the discrepancy between the optimal
values of problems (45) in terms of the nested distance D(C̃, C; dlr). The latter is entirely
determined by Ξ̃ and the ambiguity set.

6 Summary and future work
This paper explores discretization of ambiguity set defined by prior moment conditions
in distributionally robust optimization problems. Discretization is important because it
concerns numerical solvability of the DRO problems. It is also relevant to data-driven
optimization problems where the number of samples of the underlying uncertainty is often
limited.

A key issue to be addressed is to quantify the difference between discretized ambiguity
set and its original under some appropriate metric. We have managed to do so in this
paper by deriving a new form of Hoffman’s lemma under ζ-metric and then use it to
quantify discrepancy of the ambiguity sets under Kantorovich/Wasserstein metric. The
quantification allows one to assess the number of samples needed for prescribed accuracy.

The second part of the paper investigates propagation of the discrepancy (approximation
error) in a one stage decision making problem under DRO structure. We have demonstrated
how the optimal value and the optimal solutions are affected in a quantitative manner
against variation on the ambiguity set and hence the change of sample size in practice. This
effectively paves the way for numerical implementation of the discretization methods for
solving DRO problems.
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We finally extend the robust setting to the multistage environment. As for the un-
constrained situation, the results can be formulated in terms of the nested distance for
the robust multistage stochastic optimization problem, which involves moment constraints.
Explicit bounds similar to Hoffman’s Lemma, however, are not available in this situation.
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