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1 Introduction

Suppose we are given a set of data (z;,;) € ®%, i =0,1,...,n, satisfying the condition:

(1)

A:a=xg<11<...<Zp_1<Tp=2>b
7= (i — Y1)/ (@i —mi1), i 27 i=1,...,n—1

Let V[a,b] := Sp (3, A) denote the set of cubic C* splines on A. Specifically, V[a, b] consists
of functions that are (once) continuously differentiable everywhere and the restrictions of
those functions on each subinterval [z;_1, z;] are cubic.

The so-called convex best C! spline interpolation over the given data set is the optimal
solution s* of the following minimization problem ([1]):

minimize  ||s”||2

subject to  s(z;) =v;, ¢=0,1,---,n (interpolation condition) @)
s is convex on [a, b] (shape constraint)
s € Vl]a,b] (function space),

where ||-||2 is the Lo-norm in the sense of Lebesgue®. Taking into account of the interpolation
constraints s(x;) = y;, it is easy to see that s € Sp (3, A) if and only if the restriction of s
on each subinterval [z;_1, ;] is in the following form:

S(l‘) = Y1+ mi_1($ - CL‘Z'_1) (3)
2 a3
with h; == z; — x;,_1, 1 = 1,...,n, and m;_, and m; are parameters. Furthermore, the

condition (1) is usually known to be a necessary condition for s being convex. A sufficient
and necessary condition for s being convex is

2mi 1 +m; <31 < my1 + 2my, 1=1,...,n, (4)
see [14]. Therefore, the minimization problem (2) is equivalent to the following problem:

: ”"||2
min ||s"[|3
s.t. Zmi_1—|—mz~ S 37—1' §mi_1—|—2mz~, 1= 1,...,’]’L,

(5)

where s takes the form (3).
Derived either by the Karush-Kuhn-Tucker optimality theorem [1] or by the Fenchel
conjugation theory [3, 21], the dual program of (5) is

n . n—1
max  —L(p) :== =Y —q(pi, pic1) — Y pi(Tiz1 — Ti), (6)
peR io1 12 i=1

'Tf the function space V([a,b] is chosen to be W??[a,b] (the Sobolev space on [a,b]), then (2) becomes
the well known convex best interpolation problem. A historical account of this problem can be found in a
recent book by Deutsch [2]. It has been recently revisited by Dontchev, Qi and Qi [5] in the similar spirit
as the current paper. The W?2?[a,b] case is much harder to solve than the Sp (3, A) case, but they do not
cover each other



where py = p, = 0 and ¢ : 2 — R is the continuously differentiable piecewise convex
quadratic function given by

(a®+ab+8?)  for a<0,b<0
) Ga+by for a >0, a+2b<0
q(a,b) := (a + Lb)? for b>0, 2a+b<0
0 for a+2b>0, 2a+0b > 0.

For easy reference, we write (6) in its equivalent minimization form:

. " hz n—l
min  L(p) =Y —q(pi, pi-1) + D pi(Tit1 — 7). (7)
pER™1 o 12 =

Since L is convex, the optimality condition of (7) has the form of nonlinear equations

where d € R"~! with d; = 12(7;,1 — 1) and F : R*~! — R"~! is given by

F;(p) = hiz102q(piy1, pi) + hiO1q(pi, pi-1), i=1,...,n—1. 9)

Here, 01q and 0sq are the partial derivatives of ¢ with respect to its first and second argu-
ments. Once a solution of (8), say p, is obtained, the convex best C! cubic spline which
solves (2) can be constructed via (3) with m given by

h; [_ 1_ —\
m; 1 = T - (pi + =D, — 21’11) 5

12 2
hi 1 -
N Zpt — 997
my; Ti + 12 (pzl + 2pz D; ) )
fori=1,2,...,n, where a* = max(0,a) and ¢~ = —min(0,a) for a € R (see [1, (28)].)

Advantages of the dual approach include that the constrained problem (2) is solved by
the unconstrained convex problem (7) and that the classical Newton matrix (Hessian of L)
is tridiagonal and positive semidefinite, but at the cost of that L is only once continuously
differentiable (This implies that the Hessian of L may not exist for some points.) Despite
this, numerical experiments [1, 18, 19, 20] show that the Newton method terminates in a
small number of steps (averaging 3 — 5 steps) if a sufficiently good starting point is used.
In [16], by making use of the piecewise linearity property of F', we explained that the lack
of twice differentiability of L does not present any difficulty in analyzing the convergence
of Newton’s method. We achieved this by recasting the classical Newton method as a
generalized Newton method, which generates the next iterate p™ from the current iterate p
as follows

pt=p—-V I F(p) +d), V € 0gF(p), (10)

where OpF'(p) is the B-differential of F' at p [17]. When F is differentiable at p, 0gF(p) =
{VF(p)} (see Lem. 2.1) and hence the generalized Newton method (10) becomes the clas-
sical Newton method. For this reason, (10) is also referred to as Newton’s method. There
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is a natural extension of the convergence result for the classical Newton method to the
generalized Newton method. A result of Kojima and Shindo [12, Thm. 1] when applied to
(10) says that it quadratically converges to its solution, say p*, provided that the starting
point is sufficiently close to p* and every element in g F'(p*) is nonsingular. (In [17], this
property of nonsingularity is called BD-regularity. Since L is convex, nonsingularity means
that all the matrices in dgF'(p*) are positive definite. This in turn implies that, the Clarke
generalized Jacobian OF (p*), being the convex hull of 0gF(p*), also contains only positive
definite matrices. For this reason, we say F' regular if every element in dgF'(p*) is nonsin-
gular. For more discussion on various regularities, see [8]). In addition, Newton’s method
finds the solution in one step when the current iterate and the solution fall in the same
piece where F' is linear. This observation has also been used in [9, 11, 13, 22] in showing
the finite termination of various Newton’s methods for a number of problems, which can be
reformulated as system of piecewise linear equations.

Two important issues concerning the success of numerical optimization methods [10, 15]
for the problem (7) are its regularity and well-posedness. By regularity, we mean the
regularity of F. The property is important, for example, for the Newton method (10)
being well-defined and it is also sufficient for (10) or quasi-Newton methods [12] to be
locally quadratically convergent. By well-posedness, we mean that (7) has a unique solution
towards which every minimizing sequence converges. In [16], we established the following
result on regularity: Let

W :={(a,b)| a4+ 2b < 0 or b+ 2a < 0}.
It was shown that F is regular at p € R ! if
(ﬁi,ﬁi_1) eW fori=1,...,n with py = p, = 0. (11)

In this paper we continue our efforts in establishing more theoretical results on regularity
and well-posedness of (7) which support the use of Newton’s method. Condition (11), termed
as the nondegenerate condition in this paper, is extended to degenerate cases. Let Z(p)
contain all degenerate indices 7 of p such that (p;,p;_1) ¢ W and |Z(p)| be the cardinality
of Z(p). We consider the regularity of F' at a point p when |Z(p)| # 0 (note that condition
(11) implies |Z(p)| = 0.) If |Z(p)| = 1, then F is regular at p, see Prop. 3.6; and in the
case |Z(p)| > 2, F is regular at p if between every two degenerate indices of p there exists
at least one strongly nondegenerate index, see Prop. 3.4. Both results are included in Sec.
3 and rely on more accurate description of matrix structure of all elements in 0gF'(p), see
Sec. 2. In Sec. 4 we present a set of conditions which ensures the coerciveness of (7), see
Prop. 4.1. An example is also constructed to show that violation of these conditions may
lead to unboundedness of level sets of the function L.

2 Elementary results

In this section, we first present the definition of 0 for any local Lipschitz function and
then characterize the matrix structure of dg F'. These results will facilitate our study on the
regularity of F' in Sec. 3



For any Lipschitz mapping G : R¢ — R, the B-differential of G at p € R¢ is defined by

0G(p) :={ lim VG(p*)}, (12)

pk—op

pkeDg
where D¢ denotes the set where G is differentiable and VG(p) denotes its Jacobian at
p € Dg. The regularity of G' at p means that every V' € 0pG(p) is nonsingular. It is known
that OgG(p) becomes singleton if G is strictly differentiable at p. Differentiability only is not
enough for dpG being singleton. For our special function F' defined in (8), differentiability
of F' at a point means continuous differentiability of F' at that point, see Lem. 2.1.

Now we turn our attention to the function F in (9). Since F'(p) = VL(p) and L is
convex, every VF(p), p € D is symmetric and positive semidefinite. Therefore, 0gF'(p)
contains only symmetric and positive semidefinite matrices. Since each F; depends only on
(Pi+1,Di, Pi—1), every element in g F'(p) must be tri-diagonal. Because F' is piecewise linear,
each VF(p), p € Dp is a constant matrix. This means by (12) that, for any V € 0gF(p)
there exists p* € Dp sufficiently near to p such that V = VF(p*). An important application
of this observation is to study the regularity of F at any point p € ®"*~!. In fact, we only
need to consider the nonsingularity of VF(p¥) for all nearby points, p* € Dp, of p.

To facilitate our analysis, we define several sets in R?:

Wy = {(a,b)| (a,b) € W, ab # 0}

W_ = {(a,b)| (a,b) € W, a <0 and b < 0}

W = {(a,b)| a+2b>0 and b+ 2a > 0}

W, := {(a,b)| a+2b>0and b+ 2a > 0}

R = {(a,b)|a+2b=0, a >0} U{(a,b)| b+2a=0, b>0}
R* = {(a,b)|b=0, a <0}

R" {(a,b)| a =0, b<0}.

It is easy to see that W U W = R2 W, is the interior of W, R% is the boundary of W, and
W, =W\ (R® UR"). We further define two functions f, g : ®2 — R by

f(aa b) = a?Q(aa b)a g(aa b) = alQ(aa b)
For any p € R"~! with py = p, = 0, we recall that
Fi(p) = hig1 f(Div1,03) + hig(pi, pic1), i=1,...,n—1

and note that f(a, b) is not differentiable on R¥®UR? , g(a, b) is not differentiable on R UR? .
We come to the following result concerning the differentiability of F'.

Lemma 2.1 F is differentiable at p € R~ with py = p, = 0 if and only if
P #07 pn—l?éoa and (piapi—l) € W+UW+1 'L=2,,n—1 (13)

Moreover, F' is continuously differentiable at p if and only if F' is differentiable at p.
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Proof. We note that F is differentiable at p € ®"*~! if and only ifall F}, i =1,...,n—1
are differentiable at p. This in turn implies that f and ¢ are differentiable at all pairs
(Piz1,p:),i=1,...,n—2 and f is differentiable at (0,p, 1) and g is differentiable at (p;,0)
(note that py = p, = 0.) These conditions amount to (13). The analytical expression
of L further implies that F' is continuously differentiable at a point if and only if F' is
differentiable at that point. O

It then follows from Lem. 2.1 that Dp is given by
DF = {p € g:‘\'n—1| D1 7é Oapn—l 7é 0’ and (piapi—l) S W—|— U W—l—; 1= 27 -, = 1}

and OgF'(p) = {VF(p)} for all p € Dp. In the following we let p denote a reference point
and p denote points sufficiently near to p.

Lemma 2.2 Let p € "' and V € 0gF(p). Then Vi1, Vii, and Vi1 in the ith row
(2 <i<mn—2) can only possibly take the following values

Vii—1 Vii Viit1
0 0 0
hi shi 0
h; 2h; 0
0 shit1 it
0 2hit1 hit1

s(hi +hip1)  hin
i 2(hi+hip1)  hig

& &

and Vi1, Va2 in the first row and Vi,_1 5—2, Vo_10-1 in the last row take the following values

Vig Vi Va—1n—2 Va—1n-1
0 0 0 0
%hZ h2 hn—l %hn—l
2h, 0 0 2h,
o(hy +ha)  hs Bt 20kt + hy)

Proof. We only need to prove the result for p € Dp, because for any V' € dgF(p) there
exists p € Dr such that V = VF(p). Let 2 < i <n — 2 be fixed and recall that

Fi(p) = hisv1 f(Pis1,0i) + hig(pi, pi—1)-

According to (13), (Piy1,p:) € Wy UW, and (pi, pi—1) € W, UW,. Hence there are four
possible cases to be considered (note that both W, and W are open set in R?):
Case 1. (piy1,D0:) € Wy and (ps, pi_1) € W,. For this case, q(pir1,p:) = ¢(pi, pi1) = 0,
hence Vi ;-1 =Vj; = Vi1 =0.
Case 2. (piy1,0i) € Wy and (p;, pi_1) € W,. For this case, q(pir1,p;) = 0, hence
Viit1 = 0. (Pi, Di—1) € W could only have three subcases:
If p; > 0,pim1 <0,  then q(p;, pi—1) = (i + pic1)? = Vii-1=h
If p; < 0,piz1 >0, then q(p;, pic1) = (5pi-1 + pi)? = Vii—1 = hs, Vi = 2h;.
If p; <0,pim1 <0, then q(pi, pic1) = (0 + picipi +971) = Vijoi=h
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Case 3. (Piy1,p;) € W, and (p;,p; 1) € W,. For this case, q¢(p;, p; 1) = 0, hence
Viic1 = 0. (Pi+1,pi) € W4 could only have three subcases:

If p; > 0,piy1 <0, then q(pi1,p:) = (505 + Piy1)? = Vii = shit1, Vigp1r = higa.
If p; < 0,pir1 >0, then q(piy1,p:) = (5Pit1 + pi)? = Vii = 2hit1, Viger = hiqa.
If p <0,pip1 <0, then ¢(pi, pi1) = (Pi + Pis1Pi + Pi1) = Vii = 2hit1, Viisr = hiya.

Case 4. (Piy1,0;) € Wy and (p;,p; 1) € W,. For this case, we could only have the
following three subcases (they are combinations of subcases in Case 2 and Case 3).

Ifp; >0,p; 1 <0 and pyy <0 = Vi1 = hi, Vig = 5(hi + hit1), Vi1 = Riga-
If p; <0,pim1 >0and pipg >00r <0 = Vi1 = hy, Viy = 2(hi + hiy), Viig1r = higa.
If p; <0,pim1 <0and piyg >00r <0 = Vi1 = hy, Viy = 2(hi + hiy), Viig1 = higa.

This proves our results for 2 < i <n — 2. We note that fori =1orn—1, py = p, = 0 by
(13). We can prove this part similarly as above. O

Lem. 2.2 is helpful in calculating elements in dgF(p). Note that the ith row of V is
uniquely determined by its diagonal element V;;. Let p € ®" ! be given and V' € dpF (p).
Let o; be the coefficient of the ith diagonal element of V. Then according to Lem. 2.2,
o; € {0, %, 2}. The following result says more about the possible value of o;.

Lemma 2.3 Let p € R ! with py = p, = 0 be given, V € OgF(p) and 1 <i<n—1. If
(Dit1,Di) € Wi, (14)

then
(Oia 0i+1) € {(1/2’ 2)’ (27 1/2)’ (27 2)}

Proof. Without loss of generality, we assume that p € Dr and V = VF(p). Recall that

Fi(p) = hiz1f(piv1,0i) + hig(ps, pi—1), and
Fii1(p) = hivo f (Piv2, Pit1) + hit19(Dig1, Di)-

Case 1. pj;1 < 0. Then using arguments in Lem. 2.2 we have

If p; >0  then ¢(pir1,p:) = (50 + Pit1)? = 0;=1/2, 0,41 =2.
Ifp; <0  then q(pir1, pi) = (0 +pipiv1 +0i) = 0i=0ip1 = 2.

Case 2. p;41 > 0. Since (piy1,p:) € W4, we must have p; > 0. In this case, ¢(p;y1,p;) =
(3P + pi+1)?. Hence, using similar arguments in Lem. 2.2, we have 0; = 1/2 and 0,4, = 2.
This completes the proof. O

The result in Lem. 2.3 does not depend on whether or not (p;, p;_1) € W, or (pir2, Div1) €
W,. However, it is not true if condition (14) is replaced by (p;, pi—1) € W,. Suppose this
latter condition holds and (p;41,5;) € W,. In the case of p; > 0, we must have p;_; < 0.
Hence o; = 1/2. If, furthermore, p;11 > 0 and p;;2 < 0, then 0,11 = 1/2.



3 Regularity
To ease our discussion we first introduce some concepts of degenerate index, strongly de-
generate index, nondegenerate index and strongly nondegenerate index of a given point.
Definition 3.1 Let p € R" ! be given with py = p, =0. We call1 € {1,...,n}

(i) a degenerate index of p if (p;, p; 1) € W,

(ii) a strongly degenerate index of p if (ps, pi1) € Wy,

(i1i) a nondegenerate index of p if (p;, pi—1) € W, and

(iv) a strongly nondegenerate index of p if (ps, pi_1) € W_.

We further let Z(p) and Z, (p) be the sets of all degenerate indices and strongly degenerate
indices of p respectively:

Z(p) ={il ppi1) €W, i=1,...,n} = {ir,d2,...,i, 1} (1<r—1<n),
T.(p) :={i] PiDi—1) € Wy, i=1,...,n},
and let 5o =1, 4, = n and k; := i; —4;_1,7 = 1,...,7. Note that Z, (p) C Z(p). It is possible
that i1 = ip = 1 and/or i, = i,_1 = n, implying x; = k, = 0. With these numbers, we have
the following result of characterizing the structure of elements in dg F'(p) when Z, (p) = Z(p)
(all degenerate indices are strongly degenerate indices.)

Lemma 3.2 Let p € R ! be given with py = p, = 0 such that T, (p) = Z(p). Let the

numbers kj,j = 1,...,r be defined as above. Then F' is continuously differentiable at p and
0pF (p) = {VF(p)}. MoreoverV := VF(p) is a block diagonal matriz of size r, i.e.,
Vi
V= " . ,
Vi
and each V;,j = 1,...,7 15 a K; X Kk; tridiagonal matriz. Each block of V; corresponds to

the functions F;,

10"

>Ej—1-

Proof. The proof is easy. The condition Z, (p) = Z(p) means that (13) holds; equiva-
lently F' is continuously differentiable at p and hence 0 F'(p) = {VF(p)}. Recall that |Z(p)|
is the cardinality of Z(p). If |Z(p)| = 0, then there is only one diagonal block, which is V'
itself. Suppose now |Z(p)| # 0 and let i, € Z(p). We prove that V;,;,—1 = 0, which implies
Vii—1,, = 0 by symmetry of V. Hence V is separated by block tridiagonal matrices at ¢,th
diagonal element. Note that

F,(p) = hi,+1f(Diy+1,0i,) + hi, 9(Diy, Diy—1)-

Since (p;,, pi,—1) € W, and W, is an open set, g(pi,, pi,—1) = 0 for any p close to p, that is
Vipis—1 = 0. This proves the result. O

Lem. 3.2 means that V' is positive definite if and only if each block V} is positive definite.
The following result focuses on all possible choices of 2 x 2 blocks.
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Lemma 3.3 Let p € R~ be given. Suppose there exists 2 < £ < n — 3 such that

(ﬁfaﬁf—l) € W—H (ﬁf-l—laﬁf) € W—|—7 and (ﬁf—l—?aﬁf—l—l) € W—|—-

Then, for any V € 0gF(p), we have

Ve o Veern | _ [ 2henr hen
Verie Viri,e41 hetr shes

> if Pev1 >0

and

Vie  Vier shes1 hes 2her1 hyga -
’ ’ € ) 1 <0.
( Verie Vegrr,e4 hev1 2hpq heyi 2R f Pess
Hence V' is not necessarily positive definite.

Proof. Since (pe41,pe) € W, (e, pe—1) € Wy and pgyq > 0, Case 3 in the proof of Lem.
2.2 with i = £ implies Vi y = 2h¢y1, Vigr1 = hey1. Since (Dego, Do) € Wh, (Dega,0e) € Wy
and pgr; > 0, Case 2 in the proof of Lem. 2.2 with ¢ = ¢+ 1 implies Vi1, = het,
Vesi,041 = %hgﬂ. The case py1 < 0 can be proved similarly. O

A close look at the proof for the only positive definite matrix in Lem. 3.3 reveals that
it occurs when (pgi1,¢) € W, i.e., pry1 < 0 and Py < 0. This leads to the following main
result in this section.

Proposition 3.4 Let p € R be given with py = p, = 0. Let
Z() ={i1,---,ir1} and ig=1, i, =n.
Suppose that there exists £; such that
ij 1 <t;<i; and (Pg.p, 1) €W, Vi=1,..,r (15)
Then each V € 0gF (D) positive definite.

Proof. Let V € 0gF(p), then there exists a sequence {p*} C Dy converging to p and
VF(p*) — V. Because of the piecewise linearity of F (i.e., F' is piecewise linear function
with finitely many pieces), {VF(p*)} contains finitely many matrices. For simplicity, we
drop the superscript of p* and assume p is sufficiently close to p. We will show that VF(p)
is positive definite under the condition of (15).

The case |Z(p)| = 0 has already been dealt with in [16, Lem. 3.2]. Without of loss
of generality, we assume |Z(p)| > 1. Since Z(p) C Z(p) for all p sufficiently close to p.
Renumbering the indices in Z(p) if necessary (for simplicity, we are still ordering them as
i1,-.-,0r_1), we see that the condition (15) still hold for p because W_ is an open set and p
is sufficiently close to p.

According to Lem. 3.2, V consists of r tridiagonal blocks. Let V; be one of them. It
corresponds to functions Fj, ,,..., Fj; 1. Since i; 1,%; € T, (p), we must have

(Dij_1Pij1—1) € W, (Piy_141:Pi;_1) € Wery ooy (Dij—1,Di;—2) € W4, and (p;;, pij—1) € W,



which means that all indices between every two consecutive degenerate indices 7;_; and i;
of p are nondegenerate. According to Lem. 2.3 and Lem. 2.2, V; has the following structure

O4;_4 h’ij—1+1 hij_1+1

‘/}_ — hij_l—l—l
h/'ij—l
hz'j—l Uz‘j—lhz‘j—l
with
w,g = Ug(hz + hg_H), Y ij_l +1</¢< ij -2 (16)
and
(00, 0001) € £(1/2,2),(2,1/2),(2,2)}, Vijo1 <L <ij—2. (17)

That is, it cannot occur that o, = o441 = 1/2 for some i;_; < ¢ < i; — 2. Since there exists
¢; such that (15) holds and noting that W_ is open and that

Fy;—1(p) = ha; f(pe; pe; 1) + ha;—19(pe;—1,pe;—2),
Ffj (p) = h£j+1f(pej+17pej) + hejg(pej7p£j_1)7

we must have

O'gj_l = Ugj = 2. (18)
Let u € "' and u = (u',...,u")T with w/ = (u;;_,,..., us—1). It follows that
V()"
i;—1 15—2
= Z VU“? +2 Z Py 1ugtgy
Z:ij_l l:ij_l
1j—2 1j—2
= oy byl D oulhe + hep)ug 4 og ahi g+ 20 hepiuguen
t=i; 1+1 t=i; 4
2 2 = (1, 2 2 15
2 h@j (Ulej_l + Ue],) + Z hg_|_1 I11n (iu@ + ué—l—l + QUZUH—I; Uy + Eueﬂ + 2U@U@+1)
£=ij_1
1 1j—2
= hy, (ugj_1 + uz) + 3 Z hey1 min {(ue + 2upy1)?, (2ug + u@+1)2} i (19)
Z:’L']‘_l

The inequality uses the relations (16)—(18). Hence, u/V;(u/)" > 0 and equality holds if and
only if uy =0 for all £ =14, 1,...,4; — 1, i.e,, u/ = 0. Therefore,

" Vu=>Y uV;(w)" >0
j=1

and the equality holds if and only if w/ = 0 for j = 1,...,r, i.e., u = 0. This proves that
V F(p) is positive definite for all p sufficiently close to p and p € Dp. For any V' € 0gF(p)
there must be a near point p € Dr such that V = VF(p). Hence V is positive definite. 0O
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We are now to make some comments on condition (15). Suppose d; > 0 for all 7 =
1,...,n — 1 (otherwise, d; = 0 means that 7,,; = 7; and that (x;1,9i11), (;,¥;) and
(i 1,yi-1) are on one line and the best cubic spline on the interval [z; 1, z;1] is the line
itself), and let p be a solution of (8). By the definition of Fj, it cannot happen that
i,i+1 € Z(p) for any i = 1,...,n. That is, between any two degenerate indices there exists
at least one nondegenerate index of p. If one of these nondegenerate indices happens to be
strongly nondegenerate, then F'is regular at p according to Prop. 3.4. Hence, Newton’s
method can be used to find the solution. We also note that violation of condition (15) may
lead to singular Jacobian of F' at p. The following example, taken from [16], illustrates such
a possibility.

Example 3.5 The given data is: (xo,y0) = (0,0), (z1,11) = (1,1), (x2,92) = (2,3),
(z3,y3) = (3,7), (x1,y4) = (4,12) and (zs,y5) = (5,27). It is easy to verify that the
unique solution is p = (2,—13,60,—42). Z(p) = {1,3}. However, there are no strongly
nondegenerate indices, i.e., condition (15) is not satisfied. It follows from Lem. 2.1 that F
is continuously differentiable at the solution and hence OgF (p*) contains only one element
(noticing all h; = 1):

1/2
1
0
0

== O O

0
0
1/2
1

S O N =

which s singular.

Prop. 3.4 gives a sufficient condition for the regularity of F' at a point where degeneracy
is in presence. An extreme case of this result is when there is no degenerate indices, i.e.,
|Z(p)| = 0. In this case, condition (15) means that there needs one strongly nondegenerate
index to ensure the regularity. On the other hand, the result [16, Lem. 3.2] states that F
is regular at p if |Z(p)| = 0, no need of an extra strongly nondegenerate index to ensure
the regularity. That is, in the case |Z(p)| = 0, Prop. 3.4 is stronger (not weaker) than
[16, Lem. 3.2]. This motivate us to investigate if Prop. 3.4 can be strengthened when
|Z(p)| # 0. In the next proposition, we will illustrate that this at least can be done when
|Z(p)| = 1. The proposition can also be thought of a direct extension of [16, Lem. 3.2 from
the nondegenerate case to the degenerate case.

Proposition 3.6 Let p € R"! be given with py = p, = 0. Then F is reqular at p if
Z(p)| = 1.

Proof. Denote that Z(p) = {¢}. As in the previous proofs, we only consider these points
p which are sufficiently close to p and p € Dp. It is enough to prove that V := VF(p) is
positive definite for these p. Since Z(p) C Z(p) for all p sufficiently close to p. There are
two cases to be considered. Z(p) = 0 and Z(p) = {¢}. In the former case, [16, Lem. 3.2]
says that V is positive definite. In the latter case, we consider the following possibilities of

L.
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Case 1. £ = 1. We must have p; > 0 since (p;,0) € W,. Then V is given by
%hg ha
hy
T h'nfl
h'nfl 2(hn71 + hn)

and V;; = 0;(hi + hipq) foralli =2,...,n—2 and (0, 0,41) € {(1/2,2);(2,1/2),(2,2)} and
it cannot occur that o; = 0,11 = 1/2 for any 2 < i < n — 2. These properties on o; come
from Lem. 2.3 because (pj;1,p;) € W, foralli=1,...,n— 1. Like (19) we must have for
u € R ! that

1 n—2
UTVU 2 5 Z hi—|—1 {(Uz -+ 2Ui+1)2, (QUZ' + UZ'+1)2} -+ hnui_l.
i=1

Hence, V is positive definite. The case that £ =n — 1 can be proved similarly.
Case 2. 1 </ <n—1. Then V is a block diagonal matrix of size 2, i.e.,

v=(" )

and
Vig he Vie he
‘/1: h2 .. .. and‘/Q: hé+1
. ; hy 1 by
h,g,1 wfl,ffl h/nfl anl,nfl
with
LET 2my if ¢ =2, n=bn=t T 9(hyoy + hy) ifL<n—2,

and W,Lg,l = op_1hy 1, V[,g = oghgiq, V;,i = O'z(h,Z + hi—l—l) for 7 € {2,...,77, - 2} but
i # ¢ —1,¢. These o; must satisfy (0;,0,41) € {(1/2,2),(2,1/2),(2,2)} for i # ¢ — 1. It
is easy to see that both V; and V5, are positive definite. This finishes the proof that F' is
regular at p if |Z(p)| = 1. O

The condition |Z(p)| = 1 cannot be weakened to |Z(p)| > 2. A counter-example is
Example 3.5 where |Z(p)| = 2 and the Jacobian of F' at p is singular.

To summarize, we are able to make the following claims on the regularity of F' at a point
p: (i) F is regular at p if |[Z(p)| < 1 (Prop. 3.6 and [16, Lem. 3.2]); (ii) If |Z(p)| > 2,
F is regular at p if between every two degenerate indices there exists at least one strongly
nondegenerate index (Prop. 3.4).
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4 Well-posedness

We recall that the function L is said to be coercive if L(p) — +oo as ||p|| = +oo. If L is
coercive and F is regular at a solution p*, then the minimization problem (7) is well-posed in
the sense that it has a unique solution towards which every minimizing sequence converges.
Well-posedness of problem (7) ensures that the steepest descent method can be used as
the first stage to find a good enough starting point for Newton’s method, which has been
numerically observed efficient [1, 18, 18, 20]. In this section we present sufficient conditions
for the coerciveness of L. The proof technique for the following result is motivated by [4, 6]
where a more difficult problem than (2) is considered (i.e., V[a,b] = W??[a, b], the Sobolev
space.)

Proposition 4.1 Suppose that d; > 0 for allt=1,...,n—1 and one of the following two
conditions holds:
2d; 1 > d;, Vi=2,...,n—1, (20)

2d; 41 > d;, Vi=1,...,n—2. (21)

Then L s coercive.

Proof. It is sufficient to prove that the level set

L(c):={pe R L(p) < c}

is bounded for every ¢ € R. Note that, for every ¢ € R, the set L£(c) is closed and convex.
Assume, on the contrary, that £(co) is unbounded for some ¢y € R and let, without loss
of generality, ¢y > 0. We first show that there exists a vector p € R* !, p # 0 such that
Bp € L(co) for every B > 0. Suppose that for every p € R"! there exists 8, > 0 such that
By & L(co). From the convexity of L(cp) and 0 € L(cp), it follows that Sp & L(cy) whenever
B > Bp. Let

B(p) = max{8] B> 0, fp € L(co)}.

Then B(p) < 400 since L(cy) is closed. It is also known from Dontchev and Kalchev [4,
P.675] that 3(-) is an upper semicontinuous function over "~!. Then

B* = sup{B(p)| [Ipll = 1} < +oo.

Hence £(cp) is contained in a ball centered at the origin with radius 8*+1. This contradiction
establishes the existence of a vector p € R"~! p # 0 such that Sp € L(cy) for all 3 > 0.
Now, for such p, we define

2 n

p LA g
’f(ﬁ) (Bp 19 4 thq Di, Di— 1 12 szdza
i=1

where we let pg = p, = 0.
First we note that g(p;, p;_1) > 0 for all = 1,...,n. If there exists 79 € {1,...,n} such
that (pio,pio_l) € W then q(pio,pio_l) > 0 and

K:(ﬁ) B (ﬁh’loq pZo:p’Lo 1 sz >_>+OO as ﬁ—>+OO
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This contradicts Sp € L(cp) for all 5> 0 (i.e., k(8) < ¢y). Hence, no pairs (p;,p; 1) € W
for any 1 = 1,...,n, resulting in

n—1
k(8) = B ;pidi-

In the following we prove "~ p;d; > 0. We note once again that p # 0, py = p, = 0 and
(pi,pi—1) € W for all i =1,...,n. Define

J={jlp; <0, j=1,...,n—1}

If 7 = 0 it is obvious that 7' p;d; > 0. If j € J then pj—1 > 0 and pjy1 > 0 (ie,
j—1,7+1¢& J) because (p;,p;_1) € W for i = j,j + 1. This yields

pj-1+2p; 20 and  pj1+2p; 20, VjieJ.

Hence
n—1
dopidi > Y (pid; + pj—1di_q) (22)
i=1 jeT
> > (pid; — 2p;dj1)
jeT
= Y (2dj_1 — dj)(—p;) >0 (because of (20)).
JEeT

We call (22) backward grouping of (p;,p;_1) over j € J. Similarly, we have forward grouping

n—1
sz‘di > Z(pjdj+pj+1dj+l)
i1

i€

> 2 (pid; — 2pjdjs)
jeT

= Y (2dj11 —d;)(—p;j) >0  (because of (21)).
i€T

This proves 7' pid; > 0. Hence, k(3) — +oc as 3 — +00, a contradiction to x(8) < c.
Therefore, £(c) is bounded for every ¢ € R. This finishes the proof. m]

The following example shows that violation of conditions in Prop. 4.1 may lead to
unboundedness of the level set L(cy) for some ¢y € R.

Example 4.2 Suppose we have data: (xo,y0) = (0,0), (z1,y1) = (1,1), (z2,y2) = (2,3),
(x3,y3) = (3,9), (x4,y4) = (4,16). A solution to this problem is: p* = (0,—12,0). Then

(dla an d3) = (12’ 481 12)

Let p € N3 be
(ﬁlap%ﬁS) = (27 _172)'
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It is easy to see that |Z(p)| = 4. Hence

L(ﬁﬁ) = B(ﬁldl +ﬁ2d2 + ﬁgdg) =0.

1t follows that

ppe L£(0), VB=0
and L£(0) is unbounded. We see that condition (20) is not satisfied at (di,ds) and condition
(21) is not satisfied at (da, d3).

We conclude this section by two remarks

(i) The minimization problem (7) is well-posed if L is coercive and F' is regular at a
solution. This paper studies when the coerciveness and regularity hold.

(ii) Our regularity results have an algorithmic implication. Let p be the current iterate.
If |Z(p)] <1 or |Z(p)| > 2 and condition (15) is satisfied (with p replaced by p), then
every V € OgF(p) is positive definite. Newton’s method (10) successfully generates
the next iterate p*. If |Z(p)| > 2 but condition (15) is not satisfied, then V' € 95 F(p)
is possibly singular. In this case, we suggest to use the damped Newton method:

pti=p—(V+el) YF(p) +d),

where € > 0 is a small positive number and [ is the identity matrix. An alternative
is to use the smoothing Newton method, as pointed out to us by one of the referees.
The linear system solved in each iteration of the method is well defined. It remains
to see how it performs compared to the Newton’s method.

Acknowledgement. We thank the three referees for their detailed comments which
greatly improved the presentation of the paper. Especially, a referee clarifies the use of the
well-posedness.
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