
CONVERGENCE ANALYSIS FOR MATHEMATICAL PROGRAMS WITH
DISTRIBUTIONALLY ROBUST CHANCE CONSTRAINT ∗

SHAOYAN GUO† , HUIFU XU‡ , AND LIWEI ZHANG§

Abstract. Convergence analysis for optimization problems with chance constraints concerns impact of
variation of probability measure in the chance constraints on the optimal value and the optimal solutions and
research on this topic has been well documented in the literature of stochastic programming. In this paper, we
extend such analysis to optimization problems with distributionally robust chance constraints where the true
probability distribution is unknown, but it is possible to construct an ambiguity set of probability distributions
and the chance constraint is based on the most conservative selection of probability distribution from the
ambiguity set. The convergence analysis focuses on impact of the variation of the ambiguity set on the optimal
value and the optimal solutions. We start by deriving general convergence results under abstract conditions
such as continuity of the robust probability function and uniform convergence of the robust probability functions
and followed with detailed analysis of these conditions. Two sufficient conditions have been derived with one
applicable to both continuous and discrete probability distribution and the other to continuous distribution.
Case studies are carried out for ambiguity sets being constructed through moments and samples.
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1. Introduction. Consider the following mathematical programs with chance constraint:

(MPCC)
min
x∈X

f(x)

s.t. P (g(x, ξ) ≤ 0) ≥ 1− β,
(1.1)

where X is a compact set of IRn, f and g are continuous functions which map from IRn and IRn× IRk to IR and
IRm respectively, ξ : Ω → Ξ is a vector of random variables defined on a probability space (Ω,F) with closed
support set Ξ ⊂ IRk, β ∈ (0, 1) is a given positive scalar, and P represents the probability distribution of ξ.

MPCC has wide applications in engineering design, supply chain management, production planing, water
management, where chance constraints may be used to describe likelihood of financial loss, power balance or
system control; see [41]. Initiated by Charnes and Cooper [11] and pioneered by Prékopa [33], MPCC has
witnessed significant progress in recent years both from a theoretical viewpoint and an algorithmic perspective.
For example, Henrion and Strugarek [24], and Van Ackooij [2] study convexity of chance constraints which is
closely related to solvability of MPCC. Van Ackooij and Henrion [3] propose an efficient method to compute
the gradient and value of probability functions under multivariate Gaussian distribution so that existing NLP
solvers can be applied. There are also various approximation methods proposed for solving MPCCs such
as sample approximation [28], constrained bundle method and other methods with regularization [13], convex
approximation [30] and sample average approximation (SAA) [31], etc. For a comprehensive overview of MPCC,
we refer interested readers to [34, 35, 41] and references therein.

The literature on MPCC often assume full knowledge of the underlying probability distribution. However,
in many practical applications, the true probability distribution may be unknown but it is possible to obtain
some partial information such as prior moments of some reference functions of the random variables, and/or
their samples and use them to construct an ambiguity set of probability distributions which contain or approx-
imate the true probability distribution. This motivates one to consider mathematical programs with so-called
distributionally robust chance constraint:

(MPDRCC)
min
x∈X

f(x)

s.t. inf
P∈P

P (g(x, ξ) ≤ 0) ≥ 1− β, (1.2)
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where P is an ambiguity set. Note that if we consider (Ξ,B) as a measurable space equipped with Borel
sigma algebra B, then P may be viewed as a set of probability measures defined on (Ξ,B) induced by the
random variate ξ. We will use terminologies probability measure and probability distribution interchangeably
throughout the paper.

In comparison with MPCC, MPDRCC requires each feasible solution of problem (1.2) to satisfy the chance
constraint P (g(x, ξ) ≤ 0) ≥ 1 − β for every P ∈ P no matter whether P is the true probability or not. Thus
the feasible set of MPDRCC is smaller than (contained in) that of MPCC and hence the optimal value of the
former is larger than that of the latter which means the minimum cost (if we interpret f(x) as a cost) resulting
from MPDRCC will be higher. But this is the price we have to pay for the lack of complete information of the
true probability distribution because in this model we are not allowed to take a decision which can potentially
violate the chance constraint. To explain why an optimal solution arising from (1.2) is sensible, let x∗ denote
an optimal solution and P ∗ the corresponding optimal probability distribution attaining the infimum (not

necessarily attainable if P is not weakly compact). Let P̂ denote the true unknown probability distribution.
Then P ∗(g(x∗, ξ) ≤ 0) ≥ 1− β and

P̂ (g(x∗, ξ) ≤ 0) ≥ P ∗(g(x∗, ξ) ≤ 0) ≥ 1− β (1.3)

so long as P̂ ∈ P. This shows x∗ is feasible to MPCC and moreover, if the first inequality in (1.3) is strict, then
it means the distributionally robust chance constraint is more conservative than necessary.

MPDRCC is an important topic in distributionally robust optimization, a number of papers have appeared
on this topic. For instance, Calafiore and El Ghaoui [10] show that MPDRCC can be converted into a tractable
mathematical program with second-order cone constraint provided that g(·, ·) is bilinear and the ambiguity set
is characterized by the known mean and variance. Without the linear property of g, Zymler et al [49] prove that
CVaR approximation of individual robust chance constraint becomes exact if the constraint functions are either
concave or (possibly nonconcave) quadratic in ξ and the first and second order moments, as well as the support
set of ξ are known. The quality of this approximation depends on certain scaling parameters when they are
confronted with joint chance constraints. Yang and Xu [46] establish that if g is concave in x, and quasi-convex
in ξ and the ambiguity set is characterized by its mean and variance, then MPDRCC is also tractable. Erdoğan
and Iyengar [16] show that if the ambiguity set contains distributions that are within a certain distance of a
nominal distribution in terms of the Prohorov metric, then MPDRCC can be well approximated by a set of
sample-based robust optimization constraints. Jiang and Guan [26] consider a family of density-based confidence
sets based on general φ-divergences, and derive an equivalent reformulation for MPDRCC and show that it is
equivalent to a classical chance constraint with a perturbed risk level. Similar results have been proved in [25].
More recently, Hanasusanto et al [20] investigate tractability of a richer class of ambiguity sets defined through
moment conditions and structural information such as symmetry, unimodality, and independence patterns for
MPDRCC.

One of the main issues in MPDRCC is construction of the ambiguity set P. Among the above literatures,
most focus on the ambiguity set by fixing the first or second moment of a distribution or other structural features,
without explicitly taking into account of the data-driven setting. The authors of [10, 12, 17, 26, 48] propose data-
driven distributionally robust optimization that the ambiguity set is defined through samples, however, they
mainly investigate tractability and the finite sample guarantee of the resulting reformulation. More recently,
Bertsimas et al [6] propose a modification of SAA, termed robust SAA to the data-driven settings. Using the
goodness-of-fit (GoF) hypothesis test, they discuss the finite sample guarantee and asymptotic convergence of
robust SAA and prove that Robust SAA yields tractable reformulations for a wide class of cost functions. Here
we take a different perspective from [6] to investigate the asymptotic convergence of MPDRCC.

Our focus in this paper is on the case when the ambiguity set P is approximated by a sequence of ambiguity
sets {PN} and we analyse the impact of the approximation on the optimal value and the optimal solutions to
MPDRCC. This is driven not only by the need for appropriate quantification of the uncertainty data but also
understanding of asymptotic relationship between statistical estimators of the optimum and the size of uncer-
tainty data. From a theoretical perspective, the analysis may be viewed as convergence analysis of MPDRCC.
Indeed, when P reduces to a singleton, MPDRCC collapses to MPCC and our analysis coincides with classical
stability analysis of MPCC. The research can also be viewed as an extension of convergence analysis of distri-
butionally robust formulation of a one stage stochastic program by Sun and Xu [42] where the impact of the
optimal value and the optimal solutions is investigated against variation of the underlying ambiguity set.

As far as we are concerned, the main contributions of this paper can be summarized as follows.
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• Convergence analysis of MPDRCC (1.2). We consider generic approximation of the ambiguity
set P by another ambiguity set PN and establish uniform convergence of the corresponding robust
probability function when PN converges to P in some pseudo-metric (Theorem 3.1). We also inves-
tigate convergence of the optimal value and the optimal solutions of MPDRCC (Theorem 3.2) with
PN replaced by P under some general conditions. The convergence results extend similar results in
stochastic programming [37] to MPDRCC.

• Continuity of the robust probability function. We present a new alternative condition ((C2)
in Condition 4.1) for the continuity of probability function (Theorem 4.1) and discuss in detail the
relationship between the new condition and the well-known condition in the literature of stochastic
programming ((C1) in Condition 4.1) through a proposition (Proposition 4.1) and an example (Example
4.1). Moreover, under (C1) or (C2), we derive pointwise continuity of the robust probability function
(Theorem 4.2) and give a simple example to illustrate (Example 4.2).

• Convergence of approximate ambiguity set under the pseudo-metric. Since the uniform
convergence of the robust probability function in Theorem 3.1 relies heavily on the convergence of PN
to P, we derive sufficient conditions for the latter. Specifically, we show convergence of PN to P under
the pseudo-metric when PN converges to P weakly and P satisfies (C1) or (C2) (Lemma 5.1), the
result has independent interest in stochastic programming. With the lemma, we move on to establish
semi-convergence of PN to P (Propositions 5.1 and 5.2).

• Applications of the convergence results. We present three applications of the established conver-
gence results with different motivations. First (Section 6.1), we consider a case where the ambiguity
set P is defined by some general moment conditions. Our concern is that the resulting MPDRCC may
be very difficult to solve and we propose a piecewise approximation scheme. We show that our general
convergence results can be applied to this kind of computationally oriented approximation scheme (The-
orem 6.1). Second (Section 6.2), we consider a situation where the ambiguity set P is defined through
some specific moment conditions and it is possible to obtain samples of ξ to calculate the empirical
average mean and absolute deviation. We demonstrate that our general convergence results in Section
3 can also be applied to this kind of circumstance as sample size increases (Proposition 6.2). Finally
(Section 6.3), we give another application where we use empirical data to construct a so-called kernel
density estimator and then use Kullback-Leibler (KL) divergence to construct an ambiguity set. We
demonstrate how our convergence results can also be effectively applied to that setting (Proposition
6.4).

Throughout the paper, we use IRn to represent n dimensional Euclidean space, ‖x‖ the Euclidean norm
of a vector x ∈ IRn and d(x,A) := infx′∈A ‖x − x′‖ the distance from a point x to a set A. For two sets
A,B ⊂ IRn, clA, intA and bdA denote respectively the closure, interior and boundary of A; A\B denotes
the set of points which lie in set A but not in set B, A + B := {a + b : a ∈ A, b ∈ B} denotes Minkowski
sum. If A and B are two compact sets, we write D(A,B) := supx∈A d(x,B) for the deviation of A from B and
H(A,B) := max{D(A,B),D(B,A)} for the Hausdorff distance between A and B. Finally, we use B to denote
closed unit ball in finite dimensional Hilbert spaces.

2. Preliminaries.

2.1. Set-valued mapping. Let X ,Y be finite dimensional Hilbert spaces and Ψ : X ⇒ Y be a set-valued
mapping. The outer limit of Ψ at x is the set

lim sup
x→x

Ψ(x) :=
{
y ∈ Y : ∃xk → x, ∃yk → y with yk ∈ Ψ(xk)

}
,

while the inner limit of Ψ at x is the set

lim inf
x→x

Ψ(x) :=
{
y ∈ Y : ∀xk → x, ∃N ∈ N∞, yk

N→ y with yk ∈ Ψ(xk)
}
,

where N∞ := {N ⊆ N : N\N is finite} (N denotes natural numbers), yk
N→ y denotes the convergence of a

subsequence designed by an index N [36].

A set-valued mapping Ψ is said to be closed-valued if Ψ(x) is a closed set for each x ∈ X . Ψ is said to be
convex-valued if Ψ(x) is a convex set for each x ∈ X . Ψ is said to be outer semicontinuous (osc for short) at
x̄ ∈ X if

lim sup
x→x

Ψ(x) ⊂ Ψ(x̄),
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or equivalently, lim sup
x→x

Ψ(x) = Ψ(x̄). Ψ is said to be inner semicontinuous (isc for short) at x̄ ∈ X if

lim inf
x→x

Ψ(x) ⊃ Ψ(x̄).

Ψ is said to be continuous at x̄ if it is both osc and isc at x̄.

Proposition 2.1 (Characterization of osc and isc properties, see [36, Proposition 5.12]). Let Ψ be a
closed-valued mapping. Ψ is osc at x̄ ∈ X if and only if for every ρ > 0 and ε > 0 there is a neighbourhood V
of x̄ such that

Ψ(x) ∩ ρB ⊂ Ψ(x̄) + εB for all x ∈ X ∩ V.

Ψ is isc at x̄ if and only if for every ρ > 0 and ε > 0 there is a neighborhood V of x̄ such that

Ψ(x̄) ∩ ρB ⊂ Ψ(x) + εB for all x ∈ X ∩ V.

2.2. Pseudo-metric, Kolmogorov metric and total variation metric. Let P(Ξ) denote the set
of all probability measures in the space (Ξ,B). We need appropriate metrics to characterize convergence of
probability measures in P(Ξ).

For each fixed x ∈ X, let

H(x) := {z ∈ Ξ : g(x, z) ≤ 0}, (2.1)

and

1H(x)(z) :=

{
1 for z ∈ H(x),
0 for z ∈ Ξ\H(x),

denote the indicator function of H(x). Then

P (ξ ∈ Ξ : g(x, ξ) ≤ 0) = EP
[
1H(x)(ξ)

]
.

We consider the following set of random indicator functions

G := {1H(x)(ξ(·)) : x ∈ X}. (2.2)

For P,Q ∈P(Ξ), let

D(P,Q) := sup
g∈G

∣∣EP [g]− EQ[g]
∣∣ = sup

x∈X

∣∣P (H(x))−Q(H(x))
∣∣. (2.3)

We call D(P,Q) pseudo-metric in that it satisfies all properties of a metric except that D(P,Q) = 0 does not
necessarily imply P = Q unless the set of functions G is sufficiently large. This type of pseudo-metric is widely
used for stability analysis in stochastic programming; see similar definitions in a review paper by Römisch [37,
Page 529].

Let P ∈ P(Ξ) be a probability measure and Ai ⊂ P(Ξ), i = 1, 2, be two sets of probability measures.
With the pseudo-metric, the distance from a single probability measure P to a set of probability measures A1

is defined as D(P,A1) := infQ∈A1 D(P,Q), the deviation (excess) of A1 from (over) A2 as

D(A1,A2) := sup
P∈A1

D(P,A2) (2.4)

and Hausdorff distance between A1 and A2 as

H (A1,A2) := max {D(A1,A2),D(A2,A1)} . (2.5)

Definition 2.1 (Kolmogorov metric [18]). For two probability measures P,Q ∈ P(Ξ), the Kolmogorov
metric is defined by

DK(P,Q) := sup
η∈IRk

|FP (η)− FQ(η)|, (2.6)
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where FP and FQ denote the cumulative distribution functions (c.d.f) of P and Q respectively. Let HK(·, ·)
denote the Hausdorff distance of the sets of probability measures under the Kolmogorov metric.

Definition 2.2 (Total variation metric [18]). Let P,Q ∈P(Ξ). The total variation metric between P and
Q is defined as

DTV (P,Q) := sup
h∈H

{
EP [h(ξ)]− EQ[h(ξ)]

}
,

where H :=
{
h : Ξ→ IR : h is measurable, supξ∈Ξ |h(ξ)| ≤ 1

}
. Let HTV (·, ·) denote the Hausdorff distance of

the sets of probability measures under the total variation metric.

2.3. Weak convergence. Let {PN} ∈P(Ξ) be a sequence of probability measures. Recall that {PN} is
said to converge to P ∈P(Ξ) weakly if

lim
N→∞

∫
Ξ

h(ξ)PN (dξ) =

∫
Ξ

h(ξ)P (dξ), (2.7)

for each bounded and continuous function h : Ξ→ IR; see [7, Theorem 2.1].

For a family of probability measures A on (Ξ,B), A is said to be tight if for any ε > 0, there exists a
compact set Ξε ⊂ Ξ such that infP∈A P (Ξε) > 1 − ε. In the case when A is a singleton, it reduces to the
tightness of a single probability measure. The set A is said to be closed (under the weak topology) if for any
sequence {PN} ⊂ A with PN converging to P weakly, we have P ∈ A. The set A is said to be weakly compact
if every sequence {PN} ⊂ A contains a subsequence {PN ′} and moreover there exists P ∈ A such that PN ′

converges to P weakly; see Billingsley [7] for a similar notion called relative compactness.

By the well-known Prokhorov’s theorem (see [4]), a closed set A (under the weak topology) of probability
measures is weakly compact if it is tight. In particular, if Ξ is a compact set, then the set of all probability
measures on (Ξ,B) is weakly compact; see [40].

Lemma 2.1 (Uniform integrability). Let Z be a separable metric space, P and {PN} be Borel probability
measures on Z such that PN converges to P weakly. Let h : Z → IR be a measurable function with P (Dh) = 0,
where Dh := {z ∈ Z : h is discontinuous at z}. Then it holds

lim
N→∞

∫
Z

h(ξ)PN (dξ) =

∫
Z

h(ξ)P (dξ) (2.8)

if the sequence {PNh−1} is uniformly integrable, i.e.,

lim
r→∞

sup
N∈N

∫
{z∈Z:|h(z)|≥r}

|h(ξ)|PN (dξ) = 0. (2.9)

A sufficient condition for (2.9) is

sup
N∈N

∫
Z

|h(ξ)|1+εPN (dξ) <∞ for some ε > 0. (2.10)

Lemma 2.1 is given in [42, Lemma 1]. It is noted that the conclusion is drawn from [7, Theorem 3.5] (or
Theorem 5.4 in an earlier version of the book). Here we provide a proof in the appendix in that no proof is
given in [42] and there are indeed some subtle arguments behind the claim.

Recall that PN converges to P weakly if and only if the limit (2.7) holds for all continuous and bounded
functions. Lemma 2.1 gives sufficient conditions for the limit to hold for some discontinuous and unbounded
functions.

2.4. Problem setup. Let PN ⊂P(Ξ) be a set of probability distributions which approximates P in some
sense (to be specified later) as N →∞. We consider the following mathematical program with distributionally
robust chance constraint:

(MPDRCCN)
min
x∈X

f(x)

s.t. inf
P∈PN

P (g(x, ξ) ≤ 0) ≥ 1− β. (2.11)
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Our purpose is to analyse convergence of the optimal value and the optimal solutions of problem (2.11) when
PN converges to P. In the case when P reduces to a singleton of the true probability measure, the convergence
analysis is well documented in the literature of stochastic programming; see [22, 23, 37, 38] and references
therein. Our focus here is the case when P is a set, e.g., constructed through some moment conditions and PN
is an approximation regime with some parameters being estimated through empirical data or samples. We will
discuss this in detail in Section 6.

Note that for the constant β, we require the feasible set of problem (2.11) to be nonempty for each N and
to ensure well definedness of the problem. A necessary and sufficient condition is that for each N there exists
at least one point xN ∈ X such that

sup
P∈PN

P (Ξ\H(xN )) ≤ β, (2.12)

which means any probability measure in PN must not mass outside H(xN ) above level β. A similar comment
applies to the true problem (1.2).

For each fixed x ∈ X, let

v(x) := inf
P∈P

P (g(x, ξ) ≤ 0) ≡ inf
P∈P

P (H(x)), (2.13)

and

vN (x) := inf
P∈PN

P (g(x, ξ) ≤ 0) ≡ inf
P∈PN

P (H(x)). (2.14)

These are robust probability functions in the robust chance constraints which determine the set of feasible
solutions to MPDRCC and MPDRCCN . A key step towards the desired convergence analysis is to establish the
uniform convergence of vN (x) to v(x) over X as N → ∞. To this end, we need to derive sufficient conditions
for the continuity of v(·) and the convergence of PN to P.

3. Main convergence results. In this section, we turn to the central theme of this paper, that is, impact
of the variation of the ambiguity set on the optimal value and the optimal solutions of MPDRCC (1.2). If we
regard PN as a perturbation of P, then the research is essentially about convergence analysis of problem (1.2).
A key step in the analysis is to establish uniform convergence of the robust probability function vN to v over
X as PN approximates P. To this end we make the following assumptions on P and PN .

Assumption 3.1 (Approximation of the ambiguity set under the pseudo-metric). The ambiguity sets P
and PN satisfy the following conditions.

(a) lim
N→∞

D(PN ,P) = 0;

(b) lim
N→∞

D(P,PN ) = 0.

Part (a) requires that PN upper semiconverges to P under the pseudo-metric whereas part (b) requires that
PN lower semiconverges to P. Parts (a) and (b) imply H (PN ,P) → 0 as N → ∞. When PN and P have a
specific structure, Assumption 3.1 may be verified directly. We will come back to this in Section 5.

Under Assumption 3.1, we are able to establish uniform convergence of vN (·) to v(·), which is one of the
main convergence results in this section.

Theorem 3.1 (Uniform approximation of the robust probability function). Under Assumption 3.1, vN (x)
converges to v(x) uniformly over X as N tends to ∞, that is,

lim
N→∞

sup
x∈X
|vN (x)− v(x)| = 0.

Proof. Let x ∈ X be fixed. By the definition of the pseudo-metric, we have

vN (x)− v(x) = inf
P∈PN

P (H(x))− inf
P ′∈P

P ′(H(x))

= sup
P ′∈P

inf
P∈PN

[P (H(x))− P ′(H(x))]

≤ sup
P ′∈P

inf
P∈PN

sup
x′∈X

|P ′(H(x′))− P (H(x′))|

= D(P,PN ).
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Likewise, we can obtain v(x)− vN (x) ≤ D(PN ,P), hence |vN (x)− v(x)| ≤ H (P,PN ). The conclusion follows
as the right hand side of the inequality above is independent of x and it goes to 0 under Assumption 3.1.

Assumption 3.2. We assume that v is continuous over X.

With the uniform convergence of the robust probability function, we are ready to discuss the convergence
of the optimal values and the optimal solutions of problem (2.11). To ease the exposition, let

F := {x ∈ X : v(x) ≥ 1− β} and FN := {x ∈ X : vN (x) ≥ 1− β}

denote the feasible sets of MPDRCC (1.2) and MPDRCCN (2.11) respectively. We can rewrite problems (1.2)
and (2.11) as

min f(x)
s.t. x ∈ F , (3.1)

and

min f(x)
s.t. x ∈ FN .

(3.2)

Let ϑ := inf{f(x) : x ∈ F} denote the optimal value of problem (3.1), and S the corresponding set of optimal
solutions, that is, S := {x ∈ F : ϑ = f(x)}. Likewise, let

ϑN := inf{f(x) : x ∈ FN} and SN := {x ∈ FN : ϑN = f(x)}

be defined similarly for problem (3.2). Let F◦ denote the set of strict feasible solutions of problem (3.1), i.e.,

F◦ := {x ∈ X : v(x) > 1− β}. (3.3)

The following theorem states the convergence of problem (3.2) to problem (3.1) in terms of the optimal
values and the optimal solutions.

Theorem 3.2 (Convergence analysis of MPDRCC (3.1)). Suppose: (a) Assumptions 3.1 and 3.2 hold; (b)
there exists at least one optimal solution x∗ ∈ S which falls in the closure of F◦, that is,

cl F◦ ∩ S 6= ∅. (3.4)

Then the optimal value and the optimal solutions of problem (3.2) converge to that of problem (3.1), i.e.,

lim
N→∞

D(SN , S) = 0, lim
N→∞

ϑN = ϑ. (3.5)

Condition (b) requires problem (3.1) to have at least one optimal solution which is connected to the interior
of F . In the case when S is a singleton, say {x∗}, the condition requires x∗ to be either located in the interior
of F or at the boundary of its closure (the closure of F◦). The latter means that there is a sequence in F◦
approximating x∗. It is fulfilled if the feasible set F is convex or connected. In particular, it holds when the
robust chance constraint v(x) ≥ 1−β satisfies the Slater constraint qualification. This condition is well adopted
for asymptotic convergence in stochastic programming; see [29] and references therein.

Proof of Theorem 3.2. Let us begin by proving convergence of the feasible set FN , i.e.,

lim
N→∞

D(FN ,F) = 0. (3.6)

It follows from Theorem 3.1 that vN (·) converges to v(·) uniformly over X, together with continuity of v(·), we
can establish (3.6) by [44, Lemma 4.2(i)].

We now move on to prove the first equation in (3.5). Let xN ∈ SN be an optimal solution to problem
(3.2). Since the sequence {xN} is contained in the compact set X, by taking a subsequence if necessary, we
may assume for the simplicity of notation that xN → x, for some x ∈ X. The closedness of F ensures x ∈ F .
In what follows, we show that x ∈ S. By the continuity of f ,

lim
N→∞

ϑN = lim
N→∞

f(xN ) = f(x) ≥ ϑ. (3.7)
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On the other hand, condition (b) ensures that there exist x∗ ∈ S and {yt} ⊂ F◦ such that yt → x∗. Together
with the continuity of f(·), this implies that for any fixed ε > 0, we can find yt ∈ F◦ such that

f(yt)− ϑ = f(yt)− f(x∗) ≤ ε.

Moreover, since yt ∈ F◦ ⊂ X and vN (x) converges to v(x) uniformly over X, then yt ∈ FN for N sufficiently
large. The optimality of xN means f(yt) ≥ f(xN ). Therefore,

ϑ ≥ f(yt)− ε ≥ f(xN )− ε = ϑN − ε.

By driving N to infinity, we arrive at ϑ ≥ f(x)− ε, which implies ϑ ≥ f(x) in that ε can be chosen arbitrarily
small. Together with (3.7), this shows f(x̄) = ϑ, hence x ∈ S. Since xN is arbitrarily selected from SN , this
shows that any cluster point of SN is contained in S, which is the first limit in (3.5).

The second limit of (3.5) follows straightforwardly from the first limit and the continuity of f .

4. Continuity of robust probability function. The main convergence results in the preceding section
are established under two general assumptions: Assumption 3.1 and Assumption 3.2. In this section, we
investigate under which conditions Assumption 3.2 is fulfilled, that is, v(·) defined in (2.13) is continuous over
X.

Observe that g(x, z) ≤ 0 is equivalent to max1≤i≤m gi(x, z) ≤ 0. Thus, to ease the exposition, we regard
g(x, z) as a scalar function throughout this section.

We divide the investigation into two parts: (a) continuity of probability function P (H(x)) and (b) continuity
of robust probability function v(x). The former paves the way for the latter.

4.1. Continuity of probability function P (H(·)). Discussions on continuity of probability functions
are well documented in the literature of stochastic programming; see for instance [1, 21, 31]. Here we revisit
the issue by proposing an alternative condition.

Condition 4.1. Let H(·) be defined as in (2.1) and P ∈P(Ξ).

(C1) P (ξ ∈ Ξ : g(x, ξ) = 0) = 0 for any x ∈ X;
(C2) H(·) is convex-valued and continuous over X and for any x ∈ X,

P (bdH(x)) = 0. (4.1)

Here bdS denotes the boundary of set S in IRk. Likewise, we will use intS to denote the interior of S.

(C1) is well known and has been widely used in stochastic programming no matter whether Ξ is discrete
or not. (C2) is new as far as we know. Note that in the case when Ξ is a discrete set, (C2) may fail because
of the discontinuity of H(·) (here we regard Ξ as a set of IRk rather than a space itself), or become irrelevant
when intH(x) = ∅, P (H(x)) = P (bdH(x)) and equality (4.1) implies v(x) = 0 and hence x is infeasible to
MPDRCC (1.2). Therefore (C2) is meaningful only when Ξ is not a discrete set and intH(x) 6= ∅. We include
(C2) because there is an interesting and important case where (C1) may fail but (C2) holds (Example 4.1)
and we believe (C2) provides an instrumental complement to (C1). Our purpose in this section is to show the
continuity of P (H(·)) under either of the conditions. Before this, let us discuss the relationship between (C1)
and (C2).

Observe that since Ξ is closed and H is closed valued,

bdH(x) ⊆ {z ∈ bd Ξ : g(x, z) ≤ 0} ∪ {z ∈ int Ξ : g(x, z) = 0} ⊆ H(x). (4.2)

In the case when Ξ = IRk, bd Ξ = ∅ and then (4.2) reduces to

bdH(x) ⊆ {z ∈ Ξ : g(x, z) = 0}. (4.3)

Equality holds when

intH(x) = {z ∈ Ξ : g(x, z) < 0}, (4.4)

because H(x)\intH(x) = bdH(x) and H(x)\{z ∈ Ξ : g(x, z) < 0} = {z ∈ Ξ : g(x, z) = 0}. In what follows, we
discuss conditions for equality holding in (4.3), continuity of H(·) and equivalence between (C1) and (C2).
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Proposition 4.1 (Relationship between (C1) and (C2)). Assume: (a) Ξ is a convex set, and for each
fixed x ∈ X, g(x, ·) is convex over Ξ; (b) for any x′ ∈ X, there exists z′ ∈ Ξ such that g(x′, z′) < 0. Then the
following assertions hold.

(i) H(·) is continuous over X;
(ii) the first equality in (4.2) holds;

(iii) if, in addition, Ξ = IRk, then equality holds in (4.3) and hence (C1) is equivalent to (C2).

Proof. Part (i): Conditions (a) and (b) combined is the well-known Slater constraint qualification. Under that
condition, it follows from [36, Example 5.10] or [47, Lemma 2.2] that H(·) is continuous over X.

Parts (ii) and (iii): By [36, Proposition 2.34], the Slater constraint qualification also ensures

intH(x) = {z ∈ int Ξ : g(x, z) < 0}.

Hence the first equality in (4.2) holds. Moreover, when Ξ = IRk, the equality above implies

bdH(x) = {z ∈ Ξ : g(x, z) = 0}.

The proof is complete.

Proposition 4.1 gives rise to sufficient conditions for the continuity of H(·) and the equivalence of (C1) and
(C2). There are some circumstances where (C2) holds whereas (C1) fails. Here is a simple example.

Example 4.1. Let ξ : Ω→ IR be a random variable defined on a probability space (Ω,F , P ) with support
set Ξ = IR. Let

g(x, z) :=

 z + x for z ≥ −x,
0 for z ∈ [−x− 1,−x],
z + x+ 1 for z ≤ −x− 1.

Observe that H(x) = {z ∈ IR : g(x, z) ≤ 0} = (−∞,−x] and {z ∈ IR : g(x, z) = 0} = [−x − 1,−x].
Obviously H(·) is convex-valued and continuous over X and P (bdH(x)) = 0, therefore (C2) is satisfied. On the
other hand, P ([−x− 1,−x]) 6= 0 since P is a continuous probability measure. This shows that (C1) is failed.

Note that all conditions of Proposition 4.1 are satisfied except the convexity of g(x, ·), which means the
Slater constraint qualification fails.

It might be helpful to make some comments on condition (4.1). In probability theory, H(x) is a P-continuity
set; see [7]. When H(x) is a convex set, the Lebesgue measure of bd H(x) is zero; see [15, Lemma 2.4.3]. Thus,
if the probability measure P is absolutely continuous w.r.t. the Lebesgue measure on IRk, then (4.1) holds.

We are now ready to discuss the continuity of P (H(·)).

Theorem 4.1 (Continuity of the probability function). Let P ∈P(Ξ). Then P (H(·)) is continuous over
X when either (C1) or (C2) is fulfilled.

Proof. The continuity is well known under (C1), see for instance [21].

In what follows, we prove the continuity under (C2). We do so by showing that P (H(·)) is both upper and
lower semicontinuous. Since H(x) is closed for any x ∈ X, P → {x ∈ X : P (H(x)) ≥ p} has a closed graph for
fixed p ∈ IR [38, Proposition 3.1]. This means that the set {x ∈ X : P (H(x)) ≥ p} is closed, hence the upper
semicontinuity of P (H(·)) holds [36, Page 13]. Thus it suffices to show the lower semicontinuity.

First we claim that for any fixed x ∈ X,

lim inf
x→x

1intH(x)(z) ≥ 1intH(x)(z) (4.5)

holds for every z ∈ Ξ. To see this, let us consider two cases.

Case (i): z ∈ Ξ\intH(x). In this case, 1intH(x)(z) = 0. The inequality (4.5) holds trivially.

Case (ii): z ∈ intH(x). In this case, 1intH(x)(z) = 1, and there is a positive constant δ > 0 such that

z + 2δB ∈ H(x), where B is the unit ball in IRk. Since H(·) is continuous, then for any ρ > 0, there exists a
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neighbourhood Nx of x such that

H(x) ∩ ρB ⊂ H(x) + δB

for all x ∈ Nx. Let ρ be chosen such that ρ > ‖z‖+ 2δ. Then for any x ∈ Nx,

z + 2δB ⊂ H(x) ∩ ρB ⊂ H(x) + δB.

Since H(·) is convex-valued, by the cancellation law [32, Theorem 3.2.1], we can obtain z + δB ⊂ H(x) which
implies z ∈ intH(x) for any x ∈ Nx. Hence 1intH(x)(z) = 1 for all x ∈ Nx and (4.5) holds.

By Fatou’s lemma, (4.5) implies

lim inf
x→x

EP
[
1intH(x)(ξ)

]
≥ EP

[
lim inf
x→x

1intH(x)(ξ)
]
≥ EP

[
1intH(x)(ξ)

]
. (4.6)

Observe that the difference between 1H(x)(·) and 1intH(x)(·) occurs only over the set bdH(x). Since

P satisfies P (bdH(x)) = 0 for all x ∈ X, then E[1intH(x)(ξ)] = P (H(x)) and E[1intH(x)(ξ)] = P (H(x)).

Substituting these relations into (4.6), we immediately get

lim inf
x→x

P (H(x)) ≥ P (H(x)),

i.e., the lower semicontinuity of P (H(·)) at x̄ holds.

4.2. Continuity of robust probability function v(·). We now proceed to discuss pointwise continuity
of the robust probability function v(·) over X. We need the following intermediate technical results.

Lemma 4.1. Suppose H(·) is convex-valued and continuous over X, and intH(x) 6= ∅ for any x ∈ X. Then
bdH(·) is outer semicontinuous over X, i.e., for any x̄ ∈ X,

lim sup
x→x

bd H(x) ⊂ bd H(x). (4.7)

Proof. The results may be well known in variational analysis, we include a proof as we are unable to identify
a reference. Assume for the sake of a contradiction that there exists u such that

u ∈
(

lim sup
x→x

bdH(x)

)
\bdH(x).

By the definition of lim sup, we can find a sequence {xN} converging to x and uN ∈ bdH(xN ) such that
uN → u /∈ bdH(x). The later entails u ∈ intH(x) due to the fact that H is outer semicontinuous on X and
u /∈ bdH(x), and hence there exists a positive constant δ such that u+δB ⊂ H(x). By the inner semicontinuity
of H, for any ρ > 0, there exists N1 > 0 such that

H(x) ∩ ρB ⊂ H(xN ) +
δ

4
B

for N ≥ N1. Let ρ be chosen such that ρ > ‖ū‖+ δ. Then

u+ δB ⊂ H(x) ∩ ρB ⊂ H(xN ) +
δ

4
B.

By the cancellation law [32], we can obtain u + 3δ
4 B ⊂ H(xN ) for N ≥ N1. On the other hand, since uN

converges to u, there exists N2 ≥ N1 such that uN ∈ u + δ
4B ⊂ intH(xN ) for N > N2. This contradicts the

fact that uN ∈ bdH(xN ).

Remark 4.1. It might be helpful to comment on our assumption intH(x) 6= ∅ for x ∈ X.

• Observe first that if intH(x) = ∅ for x ∈ X, then H(x) = bdH(x). In that case, (4.7) reduces to outer
semicontinuity of H(·) at x̄ which is subsumed by the continuity of H(·). Moreover, if the Lebesgue
measure of H(x) is nonzero, then the convexity of H(x) implies int H(x) 6= ∅.
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• If intH(x) = ∅ for some x ∈ X, then (C2) implies infP∈P P (g(x, ξ) ≤ 0) = 0 in which case x is not a
feasible solution to problem (1.2). Let us look at (C1). It follows by (4.2)

H(x) = {z ∈ bd Ξ : g(x, z) ≤ 0} ∪ {z ∈ int Ξ : g(x, z) = 0}.

Under (C1), P ({z ∈ int Ξ : g(x, z) = 0}) = 0, hence P (H(x)) = 0 if and only if P ({z ∈ bd Ξ : g(x, z) ≤
0}) = 0. The latter happens when Ξ = IRk in that the first term at the right hand side of equation
is an empty set. However, if P ({z ∈ bd Ξ : g(x, z) ≤ 0}) > 0, then P (H(x)) > 0 and consequently x
might still be feasible.

• When Ξ is a discrete set, intH(x) = ∅. As we commented after Condition 4.1, (C2) may fail either
because of discontinuity of H(·) or (4.1) is too strong to make x feasible to MPDRCC. Since Lemma
4.1 is prepared for showing continuity of v(x) later on under (C2), we remind readers that the technical
result is more relevant with Ξ being a continuous set.

• In the case when Ξ is a continuous set but P consists of distribution with atoms, (C2) may still hold.
To see this, let Ξ = [−1, 1] and P be a probability distribution with P (ξ = 0) = 1

2 and the rest of
probability is evenly spread over [−1, 0) ∩ (0, 1]. Let H(x) = [−x, x]. It is easy to see that H(·) is
continuous on [0.5, 1] and P (H(·)) is also continuous on the interval.

Lemma 4.2. Let {PN} be a sequence of probability measures converging to P weakly. Let x be any fixed
point in X and {xN} ⊂ X be any sequence converging to x̄. Assume (C2) holds for the probability measure P ,
that is, H(·) is convex-valued and continuous at x̄, and P satisfies (4.1). Then

lim
N→∞

PN (H(xN )\H(x)) = 0 (4.8)

and

lim
N→∞

PN (H(x)\H(xN )) = 0. (4.9)

Proof. For any ε > 0, there exists a sufficiently large number ρ such that

sup
N
PN (Ξ\(Ξ ∩ ρB)) ≤ ε andP (Ξ\(Ξ ∩ ρB)) ≤ ε. (4.10)

This is because each Borel probability measure P on Ξ is tight and the weak convergence of PN to P ensures
that {PN} is tight; see [4, Theorem 9.2.5]. Observe that

H(x)\(H(x) ∩ ρB) ⊂ Ξ\(Ξ ∩ ρB), ∀x ∈ X.

Thus (4.10) entails

sup
N

sup
x∈X

PN (H(x)\(H(x) ∩ ρB)) ≤ ε and sup
x∈X

P (H(x)\(H(x) ∩ ρB)) ≤ ε. (4.11)

Let us first prove (4.8). Since for any fixed x ∈ X, bdH(x) is closed, then by [19, Theorem 3.1]

bdH(x) =
⋂
δ>0

(bdH(x) + δB)

implies

P (bdH(x)) = inf
δ>0

P (bdH(x) + δB).

Therefore, for the specified ε > 0, there exists δ0 > 0 such that

P (bdH(x) + δ0B) ≤ P (bdH(x)) + ε = ε,

where the equality holds due to our assumption that P satisfies (4.1). On the other hand, the weak convergence
of PN to P and closedness of set bdH(x) + δ0B enable us to obtain through [7, Theorem 2.1]

lim sup
N→∞

PN
(
bdH(x) + δ0B

)
≤ P

(
bdH(x) + δ0B

)
≤ ε,

which in turn means that there exists N1 > 0 such that

PN
(
bdH(x) + δ0B

)
≤ 2ε, (4.12)
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when N ≥ N1. For the specified ρ and δ0, the outer semicontinuity of H(·) ensures existence of a positive
number N2 such that

H(xN ) ∩ ρB ⊂ H(x) + δ0B

for N ≥ N2. Thus

(H(xN ) ∩ ρB)\H(x) ⊂ (H(xN ) ∩ ρB)\intH(x) ⊂ bdH(x) + δ0B. (4.13)

Combining (4.11), (4.13) and (4.12), we obtain

PN (H(xN )\H(x)) ≤ PN ((H(xN ) ∩ ρB)\H(x)) + ε

≤ PN (bdH(x) + δ0B) + ε

≤ 3ε (4.14)

for N ≥ max{N1, N2}. Equation (4.8) follows as ε can be arbitrarily small.

We now turn to prove (4.9). Let ρ, ε and δ0 be fixed as above. It follows from Lemma 4.1 that bdH(·) is
outer semicontinuous. Together with the continuity of H(·), we can find N3 > 0 such that

(H(x) ∩ ρB)\H(xN ) ⊂ (H(x) ∩ ρB)\intH(xN )

⊂ (H(x) ∩ ρB)\intH(xN ) ∩ ρB

⊂
(
H(xN ) +

δ0
2

B
)
\intH(xN ) ∩ ρB

⊂ bdH(xN ) ∩
(
ρ+

δ0
2

)
B +

δ0
2

B

⊂ bdH(x) + δ0B,

for N ≥ N3, where the third inclusion holds due to the continuity of H(·) and the fifth inclusion holds due to
the outer semicontinuity of bdH(·) (since H(x)\intH(x) = bdH(x)). Hence, we deduce together with (4.11)
and (4.12) that

PN (H(x)\H(xN )) ≤ PN (H(x) ∩ ρB)\H(xN )) + ε

≤ PN (bdH(x) + δ0B) + ε

≤ 3ε

for N being sufficiently large. The proof is complete.

Lemma 4.3. Let {PN} ⊂P(Ξ) be a sequence of probability measures and P ∈P(Ξ). Suppose PN converges
to P weakly. Then for x ∈ X,

lim
N→∞

EPN [1H(x)(ξ)] = EP [1H(x)(ξ)] (4.15)

under (C1) or (4.1) holds for P .

Proof. Observe first that if Ξ is discrete, then the continuity of 1H(x)(·) over Ξ holds trivially without (C1)
or (4.1). The limit then follows from the definition of weak convergence. In what follows, we consider the case
when Ξ is not a discrete set.

Let Ξd denote the set of points in Ξ where 1H(x)(·) is discontinuous over Ξ. Observe that the discontinuity
occurs at the boundary of H(x) located in the interior of Ξ 1. Thus

Ξd ⊆ {z ∈ int Ξ : g(x, z) = 0}.

Under (C1), P (Ξd) = 0. Moreover, since Ξd ⊆ bdH(x), P (Ξd) = 0 under (4.1) too. On the other hand,
PN ◦ 1−1

H(x) is uniformly integrable as easily observed from the definition. Since PN converges to P weakly,

then the conclusion follows by Lemma 2.1.

With Lemmas 4.2 and 4.3, we are ready to derive the continuity of the robust probability function v(·).

Theorem 4.2 (Pointwise continuity of the robust probability function). Suppose P is weakly compact and
one of the following conditions holds:

1When H(x) contains the boundary of Ξ, 1H(x)(·) is regarded as continuous on bd Ξ ∩H(x).
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(a) (C1) holds for each P ∈ P and for each x ∈ X, g(·, ξ) is continuous at x uniformly w.r.t. ξ ∈ Ξ;
(b) (C2) holds for each P ∈ P.

Then v(·) is continuous on X.

Proof. By Theorem 4.1, for each P ∈ P, P (H(·)) is continuous on X. Let x ∈ X be fixed and {xN} ⊂ X be
a sequence such that xN → x as N →∞. Since P is weakly compact and P ◦ 1−1

H(x) is uniformly integrable, it

follows by Lemma 4.3 and [42, Proposition 1] that

Vx :=
{
EP [1H(x)(ξ)] : P ∈ P

}
is a compact set in IR. Thus there exists Px ∈ P such that

v(x) = min
P∈P

EP [1H(x)(ξ)] = EPx [1H(x)(ξ)].

Likewise, there exists PxN ∈ P such that

v(xN ) = min
P∈P

EP [1H(xN )(ξ)] = EPxN [1H(xN )(ξ)].

Part (a): By the definitions of v(x) and v(xN ),

v(xN )− v(x) = EPxN [1H(xN )(ξ)]− EPx [1H(x)(ξ)]

≤ EPx [1H(xN )(ξ)]− EPx [1H(x)(ξ)]

= Px(H(xN ))− Px(H(x)).

Since (C1) holds for Px, by Theorem 4.1, Px(H(·)) is continuous at x. Thus

lim sup
N→∞

v(xN ) ≤ v(x). (4.16)

In what follows, we show

lim inf
N→∞

v(xN ) ≥ v(x). (4.17)

Let

∆N := 1(−∞,0](g(x, ξ))− 1(−∞,0](g(xN , ξ)). (4.18)

We claim that

EPxN [∆N ] = PxN (∆N = 1) = PxN (ξ ∈ Ξ : g(x, ξ) = 0, g(xN , ξ) > 0). (4.19)

To see this, let us consider two cases.

Case (i): ξ ∈ Ξ with either g(x, ξ) > 0 or g(x, ξ) < 0. The uniform continuity of g(·, ξ) in x implies that
there exists a positive number N0 independent of ξ such that g(xN , ξ) > 0 or g(xN , ξ) < 0 when N ≥ N0. This
entails ∆N = 0 for N ≥ N0 because the two indicator functions take identical value.

Case (ii): ξ ∈ {ξ ∈ Ξ : g(x, ξ) = 0}, that is 1(−∞,0](g(x, ξ)) = 1. In that case,

∆N =

{
1 if g(xN , ξ) > 0,
0 if g(xN , ξ) ≤ 0.

Thus ∆N is nonzero if and only if ξ ∈ {ξ ∈ Ξ : g(x, ξ) = 0, g(xN , ξ) > 0} and consequently (4.19) follows.

With (4.19), we are ready to prove (4.17). Observe that

v(x)− v(xN ) = EPx [1H(x)(ξ)]− EPxN [1H(xN )(ξ)]

≤ EPxN [1H(x)(ξ)]− EPxN [1H(xN )(ξ)]

= EPxN [1(−∞,0](g(x, ξ))]− EPxN [1(−∞,0](g(xN , ξ))]

= EPxN [∆N ]

= PxN (ξ ∈ Ξ : g(x, ξ) = 0, g(xN , ξ) > 0)

= 0,
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where the last equality holds because PxN satisfies PxN (ξ ∈ Ξ : g(y, ξ) = 0) = 0 for every y ∈ X. This shows
v(xN ) ≥ v(x). By taking infimum on both sides of the inequality, we obtain (4.17). The conclusion follows from
a combination of (4.16) and (4.17).

Part (b): Note that inequality (4.16) relies only on the continuity of Px(H(·)). Thus the upper semiconti-
nuity of v remains true.

In what follows, we show (4.17). Observe first that

v(x)− v(xN ) = EPx [1H(x)(ξ)]− EPxN [1H(xN )(ξ)]

≤ EPxN [1H(x)(ξ)]− EPxN [1H(xN )(ξ)]

≤ PxN (H(x)\H(xN )),

where the first inequality holds due to the definition of PxN . By (4.9), we know limN→∞ PxN (H(x)\H(xN )) = 0,
and then (4.17) holds.

Theorem 4.2 extends pointwise continuity of probability function to that of robust probability function. We
give a simple example to illustrate.

Example 4.2. Let P(IR) be the set of all probability measures on IR and

P :=

{
P ∈P(IR) :

EP [ξ] = 0,EP [ξ2] ∈ [σ2
1 , σ

2
2 ]

P follows a normal distribution on IR

}
,

where σ1, σ2 are positive constants with σ1 < σ2. Observe that P is tight. To see this, for any K > 0 and
P ∈ P, it follows by the well-known Chebyshev inequality

P (|ξ − 0| ≥ Kσ1) ≤ 1

K2

which means P is tight. Moreover it is easy to verify that P is closed and hence P is weakly compact.

Let g(x, z) = x−z. Then H(x) = {z ∈ IR : x−z ≤ 0} = [x,+∞) and bdH(x) = {z ∈ IR : x−z = 0} = {x}.
Both (C1) and (C2) are satisfied. Thus all conditions of Theorem 4.2 are fufilled. By that theorem, v is
continuous. Indeed, we can easily obtain a closed form for v, that is,

v(x) =


1
2

(
1− 1√

π

∫ x√
2σ2

− x√
2σ2

e−t
2

dt

)
, for x < 0,

1
2 , for x = 0,

1
2

(
1− 1√

π

∫ x√
2σ1

− x√
2σ1

e−t
2

dt

)
, for x > 0,

which also shows that v is continuous on IR.

To conclude this section, we give a brief summary. We propose two conditions (C1) and (C2) for the
continuity of probability function P (H(·)) and robust probability function v(·). It seems relatively easier to
establish the continuity under (C1). However, given that there are some interesting circumstances when (C2)
holds whereas (C1) does not, we believe that it is useful to present both conditions for the desired continuity
particularly when Ξ is a continuous set. In the case when Ξ is a discrete set, (C2) is largely unreasonable as we
have discussed in Remark 4.1.

5. Sufficient conditions for Assumption 3.1 . We now move on to investigate sufficient conditions
for Assumption 3.1. Let us start with a technical result which concerns the convergence of PN to P under
the pseudo-metric D . We start by considering the case when PN and P are singletons and then extend the
discussion to general case.

Lemma 5.1 (Convergence of D(PN , P )). Let {PN} ⊂ P(Ξ) be a sequence of probability measures and
P ∈P(Ξ). Suppose PN converges to P weakly. Then

lim
N→∞

D(PN , P ) = 0 (5.1)

under one of the following conditions:
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(a) g(·, ξ) is continuous on X uniformly w.r.t. ξ ∈ Ξ and (C1) holds for P ;
(b) (C2) holds for P , that is, H(·) is convex-valued and continuous on X, and P satisfies (4.1).

Proof. By the definition of the pseudo-metric,

D(PN , P ) = sup
g∈G

∣∣EPN [g]− EP [g]
∣∣ = sup

x∈X

∣∣EPN [1H(x)(ξ)]− EP [1H(x)(ξ)]
∣∣,

we need to prove that

lim
N→∞

sup
x∈X

∣∣EPN [1H(x)(ξ)]− EP [1H(x)(ξ)]
∣∣ = 0. (5.2)

Assume for a contradiction that (5.2) fails to hold. Then there exist a constant δ > 0 and a subsequence {PN}
such that

sup
x∈X

∣∣EPN [1H(x)(ξ)]− EP [1H(x)(ξ)]
∣∣ > δ.

So for each N we may pick xN such that∣∣EPN [1H(xN )(ξ)]− EP [1H(xN )(ξ)]
∣∣ ≥ δ/2

for N being sufficiently large. Since X is a compact set, by taking a subsequence if necessary we may assume
without loss of generality that xN → x ∈ X. By the triangle inequality,

|EPN [1H(xN )(ξ)]− EP [1H(xN )(ξ)]
∣∣ ≤ ∣∣EPN [1H(x)(ξ)]− EP [1H(x)(ξ)]

∣∣
+
∣∣EPN [1H(xN )(ξ)]− EPN [1H(x)(ξ)]

∣∣
+
∣∣EP [1H(x)(ξ)]− EP [1H(xN )(ξ)]

∣∣. (5.3)

Following Theorem 4.1, there exists N0 sufficiently large such that∣∣EP [1H(x)(ξ)]− EP [1H(xN )(ξ)]| ≤ δ/8. (5.4)

Let us now estimate the second term at the right hand side of (5.3), and this is the place where conditions (a)
and (b) make a difference.

Part (a): Let ∆N be defined as in (4.18) with x being replaced by x̄ there. Observe that∣∣EPN [1H(xN )(ξ)]− EPN [1H(x)(ξ)]
∣∣ =

∣∣EPN [1(−∞,0](g(xN , ξ))]− EPN [1(−∞,0](g(x, ξ))]
∣∣

=
∣∣EPN [−∆N ]

∣∣
= PN (ξ ∈ Ξ : g(x, ξ) = 0, g(xN , ξ) > 0)

≤ PN (ξ ∈ Ξ : g(x, ξ) = 0),

where the third equality follows from (4.19) (with x being replaced by x̄ there). Since PN converges to P weakly
and P (ξ ∈ Ξ : g(x, ξ) = 0) = 0, the last term goes to zero as N → ∞ [7, Theorem 2.1]. This shows for N
sufficiently large, ∣∣EPN [1H(xN )(ξ)]− EPN [1H(x)(ξ)]

∣∣ ≤ δ/8. (5.5)

Part (b): Observe first that∣∣EPN [1H(xN )(ξ)]− EPN [1H(x)(ξ)]
∣∣ =

∣∣PN (H(xN ))− PN (H(x))
∣∣

≤ PN (H(xN )\H(x)) + PN (H(x)\H(xN )). (5.6)

On the other hand, we deduce from Lemma 4.2 that

PN (H(xN )\H(x)) + PN (H(x)\H(xN )) ≤ δ/8, (5.7)

when N is sufficiently large. Combining (5.3)-(5.7), we deduce that∣∣EPN [1H(x)(ξ)]− EP [1H(x)(ξ)]
∣∣ ≥ δ/4,
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which leads to a contradiction to the result in Lemma 4.3 as desired. The proof is complete.

We are now ready to discuss sufficient conditions for Assumption 3.1 (a) and (b).

Proposition 5.1 (Sufficient conditions for Assumption 3.1 (a)). Let PN converge to P weakly, i.e., for
every sequence {PN} ⊆ PN , {PN} has a subsequence {PNk} converging to P with P ∈ P. Let condition (a) or
(b) in Lemma 5.1 hold for any P ∈ P. Then Assumption 3.1 (a) is fulfilled.

Proof. The conclusion follows from Lemma 5.1. Indeed, assume for the sake of a contradiction that lim
N→∞

D(PN ,P) 6=
0. Then there exist a positive constant ε0 and a subsequence {PNk} such that

D(PNk ,P) ≥ ε0,

i.e., there exists Pk ∈ PNk such that D(Pk,P) ≥ ε0/2. Without loss of generality, we can assume that Pk con-
verges to some P ∈ P weakly. Under condition (a) or (b), it follows from Lemma 5.1 that limk→∞D(Pk, P ) = 0,
a contradiction as desired.

It is possible to derive sufficient conditions for Assumption 3.1 (b) as well.

Proposition 5.2 (Sufficient conditions for Assumption 3.1 (b)). Let P be weakly compact. For any P ∈ P,
there exists a sequence {PN} ∈ PN such that PN converges to P weakly. Let condition (a) or (b) in Lemma 5.1
hold for any P ∈ P. Then Assumption 3.1 (b) is fulfilled.

Proof. Assume for the sake of a contradiction that lim
N→∞

D(P,PN ) 6= 0. Then there exist a positive constant

ε0 and a subsequence {PNk} such that

D(P,PNk) ≥ 2ε0.

Since P is weakly compact, there exists P k ∈ P such that D(P k,PNk) ≥ 2ε0, and we may suppose without
loss of generality that P k converges to P ∈ P weakly. Through Lemma 5.1 , the weak convergence implies
D(P k, P ) ≤ ε0 for k sufficiently large. Using the triangle inequality of the pseudo-metric, we have

2ε0 ≤ D(P k,PNk) ≤ D(P k, P ) + D(P,PNk) ≤ D(P,PNk) + ε0. (5.8)

Since for the given P , there exists PNk ∈ PNk such that PNk converges to P weakly (by taking a subsequence
if necessarily), hence

D(P,PNk) ≤ D(P, PNk)→ 0,

this effectively leads to a contradiction as desired through (5.8).

Note that we only require the probability measures in P to satisfy (C1) or (C2) but this is not required for
PN . A special case is that both P and PN are singletons, and PN is constructed through empirical probability
measures. The following corollary says that Assumption 3.1 holds in such a case.

Corollary 5.1. Let P be the true probability distribution of ξ satisfying condition (a) or (b) in Lemma

5.1, and ξ1, . . . , ξN be an independent and identically distributed sample of ξ. Let PN := 1
N

∑N
i=1 δξi , where δξ

denotes measure of mass one at point ξ. Then Assumption 3.1 holds.

Proof. Observe first that when P and PN are singletons, Assumption 3.1 (a) coincides with Assumption 3.1
(b). By the well-known Glivenko-Cantelli Theorem (see e.g. [43]), PN converges to P weakly. This verifies the
conditions of Lemma 5.1, therefore, D(PN , P )→ 0 as N →∞.

Before concluding this section, we note that Lemma 5.1 may be of independent interest in stochastic
programming because it addresses uniform convergence of PN (H(x)) to P (H(x)) when PN converges to P
weakly, Corollary 5.1 is one of the interesting examples. The combination of Propositions 5.1 and 5.2 is virtually
an extension of Lemma 5.1 to the robust chance constraint.

6. Applications. In this section, we apply the convergence results to three cases with ambiguity set P
being defined by general prior moment conditions (Section 6.1), mean-absolute deviation condition (Section 6.2)
and KL-divergence (Section 6.3).
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6.1. Piecewise uniform approximation of ambiguity set based on moment condition. We start
by considering P being defined through moment conditions. Let Φ : IRk → IRq be a continuous vector-valued
function and ξ : Ω→ IRk be a random vector with support set Ξ. We consider

P :=

{
P ∈P(Ξ) :

EP [Φ(ξ)] ≤ 0, P is absolutely continuous w.r.t the Lebesgue
measure and its density function ρ(ξ) ≥ δ > 0 over Ξ

}
, (6.1)

where δ is a fixed constant. Slightly different from classical moment problems, here we require the underlying
probability distribution to be absolutely continuous w.r.t. the Lebesgue measure. A simple example is that the
true probability distribution follows a parametric truncated normal distributions with some unknown parameters
and the moment conditions are used to specify the range of these parameters.

For the convenience of analysis, we consider the case when the support set Ξ is a bounded rectangle set,
i.e., there exist finite valued vectors L,U ∈ IRk such that

Ξ := {z ∈ IRk : L ≤ z ≤ U}.

Since Ξ is compact and the density function is bounded from below, P is tight and closed. By Prokhorov’s
theorem, P is weakly compact (see [4] and [42, Proposition 7] for a more recent discussions in this regard).

With P constructed as in (6.1), it is difficult to solve the resulting MPDRCC (1.2) unless the underlying
functions have a very specific structure (see [49]). In what follows, we propose a piecewise uniform approximation
scheme for P and investigate convergence of the resulting problem (2.11) to problem (1.2) in terms of the optimal
values and the optimal solutions.

Let Ξ1, . . . ,ΞN be a partition of Ξ with

Ξ1 :=
{
z : L ≤ z ≤ L+ 1

N (U − L)
}

and

Ξi :=
{
z : L ≤ z ≤ L+ i

N (U − L)
}
\
{
z : L ≤ z ≤ L+ i−1

N (U − L)
}

for i = 2, . . . , N.
(6.2)

Let

PN :=

{
PN ∈P(Ξ) :

EPN [Φ(ξ)] ≤ 0, PN is uniformly distributed over each Ξi,

PN (Ξi) = pi,
∑N
i=1 pi = 1, pi ≥ δV (Ξi) for i = 1, . . . , N

}
, (6.3)

where δ is defined as in (6.1) and V (Ξi) :=
∫

Ξi
1dz for i = 1, . . . , N . We investigate the approximation of

PN to P. Observe first that PN ⊂ P because the uniform distribution specified in the definition of PN is
a particular continuous distribution over Ξ which is absolutely continuous w.r.t. the Lebesgue measure and
constraint pi ≥ δV (Ξi) ensures each density function is lower bounded by δ. In what follows, we show that PN
converges to P under the Kolmogorov metric and henceforth PN converges to P weakly (see[18]).

Before proceeding to the convergence analysis, we explain why PN is constructed in this particular manner.
Suppose that P is a singleton, that is, the true probability measure is absolutely continuous w.r.t. the Lebesgue
measure. In that case, it is natural to use a probability distribution with piecewise linear density function to
approximate P because the former is relatively easier to calculate. Thus, what we are proposing here is to
extend the above approximation scheme to the case when P is a set defined through some moment conditions.
We establish that PN converges to P under some appropriate metric in the following proposition.

Theorem 6.1. Suppose there exists P0 ∈ P such that EP0
[Φ(ξ)] < 0. Then the following assertions hold.

(i) lim
N→∞

HK(P,PN ) = 0;

(ii) if, in addition, H(·) is convex-valued and continuous over X, then lim
N→∞

H (P,PN ) = 0 and v is

continuous over X;
(iii) furthermore, if condition (3.4) is fulfilled, then we can establish convergence of the optimal values and

optimal solutions as specified in (3.5).

Proof. Part (i): For any fixed P ∈ P, since P is a convex set, then for any 0 < λ < 1, Pλ := λP +(1−λ)P0 ∈ P
satisfies EPλ [Φ(ξ)] < 0.

Let ε > 0 be a fixed constant and Fλ be the c.d.f of Pλ. Since Pλ ∈ P, it is absolutely continuous w.r.t.
the Lebesgue measure, then for a sufficiently large N , we have the partition of Ξ defined as in (6.2) satisfying

sup
1≤i≤N

Pλ(Ξi) = sup
1≤i≤N

Fλ
(
L+

i

N
(U − L)

)
− Fλ

(
L+

i− 1

N
(U − L)

)
≤ ε, (6.4)
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and there exists PλN uniformly distributed over each Ξi such that

PλN (Ξi) = Pλ(Ξi) (6.5)

for i = 1, . . . , N . Since the density function of Pλ is lower bounded by δ, we can obtain from the above equality
that density function of PλN also has this property. In what follows, we show DK(Pλ, PλN ) ≤ ε.

For any η ∈ [L,U ], there exists i ∈ {1, . . . , N} such that η ∈ Ξi. By definition

FλN (η)− Fλ(η) ≤ FλN
(
L+

i

N
(U − L)

)
− Fλ

(
L+

i− 1

N
(U − L)

)
≤ FλN

(
L+

i

N
(U − L)

)
− Fλ

(
L+

i

N
(U − L)

)
+ ε

= PλN (Ξ1 ∪ . . . ∪ Ξi)− Pλ(Ξ1 ∪ . . . ∪ Ξi) + ε

= ε,

where the second inequality holds due to (6.4) and the last equality by (6.5). Likewise,

FλN (η)− Fλ(η) ≥ FλN
(
L+

i− 1

N
(U − L)

)
− Fλ

(
L+

i

N
(U − L)

)
≥ FλN

(
L+

i− 1

N
(U − L)

)
− Fλ

(
L+

i− 1

N
(U − L)

)
− ε

= PλN (Ξ1 ∪ . . . ∪ Ξi−1)− Pλ(Ξ1 ∪ . . . ∪ Ξi−1)− ε
= −ε.

A combination of the two inequalities gives rise to

|FλN (η)− Fλ(η)| ≤ ε.

Since the inequality holds for any η ∈ IRk, we have

DK(PλN , P
λ) = sup

η∈IRk
|FλN (η)− Fλ(η)| ≤ ε,

which means that PλN converges to Pλ under the Kolmogorov metric and by [18, Theorem 6] in the weak
topology.

Next, we show that PλN satisfies the moment condition in (6.3). Since Φ(·) is a continuous function, the
weak convergence guarantees

lim
N→∞

EPλN [Φ(ξ)] = EPλ [Φ(ξ)].

Moreover, since EPλ [Φ(ξ)] < 0, the limit above ensures EPλN [Φ(ξ)] ≤ 0 for N sufficiently large, which means

PλN ∈ PN . By driving λ to one and ε to zero, we deduce from the discussions above that there exists a sequence
{PN} depending on λ and ε with PN ∈ PN such that

lim
N→∞

DK(P, PN ) = 0.

This implies that for any P ∈ P, there exists a sequence {PN} ⊂ PN such that PN converges to P under the
Kolmogorov metric. Hence limN→∞DK(P,PN ) = 0 holds. We can change DK to HK in that PN ⊂ P.

Parts (ii): We now prove the convergence of PN to P under the pseudo-metric. It is well known in the
literature of probability theory that convergence under the Kolmogorov metric implies weak convergence; see
[18]. Using this result, we can easily obtain the weak convergence of PN to P from the result that HK(PN ,P)→
0 as N → ∞. Since H(x) is convex set for any x ∈ X and P is absolutely continuous w.r.t the Lebesgue
measure for any P ∈ P, then P (bdH(x)) = 0. Together with the continuity of H(·), this shows that (C2) holds.
Hence it follows by Propositions 5.1 and 5.2 that PN converges to P under the pseudo-metric. The continuity
of v follows from Theorem 4.2.

Part (iii): The conclusions follow from Theorem 3.2 as all of the required conditions are fulfilled.
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Theorem 6.1 is established for the case when Ξ is a bounded rectangle. It might be interesting to extend
the theorem to the case when Ξ is the whole space IRk. Our conjecture is that this is possible when P is weakly
compact. We leave this for future work. Note also that the definition of the moment conditions and the Slater
condition rule out equality constraints. It is an open question that whether similar results can be established
for moment problems with equality constraints.

In what follows, we discuss how to solve MPDRCCN when PN is defined as in (6.3), that is

min
x∈X

f(x)

s.t. inf
P∈PN

P (H(x)) ≥ 1− β. (6.6)

For a fixed partition Ξi, i = 1, . . . , N of Ξ, we have

inf
P∈PN

P (H(x)) = inf
p∈IRN

N∑
i=1

pi
V (Ξi)

V (H(x) ∩ Ξi)

s.t.

N∑
i=1

pi
V (Ξi)

∫
Ξi

Φl(ξ)dξ ≤ 0, l = 1, . . . , q,

N∑
i=1

pi = 1, pi ≥ δV (Ξi), i = 1, . . . , N.

(6.7)

The Lagrangian dual of the above problem is

sup
λ0,λ1,...,λq

λ0 + δ

N∑
i=1

V (Ξi)

(
V (H(x) ∩ Ξi)

V (Ξi)
− λ0 +

q∑
l=1

λl

∫
Ξi

Φl(ξ)dξ

V (Ξi)

)
s.t. λ0 ∈ IR, λl ≥ 0, l = 1, . . . , q,

V (H(x) ∩ Ξi)

V (Ξi)
− λ0 +

q∑
l=1

λl

∫
Ξi

Φl(ξ)dξ

V (Ξi)
≥ 0, i = 1, . . . , N,

or equivalently

sup
λ0,λ1,...,λq

λ0 + δ

N∑
i=1

V (Ξi)EP i

[
1H(x)(ξ)− λ0 +

q∑
l=1

λlΦl(ξ)

]
s.t. λ0 ∈ IR, λl ≥ 0, l = 1, . . . , q,

EP i

[
1H(x)(ξ)− λ0 +

q∑
l=1

λlΦl(ξ)

]
≥ 0, i = 1, . . . , N,

where P i is a uniform distribution over Ξi with P i(Ξi) = 1 for i = 1, . . . , N . Consequently problem (6.6) can
be written as

min
x,λ0,λ1,...,λq

f(x)

s.t. x ∈ X,λl ≥ 0, l = 1, . . . , q,

λ0 + δ

N∑
i=1

V (Ξi)EP i

[
1H(x)(ξ)− λ0 +

q∑
l=1

λlΦl(ξ)

]
≥ 1− β,

EP i

[
1H(x)(ξ)− λ0 +

q∑
l=1

λlΦl(ξ)

]
≥ 0, i = 1, . . . , N.

(6.8)

Note that the Slater condition in Theorem 6.1 ensures P 6= ∅. From the proof of the theorem, we can see
PN 6= ∅. Thus the feasible set of problem (6.7) is nonempty, which ensures that its Lagrangian dual has no
dual gap (because it is a linear programming problem). Note also that when H(·) takes some special structure
such as polyhedron, the expected values in problem (6.8) might be computed easily. In general, it might be
numerically expensive to calculate these expected values. The well-known SAA method might be used to tackle
the challenge.



20 S. GUO, H. XU AND L. ZHANG

For a fixed partition {Ξ1, . . . ,ΞN} of Ξ, let ξ1
i , . . . , ξ

Mi
i be iid samples drawn over Ξi for i = 1, . . . , N . We

use 1
Mi

∑Mi

j=1 1H(x)(ξ
j
i ),

1
Mi

∑Mi

j=1 Φ(ξji ) to approximate EP i [1H(x)(ξ)] and EP i [Φ(ξ)] respectively. The resulting

SAA scheme of problem (6.8) can be written as

min
x,λ0,λ1,...,λq

f(x)

s.t. x ∈ X,λl ≥ 0, l = 1, . . . , q,

λ0 + δ

N∑
i=1

V (Ξi)

Mi

Mi∑
j=1

(
1H(x)(ξ

j
i )− λ0 +

q∑
l=1

λlΦl(ξ
j
i )

)
≥ 1− β,

1

Mi

Mi∑
j=1

(
1H(x)(ξ

j
i )− λ0 +

q∑
l=1

λlΦl(ξ
j
i )

)
≥ 0, i = 1, . . . , N.

(6.9)

Note that here sampling is based on known uniform distributions rather than empirical data. The end problem
(6.9) is an ordinary constrained optimization problem. In other words, to solve MPDRCC with P defined in
(6.1), we may solve problem (6.9) to obtain approximate optimal values and solutions.

6.2. Ambiguity set based on mean-absolute deviation. We now move on to consider the ambiguity
set P being defined through mean-absolute deviation, namely

P := {P ∈P(Ξ) : EP [ξ] = µ, EP [|ξ − µ|] ≤ d}, (6.10)

where µ ∈ IRk and d ∈ IRk
+ denote the unknown true mean value and absolute deviation of random vector ξ

respectively. Let {ξi}Ni=1 be an independent and identically distributed sample drawn from the true probability
distribution P of ξ. We use sample mean and sample absolute deviation to approximate their true counterpart.
Let

µN :=
1

N

N∑
i=1

ξi, dN :=
1

N

N∑
i=1

|ξi − µN |,

and

PN := {P ∈P(Ξ) : EP [ξ] = µN , EP [|ξ − µN |] ≤ dN} (6.11)

be an approximation of P. By Hoffman’s Lemma for moment problems in (see [42, Lemma 2] or [47, Lemma
2.1]), we can quantify the approximation of PN to P through the total variation metric.

Proposition 6.1. If Ξ = IRk, then there exists a positive constant C such that

HTV (PN ,P) ≤ C (2‖µN − µ‖+ max{‖(dN − d)+‖, ‖(d− dN )+‖}) , (6.12)

where (a)+ = max{a, 0} and the maximum is taken componentwise for a vector a.

Proof. Since Ξ = IRk and the set {EP [ξ] : P ∈ P(Ξ)} = IRk, there exists a probability distribution P0 such
that EP0

[ξ] = µ,EP0
[|ξ−µ|] < d, which means the Slater condition holds; see [45]. For any Q ∈P(Ξ), it follows

from Hoffman’s Lemma [42, Lemma 2] that there exists a positive constant C1 such that

DTV (Q,P) ≤ C1(‖EQ[ξ]− µ‖+ ‖(EQ[|ξ − µ|]− d)+‖).

Let Q ∈ PN . Then

DTV (Q,P) ≤ C1(‖EQ[ξ]− µN‖+ ‖µN − µ‖+ ‖(EQ[|ξ − µN |] + |µN − µ| − dN + dN − d)+‖)
≤ C1(‖µN − µ‖+ ‖(EQ[|ξ − µN |]− dN )+‖+ ‖µN − µ‖+ ‖(dN − d)+‖)
≤ C1(2‖µN − µ‖+ ‖(dN − d)+‖),

where the second inequality holds due to the fact that E[(a + b)+] ≤ E[(a)+] + E[(b)+]. Since µN and dN
converge to µ and d respectively, the Slater condition for the system defining PN holds when N is sufficiently
large, we have by virtue of the same lemma that for any given Q ∈ P,

DTV (Q,PN ) ≤ C2(2‖µN − µ‖+ ‖(d− dN )+‖).
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The conclusion follows by combining the two inequalities above and setting C = max{C1, C2}.

Remark 6.1. Note that both P and PN may constitute discrete probability measures, thus condition (4.1)
is not guaranteed here. However, due to the specific structure of P and PN , we are able to show HTV (PN ,P)→ 0
and hence Assumption 3.1 holds because the set G defined as (2.2) is bounded in this context, i.e., supg∈G ‖g‖ ≤
1, and consequently D(P,Q) ≤ DTV (P,Q). By Theorem 3.1, vN (·) converges to v(·) uniformly over X as N
increases.

In order to apply Theorem 3.2 here, we first show the continuity of v(·).

Consider a special case where g(x, z) is linear in z, namely

g(x, z) := b(x)−A(x)z, (6.13)

where A(x) := [A1x− b1, A2x− b2, . . . , Akx− bk] ∈ IRm×k, b(x) := b0 − A0x ∈ IRm, Ai ∈ IRm×n, bi ∈ IRm for
i = 0, 1, . . . , k. Here we assume Ξ = IRk.

Lemma 6.1. Let x ∈ X be fixed and the ambiguity set be defined as in (6.10). Let

v(x) := inf
P∈P

P (A(x)ξ ≥ b(x)).

Then v(x) is the optimal value function of the following problem:

sup
α,ρ,γ,η

α+ µT ρ− dT γ

s.t. α+ µT ρ ≤ 1,
−γ ≤ ρ ≤ γ,
α+ µT (ρ−A(x)T η) + b(x)T η ≤ 0,
−γ ≤ ρ−A(x)T η ≤ γ,
α ∈ IR, ρ ∈ IRk, γ ∈ IRk

+, η ∈ IRm
+ .

(6.14)

Proof. Let M+ denote the positive linear space of all signed measures generated by P(IRk), let

〈P, h(ξ)〉 :=

∫
Ξ

h(ξ)P (dξ).

By the definition of P in (6.10), v(x) can be written as

v(x) = inf
P∈M+

〈P,1A(x)ξ≥b(x)(ξ)〉

s.t. 〈P, ξ〉 = µ,

〈P, |ξ − µ|〉 ≤ d,
〈P, 1〉 = 1.

Since Ξ = IRk, then {EP [ξ], P ∈ P(IRk)} = IRk, and hence there exists P0 ∈ P(IRk) such that EP0
[ξ] = µ,

EP0
[|ξ−µ|] < d, i.e., the strong duality holds (see [45, Example 2.1]) and [40, Proposition 3.4]). The Lagrangian

dual problem is

sup
γ≥0,α,ρ

α+ µT ρ− dT γ

s.t. α+ zT ρ− |z − µ|T γ ≤ 1A(x)z≥b(x)(z),∀z ∈ Ξ.
(6.15)

The constraint of (6.15) is equivalent to{
α+ zT ρ− |z − µ|T γ ≤ 1,∀z ∈ Ξ,
α+ zT ρ− |z − µ|T γ ≤ 0,∀z ∈ Ξ such that A(x)z < b(x).

(6.16)

The first constraint in (6.16) means the optimal value of the linear problem:

sup
z,θ

α+ zT ρ− θT γ

s.t. z − µ ≤ θ,
−z + µ ≤ θ,
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is upper bounded by 1. Through Lagrange duality of the above problem, the constraint is equivalent to

α+ µT ρ ≤ 1, −γ ≤ ρ ≤ γ. (6.17)

Likewise, the second constraint in (6.16) holds if there exists η ∈ IRm
+ satisfying

α+ µT (ρ−A(x)T η) + b(x)T η ≤ 0, −γ ≤ ρ−A(x)T η ≤ γ. (6.18)

Combining (6.15), (6.17) and (6.18), we obtain (6.14).

Proposition 6.2. Assume that for any fixed x ∈ X, the following system of equalities

A(x)T y = 0 (6.19)

has an unique solution 0 and problem (6.14) satisfies the Slater constraint qualification. Then the robust prob-
ability function v(·) is continuous on X. If, in addition, condition (3.4) is fulfilled, then we can establish
convergence of the optimal values and optimal solutions as specified in (3.5).

Proof. We use [9, Proposition 4.4] to show the continuity of v(·). First we will verify the conditions of the
proposition in this context.

Let Φ(x) denote the feasible set of problem (6.14). It is easy to see that the objective function of (6.14)
is continuous, Φ(·) is closed valued and outer semicontinuous, thus conditions (i), (ii) of the proposition are
fulfilled here. Moreover, the Slater condition implies condition (iv). So we are left to verify condition (iii), i.e.,
there exists a constant c ∈ IR such that the lower level set

{(α, ρ, γ, η) ∈ Φ(x) : −α− µT ρ+ dT γ ≤ c}

is uniformly bounded w.r.t x. Observe that a combination of the inequalities

−α− µT ρ+ dT γ ≤ c, α+ µT ρ ≤ 1 (6.20)

implies dT γ ≤ 1+c. Together with the fact that d ≥ 0, γ ≥ 0, we conclude that γ is bounded. The boundedness
of ρ follows from constraint ‖ρ‖ ≤ γ and the boundedness of α is in turn implied by the boundedness of ρ and
γ via inequalities (6.20).

Next, we show the boundedness of η. Based on the analysis above and the fourth constraint of problem
(6.14), there is a positive constant K such that ‖A(x)T η‖ ≤ K. Assume for a contradiction that the set of
solutions to the inequality above is not uniformly bounded w.r.t. x, then there exist a sequence {xk} and a
sequence {ηk} with ‖ηk‖ → ∞ such that ‖A(xk)T ηk‖ ≤ K. By taking a subsequence if needed, we may assume
without loss of generality that xk → x̂ and ηk/‖ηk‖ → η̂. Dividing both sides of the inequality by ‖ηk‖ and
driving k to infinity, we arrive at ‖A(x̂)T η̂‖ = 0, a contradiction to condition (6.19), since ‖η̂‖ = 1.

To complete the proof, we note that vN (x) converges to v(x) uniformly as established in Remark 6.1.
Together with the continuity of v, we can apply Theorem 3.2 to establish convergence of the optimal value and
the optimal solutions of (2.11) to their true counterpart of (1.2) in this particular setting.

Note that in this proposition, we derive continuity of v(x) without using sufficient conditions in Section 4.
The convergence of PN to P under the pseudo-metric is also established without applying sufficient conditions
in Section 5. In other words, we are able to derive the convergence results outlined in Section 3 directly without
resorting to the sufficient conditions discussed in Sections 4-5. The fundamental reason is that the ambiguity
set P here has a specific structure and its approximation PN is constructed in a way which allows us to apply
the established Hoffman’s Lemma to derive the convergence of PN to P. Moreover, the linear structure of
stochastic constraint g(x, ξ) ≤ 0 enables us to derive a dual form of the robust chance constraint and continuity
of v via dual formulation (6.14). With PN , we can evaluate the robust probability function vN (x) by solving
linear programming problem (6.14), see Lemma 6.1.

6.3. Approximation of ambiguity set constructed through KL-divergence. Finally, we discuss
the ambiguity set to be constructed through KL-divergence. Let f0 and f denote the true density function and
its perturbation respectively. KL-divergence measures deviation of f from f0, namely

DKL(f‖f0) =

∫
Rk
f(ξ)log

(
f(ξ)

f0(ξ)

)
dξ.
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KL-divergence is introduced by Kullback and Leibler [27]. In practice, the true probability distribution may
be unknown and therefore frequently one uses a nominal distribution constructed from empirical data to ap-
proximate the true distribution. Unfortunately this kind of framework cannot be applied here directly because
the density of the empirical distribution is atomic hence it is not absolutely continuous w.r.t. the Lebesgue
measure. To get around the hurdle, we propose to estimate f0 by so-called kernel density estimator (KDE) [39].

Let ξ1, . . . , ξN be independent and identically distributed sample of ξ, hN be a sequence of positive constants
converging to zero, and Φ(·) be a measurable kernel function satisfying Φ(·) ≥ 0,

∫
IRk

Φ(ξ)dξ = 1. The KDE is
defined as

fN (z) =
1

NhkN

N∑
i=1

Φ

(
z − ξi
hN

)
. (6.21)

A simple example for Φ(·) is the standard normal density function.

Lemma 6.2. [14, Chapter 3, Theorem 1] Let Φ(·) be a measurable kernel function satisfying Φ(·) ≥ 0,∫
IRk

Φ(ξ)dξ = 1. Suppose that {hN} satisfies

lim
N→∞

hN = 0, lim
N→∞

NhkN =∞. (6.22)

Then

lim
N→∞

∫
IRk

∣∣fN (ξ)− f0(ξ)
∣∣dξ = 0 w.p.1.

Following the definition of the total variation metric and a discussion at page 29 in [7], we know that
the convergence of fN to f implies the convergence of the corresponding probability measures under the total
variation metric.

Let d be a given positive constant. The ambiguity sets based on KL-divergence are defined by

P = {P ∈P(IRk) : DKL(f‖f0) ≤ d, f = dP/dξ}, (6.23)

and

PN = {P ∈P(IRk) : DKL(f‖fN ) ≤ d, f = dP/dξ}. (6.24)

It has been shown in [25, 26] that the robust chance constraint with the ambiguity set defined in (6.23) or (6.24)
is equivalent to a classical chance constraint with a perturbed confidence level.

Proposition 6.3. [25, 26] The robust chance constraint

inf
DKL(f‖f0)≤d

P (H(x)) ≥ 1− β

can be reformulated as P0(H(x)) ≥ 1− β′, where

1− β′ = inf
x∈(0,1)

{
e−dx1−β − 1

x− 1

}
,

and P0 corresponds to f0.

By Proposition 6.3, problems (MPDRCC) and (MPDRCCN ) can be equivalently written as

min
x∈X

f(x)

s.t. P0(H(x)) ≥ 1− β′,
(6.25)

and

min
x∈X

f(x)

s.t. PN (H(x)) ≥ 1− β′.
(6.26)
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The reformulations enable us to carry out stability analysis of (1.2) through (6.25) and (6.26). Therefore it
suffices to establish convergence of PN to P under the pseudo-metric through Lemma 5.1.

Proposition 6.4. Consider problems (MPDRCC) and (MPDRCCN ) with P and PN being defined as in
(6.23) and (6.24). Let fN be defined as in (6.21). Assume: (a) the true density function f0 is continuous, (b)
{hN} satisfies condition (6.22), (c) H(·) is convex-valued and continuous over X. Then we have the following
assertions.

(i) H (P, PN )→ 0 as N increases;
(ii) if, in addition, condition (3.4) is fulfilled, then we can establish convergence of the optimal values and

optimal solutions as specified in (3.5).

Proof. Part (i): We use Lemma 5.1 to prove the result. Let us verify conditions of the lemma. By Lemma 6.2,
PN converges to P weakly. Moreover, the continuity of f0 means that the corresponding probability measure P0

is absolutely continuous w.r.t. the Lebesgue measure, which in turn ensures condition (4.1) with the convexity
of H(·). Together with the continuity of H(·), all of the conditions of Lemma 5.1 are fulfilled.

Parts (ii): The conclusions follow immediately from Theorem 3.2.

Remark 6.2. When KL-divergence in (6.23) or (6.24) is replaced by φ-divergence[5], Jiang and Guan
establish similar results to Proposition 6.3 in [26, Theorem 1]. This implies that when the ambiguity set is defined
through φ-divergences, the robust chance constraint can be reformulated as an ordinary chance constraint with
revised confidence level. If the true density function is continuous and its estimation is defined as in (6.21),
then we can apply Lemma 5.1 and Proposition 6.4 to programs (6.25) and (6.26). As for numerical methods for
solving the MPDRCC equipped with PN , we may end up by solving a chance constrained optimization problem
(6.26).

7. Conclusion. This paper investigates convergence of the optimal value and the optimal solutions in
an optimization problem with distributionally robust chance constraint when the ambiguity set of probability
measures changes. Change of the ambiguity set may stem from increasing availability of information about the
true probability distribution of the underlying uncertainty in the problem or numerical methods for solving the
MPDRCC.

We began by establishing the main convergence results concerning the optimal value and the optimal
solutions under general abstract conditions and then moving on to discuss in detail how these conditions may
be fulfilled. One of the main theoretical issues to be tackled is the continuity of robust probability function. We
present two sufficient conditions, one is well known in the literature of stochastic programming and the other
is completely new. Another important issue to be dealt with is the uniform convergence of robust probability
functions. Under the topology of weak convergence, we demonstrate how this may be achieved under some
moderate conditions by using the theory of semi-convergence of the ambiguity set PN under the pseudo-metric.

As an application, we demonstrate how the established convergence results can be used to provide theoretical
background for numerical methods for solving MPDRCC with general prior moment information (Section 6.1),
MPDRCC with some specific moment information and empirical data (Section 6.2) and MPDRCC with the
ambiguity set being constructed through KL-divergence (Section 6.3). While the approximation scheme in
Section 6.1 is relatively new, the other reformulations in Sections 6.2-6.3 are built on the well-known results in
the literature.

The work complements the main stream research on MPDRCC in three ways: a better understanding
of conditions required for the continuity of robust probability function, general convergence results, and some
conceptual approximation schemes, all of which allow us to tackle a broader class of MPDRCCs from both
theoretical and computational perspectives. Note that our convergence results are qualitative rather than
quantitative, i.e., we are short of giving a quantitative description on various convergence results in relation to
the change of the ambiguity set. Performance of the approximation schemes for solving MPDRCC when the
ambiguity set takes a specific form also requires to be assessed through extensive numerical tests. We leave all
these for our future research.

Acknowledgements. We would like to thank the Associate Editor, Professor D. Dentcheva, for effective
handling of the review and two anonymous referees for their insightful comments which helped us significantly
strengthen the paper.
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8. Appendix. Proof of Lemma 2.1. Since P (Dh) = 0, it follows from the mapping theorem (see [7,
Theorem 2.7]) that the weak convergence of PN to P implies PNh

−1 converges to Ph−1 weakly. On the other
hand, by [8, Theorem 16.13],∫

IR

|y|PNh−1(dy) =

∫
Ξ

|h(x)|PN (dx),

∫
IR

|y|Ph−1(dy) =

∫
Ξ

|h(x)|P (dx).

For the simplicity of exposition, let P̃N = PNh
−1 and P̃ = Ph−1. Then P̃N converges to P̃ weakly and condition

(2.9) can be written as

lim
R→∞

sup
N∈N

∫
|y|≥R

|y|P̃N (dy) = 0. (8.1)

Observe that the weak convergence of P̃N to P̃ implies P̃N (|y| > t)→ P̃ (|y| > t) for all but countably many t.
Moreover, it is well known (see i.e. [7, Theorem 3.4])∫

IR

|y|P̃ (dy) =

∫ ∞
0

P̃ (|y| > t)dt.

The rest of the proof is similar to [7, Theorem 3.5]. By Fatou’s Lemma on the line,∫ ∞
0

P̃ (|y| > t)dt ≤ lim inf
N→∞

∫ ∞
0

P̃N (|y| > t)dt = lim inf
N→∞

∫
IR

|y|P̃N (dy).

By (8.1), the last term in the equation above is finite valued and this in turn ensures∫
IR

|y|P̃ (dy) <∞. (8.2)

By partial integration, ∫ ∞
0

yP̃ (dy) =

∫ α

0

yP̃ (dy) +

∫
y≥α

yP̃ (dy)

=

∫ α

0

P̃ (t < y < α)dt+

∫
y≥α

yP̃ (dy). (8.3)

Entailed by (8.2), for any positive number ε, the last term in the equation above is less than ε when α is
sufficiently large. Likewise ∫ ∞

0

yP̃N (dy) =

∫ α

0

P̃N (t < y < α)dt+

∫
y≥α

yP̃N (dy). (8.4)

By condition (8.1), the last term in the equation above is less than ε when α is sufficiently large. It is easy
to show that the first term on the right of (8.4) converges to the corresponding part in (8.3). Since α can be
chosen in such a way that P̃ (y = α) = 0 and ε can be arbitrarily small, it follows by the Lebesgue convergence
theorem in the interval [0, α]

lim
N→∞

∫ ∞
0

yP̃N (dy) =

∫ ∞
0

yP̃ (dy).

Analogously we can show lim
N→∞

∫ 0

−∞
yP̃N (dy) =

∫ 0

−∞
yP̃ (dy). Putting them together, we obtain (2.8). The

implication of (2.10) to (2.9) is obvious.
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[22] R. Henrion and W. Römisch, Hölder and Lipschitz stability of solution sets in programs with probabilistic constraints, Math.

Program., 84: 589-611, 2004.
[23] R. Henrion and W. Römisch, Metric regularity and quantitative stability in stochastic programs with probabilistic constraints,

Math. Program., 100: 55-88, 1999.
[24] R. Henrion and C. Strugarek. Convexity of chance constraints with dependent random variables: the use of copulae. In M.

Bertocchi, G. Consigli, and M.A.H. Dempster, editors, Stochastic Optimization Methods in Finance and Energy: New
Financial Products and Energy Market Strategies, International Series in Operations Research and Management Science,
427-439, Springer, 2011.

[25] Z. Hu and L. J. Hong, Kullback-Leibler divergence constrained distributionally robust optimization, Optim. Online, 2013.
[26] R. Jiang and Y. Guan, Data-driven chance constrained stochastic program, Math. Program., 158: 291-327, 2016.
[27] S. Kullback and R. Leibler, On information and sufficiency, Ann. Math. Statist., 22: 79-86, 1951.
[28] J. Luedtke and S. Ahmed, A sample approximation approach for optimization with probabilistic constraints. SIAM J. Optim.,

19: 674-699, 2008.
[29] Y. Liu and H. Xu, Entropic approximation for mathematical programs with robust equilibrium constraints, SIAM J. Optim.,

24: 933-958, 2014.
[30] A. Nemirovski and A. Shapiro, Convex approximations of chance constrained programs, SIAM J. Optim., 17: 969-996, 2006.
[31] B. K. Pagnoncelli, S. Ahmed and A. Shapiro, Sample average approximation method for chance constrained programming:

theory and applications, J. Optim. Theory Appl., 142: 399-416, 2009.
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