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Abstract Conditional value at risk (CVaR) has been widely studied as a
risk measure. In this paper we add to this work by focusing on the choice of
confidence level and its impact on optimization problems with CVaR appearing
in the objective and also the constraints. We start by considering a problem
in which CVaR is minimized and investigate the way in which it approximates
the minimax robust optimization problem as the confidence level is driven
to one. We make use of a consistent tail condition which ensures that the
CVaR of a random function will converge uniformly to its supremum as the
confidence level increases, and establish an error bound for the CVaR optimal
solution under second order growth conditions. The results are extended to
a minimization problem with a constraint on the CVaR value which in the
limit as the confidence level approaches one coincides with a problem having
semi-infinite constraints. We study the sample average approximation scheme
for the CVaR constraints and establish an exponential rate of convergence for
the sample averaged optimal solution. We propose a procedure to explore the
possibility of varying the confidence level to a lower value which can give an
advantage when there is a need to find good solutions to CVaR-constrained
problems out of sample. Our numerical results demonstrate that using the
optimal solution to an adjusted problem with lower confidence level can lead
to better overall performance.

1 Introduction

Conditional value at risk (CVaR), sometimes called Expected Shortfall, has
received a great deal of attention as a measure of risk. In a financial context
it has a number of advantages over the value at risk (VaR) measure that is
commonly used, and CVaR has been proposed as the primary tool for banking
capital regulation in the Basel III standard [4]. Nevertheless there remains
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some controversy over its effectiveness. As we will discuss below, since it is a tail
risk measure, it is harder to estimate accurately than a quantile measure like
VaR. However the difficulties with CVaR estimation can be partly overcome
by reducing the confidence level (which we will call β). The usual confidence
level for VaR is β = 0.99, and the argument for a high value is in part based
on the need to “see into the tails”. Since VaR does not explicitly take account
of the size of any losses that are less probable than 1−β, taking a lower value
of β can be seen as ignoring these extreme risks. CVaR on the other hand is
impacted by all losses no matter how unlikely, and it is therefore appropriate
to use a lower value of β than for VaR; an example of this is that the proposals
under Basel III suggest β = 0.975.

In practice risk measures are often estimated on the basis of empirical
data, rather than on the basis of a model of the underlying process. A sample-
based estimate for CVaR, since it is based only on the worst few results,
becomes more and more difficult as the β level approaches 1 and there are
fewer data points available for the estimate. The end result is an estimator
with a variance that, for a fixed sample size, usually increases as β approaches
1. This provides another reason for looking carefully at what happens as the
value of β is changed.

Our interest in this paper is in optimization models in which a decision
variable x is chosen either to minimize CVaR as an objective, or as a con-
straint. In particular, we explore how the choice of confidence level β affects
these optimization problems because little attention has been given to this
issue in the literature despite the huge importance of CVaR as a risk mea-
sure. We primarily focus on two questions. First we explore the convergence
behavior of the optimal value and optimal solution as β is driven to 1. We
will consider the uniform convergence of CVaR for a random function and its
impact on the underlying optimization problems. The other question we con-
sider is whether there is an advantage from choosing lower β values within the
optimization framework and how we can achieve the computational benefits
of this approach.

We start with the simple problem of choosing the decision variable x to
minimize CVaR:

MnCV(β) : min
x∈X

CVaRβ(g(x, ξ)),

where g : IRn × IRm → IR is a continuous loss function, and ξ : Ω → Y ⊂ IRm

is a random vector defined on the probability space (Ω,F , P ) with support
set Y .

In practice, it may not be easy to determine what value of confidence level
should be chosen, i.e. how extreme the risks are that should be considered in
the risk minimization. Confidence levels β that are very close to 1 correspond
to more conservative behavior, in which we focus on more and more unlikely
events. At its limit, CVaRβ(g(x, ξ)) converges to the supremum of g(x, ξ).
Consequently, we obtain the following minimax problem

MnMx : min
x∈X

sup
y∈Y

g(x, y).



Varying Confidence Levels for CVaR Risk Measures and Minimax Limits 3

Surprisingly little has been written about the relationship between MnCV(β)
and MnMx in terms of the optimal value and optimal solutions. We will come
back to discuss the relationship between these problems in detail in Sections
2 and 3.

We note that minimax problems in this form occur in a large number of
applications in economics and engineering (see [7], [34]). If we view y as an
uncertain parameter, then we can see this as a robust minimization problem
where an optimum decision on x is made in a way that protects against the
impact of uncertainty in y. This kind of robust formulation dates back to
the early work of Soyster [41]. Over the past decade, robust optimization has
rapidly developed into a new area of optimization with substantial applica-
tions in operations research, finance, engineering and computer science (see
the monograph [7]). In broad terms we consider a framework in which the
problem MnMx is viewed as a robust version of the original risk minimization
problem, while in the other direction we can see MnCV(β) as an approximation
of MnMx.

In practical applications, we may not have complete information about the
distribution of ξ, or its support set Y . Thus the solution of MnCV(β) must be
carried out through sampling from the distribution for ξ. This may happen,
for example, when the risk optimization model generates ξ from a simulation.
The model also applies when we have access only to a historical set of values,
ξ1, ξ2, ..., ξN . In the same way, for the minimax problem MnMx, we suppose
that the possible values of y ∈ Y are not given directly, but can be obtained
by sampling from the states of nature Y .

In this situation we will estimate the value of CVaRβ(g(x, ξ)) simply from
looking at the average of the highest 1−β proportion of the sample losses that
occur g(x, ξi), i = 1, 2, ..., N . For values of β greater than 1−1/N this will mean
simply looking at max g(x, ξi). We note that there are other methods that have
been proposed for the estimation of CVaR, such as kernel-based methods [39]
or a semi-parametric approach based on extreme value theory [19]. However
our simpler approach is supported by some results from Chen [14] who argues
for the use of this approach when a point estimation of CVaR is required.
Moreover the simple approach will be adequate for establishing some specific
bounds on convergence.

In the case that MnCV(β) is used to approximate MnMx, we may use any
convenient distribution for ξ provided that the support set coincides with Y .

The second type of problem we consider is to minimize a deterministic
function under CVaR constraint:

MnCnCV(β) :

{
min
x∈X

h(x)

s.t. CVaRβ(g(x, ξ)) ≤ U,

where h : IRn → IR is a continuous function and U is a prescribed maximal level
of CVaR that a decision maker may accept. Here and later on we write “s.t.”
for “subject to” for brevity. Again we look into what happens to this problem
as we increase β, reflecting a more and more conservative decision maker.
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In particular, we investigate its relationship with the following optimization
problem with a semi-infinite constraint:

MnCnMx :

{
min
x∈X

h(x)

s.t. g(x, y) ≤ U , for all y ∈ Y,

where as before Y is the support set of the random variable ξ. If we view
y as an uncertain parameter, then the semi-infinite constraints can also be
understood as a robust constraint of the form supy∈Y g(x, y) ≤ U .

We may (redefining g as necessary) take U = 0 and obtain a standard
optimization problem subject to the condition that a solution is feasible for all
possible instances of the uncertain parameter y. Unless we specify otherwise
we will assume that U = 0 in what follows. This problem has been considered
by [10] and special cases with applications in engineering design can be found
in [5, 6, 20].

For the constrained risk problem MnCnCV(β) we will need to determine
the value of β that is appropriate: for example we may need to decide between
minimizing h subject to the 97.5% CVaR being less than $10,000 or minimizing
h subject to the 99% CVaR being less than $20,000.

We will investigate the case where the solution of MnCnCV(β) is estimated
through a sample, ξ1, ξ2, ...ξN , and this means that the choice of β value will
affect the degree of accuracy in the estimation of the feasible region of the
problem, with lower values of β giving more accurate estimations. We will ex-
plore the idea of opting for lower values of β in order to avoid the optimization
being dependent on too small a number of samples.

The use of a sampling approach is also found in Calafiore and Campi [10,11]
and [9]. These authors have investigated the problem MnCnMx when h(x) is
linear and g(x, ξ) is convex in x. Specifically, they consider taking a Monte
Carlo sample from the set of uncertain parameters Y and then approximat-
ing the semi-infinite constraints with a finite number of sample indexed con-
straints. They show that the resulting randomized solution fails to satisfy only
a small proportion of the original constraints if a sufficient number of samples
is drawn. An explicit bound on the measures of the original constraints that
may be violated by the randomized solution is derived. The approach has been
shown to be numerically efficient and it has been extensively applied to var-
ious stochastic and robust programs including chance constrained stochastic
programs and multistage stochastic programs, see [12, 13, 43] and references
therein.

It is straightforward to recast the minimum CVaR problem MnCV(β) as
a constrained risk problem. To see this observe that we may write MnCV(β)
equivalently as

MnCV(β)′ :

{
min

x∈X,z∈IR
z

s.t. CVaRβ(g(x, ξ)− z) ≤ 0,

where z is a new variable and we use the fact that CVaRβ(g(x, ξ)) − z =
CVaRβ(g(x, ξ)−z). This is the form required for the constrained risk problem
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MnCnCV(β) where the decision variables (x, z) are chosen from X× IR. There
is a technical problem that occurs because X × IR is not compact, but we can
solve this by minimizing over x ∈ X, z ∈ [−C,C] with a sufficiently large
positive constant C. Since the constrained risk problem MnCnCV(β) is so
important in practice, and subsumes the minimum CVaR problem, we will
concentrate our analysis on this problem.

We believe that the main contributions of the paper can be summarized
as follows.

– We derive a sufficient condition to ensure that the CVaR of a random
function converges uniformly to its supremum and demonstrate that the
condition may be satisfied by a large class of random functions (Propo-
sition 1). A deterministic error bound in terms of β is derived for the
difference between CVaR and the supremum (Theorem 1). The results are
used to investigate the relationship between MnCV(β) and MnMx and the
relationship between MnCnCV(β) and MnCnMx. Specifically, under sec-
ond order growth conditions, we derive an error bound for the difference
between the optimal solutions to MnCV(β) and MnMx (Theorem 2), and
under a Slater condition, we establish an error bound for the difference
between the optimal values of MnCnCV(β) and MnCnMx (Theorem 4).

– In the case when the true probability is not easily available for computing
the characteristics of the underlying random functions, we study the sample
average approximation scheme for the CVaR constraints and establish an
exponential rate of convergence for the optimal solution obtained from this
scheme as the sample size increases (Theorem 7). Moreover, since using
a confidence level near 1 makes the computation of CVaR from samples
unreliable, we explore the possibility of varying the confidence level to
a lower value in problem MnCnCV(β) without significantly affecting its
optimal solution (Theorems 5 and 6).

– For the MnCnCV(β) model, we propose a procedure which solves an ad-
justed problem with lower confidence level and a correspondingly lower
value for the upper bound on risk. We use a resource allocation problem
in project management both to illustrate our main theoretical results and
also to demonstrate numerically that using the optimal solution to this ad-
justed problem can lead to better overall performance. We also show how
this technique can be used in a portfolio optimization model.

The rest of the paper is organized as follows. In Section 2, we investigate
uniform approximation of CVaR of a random function to its supremum and
sufficient conditions for such approximation. In Section 3, we discuss the rela-
tionship between MnCV(β) and MnMx in terms of the optimal solutions and
optimal values, and extend the discussion to MnCnCV(β) and MnCnMx. In
Section 4 we give a discussion of how MnCnCV(β) can be solved using a sam-
ple average approximation scheme. Finally in Section 5, we apply the proposed
models and established theoretical results to a resource allocation problem in
project management. We also report some numerical test results for both the
project management problem and a portfolio optimization problem.
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2 Uniform CVaR approximation and error bound

In this section, we discuss uniform approximation of CVaRβ(g(x, ξ)) to supy∈Y
g(x, y) and its error bound; this is to pave the way for investigating the opti-
mization problems outlined in Section 1.

Let g be a continuous function defined as in MnCV(β). We assume that
ξ : Ω → Y continuous random vector defined on probability space (Ω,F , P )
with density function ρ(y), and we treat g(x, ξ(ω)) for x ∈ X ⊂ IRn as a
random variable induced by ξ(ω).

As a function of α for fixed x, we let F (x, α) be the cumulative distribution
function for g(x, ξ(ω)), the loss associated with x. Hence

F (x, α) = Pr(g(x, ξ) ≤ α) =

∫
{y : g(x,y)≤α}

ρ(y)dy. (1)

Since we are interested in the problem MnMx as a limit when β → 1 and
this involves the supremum of g, we need to be careful to link the set of all
values that ξ(ω) can take and the density function ρ. Essentially we need to
avoid cases with isolated points in Y , which occur with probability zero, since
this may lead to supy∈Y g(x, y) being greater than sup{α : F (x, α) < 1}. To
rule out these irrelevant points, we can use a number of conditions, but for
clarity we will assume that for any y ∈ Y , and any open set A containing y,
Pr(ξ ∈ A) > 0.

Following [36], we may define the value at risk (VaR) of g(x, ξ) at a level
β ∈ (0, 1) as

VaRβ(g(x, ξ)) := inf{α : F (x, α) ≥ β}.

We will often consider x as fixed and write Fx(·) for F (x, ·). In the case that
Fx(α) is strictly monotonically increasing with respect to α, we will have a
well defined inverse function for Fx and then

VaRβ(g(x, ξ)) = F−1
x (β).

Consequently we can define the conditional value at risk at a confidence level
β as

CVaRβ(g(x, ξ)) :=
1

1− β

∫
{y : g(x,y)≥VaRβ(g(x,ξ))}

g(x, y)ρ(y)dy.

Since in this case the probability that g(x, y) ≥ VaRβ(g(x, ξ)) is equal to
(1− β) we can interpret this expression as the conditional expectation of the
loss associated with x given that this loss is VaRβ(g(x, ξ)) or greater. Since
we are assuming an inverse function for Fx then we can write

CVaRβ(g(x, ξ)) =
1

1− β

∫ 1

β

F−1
x (t)dt,

see for instance [32, Theorem 2.34].
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Now we wish to explore the properties of VaRβ(g(x, ξ)) and CVaRβ(g(x, ξ)),
as well as their approximations to supy∈Y g(x, y). First observe that immedi-
ately from the definition

VaRβ(g(x, ξ)) ≤ CVaRβ(g(x, ξ)) ≤ sup
y∈Y

g(x, y).

Our first result shows pointwise and uniform approximation of VaRβ(g(x, ξ))
to supy∈Y g(x, y). It is convenient to write gx(ξ) for g(x, ξ) and we let g∗x
= supy∈Y gx(y). There has been previous work ( [47]) that establishes a con-
nection between VaRβ and CVaRβ as β → 1 with these two quantities being
related through a ratio that depends on the tail index of the underlying distri-
bution. Our results are different in that they relate to the difference between
CVaRβ and the supremum, g∗x.

Theorem 1 (Pointwise and uniform CVaR approximation) Let x ∈ X
be fixed. Suppose that the support set of ξ coincides with Y . Then the following
assertions hold.

(i) If for every y ∈ Y and open set A containing y, Pr(ξ ∈ A) > 0, then

lim
β→1

VaRβ(gx(ξ)) = lim
β→1

CVaRβ(gx(ξ)) = g∗x. (2)

(ii) If, in addition, there exists α0 such that Fx(α) is continuously differentiable
with a non-increasing positive derivative for all α ∈ (α0, g

∗
x), then for β >

Fx(α0), the function VaRβ(gx(ξ)) is convex in β and

VaR(1+β)/2(gx(ξ)) ≤ CVaRβ(gx(ξ)) ≤ 1

2
(VaRβ(gx(ξ)) + g∗x) . (3)

(iii) If, g∗x < ∞ for every x ∈ X and there exist positive constants β0 ∈ (0, 1),
K and τ (independent of x) such that

1− Fx(α) ≥ K (g∗x − α)
τ
, for all α ∈ (VaRβ0

(gx(ξ)), g∗x),∀x ∈ X, (4)

then for β ∈ (β0, 1),

∆β(x) := g∗x − CVaRβ(g(x, ξ)) ≤ 1

K1/τ

τ

1 + τ
(1− β)1/τ ,∀x ∈ X. (5)

The proof to Theorem 1 is given in the appendix. Note that parts (i) and
(ii) of this theorem hold when g∗x =∞, and concern pointwise convergence of
CVaRβ(g(x, ξ)) to supy∈Y g(x, y) as β is driven to 1 whereas part (iii) gives
uniform approximation and an error bound. Part (i) of the theorem is enough
to establish that MnMx is the limit of MnCV(β) as β → 1. Later we will look
in more detail at this convergence.

Essentially the bounds given in parts (ii) and (iii) of the theorem rely on
the good behavior of the cumulative distribution function Fx. The condition
for part (ii) that the derivative of Fx(α) is decreasing (not necessarily strictly)
for α large enough simply requires that the density function of gx(ξ) has a
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largest mode less than the right hand end of its range (beyond which it is
automatically decreasing).

Condition (4) is a kind of growth condition of the cumulative distribution
function at β = 1. It requires the cumulative distribution function to approach
1 faster than some power of the distance to g∗x. This will hold whenever the
corresponding density function is bounded as α→ g∗x, (even less of a restriction
than part (ii) requires). When ξ is univariate the parameter τ is determined
by the way in which the density function of gx(ξ) approaches zero when ξ
approaches its limit, but the relationship is complex when ξ is of higher di-
mension. Throughout the paper, we say that g has consistent tail behavior if
it satisfies condition (4).

We can compare the bounds in parts (ii) and (iii) of Theorem 1. By the
first inequality of (3),

g∗x − CVaRβ(g(x, ξ)) ≤ g∗x −VaR(1+β)/2(gx(ξ)).

If (4) holds, then using the fact that VaRβ(gx(ξ)) = F−1
x (β), we have

g∗x −VaRβ(gx(ξ)) ≤
(

1− β
K

)1/τ

and hence

g∗x − CVaRβ(g(x, ξ)) ≤ 1

K1/τ

(
1− 1 + β

2

)1/τ

=

(
1− β
2K

)1/τ

. (6)

We can compare this with the bound appearing in part (iii) and note that
τ

1+τ <
(

1
2

)1/τ
when τ > 1, so that part (iii) gives the stronger bound in this

case. When τ < 1, (4) implies that Fx(α) is bounded above by a function with
increasing derivative with respect to α. This in turn implies that the density
function cannot be decreasing as the random variable approaches it’s upper
limit, and this will contradict the requirements for part (ii).

Now we give an example to explain the main conditions and results in
Theorem 1.

Example 1 Consider the case where g(x, ξ) = ξx with x ∈ [0, 1] and ξ having
a density function ρ(y) = 2−2y over its support set Y = [0, 1]. Then g∗x(x) = x
for x ∈ [0, 1]. When x = 0, g(0, ξ) = 0 which is deterministic. In what follows,
we consider the case when x ∈ (0, 1]. It is easy to derive that for α < x,

Fx(α) = 1− (1− α/x)2

and VaRβ(gx(ξ)) = x
[
1− (1− β)1/2

]
. Thus

CVaRβ(gx(ξ)) =
x

1− β

∫ 1

1−(1−β)1/2
y(2− 2y)dy = x

[
1− 2

3
(1− β)1/2

]
. (7)

Since g∗x = x, we obtain from the equation above that

g∗x − CVaRβ(gx(ξ)) =
2

3
x(1− β)1/2 ≤ 2

3
(1− β)1/2,∀x ∈ (0, 1], (8)
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which illustrates Theorem 1 (iii) with K = 1 and τ = 2. In this case, the bound

is exact. Moreover, since 1
2 <

2
3 <

√
2

2 , we have from (7)

x

(
1−

√
1− β

2

)
≤ CVaRβ(g(x, ξ)) ≤ x

(
1− 1

2

√
1− β

)
,

which illustrates Theorem 1 (ii).

Let

∆(β) := sup
x∈X

∆β(x). (9)

Then Theorem 1 (iii) can be written

∆(β) ≤ 1

K1/τ

τ

1 + τ
(1− β)1/τ . (10)

We now turn to discuss sufficient conditions for the consistent tail behavior
of g(x, ξ). The proposition below shows that when the loss function g is well-
behaved, consistent tail behavior follows naturally from the behavior of the
underlying random variable ξ.

Proposition 1 Let Y be compact. If g has the property that there are positive
constants C1 and ν1 (independent of x) with

g(x, y1)− g(x, y2) < C1‖y1 − y2‖ν1 (11)

for all x ∈ X, y1, y2 ∈ Y ; and if, in addition, there are positive constants C2,
ν2 and δ0 with

Pr(‖ξ0 − ξ‖ < δ) ≥ C2δ
ν2 (12)

for every fixed ξ0 and δ ∈ (0, δ0); then g(x, ξ) has consistent tail behavior on
X.

The proof to Proposition 1 is given in the appendix. The condition (12) is
very weak: it can be guaranteed whenever the density function of ξ is lower
bounded by a positive real valued function which is analytic. It is easily seen
to hold when the density function is bounded away from zero around ξ0, and
so it is effectively a condition on the way that the density approaches zero at
the boundary of its support. Condition (11) is known as uniform calmness in
variational analysis, see [38, Chapter 8].

Before we conclude this subsection, we note that the CVaR risk measure
can be reformulated as the result of a minimization. Let

Φβ(x, η) := η +
1

1− β

∫
y∈Y

(g(x, y)− η)+ρ(y)dy, (13)

where (t)+ = max(0, t). Rockafellar and Uryasev [36] proved that

CVaRβ(g(x, ξ)) = min
η∈IR

Φβ(x, η), (14)
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and this allows us to reformulate the problem MnCV(β) as

min
x∈X

CVaRβ(g(x, ξ)) = min
(x,η)∈X×IR

Φβ(x, η). (15)

This kind of reformulation is discussed comprehensively by Rockafellar and
Uryasev, see e.g. [36, Theorem 2] and [37, Theorem 14], see also Ogryczak and
Ruszczyński [24].

3 Approximation of the optimization problems

With the CVaR approximations in Section 2, we are now ready to discuss
approximation of MnCV(β) to MnMx, and MnCnCV(β) to MnCnMx.

3.1 Approximation of MnCV(β) to MnMx

Let X∗(β) denote the set of optimal solutions of the minimum CVaR problem
MnCV(β) and X∗ the set of optimal solutions of the minimax problem MnMx.
We write d(x,D) := infx′∈D ‖x − x′‖ for the distance from a point x to a set
D. For two compact sets C and D,

D(C,D) := sup
x∈C

d(x,D)

denotes the deviation of C from D and H(C,D) := max (D(C,D),D(D, C)) de-
notes the Hausdorff distance between C and D. We investigate the relationship
between X∗(β) and X∗, specifically, we estimate D(X∗(β), X∗). We do so by
making use of a result from [16, Lemma 3.1].

Theorem 2 Assume that g(x, ξ) satisfies consistent tail condition (4) with
parameters K and τ . Then

lim
β→1

X∗(β) ⊂ X∗, (16)

where lim denotes the outer limit of a set-valued mapping, i.e. the set of all
cluster points of the sequence of the solution sets as β → 1. Moreover, if the
minimax problem MnMx satisfies the growth condition at X∗, i.e., there exists
positive constants K0, p > 0 such that

sup
y∈Y

g(x̂, y) ≥ min
x∈X

(
sup
y∈Y

g(x, y)

)
+K0d(x̂, X∗)p, for all x̂ ∈ X, (17)

then

D(X∗(β), X∗) ≤
[

3

K0K1/τ

τ

1 + τ
(1− β)1/τ

] 1
p

. (18)
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The proof to Theorem 2 is given in the appendix. The bound (18) gives us the
minimal rate that X∗(β) may approximate X∗. The tightness of the bound
depends on problem. Here we give an example varied from Example 1 to
compare the bound with the actual error.

Example 2 Let g(x, ξ) = x2ξ−2x, where ξ is distributed with density ρ(y) =
2− 2y on the range (0, 1). Similar to the calculations we made for Example 1,
we have

Fx(α) = 1−
(

1− α+ 2x

x2

)2

.

Since g∗x = x2 − 2x, we have

1− Fx(α) =
1

x4
(x2 − 2x− α)2 =

1

x4
(g∗x − α)2.

If we restrict x to take values from X = [0, 1], then the inequality above implies

1− Fx(α) ≥ (g∗x − α)2,

so we can set parameters K = 1 and τ = 2 in the consistent tail condition in
Theorem 1 (iii). Moreover, looking at MnMx with X = [0, 1], we can easily the
unique optimal solution x∗ = 1.

Let us now look into MnCV(β). Using the same approach as Example 1,
we can derive

VaRβ(gx(ξ)) = x2(1− (1− β)1/2)− 2x,

CVaRβ(gx(ξ)) = x2(1− (2/3)(1− β)1/2)− 2x,

and hence

g∗x − CVaRβ(gx(ξ)) = (2x2/3)(1− β)1/2.

Thus CVaRβ(gx(ξ)) is minimized at

x∗(β) =
1

1− (2/3)(1− β)1/2
.

Thus the actual error between x∗(β) and x∗ is

‖x∗(β)− x∗‖ =

∣∣∣∣ 1

1− (2/3)(1− β)1/2
− 1

∣∣∣∣ =
2

3
(1− β)1/2 + o((1− β)1/2).

We now turn to the bound in (18). To this end, we need to check the growth
condition (17) at x∗ = 1. It is easy to verify that the condition is satisfied with
K0 = 1 and p = 2. This gives[

3

K0K1/τ

τ

1 + τ
(1− β)1/τ

] 1
p

=
√

2(1− β)
1
4 .
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3.2 Approximation of MnCnCV(β) to MnCnMx

Now we turn to the constrained risk problem MnCnCV(β). Using the alterna-
tive representation of CVaR in (14), this problem can be written as

min
x∈X

h(x)

s.t. min
η∈IR

Φβ(x, η)≤ 0
(19)

with U = 0. Throughout this section, we assume that X is a convex compact
set in IRn, g: IRn×m → IR is a continuous function and Y is a closed subset of
IRm. Our interest is in looking at the difference between MnCnCV(β) and the
robust feasibility problem MnCnMx. Thus we want to compare the solutions
to the following semi-infinite convex system of inequalities:

g(x, y) ≤ 0, for all y ∈ Y, (20)

where x ∈ X, and its CVaR approximation, CVaRβ(g(x, ξ)) ≤ 0 which we can
rewrite using the equivalence (14) as follows:

min
η∈IR

(
η +

1

1− β
E[(g(x, ξ)− η)+]

)
≤ 0. (21)

We will discuss the difference between G, which we define as the x ∈ X
satisfying (20), and G(β) which is defined as the x ∈ X satisfying (21). These
are the feasible sets over which the optimization of h takes place in the un-
derlying problems MnCnCV(β) and MnCnMx. Clearly G ⊂ G(β) and so G(β)
provides an outer approximation of G . We would like to know the excess of
G(β) over G for β ∈ (0, 1). The theorem below addresses this through the use
of the Hausdorff distance H between the sets involved.

Problem (20) is said to satisfy the Slater constraint qualification if there
exists a positive number δ̄ and a point x̄ ∈ X such that

max
y∈Y

g(x̄, y) ≤ −δ̄. (22)

Theorem 3 Assume that g(x, ξ) satisfies the consistent tail condition (4) with
parameters K and τ .

(i) If G is non-empty, then for any ε > 0, there exists a β0 ∈ (0, 1) > 0 such
that when β ∈ (β0, 1),

H(G(β),G) ≤ ε.

(ii) If for each y ∈ Y , g(·, y) is convex on X, X is a convex set and (20)
satisfies the Slater condition (22), then there exists a positive constant C
such that for any β ∈ (0, 1)

H(G(β),G) ≤ C

K1/τ

τ

1 + τ
(1− β)1/τ .
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The proof to the above results is given in the appendix. Note that the positive
constant C may be estimated through Robinson’s theorem in [35]. Indeed, if
we let D be the diameter of G(β) and

δ := −min
x∈G

CVaRβ(g(x, ξ)). (23)

Then we can set C := (δ − γ)−1D, where γ is any positive number smaller
than δ. Note also that since G is usually unknown, then the minimization in
(23) may be taken over X. In the case when (20) satisfies the Slater constraint
qualification, the δ value estimated from (23) is strictly positive for all β > 0.
Moreover, since G(β) ⊂ X, the diameter of G(β) is upper bounded by that of
X. This means that we may choose a positive constant C which is independent
of β.

The theorem says that the solution set of the CVaR system coincides with
that of the semi-infinite system when β is driven to 1 and under the Slater
constraint qualification, we may quantify the distance between the two solution
sets.

Now we are ready to consider implications for the constrained risk prob-
lem MnCnCV(β). Note that MnCnCV(β) can be seen as a relaxation of the
robust feasibility problem obtained by replacing the constraint g(x, y) ≤ U ,
∀y ∈ Y with the constraint g(x, y) ≤ U + ∆β(x), ∀y ∈ Y where ∆β(x) is
defined by (9). The next result looks at the way that solutions to the problem
MnCnCV(β) approach those of MnCnMx as β → 1.

Theorem 4 Let ϑ̂ and X̂ denote the optimal value and set of optimal solutions
of MnCnMx. Let ϑ̂(β) and X̂(β) denote the optimal value and set of optimal
solutions of MnCnCV(β). Assume: (a) h is Lipschitz continuous with modulus
L, (b) MnCnMx satisfies the Slater constraint qualification (22) and g(x, ξ)
satisfies the consistent tail condition (4) for parameters K and τ . Then

(i) ϑ̂(β) converges to ϑ̂ as β → 1;
(ii) limβ→1 X̂(β) ⊂ X̂;

(iii) if for each y ∈ Y , g(·, y) is convex on X, X is a convex set and (20)
satisfies the Slater condition (22), then

|ϑ̂(β)− ϑ̂| ≤ LC

K1/τ

τ

1 + τ
(1− β)1/τ , (24)

for all β close to 1, where C is defined as in Theorem 3.

The proof of Theorem 4 is given in the appendix. Parts (i) and (ii) ensure
consistency of optimal value and set of optimal solutions when β converges to
1 while Part (iii) quantifies the difference between the two optimal values.
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3.3 Varying β in CVaR constrained problems

Up to this point we have been primarily concerned with the limiting behavior
in our optimization problems as the confidence level β is pushed towards 1.
Now we will change our perspective and look at the possibility of reducing the
level of β in order to ensure that our estimates are based on a larger sample
when we are using sample data. In the next section we will see how badly
behaved sample-based CVaR estimates can be in the limit as β approaches
1, this provides motivation for applying a lower value of β to obtain a more
stable estimate of CVaR and hence better performance of the optimization
procedure.

We write gβ(x) = CVaRβ (g(x, ξ)) and g(x) = supξ∈Y g(x, ξ). We wish to
solve the base problem MnCnMx:

MnCnMx :

{
min
x∈X

h(x)

s.t. g(x) ≤ 0.

We are interested in showing that an optimal solution x∗ for our base problem
MnCnMx is close to the optimal solution x∗β for the approximating problem

MnCnMx(β) :

{
min
x∈X

h(x)

s.t. gβ(x) ≤ Uβ ,

where Uβ = gβ(x∗). We will come back to discuss how Uβ may be estimated
in practice at the end of Section 4. The use of a different right hand side in the
constraint distinguishes this problem from the problem MnCnCV(β) in which
we set Uβ = 0. Varying Uβ will improve the approximation.

Let F = {x ∈ X : g(x) ≤ 0} be the feasible region for MnCnMx. We
will establish bounds on the difference between the optimal solutions in the
theorem below.

Theorem 5 Assume: (a) g(x) ≤ 0 satisfies the Slater condition (22), (b)
g(x, ξ) is convex in x for each fixed ξ, (c) h is globally Lipschitz continuous
over F with modulus L and satisfies the second order growth condition at x∗,
so that there is a positive number r such that

h(x) ≥ h(x∗) + r‖x− x∗‖2,∀x ∈ F ,

(d) there are positive numbers C and τ with

sup
x∈X
|gβ(x)− g(x)| ≤ C(1− β)1/τ .

Then ∥∥x∗β − x∗∥∥ < 2CD

δ̄
(1− β)1/τ +

√
2LCD

rδ̄
(1− β)1/τ ,

where D is the diameter of F and δ̄ is given as in (22).
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The technical proof of the above result is given in the appendix. One lim-
itation of this result is that the feasible set must be bounded in order for D
to be finite, and even when the feasible set is bounded D may be large. In the
next result we establish a tighter bound, without dependence on the size of
the feasible set, in the special case that h and gβ are smooth enough to have
well-defined derivatives at x∗ and ξ is univariate.

Theorem 6 Assume: (a) ξ is univariate, continuously distributed with density
ρ, and there are positive numbers C and τ with

sup
ξ∈Y

ξ − CVaRβ(ξ) ≤ C(1− β)1/τ ,

(b) g(x, ξ) is increasing in ξ differentiable in x with integrably bounded deriva-
tives ∂g

∂xi
(x, ξ); (c) h, gβ and g(x) are convex functions in x, continuously

differentiable at x∗; (d) gβ is strongly convex at x∗, that is,

gβ(x) ≥ gβ(x∗) + (x− x∗)T∇gβ(x∗) +Kc ‖x− x∗‖2 , (25)

for some positive constant Kc, (e) there are unique optimal solutions with
binding constraints in both problems MnCnCV(β) and MnCnMx, (f) the mixed

derivatives ∂2g
∂xi∂ξ

(x∗, ξ) exist and are bounded. Then

∥∥x∗β − x∗∥∥ ≤ C
√
n

Kc
max

i=1,··· ,n
sup
ξ∈Y

∣∣∣∣ ∂2g

∂xi∂ξ
(x∗, ξ)

∣∣∣∣ (1− β)1/τ . (26)

The proof of Theorem 6 is given in the appendix. We provide an example to
explain the theorem.

Example 3 Consider the case that g(x, ξ) = ξ
1+x1

+ x2
2 − 1 with ξ being uni-

formly distributed over Y = [0, 1] and X = [0,∞)× [0, 1]. Let h(x) = x2
1 + x2

2.
By definition

gβ(x) = CVaRβ(g(x, ξ)) =
1 + β

2(1 + x1)
+ x2

2 − 1

and ḡ(x) = 1
1+x1

+ x2
2 − 1. Thus problem MnCnMx can be written as

MnCnMx :

{
min
x∈X

x2
1 + x2

2

s.t. 1
1+x1

+ x2
2 ≤ 1,

Obviously the feasible set F of MnCnMx is unbounded and the optimal solution
to x∗ = (0, 0) is located at the boundary of F . Consequently we can formulate
MnCnMx as

MnCnMx(β) :

{
min
x∈X

x2
1 + x2

2

s.t. 1+β
2(1+x1) + x2

2 ≤ 1
2 (1 + β).
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The optimal solution x∗β = (0, 0)> and the constraint is active at x∗β. In what
follows, we verify the conditions of Theorem 6. Observe first that supξ∈Y ξ = 1,
CVaRβ(ξ) = (1 + β)/2. and

sup
ξ∈Y

ξ − CVaRβ(g(x, ξ)) =
1

2
(1− β).

Thus condition (a) is satisfied with C = 1
2 and τ = 1. Moreover, it is easy to see

that g is monotonically increasing in ξ and ∇xg(x, ξ) = (−ξ/(1 + x1)2, 2x2)>

which is integrably bounded, this verifies condition (b). Conditions (c) and (e)
are obvious. Condition (d) can also be verified with Kc = 1

8 as gβ(x) is strongly

convex at x∗β. Finally condition (f) is satisfied with ∂2g
∂x1∂ξ

(x∗, ξ) = − 1
(1+x∗1)2 =

−1 and ∂2g
∂x2∂ξ

(x∗, ξ) = 0. With all conditions being verified, we obtain from
Theorem 6 that∥∥x∗β − x∗∥∥ = 0 <

C
√
n

Kc
max

i=1,··· ,n
sup
ξ∈Y

∣∣∣∣ ∂2g

∂xi∂ξ
(x∗, ξ)

∣∣∣∣ (1− β)1/τ =
4
√

2

1 + β
(1− β).

4 Convergence with sample-based methods

We now return to our discussion of numerical methods for solving problem
MnCnCV(β). Note that (19) can be reformulated by combining the two min-
imizations:

min
x∈X,η∈IR

h(x)

s.t. η +
1

1− β
E[(g(x, ξ)− η)+] ≤ 0.

(27)

This reformulation is well-known, see Rockafellar and Uryasev [37, Theorem
16].

Problem (27) is a nonlinear stochastic optimization problem with deter-
ministic objective and a stochastic constraint. The main challenge here is to
handle the expected value E[(g(x, ξ)− η)+]. As we discussed in the introduc-
tion the usual approach is based on a sample from ξ. Let ξ1, · · · , ξN be an
independent and identically distributed (i.i.d.) sample of ξ. We consider the
following sample average approximation (SAA) for MnCnCV(β) (using for-
mulation (27)):

MnCnCVSA(β) :


min
x,η

h(x)

s.t. η +
1

(1− β)N

N∑
j=1

(g(x, ξj)− η)+ ≤ 0,

x ∈ X, η ∈ IR.

For a fixed sample, MnCnCVSA(β) is a deterministic nonlinear programming
problem and can be easily solved by standard methods for nonlinear program-
ming.
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At this point, it is helpful to link our SAA approach to Calafiore and
Campi’s randomization approach in [10,11] in which the following problem is
taken as a sample-based approximation to MnCnMx:

MnCnMxSA :

{
min
x∈X

h(x)

s.t. g(x, ξj) ≤ 0, for j = 1, · · · , N,

where ξ1, · · · , ξN are randomly taken from set Y . A clear benefit of the ran-
domization approach is to replace the continuum of the constraints of the
problem MnCnMx with a finite number of constraints. In doing so, we obtain
an outer approximation to the feasible set of the true problem, and hence the
optimal value of MnCnMxSA gives rise to a lower bound for the optimal value
of MnCnMx. From a practical point of view, an important issue when using
this kind of approximation scheme concerns feasibility of the optimal solution
of MnCnMxSA to its true counterpart. It has been shown that the solution
satisfies most of the constraints of MnCnMx if the number of points N is suffi-
ciently large, see [10] and [12]. Moreover, [12] demonstrated an exact universal
bound on the number of samples required to ensure a particular value for the
probability that the constraints of the original problem are violated by more
than ε.

Analogous to MnCnMxSA, our approximation scheme MnCnCVSA(β) also
gives an outer approximation to MnCnMx in terms of the feasible set and
provides a lower bound for the optimal value provided the sample size is suf-
ficiently large. However the two formulations are quite different: we note that
there is a single non-smooth convex constraint in MnCnCVSA(β) whereas
MnCnMxSA has N smooth constraints.

Let (xN , ηN ) be an optimal solution which is obtained from solving the
sample average approximation MnCnCVSA(β) with sample size N . In the
next result we estimate the probability of xN which is based on a sample,
deviating by more than an amount ε from the real optimal solution for the
constrained risk problem MnCnCV(β). This result does not require g(x, ξ)
to be bounded. Then in part (ii) of the Theorem we use the consistent tail
behavior condition to establish the equivalent result where we compare the
sample average approximation MnCnCVSA(β) with the optimal solution to
the robust problem MnCnMx as β approaches 1.

Theorem 7 As before let X̂ and X̂(β) denote the set of optimal solutions of
MnCnMx and MnCnCV(β). Assume: (a) the feasible set of problem MnCnMx
is non-empty; (b) g(x, ξ) is convex as a function of x; (c) we may choose a
measurable function θ(ξ) as the Lipschitz constant for g, so that

|g(x′, ξ)− g(x, ξ)| ≤ θ(ξ)‖x′ − x‖

for all ξ ∈ Y and all x′, x ∈ X, and the moment generating function of θ(ξ)
(as a function of t) is finite for t in a neighborhood of zero; (d) for every x
the moment generating function for g(x, ξ), is finite for t in a neighborhood
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of zero; (e) h(x) is Lipschitz continuous on X with modulus L and it satisfies
some growth condition on G(β), that is, there exists δ0 > 0 such that

R(δ) := inf
x∈G(β),d(x,X̂(β))≥δ

h(x)− ϑ̂(β) > 0 (28)

for any δ ∈ (0, δ0]. Then

(i) for any positive number ε, there exist positive constants C(ε) and α(ε)
(independent of N) such that

Pr(d(xN , X̂(β)) ≥ ε) ≤ C(ε)e−α(ε)N

for N sufficiently large, where xN is an optimal solution to MnCnCVSA(β).
(ii) If, in addition, problem MnCnMx satisfies the Slater constraint qualifica-

tion (22), and g(x, ξ) has consistent tail behavior on X, then for any ε > 0
there exist positive constants β0, C(ε) and α(ε) (independent of N) such
that for β > β0

Pr(d(xN , X̂) ≥ ε) ≤ C(ε)e−α(ε)N

for N sufficiently large.

The proof of the above technical results is given in the appendix.
It might be helpful to make some comments about the conditions. Condi-

tions (c) and (d) involving moment generating functions simply mean that the
probability distributions for the associated random variables θ(ξ) and g(x, ξ)
die exponentially fast in the tails. In particular, they will be satisfied when
the random variable has a distribution supported on a bounded subset of IR.
Condition (c) requires f to be Lipschitz continuous in x, but this is implied
by the convexity of g(x, ξ) as a function of x. These conditions are standard
for deriving exponential rate of convergence, see for example [40]. Condition
(e) requires the objective function h to satisfy certain growth condition when
x deviates from solution set X̂(β). This is implied by similar growth condi-
tion when x deviates from X̂. Growth conditions are often needed to derive
stability of optimal solutions, see for instance [23].

The theorem says that xN converges to an optimal solution of MnCnMx in
distribution and it does so at an exponential rate as the sample size increases.
The proof exploits the uniform law of large numbers for random functions.
Note that xN is not necessarily a feasible solution of MnCnMx but it ap-
proaches feasibility as β → 1.

This result allows us to use a sample-based CVaR constrained problem
MnCnCVSA(β) to approximate the optimal solution to the robust problem
MnCnMx. In doing this, the accuracy of the result is improved by taking β
close to 1, but the sample based approximation then becomes worse because
the estimate of CVaR is based on a smaller number of observations. There
is an alternative approach making use of the approximations of MnCnMx(β)
discussed in Theorems 5 and 6. This involves an appropriate adjustment of
the constraint right hand side to gβ(x∗), and hence requires an initial estimate
of the optimal solution x∗.

Thus we are led to a two stage procedure to solve MnCnMx.
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(a) Generate a sample ξj , j = 1, 2, ...N , and find the optimal solution x∗0 to
the sample average robust problem MnCnMxSA.

(b) For a given value of β use ξj , j = 1, 2, ...N to estimate U0 = CVaRβ(g(x∗0, ξ))
and solve the sample-based CVaR problem MnCnMxSA(β) with U0 as right
hand side to give an optimal solution x∗1.

In the next section, we will discuss the application of this approach to a
particular problem arising in project management and show that x∗1 can be a
better solution than x∗0. The second stage does not require more samples to be
taken, but it makes more use of the information contained in these samples.

In assessing whether the second stage is worthwhile we need to consider two
factors. First, note that neither of x∗0 or x∗1 is guaranteed to be feasible for the
original problem, MnCnMx, since both are based on sample approximations.
Ideally the two stage procedure will not reduce the probability of feasibility.
The second aspect is the quality of the solution as measured by the objective
function h(x), or by the distance to the true solution. We aim to achieve a
solution which is close to the exact optimum and no worse in terms of the
objective.

The use of a CVaR approximation with a value of β that is not close to 1,
will enable the solution to be calculated based on a greater proportion of the
sample set, and this gives an opportunity to improve the solution in moving
from x∗0 to x∗1.

4.1 Asymptotic behavior of sample average approximated CVaR

It is well known that estimating CVaR from sample data is subject to high
volatility. In general understanding the tail behavior of a distribution on the
basis of a sample is very challenging (and require large sample sizes). Work
by Heyde and Kou [17] shows that even determining whether the underlying
distribution has power or exponential type tails can be very difficult. In this
section we will characterize the variance of the CVaR estimates in more detail.
Since these estimates are embedded within our optimization procedure, we can
expect to see poor performance of the sample based optimization procedure as
β → 1. In fact Lim et al. [27] show that the optimization procedure introduces
an extra bias when applying this approach to a portfolio optimization problem.
In this section we will widen our analysis to include cases where the values
of g(x, ξ) are unbounded (and so cannot have the property of consistent tail
behavior).

Extreme value theory and the Picklands-Balkema-de Haan (PBdH) the-
orem [30] show that, if a distribution for a random variable ξ is in a set
MDA(Hκ) (the maximum domain of attraction for a generalized extreme value
distribution with parameter κ), then the excess distribution over u, defined by

F>u(t) = Pr(ξ − u ≤ t | ξ > u) for t > 0, (29)

has a generalized Pareto distribution in the limit of large u with shape pa-
rameter κ. In other words there are parameters κ and γ > 0 such that the
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cumulative distribution function for the excess distribution above u approaches
Gκ,γ(t) given by

Gκ,γ(t) =

{
1− (1 + κt/γ)−1/κ for κ 6= 0,

1− exp(−t/γ) for κ = 0.
(30)

When κ ≥ 0 the distribution is defined over the range t ≥ 0. The κ < 0 case
corresponds to a distribution for F with a maximum value tmax = −γ/κ.

To apply these ideas in our setting we consider the tail behavior of g(x, ξ(ω))
which has a cumulative distribution function Fx(·). The condition that F is in
some set MDA(Hκ) is hardly a restriction, since it applies to all distributions
we are ever likely to observe in practice. The PBdH theorem in effect distin-
guishes between three cases for the tail behavior of g(x, ξ): either there is a
finite maximum to the distribution (κ < 0), or the tail index is infinity (like
a normal distribution) (κ = 0), or there are fat tails so that the tail index is
less than infinity (κ > 0).

We can use this theory and a result of Chen [14] (see also Brazauskas et
al. [8]) to establish the following result for a sample based estimate of CVaR.
The standard CVaR estimator based on a sample, ξ1, ξ2, ..., ξN is given by

ĈVaRβ = v̂β +
1

N − [Nβ]

N∑
j=1

(ξj − v̂β)+

where we write [Nβ] for the integer part of Nβ and v̂β is the sample esti-
mator of VaRβ(ξ) (thus v̂β = ξ([Nβ]+1) where ξ(r) is the r’th order statistic
of {ξi}Ni=1). As we mentioned earlier there are other more complex estimates
available (e.g. [15]) avoiding the problem of bias ( [14]). Other estimates are
helpful when Nβ is far from an integer, but our asymptotic result does not
require this since we will consider N →∞.

Proposition 2 Suppose that a CVaR estimate is made from independent sam-

ples g(x, ξ1), g(x, ξ2), ..., g(x, ξN ) using the estimator ĈVaRβ and g(x, ξ) has
an MDA(Hκ) distribution. Then the asymptotic variance of the estimator as
N →∞ is approximated by

γ

(
1

(1− 2κ)
+ β

)
(1− β)−2κ−1

N

for some constant γ, and is exactly this expression if g(x, ξ) follows a gen-
eralized Pareto distribution (with shape parameter κ < 0.5) for values above
VaRβ(g(x, ξ)).

The proof of Proposition 2 is given in the appendix. We have formulated this
result in a way that clarifies the β dependence of the variance of the CVaR
estimator. This is less clear cut in the similar results obtained by Necir et
al. [31] (see also [15]). Notice that the dependence on β is different when
κ ≤ −0.5. This corresponds to distributions with a finite maximum g∗x where,
for α close enough to g∗x, Fx(α) = 1−k0(g∗x−α)θ for some choice of scaling k0
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and θ = −1/κ < 2. We can say that the density approaches zero at its upper
bound faster than linearly. In this case the variance of the estimator tends to
decrease as β → 1, but for values of κ > −0.5 the variance will increase.

5 Applications

5.1 An application to project management

To illustrate the theoretical results established in Theorems 1 and 2, we apply
them to a resource allocation problem occurring in project management. One
reason for considering this particular application is that the essential supre-
mum of the underlying functions is bounded which enables us to apply the
error bound in Theorem 1 (iii).

Suppose that a project is completed when the last of K different activ-
ities are completed, with a requirement to complete these sequentially. The
distribution of time required for an activity is assumed to be known, but the
assignment of additional resources by working overtime can reduce the total
days needed. [2] and [26] give some discussion of different models for time
reduction in a stochastic environment and how resources can be optimized in
this context.

It is desired to minimize expected completion time subject to a CVaR risk
constraint. We suppose that there are K activities and the elapsed time for the
k’th activity is given by ξk/(1 + xk) for k = 1, 2, · · · ,K where ξk is a random
variable giving the total time required for this activity and xk is the proportion
of overtime worked on this activity. The cost of additional overtime for activity
k is ckxk and there is a maximum budget of B available for overtime. Hence
the feasible allocations for x are given by

x ∈ X =

{
(x1, x2, ...xK) | xi ≥ 0,

K∑
k=1

ckxk ≤ B

}
.

5.1.1 MnMx and MnCV(β)

The problem of minimizing the CVaR for project completion becomes

min
x∈X

CVaRβ

(
K∑
k=1

ξk
(1 + xk)

)
.

In practice, the activity durations ξk are often correlated as they may be
affected by the same external factors such as the weather. The durations of
ξi often follow a beta distribution. The beta distribution has often been used
as a bounded distribution alternative to the normal distribution. The beta
distribution has been proposed as a good candidate for modeling bounded
continuous random variables using only the information provided by an expert
not only in project management but also in different fields, such as resource
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assessment, construction duration, and engineering, among others [1]. When
the parameters of the beta distribution are not easily estimated, it has been
suggested that the triangular distribution can be used as a proxy for the beta
distribution [21].

For the simplicity of discussion, here we concentrate on the case where each
ξk is independent and has a distribution with a triangular density on (ak, bk)
with mode at mk ∈ (ak, bk).

Let g(x, ξ) =
∑K
k=1 ξk/(1 + xk). Then g∗x =

∑K
k=1 bk/(1 + xk). It is easy to

see that

1− Fx(α) = Pr

(
K∑
k=1

ξk
1 + xk

> α

)

= Pr

(
K∑
k=1

ξk − bk
1 + xk

> α−
K∑
k=1

bk
1 + xk

)

≥
K∏
k=1

Pr

(
ξk − bk
1 + xk

>
α

K
−

K∑
k=1

bk
K(1 + xk)

)

=
K∏
k=1

Pr

(
ξk

(1 + xk)
>

bk
(1 + xk)

− g∗x − α
K

)
,

the last term gives the probability that each of the K components of g comes
within (g∗x − α) /K of its maximum value. Now for a triangular distribution
we have, for δk < bk −mk,

Pr(ξk > bk − δ) =
δ2

(bk − ak)(bk −mk)
.

So, for α large enough,

1− Fx(α) ≥ (g∗x − α)
2K 1

K2K

K∏
k=1

(1 + xk)2

(bk − ak)(bk −mk)

> (g∗x − α)
2K 1

K2K

K∏
k=1

1

(bk − ak)(bk −mk)
.

This establishes the inequality of Theorem 1 part (iii) without dependence on
x, so we have consistent tail behavior. We can also check the conditions of
Proposition 1 to establish the same result.

5.1.2 MnCnMx and MnCnCV(β)

We now turn to consider MnCnCV. Given activity durations that are triangu-
lar, the expected durations are µk = (ak + bk +mk)/3. Hence the constrained
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risk problem MnCnCV(β) becomes

min
x∈X

K∑
k=1

µk
(1 + xk)

s.t. CVaRβ

(
K∑
k=1

ξk
(1 + xk)

)
≤ U,

whereX =
{

(x1, x2, ...xK) | xi ≥ 0,
∑K
k=1 ckxk ≤ B

}
. Writing g(x, ξ) =

∑K
k=1

ξk/(1 + xk)− U we reach the form we require.
The robust feasibility problem MnCnMx requires a guarantee that the

completion time does not exceed U , and replaces the constraint in this problem
with

K∑
k=1

bk
1 + xk

− U ≤ 0. (31)

Thus G = {x ∈ X :
∑K
k=1 bk/(1 + xk) ≤ U}. In this case, provided B and U

are chosen so that both the budget and risk constraint are tight, we can find
the optimal solution x̂ with

x̂k =

√
µk + λ2bk
λ1ck

− 1, for k = 1, · · · ,K,

where λ1 and λ2 are the simultaneous solutions of√
λ1

(
B +

K∑
k=1

ck

)
=

K∑
k=1

√
ck(µk + λ2bk),

√
λ1

K∑
k=1

bk

√
ck

µk + λ2bk
= U.

The constrained risk problem MnCnCV(β) involves the CVaR level in the
constraint and cannot be easily solved explicitly. However when K, the number
of activities, is large, use of the central limit theorem allows us to approximate
the term g(x, ξ) =

∑K
k=1 ξk/(1 + xk) with a normal distribution, even though

it continues to have a bounded range. Note that the variance of ξk is

Vk =
(
a2
k + b2k +m2

k − akbk − akmk − bkmk

)
/18,

so g(x, ξ) has mean µ(x) =
∑K
k=1 µk/(1 + xk) and standard deviation σ(x) =(∑K

k=1 Vk/(1 + xk)2
)1/2

. Since g(x, ξ) is approximately normal we can esti-

mate CVaRβ from the mean and standard deviation µ(x)+c2(β)σ(x) (see [36]
for an expression for the constant c2(β)).

We have already shown the consistent tail behavior of g(x, ξ); we also

observe that the objective function h(x) =
∑K
k=1 µk/(1 +xk) is Lipschitz; and

the Slater condition for the constraint is easily checked for specific examples.
Hence Theorem 4 applies to the convergence behavior as β → 1, and the
value of the optimal solution to the constrained risk problem MnCnCV(β)
approaches the value for the robust problem MnCnMx with constraint (31).
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5.1.3 A numerical example

Now we wish to check numerically the performance of the two-stage procedure
for a sample based approximation to MnCnMx. We generate a set of 10,000
project management problems withK = 10 and ak, bk,mk, k = 1, 2, ...10 being
generated by taking mk uniform on [9, 15] and ak = γakmk with γak uniform in
[0.85, 0.95] and bk = γbkmk with γbk uniform in [1.10, 1.20]. Moreover for each
problem we generate a set of costs ck uniform from [1, 5], and set U = 20 and
B = 130.

An example of a problem generated in this way has the values of parameters
a, b,m and c as given below

a 11.33 8.79 9.78 10.19 13.51 9.95 8.88 9.71 11.61 8.07
b 14.81 11.07 12.78 12.59 16.83 12.35 11.72 12.50 15.06 10.39
m 13.10 9.87 11.20 10.85 14.46 10.58 9.92 10.65 13.59 9.05
c 1.97 3.72 1.40 3.16 2.72 1.66 2.87 4.09 2.71 1.87

To solve the project management problem we suppose that we have access
to a sample of 100 data points, ξjk, k = 1, 2, ...10, j = 1, 2, ...100 generated
randomly from the appropriate triangular distributions. We estimate bk and
µk with

b̂k = max
j=1,··· ,100

ξjk, µ̂k =
1

100

100∑
j=1

ξjk.

Then the sample based robust optimization problem MnCnMxSA becomes

min
x∈X

K∑
k=1

µ̂k
(1 + xk)

s.t.

K∑
k=1

b̂k
1 + xk

≤ U

where X =
{

(x1, x2, ...xK) | xi ≥ 0,
∑K
k=1 ckxk ≤ B

}
. We write x∗0 for the

optimal solution of this problem (and x∗ for the actual optimal solution based
on bk and µk).

We can estimate the probability of a new sample taken from the original
distribution failing to be feasible for x∗0, i.e. we find

Z0 = Pr

(
K∑
k=1

ξk/(1 + x∗0k) > U

)
.

This will be very small and thus hard to estimate using a sample based ap-
proach. For a failure of feasibility each of the ξk values will need to be close
to its upper limit. Observe that since ξk < bk, k = 1, 2, ...K, the inequality∑K
k=1 ξk/(1 + x∗0k) > U implies

ξj > (1+x∗0j)

U −∑
k 6=j

ξk/(1 + x∗0k)

 > (1+x∗0j)

U −∑
k 6=j

bk/(1 + x∗0k)

 = qj .
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Provided qj > mj ,we will have Pr(ξj > qj) =
(bj−qj)2

(bj−mj)(bj−aj) . So we can

estimate Z0 by choosing each ξk from the triangular distribution truncated
below qk with density f(x) = 2(bk − x)/(bk − qk)2 and then scale by dividing
by ΠK

k=1 Pr(ξk > qk). This is estimated from a new sample of size 10,000 ξ
vectors.

For each problem we take the optimal solution x∗0 and generate a new op-
timal solution for MnCnCVSA(β) with the right hand side of the constraint
replaced by the estimated CVaR value at x∗0, CVaRβ(g(x∗0, ξ)). Thus the con-
straint becomes

CVaRβ

{
K∑
k=1

ξjk
(1 + xk)

, j = 1, 2...N

}
≤ CVaRβ

{
K∑
k=1

ξjk
(1 + x∗0k)

, j = 1, 2..., N

}
.

The solution is x∗1.

We make three tests to see whether the solution x∗1 is better than x∗0. Ideally we
will achieve three properties. First the solution obtained will have improved
feasibility, so that the probability of a sample in which the project is not
completed by time U is reduced. In other words

Z1 = Pr

(
K∑
k=1

ξk/(1 + x∗1k) > U

)
< Z0.

Second the optimization problem will have an improved objective value; that is∑K
k=1E(ξk)/(1+x∗1k) <

∑K
k=1E(ξk)/(1+x∗0k). Finally the solution obtained

will be closer to the correct value ‖x∗ − x∗1‖ < ‖x∗ − x∗0‖ where x∗ is the
optimal solution for our base problem MnCnCX.

We estimate Z1 in the same way as Z0 by generating another test sample
of size 10,000 to see how many of this sample are infeasible. Figure 1 shows the
comparison between Z0 and Z1 for the complete set of 10,000 sample problems
and different values of β.

Figure 2 shows the values of objectives

K∑
k=1

E(ξk)/(1 + x∗0k) and

K∑
k=1

E(ξk)/(1 + x∗1k).

We can observe that in the case that x∗1 is better it will achieve a lower objective
values than x∗0.

Finally the third set of results is about the precision of the approximation
solutions, where we compare ‖x∗ − x∗1‖ and ‖x∗ − x∗0‖. In order to find an
exact value for x∗ we use a sample based approach but increase the size of the
sample to 50,000.

We observe that there is a clear improvement from using x∗1 instead of x∗0 for
each of the three criteria as shown in Figures 1, 2 and 3. The improvement in
feasibility is achieved when moving β down to a value of 0.94 and is maintained
when β is reduced further to 0.9. The value of the objective function and the
optimizing decision vector x, shown in Figures 2 and 3, show improvement as
β is reduced all the way down to β = 0.9.
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5.2 An application to portfolio optimization

Portfolio optimization is a natural area of application for our ideas and has
been extensively studied. Originally portfolio optimization was most com-
monly formulated using a Markowitz approach concentrating on the mean-
variance efficient frontier. More recently it is common to consider either
mean-VaR or mean-CVaR problems. The idea behind a mean-CVaR approach
is simple: we want to find a portfolio of assets which achieves a good result
both in terms of mean return and also in terms of risk as measured by CVaR.
A portfolio with more risk will allow better mean returns, and there will be
a Pareto optimal solution that minimizes risk for a given level of return. We
will consider the equivalent problem MnCnCV(β) where we maximize return
subject to a constraint that CVaR risk is bounded by U . Solving the problem
for different values of U would map the efficient frontier.

There is a substantial literature dealing with both VaR and CVaR ver-
sions of portfolio optimization, but we will mention only papers that bear
directly on the problem of high volatility of CVaR estimates discussed by Lim
et al. [27] and others. Some authors (Zhu and Fukushima [46], Wozabal [44])
have proposed using a robust formulation of the problem to deal with the
uncertainty in the underlying distribution. An alternative approach proposed
by El Karoui et al. [22] is to use a regularization method. These are relatively
complex methods, and we will not attempt to make comparisons with our
proposal.

5.2.1 Varying β in constrained risk problems

Recall the analysis on varying β in Section 3.3. Our aim in this section is
to approximate the solution of a constrained risk problem MnCnCV(β0) by
changing to a new (lower) confidence level β1. However, to achieve a good
approximation we will need to change the value of the constraint right-hand
side at the same time from U0 to U1. The amount by which we should change
U is determined by the characteristics of the tail behavior of the distribution of
g(x, ξ). We will not require bounds on the values of g(x, ξ) for this procedure.

In the project management example of Section 5.1 we were looking for ways
to solve the base problem MnCnMx through the MnCnCV approximation.
Here our target problem is already in the form MnCnCV(β) and MnCnMx
does not appear. Nevertheless we can still use the underlying idea of adjusting
the confidence level downwards to make use of more of the sample. Instead of
starting with x∗0 as an estimate of the solution of MnCnMx, we begin with x∗0
as an estimate of the solution of MnCnCV(β).

Thus we are led to a two-stage procedure. We suppose that there is a
given confidence level β0 and the decision maker is concerned to bound the
risk CVaRβ0 to less than U0. The process starts by finding an estimate of
the optimal solution x∗0 for the problem MnCnCV(β0) with U0; then having
done this we calculate U1 = CVaRβ1

g(x∗0, ξ) and finally solve the problem
MnCnCV(β1) with U1 to as the constraint right hand side to produce a new
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optimal solution x∗1. Because we will use the sample average approximation for
each of the solutions we will expect some difference between x∗0 and x∗1 even
though the sample ξ1, · · · , ξN is the same for both problems.

We suppose that we have a portfolio problem in which there are n stocks
and write wi for the weight on stock i. Thus the version of MnCnCV(β) we
wish to solve is

min
w∈Wn

E

[
−

n∑
i=1

wiRi

]

s.t. CVaRβ

(
−

n∑
i=1

wiRi

)
≤ U.

(32)

Here Ri is a random variable giving the return of stock i and the set of feasible
weights is defined through lower bounds on each component (for example this

may be used to prohibit short selling), Wn = {w | w>1 = 1,wL ≤ w}, where
the components in the n-dimensional vector wL := (0, 0, · · · , 0)′ is used to
denote the lower bounds of investment weight for the corresponding stocks wi
for i = 1, 2, · · · , n.

Now we translate this into a sample average problem supposing that we
have a sample of observations r̃ji , j = 1, 2, ..., N , from the return Ri. Then the
corresponding version of MnCnCVSA(β) is

min
w∈Wn,η∈IR

− 1

N

N∑
j=1

n∑
i=1

wir̃
j
i

s.t. η +
1

(1− β)N

N∑
j=1

((
−

n∑
i=1

wir̃
j
i

)
− η

)
+

≤ U.

We call this the risk constrained portfolio problem (RCPP) and write the
optimal portfolio as w∗(β, U).

We will test the two stage approach in detail on synthetic data.

5.2.2 A numerical example

In order to test the method proposed above we use synthetic data based on
stock returns for 66 stocks drawn from the S&P-100 index over the period from
April 2011 to April 2015.1 The data used is taken from finance.google.com. We
use a t-distribution to model the log returns of each stock. The one-dimensional
t-distribution is widely used in modelling univariate financial data because, in
comparison to the Normal, it easily incorporates a heavy tail with a single
extra parameter (the degree of freedom). For instance, Markowitz and Usmen
[28,29] investigated the rich family of Pearson distributions and identified the
t-distribution with about 4.5 degrees of freedom as the best fit to daily log-
return data of the S&P500. We refer the readers to Hu and Kercheval [18]

1 We fit 81 stocks in the S&P-100 index by t-distributions and select 66 stocks with their
degrees of freedom in the range of [2.5, 6.0].
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and Platen and Rendek [33] for recent results and empirical evidences. When
using t-distributions in the numerical tests on synthetic data, the values of the
mean and variance are estimated from the real data set, but we will vary the
degree of freedom as part of our experiments.

Our interest is in improving performance out of sample by moving from
β = 0.975 to β = 0.95. We begin by taking a sample of size 1000, r̃j , j =
1, 2...1000, of vectors of returns from the 66 stocks modelled assuming that
returns from different stocks are independent and that log returns for each
stock have a t-distribution. We solve the RCPP problem with β = 0.975
and CVaR0.975 constrained to be less than 5% (i.e. a U value of −0.95). Call
this optimal portfolio w∗0 . Then we follow the procedure described earlier by
setting U1 = CVaR0.95{−w∗>0 r̃j , j = 1, 2, ..., 1000} and then solving RCPP
with β = 0.95 and U1 to give an alternative optimal portfolio w∗1 . Note that
the RCPP problem is easy to solve using linear programming techniques [25].

The next step is to compare the performance of the two portfolios out of
sample. We do this by drawing 200 different out of sample data sets (each
with 1000 observations). For each of these 200 data sets we calculate the
mean return and the CVaR0.975 values for both w∗0 and w∗1 . The results that
we obtain depend on the choices of w∗0 and w∗1 which will vary according to the
initial sample of 1000 points. A box plot for a typical example of the results
we obtain is shown in Figure 4. We describe this as a single experiment.

Fig. 4 The mean and CVaR0.975 of returns in 200 out-of-sample tests for w∗
0 and w∗

1 from
MnCnCV problems on stock sets with degrees of freedom being 3.

We repeat this experiment 50 times with different random initial samples.
Most often the mean return from w∗1 is better than that from w∗0 while the
CVaR values may move in either direction. More details are given in Table 1,
which shows the percentage of experiments in which the return is improved
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under w∗1 and the percentage of times that improvement is significant at the
5% level using a paired sample t-test. The table also shows the percentage of
time that w∗1 leads to a lower level of CVaR0.975 (again a paired sample t-test
is used to identify significant improvements). The first column of the table
is generated by fixing the degrees of freedom to equal 3 for the log return
t-distribution for all 66 stocks. The second and third columns show increased
values for the degrees of freedom parameter (the mean and variance parameters
for each stock remain at the values that are estimated from the original data
set). As degrees of freedom increase the t-distribution becomes closer to the
normal distribution and the tails become thinner.

deg. of deg. of deg. of
freedom = 3 freedom = 5 freedom = 6

% of experiments where mean
return from w∗

1 is better 86% 56% 48%
than w∗

0
% of experiments where mean
return from w∗

1 is significantly 68% 48% 30%
(p-value < 0.05) better than w∗

0
mean CVaR0.975 losses under w∗

0
(measured as percent) 6.17 5.60 5.37

mean CVaR0.975 losses under w∗
1

(measured as percent) 6.16 5.57 5.34
% of experiments where CVaR0.975

with w∗
1 is significantly (p-value < 0.05) 52% 60% 70%

better than with w∗
0

Table 1 Comparison of performance of w∗
0 and w∗

1 on synthetic data.

The experiments here indicate that there is a sensitivity to the thickness
of the tails (controlled here by the degrees of freedom parameter). For heavy
tails (with degrees of freedom = 3) there is a clear benefit in mean return
for a given level of risk through the use of the new procedure (i.e. using w∗1).
There is significantly better performance in more than two thirds of cases and
this is achieved with no overall worsening of the risks when measured through
CVaR0.975. However, whether or not the new approach is used, we see from
the table that levels of risks are higher than the 5% losses that are targeted,
and are more than 6

As the degrees of freedom are increased and the tails become thinner,
the improvement in mean returns disappears. In its place we find that the
new procedure generates solutions with lower average risk. With degrees of
freedom =6 we find that there is really no advantage in w∗1 from the point of
view of mean returns, but there is a small improvement in CVaR levels. In
fact in 70% of the experiments CVaR levels are lower under w∗1 than they are
under w∗0 . Note that in this thinner tailed case the CVaR risks are also much
closer to the targeted level of 5% losses, whether or not the new procedure is
used.
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6 Conclusion

This paper explores the effect of changing the confidence level β when using
a CVaR risk measure within an optimization problem. The setting of this
confidence level in practice requires a judgement that trades off the greater
confidence that a high level of β brings, against an inappropriate focus on
extremely unlikely scenarios (which are associated with very high levels of
loss). We can put this dilemma into concrete terms by considering a manager
who needs to make a choice between operating with a constraint that losses
in the worst 5% of cases have an average value of no more than $1 million, or
a constraint that losses in the worst 1% of cases have an average value of no
more than $3 million.

We begin with a study of the convergence behavior in risk-based optimiza-
tion as the confidence level β approaches 1. It is well known that CVaR is a
risk measure which ranges between the expected value (risk neutral) and the
extreme value (most conservative risk aversion). However the convergence be-
havior has not received much attention in the literature so far and the results
we obtain in Theorem 1 do not seem to have been given before.

Though we have formulated the problem in terms of the asymptotic be-
havior as β approaches 1, it is equally possible to see our results as relating
to the use of CVaR approximations in a context where the original problem is
one of robust optimization.

A complexity in this discussion is that the solution of these problems in
practice uses a sample average to approximate the CVaR values, and these
sample approximations will be worse and worse behaved as the confidence
level approaches 1. On the one hand this shows that our asymptotic results
are quite strong since they overcome this difficulty. On the other hand it also
suggests that lower values of β may bring some advantage in practice since the
sample approximations are better behaved. We explore this possibility through
a numerical investigation of certain project management problems. For these
examples we show that there is a clear advantage in using a CVaR based ap-
proach after adjusting the right hand side, using a two stage procedure. In
fact with a sample size of 100, β levels down to 0.9 appear to work well. We
also show an advantage in using a related two stage approach in portfolio op-
timization.

Acknowledgements. We would like to thank the associate editor and two
anonymous referees for valuable comments which have helped us to signifi-
cantly improve the paper.



34 Edward Anderson et al.

Appendix

Proof of Theorem 1. Part (i). Suppose first that g∗x <∞. Then it is enough
to show that limβ→1 VaRβ(g(x, ξ)) = g∗x. Observe that, since g∗x is a supremum,
for any ε > 0, there is a ω ∈ Ω such that y0 = ξ(ω) and g(x, y0) > g∗x − ε.
Let A = (g(x, y0)− ε/2, g(x, y0) + ε/2), then since gx is continuous, g−1

x (A) is
open and we can deduce that Pr(ξ ∈ g−1

x (A)) > 0. Thus

β0 := F (x, g(x, y0) + ε/2) > F (x, g(x, y0)− ε/2).

Since F (x, α) is increasing in α, this implies

VaRβ0
(g(x, ξ)) ≥ g(x, y0)− ε/2 ≥ g∗x − 3ε/2.

As ε is arbitrary this shows the result we need. When supy∈Y g(x, y) =∞ we
can use a similar approach to find values of β with VaRβ(g(x, ξ)) ≥M for any
integer M .

Part (ii). By the classical implicit function theorem, F−1
x (β) is continuously

differentiable and
dF−1

x (β)

dβ
=

1

dFx(α)/dα
,

where β = F (x, α). The assumption that dFx(α)/dα is monotonically decreas-
ing is then enough to show that F−1

x (β) has an increasing derivative and hence
is convex (i.e. that VaRβ(g(x, ξ)) is convex with respect to β). By the definition
of CVaR

CVaRβ(g(x, ξ)) =
1

1− β

(∫ (1+β)/2

β

F−1
x (t)dt+

∫ 1

(1+β)/2

F−1
x (t)dt

)

=
1

1− β

∫ (1−β)/2

0

[
F−1
x

(
1 + β

2
− s
)

+ F−1
x

(
1 + β

2
+ s

)]
ds

≥ 1

1− β

∫ (1−β)/2

0

2F−1
x

(
1 + β

2

)
ds = F−1

x

(
1 + β

2

)
and this establishes the first inequality of (3).

To show the second inequality of (3) we first observe that it is trivial
in the case that supy∈Y g(x, y) = ∞. So we can assume that f achieves its
maximum value, and this is given by F−1

x (1). Now consider a change of variable
t = β + (1− β)s and then, using the convexity of F−1

x (t), we have

1

1− β

∫ 1

β

F−1
x (t)dt ≤

∫ 1

0

[
sF−1

x (1) + (1− s)F−1
x (β)

]
ds ≤ 1

2

[
F−1
x (1) + F−1

x (β)
]

=
1

2
[VaRβ(g(x, ξ)) + VaR1(g(x, ξ))] .

Part (iii). If we set t = Fx(α), then the condition on Fx(α) can be rewritten

1− t ≥ K
(
g∗x − F−1

x (t)
)τ
.
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Hence we have

g∗x − CVaRβ(g(x, ξ)) =
1

1− β

∫ 1

β

(g∗x − F−1
x (t))dt ≤ 1

1− β

∫ 1

β

(
1− t
K

)1/τ

dt

=
1

K1/τ

1

1 + (1/τ)
(1− β)1/τ .

The proof is complete.

Proof of Proposition 1. By (11), we have

Pr

(
‖ξ∗ − ξ‖ < 1

C1
z1/ν1

)
≤ Pr(g(x, ξ∗)− g(x, ξ) < z)

since the event on the left hand side implies the event on the right hand side.
Through (12), we obtain

Pr(g(x, ξ) > g∗x − z) ≥
C2

C1
zν2/ν1 . (33)

provided that 1
C1
z1/ν1 ≤ δ0. Thus

1− Fx(α) = Pr(g(x, ξ) > α) ≥ C2

C1
(g∗x − α)ν2/ν1

provided 1
C1

(g∗x − α)
1/ν1 ≤ δ0. Hence this inequality holds for

α ∈ (g∗x − (C1δ0)
ν1 , g∗x)

The final step is to show that we can find a single β0 such that CVaRβ0
(g(x, ξ)) >

g∗x−(C1δ0)
ν1 for every x ∈ X. We choose β0 = 1− C2

C1
(C1δ0)

ν2 having adjusted
δ0 downwards if necessary to ensure that β0 > 0. So

1

C1

((
C1

C2
(1− β0)

)ν1/ν2)1/ν1

= δ0

and hence from (33) for every x ∈ X,

Pr

(
g(x, ξ) > g∗x −

(
C1

C2
(1− β0)

)ν1/ν2)
≥ 1− β0.

Thus from the definition of VaR

VaRβ0
(g(x, ξ)) ≥ g∗x −

(
C1

C2
(1− β0)

)ν1/ν2
= g∗x − (C1δ0)

ν1 .

Hence we have CVaRβ0
(g(x, ξ)) > g∗x − (C1δ0)

ν1 and the result is established.



36 Edward Anderson et al.

Proof of Theorem 2. Applying [16, Lemma 3.1] to MnCV(β) (treating it
as a perturbation of MnMx), we know that for any ε > 0, there exists a δ > 0
such that D(X∗(β), X∗) ≤ ε when ∆β(x) ≤ δ. This shows (16) because

lim
β→0

sup
x∈X

∆β(x) = 0

from Theorem 1. Moreover, under the growth condition (17) and the consistent
tail condition (4), we obtain (18) by virtue of [16, Lemma 3.1].

Proof of Theorem 3. Part (i). The conclusion follows from [45, Lemma 4.2
(i)]. Here we provide a proof for completeness. Let ε be a fixed small positive
number. Define

R(ε) := inf
{x∈X,d(x,G)≥ε}

sup
y∈Y

g(x, y). (34)

Then R(ε) > 0 as we take an infimum over x values outside of G. Let Φβ(x, η)
be defined as in (13). Under the condition that g(x, y) has consistent tail
behavior on X, then Theorem 1 implies that minη∈IR Φβ(x, η) approximates
supy∈Y g(x, y) uniformly with respect to x over X as β → 1, i.e. if we choose
β sufficiently close to 1 then

sup
x∈X

[
sup
y∈Y

g(x, y)−min
η∈IR

Φβ(x, η)

]
≤ R(ε)/2.

Then for any x ∈ X with d(x,G) ≥ ε,

min
η∈IR

Φβ(x, η) = sup
y∈Y

g(x, y) + min
η∈IR

Φβ(x, η)− sup
y∈Y

g(x, y) ≥ R(ε)−R(ε)/2 > 0,

which implies x 6∈ G(β). This is equivalent to saying that d(x,G) < ε for
every x ∈ G(β), that is, D(G(β),G) ≤ ε. The conclusion follows by noting that
G ⊂ G(β).

Part (ii). Under the Slater constraint qualification and convexity of g(·, y),
it follows by [42, Proposition 2.8], that (20) satisfies the metric regularity
condition, that is, there exists a positive constant C such that

d(x,G) ≤ C
(

sup
y∈Y

g(x, y)

)
+

, ∀x ∈ X. (35)

Let x̂ ∈ G(β). Then minη∈IR Φβ(x̂, η) ≤ 0 and

d(x̂,G) ≤ C
(

sup
y∈Y

g(x̂, y)

)
+

− C min
η∈IR

Φβ(x̂, η)

≤ C sup
x∈X

[
sup
y∈Y

g(x, y)−min
η∈IR

Φβ(x, η)

]
.

The rest follows from (10) under the consistent tail condition (4).

Proof of Theorem 4. Parts (i) and (ii). Write the constraints of MnCnMx as
maxy∈Y g(x, y) ≤ 0. Since the two problems have identical objective functions,
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it suffices to look into the impact of the difference of the constraints on the
optimal value and optimal solutions. Under conditions (a) and (b), it follows
by Theorem 3 that the feasible set of (19) is closed in β at β = 1. By classical

stability results (see e.g. [3, Theorem 4.2.1]), ϑ̂(β) converges to ϑ̂ as β → 1
and limβ→1 X̂(β) ⊂ X̂. Part (iii). By Theorem 3 (ii), the feasible set of (19) is
upper pseudo-Lipschitz continuous ( [41]) in β at β = 1. By applying Klatte’s
stability result [23, Theorem 1], we obtain

|ϑ̂(β)− ϑ̂| ≤ LH(G(β),G) ≤ LC

K1/τ

τ

1 + τ
(1− β)1/τ ,

which is (24).

Proof of Theorem 5. Under condition (b), ḡ(x) is convex and F is a compact
and convex set of X. Together with the Slater condition (22) under condition
(a), we have by Robinson’s error bound,

d(x,F) ≤ D

δ̄
‖(g(x))+‖. (36)

Since x∗ is feasible for MnCnCV(β) we have h(x∗β) ≤ h(x∗). Then by the
second order growth condition (c)

h(ΠFx
∗
β)− h(x∗β) ≥ h(ΠFx

∗
β)− h(x∗) ≥ r‖ΠFx∗β − x∗‖2, (37)

where we write ΠF for the orthogonal projection onto F . On the other hand,
the Lipchitz continuity of h implies that

h(ΠFx
∗
β)− h(x∗β) ≤ L‖ΠFx∗β − x∗β‖.

Combining the two inequalities above, we obtain

r‖ΠFx∗β − x∗‖2 ≤ L‖ΠFx∗β − x∗β‖

Thus

‖x∗β − x∗‖ ≤ ‖x∗β −ΠFx∗β‖+ ‖ΠFx∗β − x∗‖

≤ d(x∗β ,F) +

√
L

r

√
d(x∗β ,F)

≤ D

δ̄

(
g(x∗β)

)
+

+

√
LD

rδ̄

√
(g(x∗β))+.

Using condition (d), we have

|gβ(x∗β)− g(x∗β)| ≤ C(1− β)1/τ .

Moreover as g(x∗) ≤ 0, condition (d) also implies gβ(x∗) ≤ C(1−β)1/τ . Hence
using the fact that x∗β is feasible for MnCnCV(β),

g(x∗β) ≤ gβ(x∗β) + C(1− β)1/τ ≤ gβ(x∗) + C(1− β)1/τ ≤ 2C(1− β)1/τ (β),
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giving the bound we require.
Proof of Theorem 6. Since the constraint in MnCnMx is active at x∗, we
have from the Karush-Kuhn-Tucker conditions that

∂h

∂xi
(x∗) + λ∗

∂g

∂xi
(x∗) = 0, for i = 1, 2, ...n (38)

for some non-negative Lagrange multiplier λ∗. In the case when λ∗ = 0, x∗ is
the unconstrained optimal solution for MnCnMx and hence also the optimal
solution for MnCnCV(β) and the bound trivially holds. In what follows, we
consider the case λ∗ > 0. Let F (y) denote the cumulative distribution function
of ξ. Then by definition, VaRβ(ξ) = F−1(β). Moreover, for any u ∈ (0, 1),

u = Pr (g(x, ξ) ≤ VaRu(g(x, ξ))) .

Since g(x, ξ) is increasing in ξ, we also have

u = Pr(ξ < VaRu(ξ)) = Pr (g(x, ξ) ≤ g(x,VaRu(ξ)) .

Thus VaRu(g(x, ξ)) = g(x,VaRu(ξ)) and

gβ(x) =
1

1− β

∫ 1

β

VaRu(g(x, ξ))du =
1

1− β

∫ sup(ξ)

VaRβ(ξ)

g(x, y)ρ(y)dy

by changing variable with y = F−1(u). Let κ be the supremum of the mixed
second derivative of g at x∗ that appears in the bound, i.e.

κ = max
i=1,··· ,n

sup
ξ∈Y

∣∣∣∣ ∂g

∂xi∂ξ
(x∗, ξ)

∣∣∣∣ .
We use ξ to denote the supreme of ξ. Then∣∣∣∣∂gβ∂xi

(x∗)− ∂g

∂xi
(x∗)

∣∣∣∣
=

∣∣∣∣∣ 1

1− β

∫ ξ

VaRβ(ξ)

∂g

∂xi
(x∗, y)ρ(y)dy − ∂g

∂xi
(x∗)

∣∣∣∣∣
=

∣∣∣∣∣ 1

1− β

∫ ξ

VaRβ(ξ)

(
∂g

∂xi
(x∗, ξ)−

∫ ξ

y

∂2g

∂xi∂ξ
(x∗, t)dt

)
ρ(y)dy − ∂g

∂xi
(x∗)

∣∣∣∣∣
≤

∣∣∣∣∣ 1

1− β

∫ ξ

VaRβ(ξ)

(ξ − y)κρ(y)dy

∣∣∣∣∣
= κ

(
ξ − CVaRβ(ξ)

)
where we have used the fact that monotonicity of g implies g(x) = g(x, ξ).
Through (38), the inequality above implies∣∣∣∣ ∂h∂xi (x∗) + λ∗

∂gβ
∂xi

(x∗)

∣∣∣∣ ≤ λ∗κ (ξ − CVaRβ(ξ)
)
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and consequently

(x∗β−x∗)i
∂h

∂xi
(x∗) ≥ −λ∗(x∗β−x∗)i

∂gβ
∂xi

(x∗)−λ∗κ
(
ξ − CVaRβ(ξ)

) ∣∣(x∗β − x∗)i∣∣ ,
where (x∗β − x∗)i is the ith component of (x∗β − x∗) for i = 1, 2, · · · , n. By
exploiting the convexity of h, the inequality above enables us to obtain

h(x∗β) ≥ h(x∗) + (x∗β − x∗)T∇h(x∗)

≥ h(x∗)− λ∗(x∗β − x∗)T∇gβ(x∗)− λ∗κ
(
ξ − CVaRβ(ξ)

)∑∣∣(x∗β − x∗)i∣∣
≥ h(x∗)− λ∗(x∗β − x∗)T∇gβ(x∗)− λ∗κ

(
ξ − CVaRβ(ξ)

)√
n
∥∥x∗β − x∗∥∥ ,

(39)

where we have used the fact that
√
n ‖x‖ ≥ xT e for x ∈ IRn in the last

inequality and e is a vector with unit components.
On the other hand, by (25),

gβ(x0) ≥ gβ(x∗) + (x∗β − x∗)T∇gβ(x∗) +Kc

∥∥x∗β − x∗∥∥2

and, because the constraint is active, gβ(x0) = gβ(x∗), we deduce from the
inequality

−(x∗β − x∗)T∇gβ(x∗) ≥ Kc

∥∥x∗β − x∗∥∥2
. (40)

A combination of (39) and (40) gives rise to

h(x∗β) ≥ h(x∗) + (λ∗Kc)
∥∥x∗β − x∗∥∥2 − λ∗κ

(
ξ − CVaRβ(ξ)

)√
n
∥∥x∗β − x∗∥∥ .

Since x∗ is a feasible solution to MnCnMx(β) whereas x∗β is optimal, then
h(x∗β) ≤ h(x∗) and the inequality above implies

(λ∗Kc)
∥∥x∗β − x∗∥∥2

< λ∗κ
(
ξ − CVaRβ(ξ)

)√
n
∥∥x∗β − x∗∥∥

from which we derive∥∥x∗β − x∗∥∥ < κ

Kc

√
n
(
ξ − CVaRβ(ξ)

)
as required.

Proof of Theorem 7. We can write MnCnCVSA(β) in the following equiv-
alent form

min
x

h(x)

s.t. minη Φ
N
β (x, η) ≤ 0,

x ∈ X,
(41)

where

ΦNβ (x, η) := η +
1

(1− β)N

N∑
j=1

(g(x, ξj)− η)+.
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Thus xN is an optimal solution of (41). Let G(β) be defined as in Section 3,
that is, the set of solutions to inequality (21). Then G(β) is the feasible set
of minimization (19). Let GN (β) denote the feasible set of (41). We give the
proof in 6 steps.

Step 1. Since MnCnMx is feasible, then problem (19) satisfies the Slater
condition which means there exists a positive constant δ and a point x̂ ∈ G ⊂
G(β) such that

min
η∈IR

Φβ(x̂, η) < −δ < 0.

Let xβ ∈ X̂(β) be a solution of MnCnCV(β). Let xt = (1 − t)xβ + tx̂. Since
g(x, ξ) is convex as a function of x, the function minη∈IR Φβ(x, η) is also convex
(see [36]) and

min
η∈IR

Φβ(xt, η) ≤ −tδ. (42)

Let ε be a positive number and R(·) be defined as in (28). For x ∈ G(β),

d(x, X̂(β)) ≥ ε implies h(x)− ϑ̂(β) ≥ R(ε) > 0. Let t̄ be small enough that

Lt̄‖xβ − x̂‖ < R(ε)− Lγ, (43)

where L is the Lipschitz modulus of h(x) and γ < R(ε)/L is some small
positive number.

Step 2. Let σ be a small positive number. Using conditions (c) and (d) on
bounded moment generating functions we may apply the result of [40, Theorem
5.1] to show that there exist positive constants C(σ, β), α(σ, β) and N(σ, β)
such that

Pr

(
sup
x∈X

∣∣∣∣min
η
ΦNβ (x, η)−min

η
Φβ(x, η)

∣∣∣∣ ≥ σ) ≤ C(σ, β)e−α(σ,β)N (44)

for N ≥ N(σ, β).
Step 3. Let δ and t̄ be given as in Step 1. We estimate Pr (xt̄ 6∈ GN (β)).

Pr (xt̄ 6∈ GN (β)) = Pr

(
min
η∈IR

ΦNβ (xt̄, η) > 0

)
= Pr

(
min
η∈IR

ΦNβ (xt̄, η)−min
η∈IR

Φβ(xt̄, η) > −min
η∈IR

Φβ(xt̄, η)

)
≤ Pr

(
min
η∈IR

ΦNβ (xt̄, η)−min
η∈IR

Φβ(xt̄, η) > δt̄

)
(by (42))

< C(σ, β)e−α(σ,β)N (45)

for N ≥ N(σ, β). The last inequality is due to (44) by setting σ < t̄δ. This
shows that xt̄ ∈ GN (β)with probability 1− C(σ, β)e−α(σ,β)N .

Step 4. Suppose that xN 6∈ G(β) then minη∈IR Φβ(xN , η) > 0 and we
define the point yN = (1−s)xN+sx̂ by choosing s so that minη∈IR Φβ(yN , η) =
0 (where s depends on N). Then from the convexity of minη∈IR Φβ(yN , η) we
have

min
η
Φβ(xN , η) >

s

1− s
δ.
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Letting D be the diameter of G(β), we have d(yN , x̂) ≤ D so d(yN , xN ) ≤
s

1−sD. Hence if d(yN , xN ) ≥ γ, where γ is given in Step 1, then

min
η
Φβ(xN , η) ≥ δ

D
γ.

Thus, setting σ ≤ δγ/D, and since minη Φ
N
β (xN , η) ≤ 0, we can deduce that

Pr(min
η
Φβ(xN , η) ≥ σ) ≤ Pr

(
sup
x∈X

∣∣∣∣min
η
ΦNβ (x, η)−min

η
Φβ(x, η)

∣∣∣∣ ≥ σ)
≤ C(σ, β)e−α(σ,β)N .

Therefore

Pr(d(xN , yN ) ≥ γ) ≤ C(σ, β)e−α(σ,β)N .

Step 5. We will establish that if d(xN , X̂(β)) ≥ ε + γ then either xt̄ 6∈
GN (β); or xN 6∈ G(β) and d(xN , yN ) ≥ γ (these are the two cases dealt
with in steps 3 and 4). Hence suppose that xt̄ ∈ GN (β) and xN 6∈ G(β). If
d(yN , X̂(β)) ≥ ε. Then h(yN )− h(xβ) ≥ R(ε). So

h(xN )− h(yN ) = (h(xN )− h(xβ))− (h(yN )− h(xβ))

≤ h(xt̄)− h(xβ)−R(ε)

≤ Lt̄‖xβ − x̂‖ −R(ε) < −Lγ,

which implies that d(yN , xN ) > γ through the Lipschitness of h. On the other
hand if d(yN , X̂(β)) < ε then (using the triangle inequality)

d(yN , xN ) > d(xN , X̂(β))− d(yN , X̂(β)) > γ.

The only case that remains is when xt̄ ∈ GN (β) and xN ∈ G(β). But if
d(xN , X̂(β)) ≥ ε+ γ, then

h(xN )− h(xt̄) = (h(xN )− h(xβ))− (h(xt̄)− h(xβ))

> R(ε)− (R(ε)− Lγ) > 0

using the growth condition on h and inequality (43). However this inequality
contradicts the optimality of xN . Summarizing the discussions above, we can
conclude that

Pr(d(xN , X̂(β)) ≥ ε+ γ) ≤ 2C(σ, β)e−α(σ,β)N .

for N ≥ N(σ, β). Since ε and γ were chosen arbitrarily we can make ε = ε+ γ
to conclude the proof of Part (i).

Step 6. Finally, we show Part (ii). We estimate Pr(d(xN , X̂). By the prop-
erties of D, we have

Pr(d(xN , X̂) ≥ ε) ≤ Pr(d(xN , X̂(β)) + D(X̂(β), X̂)) ≥ ε). (46)
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Let ε = 2ε. Under the consistent tail condition of g, we know from Theorem 4
that by setting β sufficiently close to 1 so that D(X̂(β), X̂)) ≤ ε. By (46)

Pr(d(xN , X̂) ≥ 2ε) ≤ Pr(d(xN , X̂(β)) + D(X̂(β), X̂)) ≥ 2ε)

≤ Pr(d(xN , X̂(β)) ≥ ε)
≤ C(σ, β)e−α(σ,β)N

and this gives the result of Part (ii).

Proof of Proposition 2. We define the random variable Z = (g(x, ξ)−VaRβ(g(x, ξ)))+

and suppose that Z has variance σ0(β)2. Then [14] Theorem 1, shows that the

asymptotic variance of ĈVaRβ as N →∞ is σ0(β)2/(N(1− β)2).
We can calculate the variance of Z by noting that it is a mixture be-

tween the value 0 and a random variable Z+ which has a distribution given
by (29) with u =VaRβ(g(x, ξ)) (so the distribution function is FZ+

(t) =
F>VaRβ(g(x,ξ))(t)). In fact for t > 0 we have

FZ(t) = Pr(ξ −VaRβ(ξ) < t)

= Pr(ξ ≤ VaRβ(ξ))

+ Pr(ξ > VaRβ(ξ))Pr(ξ −VaRβ(ξ) < t | ξ > VaRβ(ξ))

= β + (1− β)FZ+
(t),

which implies that Z has a probability mass of β at 0 and otherwise has a
density (1 − β)fZ+(t). Here we write fZ+(t) for the density of Z+. Then by
the definition of σ0(β)2,

σ0(β)2 = E(Z2)− E(Z)2

= (1− β)

∫ ∞
0

t2fZ+
(t)dt−

(
(1− β)

∫ ∞
0

tfZ+
(t)dt

)2

= (1− β)

(∫ ∞
0

t2fZ+
(t)dt−

(∫ ∞
0

tfZ+
(t)dt

)2
)

+
(
(1− β)− (1− β)2

)(∫ ∞
0

tfZ+
(t)dt

)2

= (1− β)var(Z+) + (1− β)βE(Z+)2, (47)

where var(Z+) denotes variance of Z+.
We consider changing the value of β and we continue to let u =VaRβ(g(x, ξ)).

The assumption we make is that the excess Z+ can be approximated with a
generalized Pareto distribution for u values greater than some threshold u0. We
make use of some properties of the generalized Pareto distribution (see [30]).
In this case Z+ will have a generalized Pareto distribution with parameter
γ = γ0 + κ(u − u0) where γ0 is the parameter applying at u0, and the shape
parameter κ remains unchanged. The generalized Pareto has mean γ/(1− κ)
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provided κ < 1, and variance γ2/((1 − κ)2(1 − 2κ)) provided κ < 0.5. Thus
(substituting into equation (47))

σ0(β)2 =
(1− β)

(1− κ)2

(
1

(1− 2κ)
+ β

)
(γ0 + κ(u− u0))

2
.

We can use the form of the generalized Pareto distribution to calculate the
VaR (see [30]).

u = VaRβ(g(x, ξ)) = u0 +
γ0

κ

((
1− β

1− Fx(u0)

)−κ
− 1

)
,

where Fx(·) is the cumulative distribution function for g(x, ξ). Consequently

σ0(β)2 =
(1− β)

(1− κ)2

(
1

(1− 2κ)
+ β

)
γ2

0

(
1− β

1− Fx(u0)

)−2κ

.

Thus the asymptotic variance of ĈVaRβ has β dependence given by

σ0(β)2/(N(1−β)2) =

(
γ2

0

N(1− κ)2(1− Fx(u0))

)(
1

(1− 2κ)
+ β

)
(1−β)−2κ−1.

The proof is complete.
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