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Abstract. A key step in solving minimax distributionally robust optimization (DRO) problems

is to reformulate the inner maximization w.r.t. probability measure as a semiinfinite program-

ming problem through Lagrange dual. Slater type conditions have been widely used for strong

duality (zero dual gap) when the ambiguity set is defined through moments. In this paper, we

investigate effective ways for verifying the Slater type conditions and introduce other conditions

which are based on lower semicontinuity of the optimal value function of the inner maximization

problem. Moreover, we propose two discretization schemes for solving the DRO with one for

the dualized DRO and the other directly through the ambiguity set of the DRO. In the absence

of strong duality, the discretization scheme via Lagrange duality may provide an upper bound

for the optimal value of the DRO whereas the direct discretization approach provides a lower

bound. Two cutting plane schemes are consequently proposed: one for the discretized dualized

DRO and the other for the minimax DRO with discretized ambiguity set. Convergence analysis

is presented for the approximation schemes in terms of the optimal value, optimal solutions and

stationary points. Comparative numerical results are reported for the resulting algorithms.

Key Words. Matrix moment constraints, Slater type conditions, lower semicontinuity condi-

tions, strong duality, random discretization, cutting plane methods

1 Introduction

One of the most challenging issues in decision analysis is to find an optimal decision under

uncertainty. The solvability of a decision problem and the quality of an optimal decision rely
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heavily on the information about the underlying uncertainties which are often mathematically

represented by a vector of random variables. If a decision maker has complete information on

the distribution of the random variables, then he can either obtain a closed form of the integral

of the random functions in the problem and then convert it into a deterministic optimization

problem, or alternatively use various statistical and numerical integration approaches such as

scenario method [21], Monte carlo sampling method [41] and quadrature rules [12] to develop a

deterministic approximation scheme and solve this using a standard linear/nonlinear program-

ming code. The numerical efficiency of an approximation scheme and the quality of an optimal

solution obtained from it depend on the structure (both the objective and constraints) and the

scale (dimensionality) of the problem.

The situation may become far more complex if the decision maker does not have complete

information on the distribution of the random variables. For instance, if the decision maker

does not have any information other than the range of the values of the random variables,

then it might be a reasonable option to choose an optimal decision on the basis of the extreme

values of the random variables in order to mitigate the risks. This kind of decision making

framework is known as robust optimization where the decision maker is extremely risk averse

or lacks information on the distribution of the underlying random variables as described above.

It is useful in some decision making problems particularly in engineering design [8, 3] where a

design takes into account the extreme and rare event. However, the model may incur significant

economic and/or computational costs in that excessive resources are used to prevent a rare event,

resulting in numerical intractability or inefficiency. Over the past two decades, numerous efforts

have been made to develop approximate schemes for solving robust optimization models which

balance numerical tractability and quality of an optimal solution, see monograph by Ben-Tal et

al. [4].

An alternative but possibly less conservative robust optimization model, which is known as

distributionally robust optimization (DRO), involves a decision maker who is able to construct an

ambiguity set of distributions with historical data, computer simulation or subjective judgements

which contains the true distribution with certain confidence. In such circumstances, it is possible

to choose an optimal decision on the basis of the worst distribution from the ambiguity set. For

example, if we know roughly the nature of the distribution of random variables and can observe

some samples, then we may use the classical maximum likelihood method to determine the

parameters of the distribution and in that way construct a set of distributions if there is an

inadequacy of the sample.

This kind of robust optimization framework may be traced back to the earlier work by

Scarf [39] which was motivated to address incomplete information on the underlying uncertainty

in supply chain and inventory control problems. In such problems, historical data may be

insufficient to estimate the future distribution either because the sample size of past demand is

too small or because there is a reason to suspect that future demand will come from a different

distribution. A larger distributional set which contains the true distribution may adequately

address the risk from the ambiguity of the uncertainty. DRO model has found many applications

in operations research, finance and management sciences. It has been well investigated through

a number of further research works by Žáčková [54], Dupačová [15], Shapiro and Ahmed [42].

Over the past few years, it has gained substantial popularity through further contributions by

Bertsimas and Popescu [7], Betsimas et al. [6], Delage and Ye [14], Goh and Sim [18], Hu and
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Hong [22], Goldfarb and Iyengar [19], Mehrotra and Papp [28], Pflug, Pichler and Wozabal [31],

Popescu [33], Wiesemann, Kuhn and Sim [49, 50] to name a few.

In this paper, we consider the following distributionally robust optimization problem:

min
x∈X

sup
P∈P

EP [f(x, ξ)], (1.1)

where X is a closed set of IRn, f : IRn × IRk → IR is a continuous function, ξ : Ω→ Ξ ⊂ IRk is a

vector of random variables defined on measurable space (Ω,F) equipped with sigma algebra F ,

P is a set of probability distributions defined as

P :=

{
P ∈P :

EP [Ψi(ξ)] = 0, for i = 1, · · · , p
EP [Ψi(ξ)] � 0, for i = p+ 1, · · · , q

}
. (1.2)

Here Ψi : Ξ→ IRni×ni , i = 1, · · · , q, is a symmetric matrix or a scalar with measurable random

components, and P denotes the set of all probability distributions/measures over space (Ω,F);

the notation � means that when Ψi is a matrix, its expected value must be negative semidefinite.

In the case when ni = 1, for i = 1, · · · , q, Ψi reduces to a scalar function and (1.2) collapses

to classical moment problems. Note that if we consider (Ξ,B) as a measurable space equipped

with Borel sigma algebra B, then P may be viewed as a set of probability measures defined

on (Ξ,B) induced by the random variate ξ. So we may also write P(Ξ) for P. Following the

terminology in the literature of robust optimization, we call P the ambiguity set which indicates

ambiguity of the true probability distribution of ξ at the point of decision making. As we will see

in later discussions, Ψi may take some specific forms. Here we consider a general form in hope

that our model covers a range of interesting moment problems. To ease the notation, we will

use ξ to denote either the random vector ξ(ω) or an element of IRk depending on the context.

An important issue concerning DRO is numerical tractability of the robust formulation.

For example, Delege and Ye [14] consider the DRO problem with ambiguity in both the mean

and the covariance and demonstrate how their model can be solved in polynomial time when

the support set is convex and compact. Goh and Sim [18] provide a tractable approximation

scheme when the DRO is applied to a class of two stage stochastic programming problems. More

recently, Wiesemann, Kuhn and Sim [51] provide a unified framework for DRO problems where

the ambiguity set is constructed through some probabilistic and moment constraints. Under the

Slater type conditions and essential boundedness of the support set, they provide a tractable

reformulation of the problems.

In a slightly different direction, the DRO approach has been applied to tackle chance con-

strained stochastic programming problems where there is a lack of complete information on the

true probability distribution. Zymler, Kuhn and Rustem [56] consider a class of robust chance

constrained optimization problems with the ambiguity set being constructed through moment

conditions and reformulate the robust constraint as semiinfinite constraints. In the case when

the support set of the random variable covers the whole space and the underlying functions in

the chance constraint are linear w.r.t. both the decision variables and the random variables,

they reformulate the semiinfinite constraints as a system of semidefinite constraints and demon-

strate the resulting semidefinite program (SDP for short) is numerically tractable. In a more

recent development, Yang and Xu [48] extend the research to the case where the underlying

functions in the chance constraint are nonlinear. A deficiency in these robust approaches is that
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they may easily cause infeasibility of the robust chance constraint in that the ambiguity set may

comprise a sequence of probability measures whose probability masses near the mean value and

subsequently the robust probability of the inner random constraints (in the chance constraint)

is equal to 1 when the mean lies in the inner feasible set. Of course, we are less concerned by

the issue if the chance constraint is focused on the tail distribution of a loss function.

Our aim in this paper is to develop numerical methods for solving problem (1.1). Differing

from the mainstream research in the literature of DRO, we concentrate on practical applicability

of the computational methods without paying particular attention to numerical tractability in

hope that the computational schemes and the underlying theory developed in this paper can

be applied to a wide range of problems. Recall that a popular method for solving minimax

distributionally robust optimization problems is to reformulate the inner maximization problem

as a semiinfinite programming problem thorough Lagrange dual. A key theoretical question in

our context is that under what conditions, problem (1.1) and its Lagrange dual problem are

equivalent, i.e., the strong duality holds. The equivalence is well known when either the support

set Ξ is compact in a finite dimensional space (see [43]) or the system of equalities and/or

inequalities satisfy the Slater type conditions [40]. In the latter case, since the decision variables

in the inner maximization problem are probability measures, one might wish to see whether a

probability measure defined by an inequality moment constraint, i.e. 〈P,ψ(ξ)〉 ≤ 0 (hereafter

〈·, ·〉 is a bilinear representation of the expected value of function ψ), lies in the “interior” of the

feasible set (the ambiguity set P). Unfortunately this kind of verification may turn out to be

difficult at least technically since it concerns topological structure of the ambiguity set which

is a subset in the space of probability measures. Shapiro [40] proposes an alternative way to

characterize the condition which requires in this context the range of 〈·, ψ(ξ)〉 over the cone of

positive measures generated by P having nonempty intersection with the interior of IR+. While

this effectively addresses the theoretical issue we have just raised, the condition is often difficult

to verify particularly when ψ is a vector of random functions or matrices because in that case

we would need “coordination” of the components of ψ for the expected values. Likewise, in

the equality case, the condition requires 0 to lie in the range of 〈·, ψ(ξ)〉 which is difficult to

verify when ψ is vector-valued. It would become even more challenging when P is composed of

both equality and inequality constraints. This motivates us to develop effective approaches for

verifying the conditions and look into other complementary conditions in this paper.

Another main challenge concerning (1.1) is to develop efficient numerical methods for solving

the problem. When the support set Ξ is a finite set, the Lagrange dual is an ordinary matrix

optimization problem, so we may apply the available codes on matrix optimization (see i.e.,

[47]) to solve the latter. It is also possible to solve problem (1.1) directly as a finite dimensional

minimax saddle point problem. Indeed, Pflug and Wozabal [32] propose an iterative scheme for

solving distributionally robust portfolio optimization problems where the inner maximization

problem and the outer minimization problem are solved in turn. Mehrotra and Papp [28]

extend the approach to a general class of DRO problems and design a process which generates

a “cutting surface” of the inner optimal value function at each iterate. In the case when Ξ

is well structured such as polyhedral or semialgebraic and the underlying functions (f and Ψ)

are quadratic or linear, one may recast the semiinfinite inequality constraints as a semidefinite

constraint through the well known S-lemma [34]. We note that this kind of formulation is the

most popular approach in the literature of distributionally robust optimization, see for instance
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[14, 51] and the references therein. Here we concentrate on the case where Ξ is neither a finite set

nor has aforementioned structure and develop some computational methods which complement

the existing numerical schemes for the DRO. As far as we are concerned, the main contributions

of the paper can be summarized as follows.

• We present a detailed analysis of conditions for the strong Lagrange duality of the inner

maximization problem, namely the Slater type conditions and the lower semicontinuity

condition. The analysis concerning the Slater type conditions is based on Shapiro’s [40,

Proposition 3.4] which has been widely used in the literature of distributionally robust

optimization with moment constraints but rarely scrutinized in detail. In Section 2, we

present detailed discussions on the Slater type condition through a few practically interest-

ing moment problems and demonstrate how the condition may be effectively verified. We

also look into the duality conditions from lower semicontinuity of the optimal value func-

tion of the perturbed inner maximization problem and derive sufficient conditions which

are easy to verify (Proposition 2.3). While the conditions are restrictive in general, we

find that they are satisfied in a number of important cases such as when the support set

Ξ is compact or Ψi is bounded, and this may effectively complement the popular Slater

type condition in circumstances when the latter is difficult to be verified. Indeed, we can

easily find some examples where the lower semicontinuity conditions are satisfied whereas

the Slater type condition fails; see Example 2.7.

• We propose a discretization scheme based on Monte Carlo sampling for approximating

the semiinfinite constraints of the Lagrange dual of the inner maximization problem. The

approach is in line with the randomization scheme considered by Campi and Calafiore

[11] and Anderson, Xu and Zhang [1] for mathematical programs with robust convex con-

straints. Under some moderate conditions, we demonstrate convergence of the optimal

values, the optimal solutions and the stationary points obtained from the approximate

problems as sample size increases (Theorems 3.1 and 3.2). Moreover, by observing the

equivalence between the Monte Carlo discretization scheme and discretization of the am-

biguity set P under strong duality, we propose a cutting plane method for solving the

approximate DRO (1.1) directly as a finite dimensional minimax optimization problem

and show convergence of the approximation scheme in terms of the optimal values and

optimization solutions as sample size increases (Theorem 4.2). In the absence of strong

duality, we observe that the discretization scheme via Lagrange duality provides an upper

bound for the optimal value of the DRO when the sample size is sufficiently large whereas

the direct discretization approach provides a lower bound for any sample size.

• Based on the aforementioned approximation schemes, we propose two algorithms for solv-

ing problem (1.1): a cutting plane algorithm for solving discretized dual problem (Algo-

rithm 3.1) and a cutting plane method for the minimax DRO with discretized ambiguity set

(Algorithm 4.1). We have carried out comparative numerical tests on the two algorithms

through a portfolio optimization problem (Example 5.1) and a multiproduct newsvendor

problem (Example 5.2) and conclude that the former is more sensitive to the change of the

number of decision variables whereas the latter is more sensitive to the change of sample

size.

Throughout the paper, we use the following notation. By convention, we use Sn, Sn+ and
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Sn− to denote the space of symmetric matrices, cone of symmetric positive semidefinite matrices

and cone of symmetric negative semidefinite matrices in the n×n matrix spaces IRn×n, and IRn
+

to denote the cone of vectors with non-negative components in IRn. For matrices A,B ∈ IRn×n,

we write A ◦B for the Frobenius inner product, i.e., A ◦B = trace(AB), and A � B and A ≺ B
to indicate A−B being negative semidefinite and negative definite respectively. We use (Z, d)

to represent an abstract metric space Z with metric d. For a set C ⊂ Z, we use by convention

“int C”, “cl C” and “conv C” to denote its interior, closure and convex hull respectively. We

write d(z,D) := infz′∈D d(z, z′) for the distance from a point z to a set D. For two sets C and

D, D(C,D) := supz∈C d(z,D) stands for the deviation/excess of set C from/over set D. For

a sequence of subsets {Ck} in a metric space, we follow the standard notation [38] by using

lim supk→∞ Ck to denote its outer limit, that is,

lim sup
k→∞

Ck =

{
x : lim inf

k→∞
d(x, Ck) = 0

}
.

For a set-valued mapping (also called multifunction in the literature) A : X → 2Y , A is said to

be closed at x̄ if xk ∈ X, xk → x̄, yk ∈ A(xk) and yk → ȳ implies ȳ ∈ A(x̄). A is said to be

outer semicontinuous at x̄ ∈ X if lim supx→x̄A(x) ⊆ A(x̄). When A(x) is compact for each x,

A(x) is upper semicontinuous (in the sense of Berge [5]) at x̄ if and only if for every ε > 0, there

exists a constant δ > 0 such that A(x̄+ δB) ⊂ A(x̄) + εB. When the set-valued mapping A(·) is

bounded, the outer semicontinuity coincides with upper semicontinuity, see [38, Theorem 5.19]

for the Euclidean space and [26, Theorem 4.27] for the general Hausdorff space.

2 Lagrange dual of the inner maximization problem in (1.1)

Let x ∈ X be fixed. We consider the inner maximization problem of (1.1)

sup
P∈M+

EP [f(x, ξ)]

s.t. EP [Ψi(ξ)] = 0, for i = 1, · · · , p,
EP [Ψi(ξ)] � 0, for i = p+ 1, · · · , q,
EP [1] = 1,

(2.3)

and its Lagrange dual

inf
λ0,Λ1,··· ,Λq

λ0

s.t. f(x, ξ)− λ0 −
∑q

i=1 Λi ◦Ψi(ξ) ≤ 0, ∀ ξ ∈ Ξ,

λ0 ∈ IR,

Λi � 0, for i = p+ 1, · · · , q,

(2.4)

where M+ denotes the positive linear space of all signed measures generated by P(Ξ).

As discussed in the introduction, a key step towards numerical solution of problem (1.1) is

to establish equivalence between problems (2.3) and (2.4). In the literature of distributionally

robust optimization, the equivalence has been well established under the circumstances where

the support set Ξ is compact and Ψi(·) is continuous (see [43, page 312]), or the moment

problem satisfies Slater type condition (see [40, 51] and references therein). This is underpinned

by Shapiro’s duality theorem ([40, Proposition 3.4]) for a general class of moment problems.
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Note that in the case when the optimal value of problem (2.3) is +∞, the dual problem (2.4)

is infeasible. In that case, the equivalence is trivial. So our focus in this section is on the case

when the optimal value of (2.3) is finite.

2.1 Slater type conditions

Let us start with the Slater type condition (STC for short). Following Shapiro’s duality theory

for moment problems, the condition in our context can be written as

(1, 0) ∈ int{(〈P, 1〉, 〈P,Ψ(ξ)〉) + {0} × {0} × K : P ∈M+}, (2.5)

where Ψ(ξ) := (Ψ1(ξ), · · · ,Ψp(ξ)), 〈P,Ψ(ξ)〉 =
∫

Ξ Ψ(ξ)P (dξ) with the integration taken com-

ponentwise, the second 0 at the right hand side is the Cartesian product of zero matrices in

the respective matrix spaces of IRni×ni corresponding to Φi for i = 1, · · · , p, and Kq−p :=

Snp+1

+ × · · · × Snq

+ ; see [40, condition (3.12)] for general moment problems. Here we discuss how

this condition may be satisfied and how it could be appropriately verified through some typical

examples.

Example 2.1 (Reformulation of the STC and sufficient conditions for it) Consider the

following moment problem:

P :=

{
P ∈P(Ξ) :

EP [Ψi(ξ)] = µi, for i = 1, · · · , p
EP [Ψi(ξ)] � µi, for i = p+ 1, · · · , q

}
,

where Ψi : Ξ → Sni , i = 1, · · · , q, are continuous maps and µi ∈ Sni , i = 1, · · · , q are constant

matrices which could be either the true mean values of Ψi or their approximations/estimates.

For the simplicity of notation we write ΨE for (Ψ1, · · · ,Ψp), ΨI for (Ψp+1, · · · ,Ψq), µE for

(µ1, · · · , µp) and µI for (µp+1, · · · , µq). The Slater type condition in this case can be written as

(1, µE , µI) ∈ int{(〈P, 1〉, 〈P,ΨE〉, 〈P,ΨI〉) +H1 : P ∈M+}, (2.6)

where H1 := {0} × {0} × Kq−p.

Proposition 2.1 The following assertions hold.

(i) Condition (2.6) is equivalent to

(µE , µI) ∈ int{(〈P,ΨE〉, 〈P,ΨI〉) +H2 : P ∈P(Ξ)}, (2.7)

where H2 := {0} × Kq−p.

(ii) Condition (2.7) is fulfilled if

µE ∈ int {〈P,ΨE(ξ)〉 : P ∈P(Ξ)} (2.8)

and there exists PE ∈P(Ξ) with 〈PE ,ΨE(ξ)〉 = µE such that

0 ∈ int {〈PE ,ΨI(ξ)〉 − µI +Kq−p}. (2.9)
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In the case when p = q, i.e., there is no inequality constraint, condition (2.8) coincides

with condition (2.7). Likewise, when p = 0, i.e., there is no equality constraint, (2.9)

reduces to existence of P ∈P(Ξ) such that

0 ∈ int {〈P,ΨI(ξ)〉 − µI +Kq−p}

which coincides with (2.7).

(iii) Condition (2.8) holds naturally in the case when

{〈P,ΨE(ξ)〉 : P ∈P(Ξ)} = Sn1 × · · · × Snp (2.10)

whereas condition (2.9) is fulfilled if there exists PE ∈P(Ξ) with 〈PE ,ΨE(ξ)〉 = µE such

that

〈PE ,ΨI(ξ)〉 − µI ≺ 0. (2.11)

Proof. Part (i). Let (2.6) hold. Then there exists an open neighborhood of µ∗ := (1, µE , µI),

denoted by U , such that U ⊂ int{(〈P, 1〉, 〈P,ΨE〉, 〈P,ΨI〉)+H1 : P ∈M+}. Let V := {P ∈M+ :

(〈P, 1〉, 〈P,ΨE〉, 〈P,ΨI〉) ∈ U} and P0 ∈ V such that (〈P0, 1〉, 〈P0,ΨE〉, 〈P0,ΨI〉) = µ∗. Then

(µE , µI) = (〈P0,ΨE〉, 〈P0,ΨI〉)
∈ {(〈P,ΨE〉, 〈P,ΨI〉) : P ∈ V with 〈P, 1〉 = 1}
⊂ int{(〈P,ΨE〉, 〈P,ΨI〉) +H2 : P ∈P(Ξ)}.

Conversely, let (2.7) hold. Then for a sufficiently small positive number δ

(1, µE , µI) ∈ int{(〈P, 1〉, 〈P,ΨE〉, 〈P,ΨI〉) +H1 : P ∈
⋃

t∈(1−δ,1+δ)

tP(Ξ)}

⊂ int{(〈P, 1〉, 〈P,ΨE〉, 〈P,ΨI〉) +H1 : P ∈M+},

which yields (2.6).

Part (ii). Conditions (2.8) and (2.9) guarantee existence of PE ∈P(Ξ) such that

〈PE ,ΨE〉 = µE ∈ int {〈P,ΨE(ξ)〉 : P ∈P(Ξ)}

and

µI ∈ int {〈PE ,ΨI(ξ)〉+Kq−p}

which imply (2.7). The equivalence statements (in the equality only case and inequality only

case) are obvious.

Part (iii). Condition (2.10) implies that (2.8) holds trivially. Condition (2.11) means

〈PE ,ΨI(ξ)〉 − µI ∈ −intKq−p, which is equivalent to (2.9).

The proposition shows how the complex STC (2.6) can be examined through (2.7) and

further through (2.9). Condition (2.11) is widely known as the Slater condition for inequality

systems. The discussions show that the STC is weaker than the well known Slater condition.

We now turn to consider the case when P comprises a single matrix moment constraint.
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Example 2.2 (STC for a single matrix moment constraint) Let

Ψ(ξ) = (ξ − µ)(ξ − µ)T − Σ,

where ξ is a random vector with support set Ξ in IRn, µ and Σ are either the true mean value and

covariance matrix respectively or their estimates. Consider two types of moment conditions: one

is inequality constrained and the other is equality constrained. The former is often used when

a decision maker does not have complete information on the true mean value and/or covariance

whereas the latter corresponds to the circumstance when the true covariance is known. We

discuss them in sequel.

(a) With incomplete information of the mean and/or covariance, the moment problem is often

written as

EP [(ξ − µ)(ξ − µ)T ] � Σ,

where Σ is some positive definite matrix. Let Σ0 denote the true covariance matrix (cor-

responding to the unknown true probability distribution of ξ) and assume that Σ0 ≺ Σ.

Note that following the analysis as in Example 2.1 we can recast condition (2.5) as

0 ∈ int{〈P,Ψ(ξ)〉+ Sn+ : P ∈P(Ξ)}. (2.12)

It is easy to observe that condition (2.12) holds in that 〈P0,Ψ(ξ)〉 ≺ 0 under the assumption

Σ0 ≺ Σ and any n× n positive definite matrix lies in the interior of Sn+.

(b) In the equality constraint case, the moment condition becomes

EP [(ξ − µ)(ξ − µ)T ] = Σ0,

and the Slater type condition becomes 0 ∈ int{〈P,Ψ(ξ)〉 : P ∈ P(Ξ)}. The condition is

fulfilled if Σ0 ∈ int conv{(ξ − µ)(ξ − µ)T : ξ ∈ Ξ}. The latter is automatically satisfied

when Ξ = IRn, see Proposition 2.2 below.

The example shows how condition (2.6) is verified through a different argument for equality

and inequality matrix moment constraints.

Proposition 2.2 (Image of covariance mapping over P(Ξ)) If Ξ = IRn, then

Sn+ =
{
EP [(ξ − µ)(ξ − µ)T ] : P ∈P(Ξ)

}
. (2.13)

Proof. Observe that the right hand side of (2.13) is the image of the covariance mapping

EP [(ξ − µ)(ξ − µ)T ] over the space of probability measures P(Ξ). It suffices to show

Sn+ ⊆
{
EP [(ξ − µ)(ξ − µ)T ] : P ∈P(Ξ)

}
because the opposite inclusion always holds. Let M ∈ Sn+ be any positive semidefinite matrix

with eigenvalue λj and normalized eigenvector qj for j = 1, · · · , n. Let ξj := µ+
√
nλjqj and Pj ,

j = 1, · · · , n, denote the Dirac probability measure at ξj and P̂ :=
∑n

j=1
1
nPj . Then P̂ ∈P(Ξ)

and

EP̂ [(ξ − µ)(ξ − µ)T ] =
n∑
j=1

1

n
× nλjqjqTj =

n∑
j=1

λjqjq
T
j = M.
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The conclusion follows.

In many practical cases, covariance constraint is often coupled by mean value constraints.

Let us consider a few examples as such.

Example 2.3 (STC for matrix moments due to Delage and Ye [14] and So [45]) Consider

ambiguity set

P :=

{
P ∈P(Ξ) :

EP [ξ − µ0]TΣ−1
0 EP [ξ − µ0] ≤ γ1

0 � EP [(ξ − µ0)(ξ − µ0)T ] � γ2Σ0

}
, (2.14)

where γ1 and γ2 are nonnegative constants. The ambiguity set has first been considered by

Delage and Ye [14] and further studied by So [45]. It is easy to observe that the inequality

EP [ξ − µ0]TΣ−1
0 EP [ξ − µ0] ≤ γ1

can be equivalently written as

EP

[(
−Σ0 µ0 − ξ

(µ0 − ξ)T −γ1

)]
� 0.

Thus P can be written as

P =

P ∈P(Ξ) :
EP

[(
−Σ0 µ0 − ξ

(µ0 − ξ)T −γ1

)]
� 0

0 � EP [(ξ − µ0)(ξ − µ0)T ] � γ2Σ0

 .

When γi > 0 for i = 1, 2, the moment constraints (2.14) satisfy the Slater type constraint

qualification, see [46, Theorem 3]. However, when γ1 = 0, the constraint qualification fails. To

see this, let us note that matrix EP

[(
−Σ0 µ0 − ξ

(µ0 − ξ)T −γ1

)]
can never be negative definite

in that by Schur complement for the matrix to be negative definite, we would need 0 − (µ0 −
E[ξ])T (−Σ0)−1(µ0−E[ξ]) < 0 which will never happen. Nevertheless, if we rewrite the ambiguity

set as

P(0, γ2) =

{
P ∈P(Ξ) :

EP [ξ] = µ0

0 � EP [(ξ − µ0)(ξ − µ0)T ] � γ2Σ0

}
,

then the Slater type condition holds, see [46, Theorem 3] for details.

Example 2.4 (STC for a variation of moment system (2.14)) Consider the following am-

biguity set

P =

{
P ∈P(Ξ) :

|EP [ξ − µ0]| ≤ γ1e

‖EP [(ξ − µ0)(ξ − µ0)T ]− Σ0‖2 ≤ γ2

}
,

where γ1 and γ2 are small positive numbers, e is a vector with components of ones, |a| denotes

the absolute value of a vector a with the absolute value taken componentwise, and ‖ · ‖2 denotes

the spectral norm of a matrix. Using the property of the norm, we can reformulate the ambiguity

set as

P =

P ∈P(Ξ) :

EP [ξ − µ0] ≤ γ1

EP [µ0 − ξ] ≤ γ1

EP [(ξ − µ0)(ξ − µ0)T − Σ0 − γ2I] � 0

EP [−(ξ − µ0)(ξ − µ0)T + Σ0 − γ2I] � 0

 .
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If γ1 > 0 and γ2 > 0, then there exists a probability measure P0 such that EP0 [ξ] = µ0,

EP0 [(ξ − µ0)(ξ − µ0)T = Σ0, and the strict inequalities of system of moment conditions hold.

Following the remark after Proposition 2.1, we conclude that the Slater type condition holds.

Example 2.5 (STC for the moment system due to [27]) Consider the following ambigu-

ity set

P :=

{
P ∈P(Ξ) :

|EP [ξ − µ0]| ≤ γ1e

‖EP [(ξ − µ0)(ξ − µ0)T ]− Σ0‖max ≤ γ2

}
,

where ‖A‖max = max |aij |. It is easy to verify that ‖ · ‖max is a norm for the matrix but without

the sub-multiplicative property. The ambiguity set is considered in [27]. Let k be the dimension

of random vector ξ, q = k2+3k
2 , ψI(ξ) = ξ − µ0 and ψJ(ξ) denote the elements of the upper

triangular of matrix (ξ − µ0)(ξ − µ0)T − Σ0. Then we can reformulate P as

P =

P ∈P(Ξ) :

ΨI(ξ)− γ1 ≤ 0

−ΨI(ξ)− γ1 ≤ 0

ΨJ(ξ)− γ2 ≤ 0

−ΨJ(ξ)− γ2 ≤ 0

 .

Analogous to Example 2.4, the Slater condition is satisfied when γ1 > 0 and γ2 > 0.

2.2 Lower semicontinuity condition

We now study a different condition which is fundamentally based on Shapiro’s result [40, Propo-

sition 2.4]. To this end, we consider the following perturbation of problem (2.3)

min
P∈P(Ξ)

EP [−f(x, ξ)]

s.t. P ∈ P(Y ),
(2.15)

where Y = (Y1, · · · , Yq) and Yi ∈ Sni , i = 1, · · · , q, is in a small neighborhood of 0. To

simplify the notation, here and later on we mean 0 is in appropriate space without indicating

its dimension. Let

P(Y ) :=

{
P ∈P(Ξ) :

EP [Ψi(ξ)] + Yi = 0, for i = 1, · · · , p
EP [Ψi(ξ)] + Yi � 0, for i = p+ 1, · · · , q

}
. (2.16)

Let v(Y ) denote the optimal value of problem (2.15). By [40, Proposition 2.3], problem (2.15)

satisfies the strong duality if and only if v(·) is lower semicontinuous at point 0. A sufficient

condition for the latter is that P(Y ) is weakly compact for each fixed Y and P(·) is upper

semicontinuous at 0. In what follows, we develop sufficient conditions for the required property

of P(·).

Recall that for a sequence of probability measures {PN} ⊂P(Ξ), PN is said to converge to

P ∈P(Ξ) weakly if

lim
N→∞

∫
Ξ
h(ξ)PN (dξ) =

∫
Ξ
h(ξ)P (dξ)

for each bounded and continuous function h : Ξ → IR. For a set of probability measures

A ⊂ P(Ξ), A is said to be weakly compact w.r.t. topology of weak convergence if every
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sequence {PN} ⊂ A contains a subsequence {PN ′} and P ∈ A such that PN ′ → P . A is said to

be tight if for any ε > 0, there exists a compact set Ξε ⊂ Ξ such that infP∈A P (Ξε) > 1 − ε. In

the case when A is a singleton, it reduces to the tightness of a single probability measure. A is

said to be closed (under the topology of weak convergence) if for any sequence {PN} ⊂ A with

PN → P weakly, we have P ∈ A.

By the well-known Prokhorov’s theorem (see [35, 2]), a closed set A of probability measures

is weakly compact if and only if it is tight. In particular, since Ξ is a set in IRk, if Ξ is a compact

set, then the set of all probability measures on (Ξ,B) is weakly compact with respect to topology

of weak convergence; see [29].

For two probability measures P1, P2 ∈P(Ξ), the Prokhorov metric [36] is

π(P1, P2) := inf{ε > 0 : P1(A) ≤ P2(Aε) + ε and P2(A) ≤ P1(Aε) + ε ∀A ∈ B},

where Aε :=
⋃
a∈A

εB(a) and B(a) denotes the unit ball centered at point a. Since Ξ is a set

in IRm, the convergence of probability measures in the Prokhorov metric is equivalent to weak

convergence.

Assumption 2.1 (Sufficient conditions for tightness and closedness of P(Y )) (a) There

exists a tight subset of probability measures, denoted by P̂ ⊂ P(Ξ), such that P(Y ) ⊂ P̂ for

all Y close to 0; (b) Ψi(·), i = 1, · · · , q, is continuous over Ξ and every element ψijt(ξ) of Ψi(·)
is uniformly integrable, that is,

lim
r→∞

sup
P∈P

∫
{ξ∈Ξ,|ψi

jt(ξ)|≥r}
|ψijt(ξ)|P (dξ) = 0

for i = 1, · · · , q; j, t = 1, . . . , ni.

A sufficient condition for Assumption 2.1 (a) is that there are positive constants τ and C

such that

sup
P∈P̂

∫
Ξ
‖ξ‖1+τP (dξ) < C. (2.17)

Likewise, when ψijt is a continuous function, a sufficient condition for Assumption 2.1 (b) is

that there exists a positive constant τ such that

sup
P∈P

∫
Ξ
|ψijt(ξ)|1+τP (dξ) <∞, (2.18)

for i = 1, · · · , q; j, t = 1, . . . , ni. Condition (2.18) holds trivially when ψijt(ξ) is bounded.

Lemma 2.1 (Topological properties of P(Y )) Under Assumption 2.1, the following asser-

tions hold.

(i) For each fixed Y close to 0, P(Y ) is weakly compact;

(ii) P(·) is upper semicontinuous at 0 in the sense of Berge [5], that is, for any ε > 0, there

exists δ > 0 such that P(Y ) ⊆ P(0) + εB for all Y with ‖Y ‖ ≤ δ, where B denotes the unit

ball in the space of P under Prokhorov metric.
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Proof. Part (i). Let Y be fixed. Under Assumption 2.1 (a), P(Y ) is tight because any subset

of a tight set is tight. By Prokhorov’s theorem, it suffices to show that P(Y ) is closed. Let

{Pk} ⊂ P(Y ) be a sequence of probability measures such that Pk converges to P weakly. We

show P ∈ P(Y ). Under Assumption 2.1 (b), it follows by [46, Lemma 1],

lim
k→∞

∫
ξ∈Ξ

ψijt(ξ)Pk(dξ) =

∫
ξ∈Ξ

ψijt(ξ)P (dξ).

Therefore∫
ξ∈Ξ

Ψi(ξ)P (dξ) + Y = lim
k→∞

∫
ξ∈Ξ

Ψi(ξ)Pk(dξ) + Y

{
= 0 for i = 1, · · · , p,
� 0 for i = p+ 1, · · · , q,

which means P ∈ P(Y ).

Part (ii). Let {Y k} be a sequence converging to 0. By the definition of outer semicontinuity,

we only need to consider the points with P(Y k) 6= ∅. Let Pk ∈ P(Y k). By [9, Theorem 5.1], the

tightness of P̂ ensures that {Pk} has a subsequence {Pki} such that Pki → P ∗ weakly. Using a

similar argument to that of Part (i), we have

lim
ki→∞

∫
ξ∈Ξ

Ψi(ξ)Pki(dξ) + Y ki =

∫
ξ∈Ξ

Ψi(ξ)P
∗(dξ) + 0

{
= 0 for i = 1, · · · , p,
� 0 for i = p+ 1, · · · , q,

(2.19)

which means P ∗ ∈ P(0). This shows the set-valued mapping P(Y ) is outer semicontinuous. On

the other hand, since Ξ is a compact set of IRk, then by Prokhorov theorem, P(Ξ) is metrizable

(i.e. by Prokhorov metric) and hence it is a metric space. The latter ensures P(Ξ) is a Hausdorff

space. Subsequently, by [26, Theorem 4.27], P(·) is upper semicontinuous at point Y = 0.

Remark 2.1 In the case when Ψi(ξ), i = 1, · · · , q, is a scalar function, Assumption 2.1 (b) may

be replaced by the following in Lemma 2.1:

(b′1) Ψi(·), i = 1, · · · , p is continuous and Ψi(·), i = p+ 1, · · · , q is lower continuous;

(b′2) there exist an upper semicontinous function l(ξ) and a lower semicontinous function u(ξ)

such that

l(ξ) ≤ Ψi(ξ) ≤ u(ξ), ∀ξ ∈ Ξ, i = 1, · · · , p,

l(ξ) ≤ Ψi(ξ), ∀ξ ∈ Ξ, i = p+ 1, · · · , q

and for any sequence {PN} ∈ P̂ and any accumulation point P ∗ of the sequence,

lim inf
N→∞

EPN
[l(ξ)] ≥ EP ∗ [l(ξ)] > −∞, lim sup

N→∞
EPN

[u(ξ)] ≤ EP ∗ [u(ξ)] < +∞.

To see this, let {PN} ∈ P(Y ). Under conditions (b′1) and (b′2), we have by [17, Theorem 4.3]

and the remark following [17, Theorem 1.1]

lim
N→∞

∫
ξ∈Ξ

Ψi(ξ)PN (dξ) + Y =

∫
ξ∈Ξ

Ψi(ξ)P
∗(dξ) + Y

for i = 1, · · · , p and∫
ξ∈Ξ

Ψi(ξ)P
∗(dξ) + Y ≤ lim inf

N→∞

∫
ξ∈Ξ

Ψi(ξ)PN (dξ) + Y ≤ 0,
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for i = p+1, · · · , q. The inequalities above ensure P ∗ ∈ P(Y ) and hence closedness of P(Y ) under

topology of weak convergence. Likewise, we can derive (2.19) and hence upper semicontinuity

of P(Y ) at 0.

With Lemma 2.1, we are able to address lower semicontinuity of v(·).

Proposition 2.3 (Strong duality of perturbed problem (2.15)) Let P(0) 6= ∅. Under

Assumption 2.1, v(·) is lower semicontinuous at 0 and hence there is no dual gap between

problems (2.3) and (2.4).

Proof. The claim is a direct application of [40, Proposition 2.4] to problem (2.15). We give

a proof for completeness. Observe first that since P(0) 6= ∅ by assumption, v(0) < +∞. If

P(Y ) = ∅ for Y close to 0, then v(Y ) = +∞ and hence v(·) is lower semicontinuous at Y = 0.

In what follows, we consider the case when P(Y ) 6= ∅.

Let S(Y ) denote the set of optimal solutions of problem (2.15). By Lemma 2.1, P(Y ) is

weakly compact and hence v(Y ) < +∞. Moreover, since the objective function is continuous in

P , S(Y ) 6= ∅ and S(Y ) is weakly compact. Let

P∗(Y ) := {P ∈ P(Y ) : 〈−f(x, ξ), P 〉 ≤ v(0)}.

Note that if P∗(Y ) = ∅, then v(Y ) ≥ v(0). In what follows, we consider the case when P∗(Y ) 6= ∅.
In that case v(Y ) ≤ v(0) and S(Y ) ⊂ P∗(Y ).

Since P(·) is upper semicontinuous at point Y = 0, it is easy to verify that P∗(Y ) is also

upper semicontinuous at point 0 in that f is continuous in ξ. Thus, for any ε > 0 there exists a

neighborhood Us of P∗(0) such that

〈−f, P 〉 ≥ v(0)− ε, ∀P ∈ Us. (2.20)

By the upper semicontinuity of P∗(Y ), there exists a neighborhood UY of Y = 0 such that

P∗(Y ) ⊆ Us. Thus S(Y ) ⊂ Us and through (2.20) we have

v(Y ) ≥ v(0)− ε, ∀Y ∈ UY .

Since ε is arbitrarily chosen, we conclude that v(Y ) is lower semicontinuous at point Y = 0.

In what follows, we revisit some examples in the preceding subsection with Proposition 2.3.

Consider Example 2.1. Assume that there exists i0 ∈ {p + 1, · · · , q} and a positive number τ

such that

‖ξ‖1+τ ≤ ψi0(ξ),∀ξ ∈ Ξ. (2.21)

Then Assumption 2.1 (a) is satisfied with P̂ = {P ∈P(Ξ) : EP [ψi0(ξ)] <∞} because condition

(2.21) implies condition (2.17). Moreover, if ψi(·), i = 1, · · · , q is a continuous and bounded

function on Ξ, then Assumption 2.1 (b) holds.

Likewise, we can use Proposition 2.3 to certify the absence of a duality gap in Examples 2.3-

2.5. Indeed, Assumption 2.1 (a) can be easily verified because there exists a positive constant

C such that

EP [‖ξ‖2] ≤ C,∀P ∈ P.
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Moreover, if Ξ is bounded, then Assumption 2.1 (b) is fulfilled.

Of course, the boundedness assumption is undesirable in DRO (1.1) and in fact not needed

for Slater type condition, we impose the restriction just to illustrate how Proposition 2.3 could

be applied in some special circumstances. However, in the application of DRO to optimization

problems with chance constraint, it might be a necessity to impose boundedness of Ξ in order

for the robust chance constraints to be more applicable. We illustrate this argument through

the following example.

Example 2.6 (Infeasibility of robust chance constraint) Consider the following distribu-

tionally robust chance constraint

sup
P∈P

P (xξ ≤ α) ≤ p∗,

where x ∈ IR, p∗ ∈ (0, 1), ξ is a random variable with support set Ξ = IR,

P = {P ∈P(Ξ) : EP [ξ] = 0,EP [ξ2] = σ}

is an ambiguity set defined through true mean value 0 and variance σ. It is easy to show that

supP∈P P (ξ = 0) = 1. To see this, let Pk be a discrete probability measure with

Pk

(
ξ =

√
σk

2

)
= Pk

(
ξ = −

√
σk

2

)
=

1

k
, and Pk(ξ = 0) = 1− 2

k
,

where k is a positive number greater than 2. It is easy to verify that Pk ∈ P and supk Pk(ξ =

0) = 1. Let H(x) := {ξ ∈ IR : xξ ≤ α}. Then 0 ∈ H(x) for any x ∈ IR whenever α ≥ 0.

Consequently the robust chance constraint does not have a feasible solution. The key issue here

is that the unboundedness of Ξ allows the ambiguity set P to contain some probability measures

which mass their probability near the mean value of ξ.

In a more recent development of distributionally robust optimization (see [51]), ambiguity

set P comprises not only moment conditions but probabilistic constraints. Here we illustrate

how Proposition 2.3 may be applied to such a case.

Example 2.7 (STC and the new condition for the moment conditions in [51]) Consider

the following ambiguity set

P :=

P ∈P(Ξ) :

EP [ψi(ξ)] = µi, for i = 1, · · · , p
EP [ψi(ξ)] ≤ µi, for i = p+ 1, · · · , q
P{ξ ∈ Ξj} ≤ aj , for j = 1, · · · , k

 ,

where Ξj , j = 1, · · · , k is subset of Ξ and 0 ≤ aj ≤ 1. Using the indicator functions, the

probabilistic constraints can be rewritten as EP [1Ξj (ξ)] ≤ aj , where

1Ξj (ξ) :=

{
1, for ξ ∈ Ξj ,

0, otherwise.
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Assumption 2.1 (a) holds if ξ satisfies (2.21). Moreover, Assumption 2.1 (b) holds when ψi(·),
i = 1, · · · , q is bounded and continuous, and 1Ξj (·), j = 1, · · · , k, is lower semicontinuous on Ξ,

see Remark 2.1.

To see how these conditions could be possibly fulfilled, let us consider a more concrete setting

with

P := {P := P1 × P2 ∈P(Ξ) : EP [ξ1] = 0.8, P1(ξ1 ∈ (0.5, 1]) ≤ 0.6, P2(ξ2 ∈ [0, 2)) ≤ 0.5} ,(2.22)

where ξ = (ξ1, ξ2) is a random vector with support set [0, 1]× [0, 4].

Observe first that since Ξ is compact, P(Ξ) is tight and so is P as the latter is just a subset

of P(Ξ). Second, for any sequence {P k} ⊂ P converging weakly to P̂ , the lower semicontinuity

of the indicator functions 1(0.5,1](·) and 1[0,2)(·) [0, 1]× [0, 4] ensures P k1 (ξ1 ∈ (0.5, 1])→ P̂1(ξ1 ∈
(0.5, 1]) ≤ 0.6, and P k2 (ξ2 ∈ [0, 2))→ P̂2(ξ2 ∈ [0, 2)) ≤ 0.5. On the other hand, the boundedness

of ξ1 over Ξ ensures EPk [ξ1]→ EP̂ [ξ1] = 0.8. This shows P is closed and hence by the well known

Prokhorov theorem, P is weakly compact. Third, by Remark 2.1, the conclusions of Lemma 2.1

hold with the above stated boundedness and lower semicontinuity, hence by Proposition 2.3,

we can assert that the inner maximization problem of (1.1) with ambiguity set (2.22) satisfies

the strong Lagrange duality.

On the other hand, the Slater type condition fails because P1 is a singleton (with P1(ξ1 =

0.5) = 0.4 and P1(ξ1 = 1) = 0.6).

Note that it is possible to find an example where Assumption 2.1 fails to hold but the Slater

type condition is satisfied.

Example 2.8 Let ξ be a random variable defined on IR with σ-algebra F . Let P(Ξ) denote

the set of all probability measures on (IR,F) and

P :=

{
P ∈P(Ξ) :

EP [ξ] = 0

EP [ξ2] = 1

}
.

It is shown in [46] that P is not closed. On the other hand, it is easy to verify that the Slater

type condition (2.8) holds. This shows Assumption 2.1 is not necessarily strictly weaker than

the Slater type condition and may be used as a condition complementary to STC.

Before concluding this section, we give a simple example where strong duality fails in the

absence of STC and lower semicontinuity condition.

Example 2.9 Let ξ be a random variable with support set Ξ = {0, 1, 2, · · · }. Let

a(ξj) =

{
0 for j = 0,
2j−1
2j−1 for j = 1, 2, 3, · · ·

and

b(ξj) =

{
0 for j = 0,
j+1
2j−1 − 2 for j = 1, 2, 3, · · ·
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Consider the inner maximization problem

inf
pj≥0,j=0,1,2,3,···

∞∑
j=0

−pjb(ξj)x

s.t. 2−
∞∑
j=0

pja(ξj) ≤ 0,

∞∑
j=0

pj = 1,

(2.23)

where x ∈ [1, 2] is fixed. For simplicity of discussion, let x = 1. The Lagrange dual of (2.23) is

− inf
λ0≥0,λ1∈IR

−2λ0 + λ1

s.t. a(ξj)λ0 + b(ξj)− λ1 ≤ 0, for j = 0, 1, 2, · · ·
(2.24)

It follows from [23, Example 2] that the optimal value of problem (2.24) is 2 whereas the optimal

value of problem (2.23) is +∞ because the feasible set of the latter is empty. Let us now consider

the perturbation of problem (2.23)

inf
pj≥0,j=0,1,2,3,··· ,

∑∞
j=0 pj=1

∞∑
j=0

−pjb(ξj)x

s.t. 2−
∞∑
j=0

pja(ξj) + y ≤ 0.

(2.25)

The optimal value v(y) of (2.25) is +∞ for y ≥ 0 because the feasible set is empty in that case.

When y < 0, we can write down its Lagrange dual

− inf
λ0≥0,λ1∈IR

−(2 + y)λ0 + λ1 − y

s.t. a(ξj)λ0 + b(ξj)− λ1 ≤ 0, for j = 0, 1, 2, · · · .
(2.26)

Since the inequality constraint of problem (2.25) satisfies the STC, problem (2.26) does not have

a duality gap. Analogous to [23, Example 2], we can work out the optimal value of (2.26), which

is v(y) = 2 + y(1 − ry) − 2ry , where ry is either
[

ln(−y/ ln 2)
ln 2

]
−

or
[

ln(−y/ ln 2)
ln 2

]
+

depending on

which one provides a lower value for v(y). Since v(y) → 2 as y → 0−, it shows that v is not

lower semicontinuous at y = 0.

2.3 Boundedness of the Lagrange multipliers

In the last part of this section, we study existence of bounded optimal solutions to the Lagrange

dual problem (2.4). This is motivated by necessity of boundedness of the set of feasible solutions

to dual problem in order to carry out convergence analysis when a randomization method is

applied to the Lagrange dual in Section 3. To ease the notation, we write W for the q-tuple

of Lagrange multipliers (λ0,Λ1, · · · ,Λq) which take values in IR × Sn1 × · · · × Snp × Kq−p. We

use W(x) to denote the set of optimal solutions to Lagrange dual problem (2.4). We investigate

conditions under which there is a positive constant η independent of x such that

W(x) ∩ ηB 6= ∅,∀x ∈ X, (2.27)
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where B denotes the unit ball in the space of IR× Sn1 × · · · × Snp ×Kq−p. The boundedness is

required for the convergence in Section 3, see Assumption 3.2.

Proposition 2.4 (Existence of bounded Lagrange multipliers) Assume: (a) the optimal

value of problem (2.4) is bounded by a constant (independent of x), (b) supx∈X,ξ∈Ξ |f(x, ξ)| <∞,
(c) the homogeneous system of inequalities

−
q∑
i=1

Λi ◦Ψi(ξ) ≤ 0,∀ξ ∈ Ξ

has a unique solution 0. Then there exists a positive constant η such that (2.27) holds.

Proof. For each x ∈ X, let λ0(x) denote the optimal value of problem (2.4). Under condition

(a), there exists a constant C such that λ0(x) ≤ C for all x ∈ X. In what follows, we show

that the components Λ := (Λ1, · · · ,Λq) of the corresponding optimal solution are also bounded.

Let F(x) denote the set of Λ such that (λ0(x),Λ(x)) is an optimal solution to problem (2.4) for

given x ∈ X. It suffices to show that F(x) is bounded. Assume for the sake of a contradiction

that there exists a sequence of {xN} ⊂ X and ΛN ∈ F(xN ) such that ‖ΛN‖ → ∞ and

f(xN , ξ)/‖ΛN‖ − λ0(xN )/‖ΛN‖ −
q∑
i=1

ΛNi /‖ΛN‖ ◦Ψi(ξ) ≤ 0,∀ξ ∈ Ξ.

By driving N to infinity and taking a subsequence if necessary, we may assume without loss of

generality that ΛN/‖ΛN‖ → Λ̂ with ‖Λ̂‖ = 1 and consequently deduce

−
q∑
i=1

Λ̂i ◦Ψi(ξ) ≤ 0,∀ξ ∈ Ξ,

a contradiction to condition (c).

Note that condition (c) is implied by the Slater type condition (2.5), see [55, Remark 2.1 (iii)].

It is unclear whether the condition can be fulfilled under the lower semicontinuity condition.

3 A randomization method and convergence analysis

Having established equivalence between problem (2.4) and its primal (2.3), we are now moving

on to discuss numerical methods for solving problem (1.1). For the simplicity of notation, we

use Λ to denote (Λ1, · · · ,Λq). Let us write its dual problem as

inf
x,Λ1,··· ,Λq

v(x,Λ) := supξ∈Ξ {f(x, ξ)−
∑q

i=1 Λi ◦Ψi(ξ)}

s.t. x ∈ X,
Λi � 0, for i = p+ 1, · · · , q.

(3.28)

This is an optimization problem with decision variables x and matrix variables Λi, i = 1, · · · , q.
In the case when f(·, ξ) is convex for every fixed ξ, the objective function is convex w.r.t. (x,Λ).

Our idea here is to apply the well known cutting plane method [24] to solve (3.28). A key step of
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the method is to calculate a subgradient of the objective function at each iterate. This requires

us to maximize the Lagrange function w.r.t. ξ which could be numerically expensive particularly

when it is not concave w.r.t. ξ.

To circumvent the difficulty, we propose a randomization approach which discretizes the

space of Ξ through Monte Carlo sampling. Specifically, let ξ1, · · · , ξN be independent and

identically distributed samples of ξ. We consider the following

inf
x,Λ1,··· ,Λq

vN (x,Λ) := sup
j=1,··· ,N

{
f(x, ξj)−

q∑
i=1

Λi ◦Ψi(ξ
j)

}
s.t. x ∈ X,

Λi � 0, for i = p+ 1, · · · , q.

(3.29)

From practical point of view, this kind of approximation scheme is sensible in that it relies

only on the samples rather than the range of the support set Ξ. This is a notable departure

from the existing numerical approaches for solving distributionally robust optimization where

the structure of the support is vital to develop an SDP reformulation. Of course, it might be

arguable that samples obtained in practice may be contaminated, we will address this issue in

a separate paper as it is not the main focus here. Unless otherwise specified, we assume the

samples do not contain noise.

At this point, it might be helpful to remind readers the notation ξ. In formulation (3.28), ξ is

a deterministic vector. In the randomization approach, ξ is a random vector whose distribution is

unknown but it is possible to obtain its iid samples. This is similar to the “uncertain parameter”

in robust convex programs considered by Campi and Calafiore [11]. Note that theoretically

speaking, samples generated by any continuous distribution with support set Ξ can be used to

construct a random approximation scheme (3.29) although the resulting rate of convergence may

be different.

For a fixed sample, we propose to apply the well known cutting plane method for solving

problem (3.29). Observe that we can easily compute a subgradient of the objective function of

problem (3.29). To see this, let J (x,Λ) denote the index set of j ∈ {1, · · · , N} such that

vN (x,Λ) = f(x, ξj)−
q∑
i=1

Λi ◦Ψi(ξ
j), for j ∈ J (x,Λ).

By the well known Danskin’s theorem,

∂vN (x,Λ) = conv
{

(∇xf(x, ξj),Ψi(ξ
j)) : j ∈ J (x,Λ)

}
.

3.1 Optimal value and optimal solution

Before going to the details of the numerical methods for problem (3.29), we derive some con-

vergence results which theoretically justify the proposed approximation scheme. Specifically,

we demonstrate convergence of the optimal value and the optimization solutions obtained from

solving problem (3.29) to those of problem (3.28) as N → ∞. To this end, let us first consider

the following general optimization problem

min
x∈X

sup
ξ∈Ξ

g(x, ξ) (3.30)
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where X is a compact set in IRn, g is continuous function of (x, ξ), ξ is a parameter which takes

values over Ξ ⊂ IRk. By slightly abusing the notation, let us consider a random variable ξ with

support set Ξ. Let ξ1, · · · , ξN be independent and identically distributed samples of ξ. We

consider the following approximation problem:

min
x∈X

max
j=1,··· ,N

g(x, ξj). (3.31)

For each realization of the random variables, we solve problem (3.31) and obtain an optimal

value and optimal solution. We then ask ourself convergence of these quantities as N increases

and investigate conditions under which the optimal value and optimal solution converge to their

counterparts of problem (3.30). In what follows, we present a detailed analysis for (3.31).

Assumption 3.1 Denote by Mx(t) := E
{
et(g(x,ξ)−E[g(x,ξ)])

}
the moment generating function of

the random variable g(x, ξ)− E[g(x, ξ)]. The following hold.

(a) For each x ∈ X, supy∈Ξ g(x, y) < ∞ and the moment generating function Mx(t) is finite

valued for all t in a neighborhood of zero.

(b) There exist a nonnegative measurable function κ : Ξ→ R+ and constant γ > 0 such that

|g(x′, ξ)− g(x′′, ξ)| ≤ κ(ξ)‖x′ − x′′‖γ ,∀x′, x′′ ∈ X

for all ξ ∈ Ξ.

(c) The moment generating function Mκ(t) of κ(ξ) is finite valued for all t in a neighborhood

of zero.

Assumption 3.1 (a) means that the probability distributions of the random variables g(x, ξ)

and κ(ξ) die exponentially fast in the tails. In particular, it holds if this random variables have

a bounded support set.

To ease the exposition, let

vN (x) := max
j=1,··· ,N

g(x, ξj) and v(x) := sup
ξ∈Ξ

g(x, ξ).

Let ϑ and ϑN denote respectively the optimal values of problem (3.30) and problem (3.31), and

X∗ and XN denote the corresponding sets of optimal solutions.

Lemma 3.1 (Convergence of random discretization scheme (3.31)) Assume: (a) g(x, ξ)

satisfies Assumption 3.1; (b) the true probability distribution of ξ is continuous and there exists

positive constants C1, ν1 (independent of x) with

g(x, y1)− g(x, y2) ≤ C1‖y1 − y2‖ν1 , ∀y1, y2 ∈ Ξ (3.32)

for all x ∈ X; and (c) there are positive constants γ2 and δ0 with

P (‖ξ − ξ0‖ < δ) ≥ C2δ
ν2 (3.33)

for any fixed point ξ0 ∈ Ξ and δ ∈ (0, δ0). Then the following assertions hold.
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(i) For any positive number ε, there exist positive constants C(ε) and β(ε) such that

Prob(|ϑN − ϑ| ≥ ε) ≤ C(ε)e−β(ε)N

for N sufficiently large.

(ii) Let

R(ε) := min
x∈X,d(x,X∗)≥ε

{
sup
ξ∈Ξ

g(x, ξ)

}
−ϑ.

If there exists an ε0 > 0 such that R(ε) > 0 for ε ∈ (0, ε0) and R(·) is monotonically

increasing over the interval, then R(ε)→ 0 as ε ↓ 0, and

D(XN , X∗) ≤ R−1

(
3 sup
x∈X
|vN (x)− v(x)|

)
.

Proof. The thrust of the proof is to use CVaR and its sample average approximation to

approximate supξ∈Ξ g(x, ξ) of problem (3.30) which is in line with the convergence analysis

carried out in [1]. However, there are a couple of important differences: (a) the convergence

here is for the randomization scheme (3.31) rather than the sample average approximation of

the CVaR approximation of supξ∈Ξ g(x, ξ), (b) g is not necessarily a convex function.

Part (i). For β ∈ (0, 1), let

CVaRβ(g(x, ξ)) := inf
η∈IR

η +
1

1− β

∫
ξ∈Ξ

(g(x, ξ)− η)+ρ(ξ)dξ (3.34)

and

vNβ (x) := inf
η∈IR

η +
1

(1− β)N

N∑
j=1

(g(x, ξj)− η)+,

where ρ(·) denotes the density function of the random variable ξ, (c)+ = max(0, c) for c ∈ IR.

In the literature, CVaRβ (g(x, ξ)) is known as conditional value at risk at a specified confidence

level β and vNβ (x) is its sample average approximation, see [37, 1]. It is well known that the

maximum w.r.t. η in the above formulation is achieved at a finite η. In other words, we may

restrict the maximum w.r.t. η to be taken within a closed interval [−a, a] for some sufficiently

large positive number a, see [37]. It is easy to verify that

vNβ (x) ≤ vN (x) ≤ v(x). (3.35)

We proceed the rest of the proof for this part in two steps.

Step 1. By the definition of CVaR, for any β ∈ (0, 1)

CVaRβ (g(x, ξ)) ≤ v(x).

Moreover, under conditions (b) and (c), it follows by [1, Proposition 1], g(x, ξ) has so-called

consistent tail behaviour, that is,

1−Gx(α) ≥ K (g∗(x)− α)τ , for all α ∈ (CVaRβ0(g(x, ξ), g∗(x)), (3.36)
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where K = C2
C1

, τ = γ2
γ1

and β0 = 1− C2
C1

(C1δ0)γ2 . By [1, Theorem 1],

|CVaRβ (g(x, ξ))− v(x)| ≤ 1

K1/τ

τ

1 + τ
(1− β)1/τ (3.37)

for all β ∈ (β0, 1). Therefore by driving β to 1, we have

sup
x∈X
|CVaRβ (g(x, ξ))− v(x)| → 0.

Step 2. Using the inequalities (3.35), we have

|vN (x)− v(x)| ≤ |vNβ (x)− v(x)|
≤ |vNβ (x)− CVaRβ (g(x, ξ)) |+ |CVaRβ (g(x, ξ))− v(x)|.

Let ε be a small positive number. By (3.37), we may set β sufficiently close to 1 such that

sup
x∈X
|CVaRβ (g(x, ξ))− v(x)| ≤ ε

2
. (3.38)

On the other hand, under Assumption 3.1, it follows by virtue of [44, Theorem 5.1], there exist

positive constants C(ε) and α(ε) such that

Prob
(

sup
x∈X
|vNβ (x)− CVaRβ (g(x, ξ)) | ≥ ε/2

)
≤ Prob

( 1

1− β
sup
x∈X

sup
η∈[−a,a]

∣∣∣∣∣∣ 1

N

N∑
j=1

(g(x, ξj)− η)+ − EP [(η − g(x, ξ))+]

∣∣∣∣∣∣ ≥ ε/2
)

≤ C(ε)e−α(ε)N (3.39)

for N sufficiently large. Here in the first inequality, we are using the fact that the maximum

w.r.t. η is achieved in [−a, a] for some appropriate positive constant a; see similar discussions

in [53]. Note that |ϑN − ϑ| ≤ supx∈X |vN (x)− v(x)|. Combining (3.38) and (3.39), we arrive at

Prob
(
|ϑN − ϑ| ≥ ε

)
≤ Prob

(
sup |vN (x)− v(x)| ≥ ε

)
≤ Prob

(
sup |vNβ (x)− CVaRβ (g(x, ξ)) | ≥ ε/2

)
≤ C(ε)e−α(ε)N .

Part (ii). Let R(ε) be defined as in the statement of the lemma. Let ε be a fixed small

positive number and δ := R(ε)/3. Let N be such that supx∈X |vN (x)− v(x)| ≤ δ. Then for any

x ∈ X with d(x,X∗) ≥ ε, we have

vN (x)− vN (x∗) ≥ v(x)− ϑ− 2δ ≥ R(ε)/3 > 0

which means x cannot be an optimal solution to problem (3.31), in other words, if xN is an

optimal solution to problem (3.31), then d(xN , X∗) < ε when supx∈X |vN (x) − v(x)| ≤ R(ε)/3.

The conclusion follows if we choose ε = R−1 (3 supx∈X |vN (x)− v(x)|). The proof is complete.
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We make a few comments in sequel about the conditions and conclusion of the lemma as the

result might be of broader interest.

First, condition (a) explicitly ensures g(x, y) the essential supremum of g(x, ξ) being bounded

for each fixed x ∈ X. Condition (b) is considered by Anderson, Xu and Zhang [1]. Inequality

(3.32) is guaranteed when g(x, ·) is Hölder continuous over Ξ. Condition (c) is fulfilled when

the density function of ξ is bounded away from zero around ξ0. A combination of (b) and (c)

provide a sufficient condition for the so-call consistent tail behaviour for g(x, ξ), see [1] for a

detailed discussion.

Second, this kind of convergence analysis is slightly different from standard convergence

analysis in stochastic programming in that here we use the largest sampled value of g(x, ξ)

rather than its sample average. It should also be distinguished from the convergence analysis by

Campi and Calafiore [11] for a similar discretization scheme whose focus is on the feasibility of

an optimal solution obtained from solving (3.31) and the number of samples needed to guarantee

the feasibility with a specified confidence. Instead it is more closely related to a recent work by

Esfahani, Sutter and Lygeros [16] which presents a probabilistic argument for the convergence

of the optimal value of (3.31) with a similar discretization scheme. Based on Lemma 3.1, it is

possible to estimate the sample size for a specified discrepancy of the optimal values ε through

large deviation theorem; see [52] and references therein. We leave the details for the interested

readers to explore as they are beyond the main focus of this paper.

With Lemma 3.1, we are ready to state convergence of problem (3.29) to problem (3.28) in

terms of the optimal value and the optimal solutions. For the simplicity of notation, let

h(x,Λ, ξ) := f(x, ξ)−
q∑
i=1

Ψi(ξ) ◦ Λi.

Let Wx be defined as in (2.27). We make the following assumption.

Assumption 3.2 h(x,Λ, ξ) satisfies the following conditions.

(a) For fixed (x,Λ) ∈ X ×Wx,

sup
ξ∈Ξ

h(x,Λ, ξ) <∞.

(b) The true probability distribution of ξ is continuous and there exist positive constants C1

and ν1 (independent of x) such that

|h(x,Λ, ξ′)− h(x,Λ, ξ′′) < C1‖ξ′ − ξ′′‖ν1 ,∀ξ′, ξ′′ ∈ Ξ (3.40)

for all (x,Λ) ∈ X ×Wx; and condition (c) of Lemma 3.1 holds.

(c) The moment function of h(x,Λ, ξ), denoted by

Mx,Λ(t) := E
[
et(h(x,Λ,ξ)−E[h(x,Λ,ξ)])

]
,

is finite valued for all t in a neighborhood of zero.
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(d) Let σ(ξ) := κ(ξ) +
∑q

i=1 ‖Ψi(ξ)‖, where κ(ξ) is the Lipschitz modulus of f(·, ξ). The

moment generating function of σ(ξ) denoted by E
[
et(σ(ξ)−E[σ(ξ)])

]
is finite valued for all t

in a neighbourhood of zero.

Theorem 3.1 (Convergence of random discretization scheme (3.29)) Let ϑ̂N and ϑ̂ de-

note the optimal values of problems (3.29) and (3.28) respectively. Under Assumption 3.2, for

any positive number ε, there exist positive constants Ĉ(ε) and β̂(ε) such that

Prob(|ϑ̂N − ϑ̂| ≥ ε) ≤ Ĉ(ε)e−β̂(ε)N ,

when N is sufficiently large.

Proof. The conclusion follows directly from Lemma 3.1 in that conditions (a) and (b) of Lemma

3.1 are implied by conditions (c)-(d) and (b) of Assumption 3.2 respectively. We omit the details.

3.2 Stationary points

In the case when f(x, ξ) is not convex in x, problem (3.29) is not a convex optimization problem.

In such a case, we may not be able to obtain an optimal solution by solving the problem. This

motivates us to study convergence of stationary points. Let xN be just a stationary point of

problem (3.29). We look into whether any cluster point of sequence {xN} is a stationary point

of (3.28).

To ease the exposition of analysis and maximize the potential application of the convergence

results, we consider the general problems (3.30) and (3.31). Throughout this subsection, we

assume g is continuously differentiable in x for every ξ. Therefore, both v(x) and vN (x) are

Lipschitz continuous. Let

ΞN (x) := arg max
j=1,··· ,N

gN (x, ξj) and Ξ∗(x) := arg max
ξ∈Ξ

g(x, ξ).

Recall that the Clarke subdifferential of a locally Lipschitz continuous function φ(x) at x,

denoted by ∂φ(x), is defined as follows:

∂φ(x) := conv

 lim
x′∈D
x′→x

∇φ(x′)

 ,

where D denotes the set of points near x at which φ is Fréchet differentiable, ∇φ(x) denotes the

gradient of φ at x. In the case when φ is convex, the Clarke subdifferential coincides with the

convex subdifferential, see [13] for details.

By [13, Theorem 2.8.2], the Clarke subdifferential of v(x) can be written as

∂v(x) = {EP [∇xg(x, ξ)] : P ∈ P[Ξ∗(x)]} ,

where P[S] signifies the collection of probability measures supported on S. Likewise, by [13,

Proposition 2.3.12],

∂vN (x) = conv{∇xg(x, ξj) : ξj ∈ ΞN (x)}. (3.41)
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Proposition 3.1 (Subdifferential consistency) Let Ξ be a compact set and {xN} converge

to x∗. Suppose that conditions (b) and (c) of Lemma 3.1 holds. Then

lim
N→∞

D(∂vN (xN ), ∂v(x∗)) = 0.

Proof. Let ηN ∈ ∂vN (xN ) be any element of the subdifferential. By the definition of D, it

suffices to show that every accumulation point of sequence {ηN} lies in ∂v(x∗). By taking a

subsequence if necessary, we may assume without loss of generality that ηN → η∗. Let |ΞN (xN )|
denote the cardinality of set ΞN (xN ). By relabeling the samples, we may assume

ΞN (xN ) = {ξ1, · · · , ξ|ΞN (xN )|}.

Using the property of the Clarke subdifferential, we deduce from (3.41) that there exist positive

numbers aj ∈ [0, 1], j = 1, · · · , |ΞN (xN )| such that
∑|ΞN (xN )|

j=1 aj = 1 and

ηN =

|ΞN (xN )|∑
j=1

aj∇xg(xN , ξj).

Let

PN (ξ) :=

{
aj , for ξ = ξj , j = 1, · · · , |ΞN (xN )|,
0, otherwise.

Then we may view PN as a probability distribution of ξ over the support set ΞN (xN ) and

consequently write ηN as

ηN = EPN
[∇xg(xN , ξ)].

Let P(Ξ) denote the set of all probability measures over Ξ induced by ξ. Since Ξ is a compact set,

then P(Ξ) is weakly compact, which means {PN} must have a weakly convergent subsequence.

Assume for simplicity of notation that PN → P ∗ weakly. Then P ∗ ∈ P(Ξ). Since g(x, ξ) is

continuous and bounded on X × Ξ, the weak convergence and conditions (b) of Lemma 3.1

ensure

lim
N→∞

vN (xN ) = lim
N→∞

EPN
[g(xN , ξ)] = EP ∗ [g(x∗, ξ)].

Moreover, since Ξ is compact, all conditions of Lemma 3.1 are fulfilled. Thus vN (x) converges

to v(x) uniformly over X as N →∞. Likewise

lim
N→∞

ηN = lim
N→∞

EPN
[∇xg(xN , ξ)] = EP ∗ [∇xg(x∗, ξ)] = η∗.

To complete the proof, we need to show that P ∗ ∈ P[Ξ∗(x∗)]. But this follows from the definition

of P[Ξ∗(x∗)] in that the uniform convergence of vN (x) to v(x) ensures EP ∗ [g(x∗, ξ)] = v(x∗).

With Proposition 3.1, we are ready to study the convergence of stationary points. We call

(x,Λ) a stationary point of problem (3.28) if it satisfies

0 ∈ ∂v(x,Λ) +NX(x)×N{0}×K(Λ),

where {0}×K is defined as in (2.5), and NZ(z) denotes the Clarke normal cone to Z at z, that

is, for z ∈ Z,

NZ(z) =
{
ζ ∈ V : ζT t ≤ 0, ∀t ∈ TZ(z)

}
,
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TZ(z) = lim inf
t→0, Z3z′→z

1

t
(Z − z′)

and NZ(z) = ∅ when z 6∈ Z. Likewise, we say (x,Λ) is a stationary point of problem (3.29) if it

satisfies

0 ∈ ∂vN (x,Λ) +NX(x)×N{0}×K(Λ).

Theorem 3.2 (Convergence of the stationary point of (3.29)) Let {(xN ,ΛN )} be a se-

quence of stationary points of problem (3.29) and (x∗,Λ∗) be its accumulation point. Under the

conditions of Proposition 3.1, (x∗,Λ∗) is a stationary point of problem (3.28).

Proof. Theorem 3.2 follows from the outer semicontinuity of normal conesNX(·) andN{0}×K(·)
and the consistency of the subdifferential of Proposition 3.1.

3.3 Cutting plane method

We now turn to discuss numerical methods for solving problem (3.29) with a fixed sample. This

is a deterministic convex program when f(x, ξ) is convex in x for every ξ. We propose to apply

the well known cutting plane method for solving the problem.

Algorithm 3.1 (Cutting plane method for problem (3.28)) Let M be a large positive num-

ber. Set t := 0, and

F0 := X × [−M,M ]× Sn1 × · · · × Snp × Snp+1

+ × · · · × Snq

+ .

Step 1. Solve the linear semidefinite programming problem:

inf
x,λ0,Λ1,··· ,Λq

λ0

s.t. (x, λ0,Λ1, · · · ,Λq) ∈ Ft.
(3.42)

Let (xt, λt0,Λ
t
1, · · · ,Λtq) denote the optimal solution.

Step 2. Find j∗t such that

j∗t ∈ argmax

{
f(xt, ξj)− λt0 −

q∑
i=1

Λti ◦Ψi(ξ
j) : j = 1, . . . , N

}
.

Step 3. If f(xt, ξj
∗
t )− λt0 −

∑q
i=1 Λti ◦Ψi(ξ

j∗t ) ≤ 0, stop, return (xt, λt0,Λ
t
1, · · · ,Λtq) as the optimal

solution. Otherwise, construct a feasibility cut

Υt(x, λ0,Λ1, · · · ,Λq) = ∇xf(xt, ξj
∗
t )T (x− xt) + f(xt, ξj

∗
t )− λ0 −

q∑
i=1

Λi ◦Ψi(ξ
j∗t )

and set

Ft+1 := Ft ∩ {(x, λ0,Λ1, · · · ,Λq) : Υt(x, λ0,Λ1, · · · ,Λq) ≤ 0} .

Go to Step 1 with t := t+ 1.
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The algorithmic procedures follow the classical cutting plane method by Kelley [24]. The only

minor difference is that our problem (3.29) involves some matrix variables and problem (3.42)

has to be solved by an SDP solver. Convergence of the algorithm can be easily established

similar to Kelley [24], we omit the details.

4 Discretization of the ambiguity set

The randomization scheme (3.29) may be investigated from a different perspective. Let ΞN :=

{ξ1, · · · , ξN}. If we restrict the ambiguity set P in (1.2) to the discrete probability measures

with support set ΞN , then we have

PN =

(p1, · · · , pN ) :
N∑
j=1

pjΨ(ξj) � 0,
N∑
j=1

pj = 1, pj ≥ 0, j = 1, · · · , N

 .

Here instead of writing P, we use PN to indicate that the set depends on ΞN . Obviously

PN ⊂ P in the sense that for every (p1, · · · , pN ) ∈ PN , PN :=
∑N

j=1 pjδξj (ξ) ∈ P, where δξj (ξ)

denotes the Dirac probability measure over Ξ with probability mass at ξj . Consequently the

distributionally robust optimization problem (1.1) can be written as

min
x∈X

max
(p1,··· ,pN )∈IRN

+

∑N
j=1 pjf(x, ξj)

s.t.
∑N

j=1 p
jΨ(ξj) � 0,∑N

j=1 pj = 1.

(4.43)

It is easy to verify that the Lagrange dual of the inner maximization problem can be written as

inf
x,λ0,Λ1,··· ,Λp

λ0

s.t. x ∈ X,λ0 ∈ IR,

Λi � 0, for i = 1, · · · , q,
f(x, ξj)− λ0 −

∑p
i=1 Λi ◦Ψi(ξ

j) ≤ 0, j = 1, · · · , N,

(4.44)

which is equivalent to (3.29). This means the randomization scheme in Section 4 is equivalent

to the discretization scheme (4.43). From numerical point of view, the difference between (4.43)

and (4.44) lies in the fact that the latter is a single minimization problem whereas the former

a finite dimensional min-max optimization problem. When f(x, ξ) is convex in x for every ξ,

(4.43) becomes a saddle point problem. In the previous section, we have developed a numerical

method for solving (4.44). Here our focus is on a numerical scheme which solves (4.43) directly

for fixed ΞN .

Our idea is based on the classical cutting plane method to be applied to the convex function

vN (x) := supP∈PN
EP [f(x, ξ)] over the compact set X, which can be described as follows:

we start by selecting a probability p0 ∈ PN and x0 ∈ X. Let l0(x) := Ep0 [f(x0, ξ)] +

Ep0 [∇xf(x0, ξ)]T (x− x0) and find a minimizer of l0(x) over X. Note that l0(x) ≤ vN (x) for all

x ∈ X but it is not necessarily a cutting plane of vN (x) at x0 unless vN (x0) = Ep0 [f(x0, ξ)]. Let

x1 denote the optimal solution of l0(x). Next, evaluate vN (x) at x1. We do so by solving the

inner maximization problem, that is, maximization of EP [f(x1, ξ)] w.r.t. P over PN . Let p1
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denote the optimal solution. Then vN (x1) is the corresponding optimal value. If vN (x1) ≤ σ1,

stop. Otherwise, let l1(x) := Ep1 [f(x1, ξ)] + Ep1 [∇xf(x0, ξ)]T (x − x1) and find minimizer of

max(l0(x), l1(x)). In this way, we generate a sequence of cutting planes of vN (x) and a sequence

of approximate optimal solutions {xt}.

Algorithm 4.1 (Direct cutting plane method for problem (4.43)) Let pt := (pt1, · · · , ptN )

and p0 ∈ PN . Let P0 := {p0} and x0 ∈ X. Set t := 0.

Step 1. Solve outer minimization problem

min
x,σ

σ

s.t. x ∈ X,∑N
j=1 p

t
j [f(xt, ξj) +∇xf(xt, ξj)T (x− xt)] ≤ σ, for pt ∈ Pt.

(4.45)

Let xt and σt denote the optimal solution and optimal value respectively.

Step 2. Solve the inner maximization problem

max
(p1,··· ,pN )∈IRN

+

∑N
j=1 pjf(xt, ξj)

s.t.
∑N

j=1 pjΨ(ξj) � 0,∑N
j=1 pj = 1.

(4.46)

Let pt and vt denote the optimal solution and optimal value. If vt ≤ σt, then stop.

Step 3. Let Pt+1 := Pt
⋃
{pt} and t := t+ 1, go to Step 1.

Algorithm 4.1 is inspired by a similar algorithm proposed by Pflug and Wozabal [32] for

solving a distributionally robust portfolio problem and cutting surface method by Mehrotra and

Papp [28] for a general class of moment robust optimization. Compared to the cutting surface

method, our algorithm is not particularly aimed at finding a finite number of “points” in Ξ such

that the inner maximum w.r.t. P is achieved at these points, i.e., it is ordinary cutting surface

method based on the fundamental idea of cutting plane method.

In comparison with Algorithm 3.1, a notable difference is that Algorithm 4.1 builds up cutting

planes in the space of decision variables whereas Algorithm 3.1 construct cutting planes in the

space of decision variables and Lagrange multipliers. The difference affects applicability of the

algorithms in different circumstances. We will come back to this in Section 5 after conducting

some comparative numerical tests of the two algorithms.

Following convergence of classical cutting plane method (see [24]), we can assert the conver-

gence of Algorithm 4.1.

Theorem 4.1 (Convergence of Algorithm 4.1) Let {xt} be a sequence generated by Algo-

rithm 4.1. Then xt converges to an optimal solution of problem (4.43).
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Note that Algorithm 4.1 is proposed for solving the discretized minimax problem (4.43) for

fixed sample size N . It might be interesting to ask whether the optimum obtained from the

sampling scheme converges to the optimum of the original DRO (1.1) as N increases. The

following theorem addresses this.

Theorem 4.2 (Convergence of discretization scheme (4.43)) Let xN be the optimal so-

lution of problem (4.43). Assume: (a) for each P ∈ P, there exists a sequence {PN} ⊂ PN such

that PN converges to P weakly; (b) Ξ is a compact set. Then w.p.1 an accumulation point of

{xN} is an optimal solution of problem (1.1).

Proof. Since xN is an optimal solution of problem (4.43), there exists PN ∈ PN such that

(xN , PN ) is a saddle point of minx∈X maxP∈PN
〈P, f(x, ξ)〉, i.e.,

max
P∈PN

〈P, f(xN , ξ)〉 = 〈PN , f(xN , ξ)〉 = min
x∈X
〈PN , f(x, ξ)〉. (4.47)

On the other hand, since Ξ is a compact set in Euclidean space, by [35, Theorem 1.12] P(Ξ) is

weakly compact under the topology of weak convergence. The latter guarantees every sequence in

P contains a convergent subsequence, see Rachev [35, 36]. By taking a subsequence if necessary,

we may assume that xN → x∗ and PN → P ∗ weakly. By the second equality of (4.47), we obtain

〈P ∗, f(x∗, ξ)〉 ≤ minx∈X〈P ∗, f(x, ξ)〉. In what follows, we show

max
P∈P
〈P, f(x∗, ξ)〉 ≤ 〈P ∗, f(x∗, ξ)〉,

which will then enable us to claim

max
P∈P
〈P, f(x∗, ξ)〉 ≤ 〈P ∗, f(x∗, ξ)〉 ≤ min

x∈X
〈P ∗, f(x, ξ)〉,

and hence (x∗, P ∗) is a saddle point of minx∈X maxP∈P〈P, f(x, ξ)〉. Assume for the sake of a

contradiction that there exists P̂ ∈ P such that

〈P̂ , f(x∗, ξ)〉 > 〈P ∗, f(x∗, ξ)〉. (4.48)

Since f(x, ξ) is continuous in (x, ξ), by (4.48), forN sufficiently large 〈P̂ , f(xN , ξ)〉 > 〈PN , f(xN , ξ)〉.
Moreover, under condition (a), there exists a sequence {P̂N} ⊂ PN converging to P̂ weakly such

that

〈P̂N , f(xN , ξ)〉 > 〈PN , f(xN , ξ)〉,

which contradicts the first equality of (4.47).

Corollary 4.1 Consider problem (1.1). Assume: (a) the moment system in the definition of

the ambiguity set P (see (1.2)) does not have equality constraints, i.e., p = 0; (b) there exists

probability measure P0 such that

〈P0,Ψi(ξ)〉 ≺ 0, for i = 1, · · · , q;

(c) for any ε > 0 and ξ ∈ Ξ, there exists ξ′ ∈ ΞN such that ‖ξ − ξ′‖ ≤ ε almost surely as N

sufficiently large; (d) Ξ is a compact set. Then w.p.1 every accumulation point of {xN} is an

optimal solution of problem (1.1).
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Proof. Let P̂ be defined as in the proof of Theorem 4.2. Let λ ∈ (0, 1) be a constant and P0

be defined as in condition (b), let Pλ := λP̂ + (1− λ)P0. Since P is a convex set, Pλ ∈ P and

〈Pλ,Ψ(ξ)〉 = λ〈P̂ ,Ψ(ξ)〉+ (1− λ)〈P0,Ψ(ξ)〉 ≺ 0. (4.49)

For fixed λ, there exists P̂ λN ∈ PN such that P̂ λN converges weakly to Pλ. To see this, let

{Ξ1, · · · ,ΞN} be a Voronoi partition, that is, Ξi, i = 1, · · · , N are pairwise disjoint sets with

Ξi ⊆
{
y : ‖y − ξi‖ = min

k
‖y − ξk‖

}
.

Let P̂ λN =
∑N

i=1 pi1ξi , where pi = Pλ(Ξi) and 1ξi denotes the Dirac probability measure at ξi.

Under condition (b), the largest diameter of the Voronoi cells goes to zero as N increases.

Consequently, we deduce by [30, Lemma 4.9] that P̂ λN converges to Pλ under the Wasser-

stein/Kantorovish metric as N → ∞. The latter guarantees weak convergence of P̂ λN to Pλ
because Wasserstein/Kantorovish metric metrizes weak convergence; see [29, Section 2.1]. Let

λ → 1. The discussion above shows that there exists a sequence {P̂ λN} ⊂ PN converging to P̂

weakly as N →∞. The rest of the proof are similar to that of Theorem 4.2.

It might be helpful to make a few comments about the conditions of Theorem 4.2 and

Corollary 4.1.

First, from the proof of the corollary, we can see that conditions (b) in the theorem can be

replaced by conditions (b) and (c) in the corollary when the moment system in the definition of

P does not involve an equality constraint. It is an open question as to whether this is correct

when the moment system involves an equality constraint, we leave this for our future research.

We prefer conditions (b) and (c) in the corollary to condition (b) of the theorem in that the

former are more verifiable. Moreover, since condition (b) in the corollary is a Slater condition, it

ensures strong duality for the inner maximization problem of (1.1) whereas condition (b) of the

theorem does not have such a guarantee. Further, under conditions (b) and (c) of the corollary,

convergence of the optimal value of problem (4.43) can be drawn directly from Theorem 3.1,

and in that case Theorem 4.2 may be understood as complementing Theorem 3.1 by ensuring

convergence of the optimal solution. In contrast, under condition (b) of the theorem, it is unclear

whether Theorem 3.1 would also give us a guarantee of convergence of the optimal value of

(3.29) to that of problem (1.1) without the Slater condition (although we may verify the lower

semicontinuity condition derived in section 2). Overall, we conclude that the discretization

scheme (4.43) is a bit safer than scheme (3.29) in the absence of strong duality for the inner

maximization problem (1.1).

Second, condition (c) of the corollary means that ΞN may be iid samples generated by any

continuous distribution with support set Ξ or constructed in a deterministic manner.

Third, in the absence of strong duality, the optimal value of the discretized minimax optimiza-

tion problem (4.43) provides a lower bound for the optimal value of the original distributionally

robust optimization problem (1.1) because the discretized ambiguity set PN is smaller than P.

In contrast, the optimal value of problem (3.28) may provide an upper bound for problem (1.1)

as it is formulated through the Lagrange dual of the inner maximization problem. The follow-up

discretization scheme (3.29) gives a lower bound for the optimal value of problem (3.28). Over-

all, in the absence of strong duality, we can conclude via Theorem 3.1 that the optimal value of

problem (3.29) provides an upper bound for problem (1.1) when N is sufficiently large.
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5 Numerical tests

In this section, we investigate the numerical performance of Algorithms 3.1 and 4.1 by carrying

out some comparative analysis. We do so by applying them to a portfolio optimization problem

and a multiproduct newsvendor problem. In the implementation of the algorithms, we use the

ambiguity set defined as in (2.14) with γ1 = 0.1 and γ2 = 1.1. The mean and covariance matrix

µ0 and Σ0 are calculated through samples which are either obtained from historical data (in the

first example) or generated by computer (in the second example).

The tests are carried out in MATLAB 8.0 installed on a Thinkpad T430 notebook com-

puter with Windows 7 operating system and Intel Core i5 processor. The SDP subproblems in

Algorithms 4.1 and 3.1 are solved by Matlab solver “SDPT3-4.0” [47].
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Figure 1: CPU time v.s. sample size, Example 5.1.

Example 5.1 We consider a portfolio optimization problem where the investor makes an op-

timal decision using historical return rate of 80 stocks between May 2009 and April 2015 from

National Association of Securities Deal Automated Quotations (NASDAQ) index. The sample

size is 2000. To simplify the discussions, we ignore the transaction fee, therefore the total value

of portfolio is

f(x, ξ) = ξ1x1 + ξ2x2 + · · ·+ ξnxn,

where ξj denotes the random return rate of asset j.

The investor wants to choose several stocks from NASDAQ index with highest average return

rates and make an optimal decision based on them, where the average return rates in the

selection rule are calculated by taking average from all historical rates. In order to compare

the two algorithms, we have carried out two sets of experiments. One is for the fixed number

of portfolios as 5, we examine the performance of the algorithms in terms of CPU time with

different sample sizes. This is to investigate sensitivity of the algorithms w.r.t. the change of
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Figure 2: CPU time v.s. the number of portfolios, Example 5.1.

sample size. The other is for fixed sample size 500, we test the performance of the algorithms

as problem size increases from 5 to 80.

The results are depicted in Figures 1 and 2 which show the relationships between CPU time

and sample size and CPU time and portfolio size. In Figure 1, we can see that the CPU time of

Algorithm 4.1 increases rapidly at a linear rate as sample size increases whereas Algorithm 3.1 is

not sensitive to the change of sample size. The underlying reason is that increase of sample size

does not impact on the problem size of (3.29) but it does affect the size of inner maximization

problem of (4.46).

Figure 2 displays an opposite performance of the two algorithms where we fix up the sample

size to 500 but increase the portfolio size. The phenomena can be interpreted by the fact that

Algorithm 3.1 is sensitive to the increase of portfolio size (number of variables of x) because

the cutting planes are constructed in higher dimensional vector and matrix spaces. With the

matrix variables in place, any increase of the number of variables of x will significantly affect the

overall problem size and hence the effectiveness of the cutting plane method. In contrast, the

change of portfolio size does not have any impact on the size of problem (4.46) which is a key

step of Algorithm 4.1, and its impact on outer minimization problem (4.45) is limited because

the latter is an LP without any matrix variables.

In Example 5.1, the objective function is linear in x, so we don’t need linearization at Step 1

of Algorithm 4.1. In what follows, we consider the case when the objective function is nonlinear.

Example 5.2 ( Multiproduct newsvendor problem varied from Wiesemann et al. [51])

Assume that a newsvendor trades in i = 1, · · · , n products. Before observing the uncertain de-

mands ξi, the newsvendor orders xi units of product i at the wholesale price ci. Once ξi is

observed, she can sell the quantity min(xi, ξi) at the retail price vi. Any unsold stock (xi− ξi)+

is cleared at the salvage price gi, and any unsatisfied demand (ξi − xi)+ is lost.

32



We can describe the newsvendor’s total loss as a function of the order decision x := (x1, · · · , xn)T :

L(x, ξ) = cTx− vT min(x, ξ)− gT (x− ξ)+ = (c− v)Tx+ (v − g)T (x− ξ)+,

where the minimum and nonnegativity operator are applied componentwise. We study the

risk-averse variant of the multiproduct newsvendor problem:

min
x

sup
P∈P

EP [U(L(x, ξ))], (5.50)

where U(y) := ey/10 is an exponential disutility function. In order to compare performance of

the two algorithms, we have carried out three sets of experiments. The first one is for the fixed

number of products as 7, we examine the performance of the algorithms in terms of CPU times

with different sample sizes from 400 to 900, the results are depicted in Figure 3. The second one

is for fixed sample size 100, we test the performance of the algorithms as problem size (number

of products) increases from 9 to 27, the results are displayed in Figure 4. The third one is for

fixed number of products as 2, we investigate the performance of the optimal values from the two

algorithms when the sample size increases from 100 to 900. We generate 20 groups of samples

for each sample size, calculate the optimal value by the two algorithms for each group and show

the convergence in Figures 5 and 6.

The data are generated as follows: for ith product, the wholesale, retail and savage prices

are set ci = 0.1(5 + i − 1), vi = 0.15(5 + i − 1) and gi = 0.05(5 + i − 1); the vector of the

product demands ξ is characterized by a multivariate log-normal distribution with the mean

µ = (µ1, · · · , µn), µi = 2, i = 1, · · · , n, and covariance Σ = (σij), σii = 0.35 + 0.01 ∗ (i− 1) and

σij = 0.01 for i 6= j, i, j = 1, · · · , n.

400 500 600 700 800 900
0

100

200

300

400

500

600

700

800

900

Sample Size

C
PU

 ti
m

e(
s)

 

 

Algorithm 4.1
Algorithm 3.1

Figure 3: CPU time v.s. sample size, Example 5.2.

Figures 3 and 4 display similar patterns to what we observed in Example 5.1 about change

of CPU times against variation of the sample size and the number of products (the problem

size). Figures 5 and 6 display the same trend of convergence of the optimal values obtained
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Figure 4: CPU time v.s. the number of products, Example 5.2.
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Figure 5: Convergence of optimal values from Algorithm 3.1, Example 5.2.

from the two algorithms as the sample size increases through boxplot. We can see roughly that

the optimal values (or the range of the optimal values) converge relatively quickly when the

sample size less than 500 and the convergence slows down when the sample size reaches 700.

The observation is consistent with our established exponential convergence results. Note that

no gap is observed as the strong duality holds in this case.
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Figure 6: Convergence of optimal values from Algorithm 4.1, Example 5.2.

6 Conclusion

The paper explores conditions for strong duality in distributionally robust optimization with

moment constraints and discrete approximation schemes for solving such problems. For the

moment problems with only inequality constraints, Slater condition is often satisfied and in this

paper we show how it can be verified for some specific moment problems. For the moment

problems with only equality and/or inequality constraints, the strong duality often requires the

Slater type conditions which are relatively difficult to fulfil and verify. In the absence of the

Slater type conditions, it is discovered that a new condition based on lower semicontinuity of

the perturbed inner maximization may be used.

We propose two discrete approximation schemes for solving (1.1): one through the well

known Lagrange dual formulation and the other through discretization of the ambiguity set

which is effectively a kind of direct discretization of the minimax optimization problem. In

terms of the optimal value, the dual based discretization scheme tends to give an upper bound

whereas the direct discretization gives rise to a lower bound in the absence of strong duality. We

then apply the well known cutting plane method to solve the respective discretized problems.

In view of numerical efficiency, the preliminary tests show that the dual based discretization

scheme is more sensitive to the increase of decision variables whereas the direct discretization

scheme is more sensitive to the increase of the sample size. Neither of the schemes requires

any specific structure of the underlying functions in the moment problems, in the objective or

specific structure of the support set of the random variable, hence they provide an alternative

to the mainstream SDP based approaches in the literature.

There is a prospect of applying the discretization schems to distributionally robust opti-

mization problems with objective of minimizing risks. For example, in formulation (1.1), if we

replace the expected loss EP [f(x, ξ)] with CVaR of f(x, ξ) as defined in (3.34), then the objective
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becomes minimization of the worst CVaR. By exchanging the operation of minimization w.r.t.

η and maximization w.r.t. probability measure, we end up with the standard formulation (1.1)

with an auxiliary “decision variable” η. Similar reformulation can be applied to the case when

the objective is a convex composition of EP [f(x, ξ)] through Fenchel duality. Thus both the

theoretical results in Section 2 and the numerical schemes in Sections 3-4 apply to a large class

of distributionally robust optimization problems with moment constraints.
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