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1 Introduction

The convex best interpolation problem is defined as follows:

minimize ||f"|| (1)

subject to ft)=v, 1=1,2---,n+2,
f is convex on [a,b], f € W?*?%[a,b],

where a = t; <ty < ... <tyo =bandy;, i =1,...,n+ 2 are given numbers, || - |2
is the Lebesgue L?[a,b] norm, and W?2[a, b] denotes the Sobolev space of functions with
absolutely continuous first derivatives and second derivatives in L?[a,b], and equipped
with the norm being the sum of the L?[a, b] norms of the function, its first, and its second
derivatives.

Using an integration by parts technique, Favard [22] and, more generally, de Boor [9]
showed that this problem has an equivalent reformulation as follows:

min {||ull| v € L*[a,b], u >0, (u,2%) =d;, i=1,...,n}, (2)

where the functions z° € L?[a,b] and the numbers d; can be expressed in terms of the
original data {t;,v;} (in fact, ' = B;(t), the B-spline of order 2 defined by the given data
and {d;} are the second divided differences of {(t;, ¥;)}**{). Under the assumption d; > 0,

1=

i =1,...,n the optimal solution u* of (2) has the form
w0 = (S x50) ®)
=1 +

where 7, := max{0,7} and {\}} satisfy the following interpolation condition:

b n
¢ \i=1 +
Once we have the solution u*, the function required by (1) can be obtained by f” = w.
This representation result was obtained first by Hornung [25] and subsequently extended
to a much broader circle of problems in [1, 16, 26, 27, 37, 38]. We briefly discuss below
both theoretically and numerically important progresses on those problems.

Theoretically, prior to [38] by Micchelli and Utreras, most of research is mainly cen-
tered on the problem (1) and its slight relaxations such as f” is bounded below or above,
see [26, 37, 27, 1, 16]. After [38] the main focus is on to what degree the solution charac-
terization like (3) and (4) can be extended to a more general problem proposed in Hilbert
spaces:

min{%||x—a:0||2\x60and Ax:b} (5)

where C C X is a closed convex set in a Hilbert space X, A : X — IR" is a bounded
linear operator, b € IR". It is easy to see that if we let

X =L*a,b], C={r € X|z >0}, Ar = ((B,2),...,{Bn,z)), 2°=0, b=d  (6)
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then (5) becomes (2). The abstract interpolation problem (5), initially studied in [38],
was extensively studied in a series of papers by Chui, Deutsch, and Ward [7, 8], Deutsch,
Ubhaya, Ward, and Xu [14], and Deutsch, Li, and Ward [12]. For the complete treatment
on this problem in the spirit of those papers, see the recent book by Deutsch [11].

Among the major developments in those papers is an important concept called the
strong CHIP [12], which is the refinement of the property CHIP [7] (Conical Hull Intersec-
tion Property). More studies on the strong CHIP, CHIP and other properties can be found
in the two recent papers [4, 3]. Roughly speaking, the importance of the strong CHIP is
with the following characterization result: The strong CHIP holds for the constraints in
(5) if and only the unique solution z* has the following representation:

r* = Po(a® + A*XY), (7)

where P¢ denotes the projection to the closed convex set C' (the closeness and convexity
guarantees the the existence of Pg), and A* is the adjoint of A, and A* € IR" satisfies the
following nonlinear nonsmooth equation:

AP(2° + A*)) = b. (8)
To see (7) and (8) recover (3) and (4) it is enough to use the fact:
Pc =z, where C = {x € L*[a,b]|z > 0}.

If the strong CHIP does not hold we still have similar characterization in which Pg
is replaced by Pg,, where C} is an extremal face of C satisfying some properties [11].
However, it is often hard to get enough information to make the calculation of P, possible,
unless in some particular cases. Hence, we mainly focus on the case where the strong
CHIP holds. We will see that the assumption d; > 0, ¢ = 1,...,n for problem (1)
is a sufficient condition for the strong CHIP, and much more than that, it ensures the
quadratic convergence of Newton’s method.

Numerically, problem (1) has been well studied [26, 27, 1, 38, 16, 18, 19]. As demon-
strated in [27] and verified in several other occasions [1, 16], the Newton method is the
most efficient compared to many other global methods for solving the equation (4). We
delay the description of the Newton method to the end of Section 3, instead we list some
difficulties in designing algorithms for (4) and (8). First of all, the equation (4) is gener-
ally nonsmooth. The nonsmoothness was a major barrier for Andersson and Elfving [1] to
establish the convergence of Newton’s method (they have to assume that the equation is
smooth near the solution (the simple case) in order that the classical convergence result of
Newton’s method applies). Second, as having been both noticed in [27, 1], in the simple
(i.e., smooth) case, the method presented in [27, 1] becomes the classical Newton method.
More justification is needed to consolidate the name and the use of Newton’s method
when the equation is nonsmooth. To do this, we appeal to the theory of the generalized
Newton method developed by Kummer [33] and Qi and Sun [40] for nonsmooth equa-
tions. This was done in [18, 19]. We will review this theory in Section 3. Third, Newton’s
method is only developed for the conical case, i.e., C is a cone. It is yet to know in what
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form the Newton method appear even for the polyhedral case (i.e., C is intersection of
finitely many halfspaces). We will tackle those difficulties against the problem (5).

The problem (5) can also be studied via a very different approach developed by Borwein
and Lewis [5] for partially finite convex programming problems:

inf {f(z)| Az € b+ Q, z€C}, 9)

where C' € X is a closed convex set, X is a topological vector space, A : X — IR" is a
bounded linear operator, b € IR", @ is a polyhedral set in R™, and f : X — (—o0, 0] is
convex. If f(z) = ||z° — z[|? and Q = {0}, then (9) becomes (5). Under the constraint
qualification that there is a feasible point which is in the quasi-relative interior of C, the
problem (9) can be solve by its Fenchel-Rockafellar dual problem. We will see in the next
section that this approach also leads to the solution characterization (7) and (8). See,
e.g., [24, 28, 30] for further development of Borwein-Lewis approach.

An interesting aspect of (9) is when @@ = IR", the nonnegative orthant of IR". This
yields the following approximation problem:

1
min{§||x0—x||2\ Az > b, xeC}. (10)

This problem was systematically studied by Deutsch, Li and Ward in [12], proving that
the strong CHIP again plays an important role but the sufficient condition ensuring the
strong CHIP takes a very different form from that (i.e., b € ri AC) for (5). We will prove
in Section 2 that the constraint qualification of Borwein and Lewis also implies the strong
CHIP. Nonlinear convex and nonconvex extension of (10) can be found in [34, 35, 36].

The paper is organized as follows: The next section contains some necessary back-
ground materials. In particular, we review the approach initiated by Micchelli and Utr-
eras [38] and all the way to the advent of the strong CHIP and its consequences. We then
review the approach of Borwein and Lewis [5] and state its implications by establishing
the fact that the nonemptiness of the quasi-relative interior of the feasible set implies
the strong CHIP. In section 3, we review the theory of Newton’s method for nonsmooth
equations, laying down the basis for the analysis of the Newton method for (5), which is
conducted in Section 4. In the last section, we discuss some extensions to other problems
such as interpolation in a strip. Throughout the paper we use the convex best interpola-
tion problem (1) and (4) as an example to illustrate the seemingly complex theory.

2 Constrained Interpolation in Hilbert Space

Since X is a Hilbert space, the bounded linear operator A : X +— IR™ has the following
representation: there exist xi,...,z, € X such that

Az = ((z1,x),..., (T, z)), VzeX.

Defining
H, ={zx € X|(z;,z) =b;}, i=1,...,n
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the interpolation problem (5) has the following appearance
: 1 0 2 . n
min { 5[l — 2’| 2 € K == 0 (e Hj) ¢ - (11)

Recall that for any convex set D C X, the (negative) polar of D, denoted by D°, is
defined by
D°:={ye X|(y,z) <0, Vz € D}.

The well-know strong CHIP is now defined as follows.

Definition 2.1 [11, Definition 10.2] A collection of closed conver sets {C1,Cy,...,Cp}
i X, which has a nonempty intersection, is said to have the strong conical hull intersec-
tion property, or the strong CHIP, if

m

(ﬂTCl — IE)O = Z(CZ — J?)O Vx € ﬂTCZ

1

The concept of the strong CHIP is a refinement of CHIP [12], which requires

(ﬂTC’, — :C)o = Z(CZ — .’E)o Vx € HTC’Z-, (12)
1

where C' denotes the closure of C. It is worth of mentioning that one direction of (12) is
automatic, that is

(NPC; —2)° 2 (Ci—z)°  VzenCi.
1

Hence, the strong CHIP is actually assuming the other direction. The importance of the
strong CHIP is with the following solution characterization of the problem (11).

Theorem 2.2 [12, Theorem 3.2] and [11, Theorem 10.13] The set {C,NTH;} has the
strong CHIP if and only if for every 2° € X there exists \* € IR™ such that the optimal
solution z* = Pk (z°) has the representation:

¥ = Po(a® + A*)\¥)
and \* satisfies the interpolation equation
APo(z° + A*X) = b.

We remark that in general the strong CHIP of the sets {C, Hy,..., H,} implies the
strong CHIP of the sets {C, N7 H;}. The following lemma gives a condition that ensures
their equivalence.

Lemma 2.3 [11, Lemma 10.11] Suppose that X is a Hilbert space and {Cy,C1,...,Cp}
is a collection of closed convex subsets such that {C4,...,Cp} has the strong CHIP. Then
the following statements are equivalent:



(i) {Co,C4,...,Cn} has the strong CHIP.
(1t) {Co,NT*C;} has the strong CHIP.

Since each Hj is a hyperplane, {H, ..., H,} has the strong CHIP [11, Example 10.9].
It follows from Lemma 2.3 that the strong CHIP of {C, Hy, ..., H,} is equivalent to that
of {C, A~1(b)}. However, it is often difficult to know if {C, A~(b)} has the strong CHIP.
Fortunately, there are available easy-to-be-verified sufficient conditions for this property.
Given a convex subset D C IR", let ri D denote the relative of D. Note that ri D # () if
D # 0.

Theorem 2.4 [11, Theorem 10.32] and [12, Theorem 3.12] Ifb € ri AC, then {C, A7'(b)}
has the strong CHIP.

Theorem 2.4 also follows from the approach of Borwein and Lewis [5]. The concept of
quasi-relative interior of convex sets plays an important role in this approach. We assume
temporarily that X be a locally convex topological vector space. Let X* denote the dual
space of X (if Xis a Hilbert space then X* = X) and N¢(Z) C X* denote the normal
cone to C at £ € C, i.e.,

Ne(z):={y e X*| {y,x —2) <0, Vo eC}.
The most useful properties of the quasi-relative interiors are contained in the following
Proposition 2.5 [5] Suppose C C X is convez, then
(1) If X is finite-dimensional then qri C = ri C.
(1) Let & € C then Z € qri C if and only if Nc(2) is a subspace of X*.
(iii) Let A: X — R™ be a bounded linear map. If qri C # 0 then A(qri C) = ri AC.

We note that (ii) serves a definition for the quasi-relative interior of convex sets. One
can find several other interesting properties of the quasi-relative interior in [5]. Although
in finite-dimensional case quasi-relative interior becomes classical relative interior, it is a
genuine new concept in infinite-dimensional cases. To see this, let X = LP[0,1], (p > 1),
C :={z € X|z > 0 a.e.}. Since C reproduces X (i.e., X = C — C), ri C = ), however,
qri C = {z € X|z > 0 a.e.}. One of the basic results in [5] is

Theorem 2.6 [5, Corollary 4.8] Let the assumptions on problem (9) hold. Consider its
dual problem

max {—(f +6(-|C))"(A"\) + '\ A € Q*}. (13)
If the following constraint qualification is satisfied

there exists an T € qri C which is feasible for (9), (14)

then the value of (9) and (13) are equal with attainment in (13). Suppose further that
(f +6(-|C)) is closed. If X\* is optimal for the dual and (f + 6(:|C))* is differentiable
at A*XN* with Gateauz derivative x* € X, then x* is optimal for (9) and furthermore the
unique optimal solution.



In (13), Q" :={y € X*| (y,xz) > 0, V= € Q}. We now apply Theorem 2.6 to problem
(11), i.e., we let

F() = glle® ~all>, @ = {0} so that Q* = R"

Obviously, in this case (9) has a unique solution since f(z) is strongly convex. For y € X*
we calculate

(f +6(1C)*(y) = sup{(y,z) — f(z) — 6(z|C)}

TeX
1
= sup{(w2) - 5llo - 2]
el

1 1
= sup{ (@, +2%) = Sl = 5112”1}
zeC

. 1 oz 1 0 2 102}
- %g{gw+xﬂ SNy +2° = all? = 5[l
1 1 1
= Sly+a%lP = Slly+2° = Pe(y+2")2 = S, (15)

It is well known (see, e.g., [38, Theorem 3.2]) that the right side of (15) is Gateaux
differentiable with
V(f +3(1C))*(y) = Poly + 2°).

Returning to (13), which is an unconstrained convex optimization problem, we know that
the optimal solution \* to (13) satisfies

AP(2° + A*)) = b
and the optimal solution to (9) is
ot = Po(z® + A*XY).

Following Theorem 2.2 we see that the sets {C, A*(b)} has the strong CHIP. In fact, the
qualification (14) is exactly the condition b € ri (AC) by Proposition 2.5, except that (14)
needs a priori assumption qri C' # ().

However, for the problem (10), where

K =Cn{z|Az > b},

the condition b € ri AC is not suitable as it might happen that b ¢ AC. It turns out that
the strong CHIP again plays an essential role in this case. Let

Hj = {z[{a;,z) > b;}.

Theorem 2.7 [13, Theorem 3.2] The sets {C,N{H;} has the strong CHIP if and only if
the optimal solution of (10) x* = Py (x°) has the following representation:

z* = Po(x™ + A™ "), (16)
where X\* is any solution of the nonlinear complementarity problem:

A>0, w:=APg(2"+ A*A) —b >0, \Tw =0. (17)



The following question was raised in [13] that if the constraint qualification (14) is a
sufficient condition for the strong CHIP of {C,N7H,}. We give an affirmative answer in
the next result.

Theorem 2.8 If it holds
qri C N (NTH,;) # 0, (18)

then the sets {C,N{H;} has the strong CHIP.
Proof. Suppose (18) is in place, it follows from Theorem 2.6 with f(z) = %Hx — 9|2
that there exists an optimal solution A\* to the problem (13). (15) says that

. 1 1 1
(f+3C1ON" (W) = lly +2°II° = Slly +2° = Poly + ) I” = S [1+°I1”
and it is Gateaux differentiable and convex [38, Lemma 3.1]. Then (13) becomes
1 1
min {§||A*)\ + 20l =S4 + 2 — Po(ATA+ 2P — 5N A > o} .

It is a finite-dimensional convex optimization problem and the optimal solution is attained.
Hence, the optimal solution \* is exactly a solution of (17) and the optimal solution of
(10) is * = Po(2° + A*)). It then follows from the characterization in Theorem 2.7 that
the sets {C,NT#;} has the strong CHIP. O

Illustration to problem (2). We recall the problem (2) and the setting in (6). From
the fact [5, Lemma 7.17]

b n
{(/ B,-a:dt) \x>0a.e.x€L2[a,b]}={r€IR”\7’Z->O,i:1,...,n}

1

and the fact qri C = {z € L*[a,b]| z > 0 a.e.}, we have
Aqri C =11 AC =int AC={reR"|r; >0,i=1,...,n}.

It follows from Theorem 2.4 or Theorem 2.6 that the solution to (2) is given by (3) and
(4), under the assumption that d; > 0 for all i. Moreover, we will see that this assump-
tion implies the uniqueness of the solution \*, and eventually guarantees the quadratic
convergence of the Newton method.

3 Nonsmooth Functions and Equations

As is well known, if F' : R™ — IR" is smooth the classical Newton method for finding
solution z* of the equation F'(z) = 0 takes the following form:

P =2k (F(ah)) P(ab) (19)
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where F' is the Jacobian of F. If F'(z*) is nonsingular then (19) is well defined near the
solution z* and is quadratically convergent. However, as we see from the previous sections
we are encountered with nonsmooth equations. There is need to develop Newton’s method
for nonsmooth equation, which is presented below.
Now we suppose that F' : IR™ — IR™ is only locally Lipschitz and we want to find a
solution of the equation
F(z)=0. (20)

Since F is differentiable almost everywhere according to Redemacher’s theorem, the Bouli-
gand differential of F' at x, denoted by 0gF'(z), is defined by

=z

OpF(z) := {V\ V = lim F'(2"), F is differentiable at xz} .

In other words, Oz F(x) is the set of all limits of any sequence {F’(z")} where F’ exists at
7' and z* — z. The generalized Jacobian of Clark [6] is then the convex hull of 0z F(x),
ie.,

OF () = co 0gF ().

The basic properties of JF' are included in the following result.

Proposition 3.1 /6, Proposition 2.6.2]
(a) OF is a nonempty convex compact subset of R™*™.
(b) OF is closed at x; that is, if x* — x, M; € OF (¢*), M; — M, then M € OF ().
(c) OF is upper semicontinuous at .

Having the object of OF, the nonsmooth version of Newton’s method for the solution
of (20) can be described as follows (see, e.g., [33, 40]).

o* =2k —VLF(2F), Vi € OF (2). (21)

We note that different choice of Vj, results in different sequence of {z*}. Hence, it is more
accurate to say that (21) defines a class of Newton-type methods rather than a single
method. It is always arguable which element in OF (z*) is the most suitable in defining
(21). We will say more about the choice with regard to the convex best interpolation
problem. We also note that there are other ways in defining nonsmooth Newton’s method,
essentially using different definitions OF (x), but servicing the same objective as OF, see,
e.g., 29, 43, 32].

Definition 3.2 We say that F is reqular at x if each element in OF (x) is nonsingular.

If F is regular at z* it follows from the upper semicontinuity of F' at z* (Prop. 3.1)
that F is regular near z*, and consequently, (21) is well defined near z*. Contrasted to the
smooth case, the regularity at * only is no long a sufficient condition for the convergence
of the method (21). It turns out that its convergence also relies on another important
property of F', named the semismoothness.



Definition 3.3 [40] We say that F' is semismooth at x* if the following conditions hold:
(i) F is directionally differentiable at x, and
(i) it holds

F(z+h)— F(x) — Vh=o(]|h]) VV € OF (z + h) and h € R". (22)

Furthermore, if
F(z+h)—F(x)-Vh=0(|h|?) VYV €0F(z+h) and h € R, (23)

F is said strongly semismooth at x. If F' is (strongly) semismooth everywhere, we simply
say that F is (strongly) semismooth.

The property of semismoothness, as introduced by Mifflin [39] for functionals and
scalar-valued functions and further extended by Qi and Sun [40] for vector-valued func-
tions, is of particular interest due to the key role it plays in the superlinear convergence
of the nonsmooth Newton method (21). It is worth of mentioning that in a largely ig-
nored paper [33] by Kummer, the relation (22), being put in a very general form in [33],
has been revealed to be essential for the convergence of a class of Newton type methods,
which is essentially the same as (21). Nevertheless, Qi and Sun’s work [40] makes it
more accessible to and much easier to use by many researchers (see, e.g., the book [21]
by Facchinei and Pang). The importance of the semismoothness can be seen from the
following convergence result for (21).

Theorem 3.4 [40, Theorem 3.2] Let x* be a solution of the equation F(z) = 0 and let
F be a locally Lipschitz function which is semismooth at x*. Assume that F' is reqular at
x*. Then every sequence generated by the method (21) is superlinearly convergent to x*
provided that the starting point x° is sufficiently close to x*. Furthermore, if F' is strongly

semismooth at x*, then the convergence rate is quadratic.

The use of Theorem 3.4 relies on the availability of the following three elements: (a)
availability of an element in OF (x) near the solution z*, (b) regularity of F at z* and, (c)
(strong) semismoothness of F' at z*. We illustrate how the first can be easily calculated
below for the convex best interpolation problem and leave the other two tasks to the next
section.

Illustration to the convex best interpolation problem. It follow from (3) and
(4) that the solution of the convex best interpolation problem can be obtained by solving
the following equation:

F(\) =d, (24)

where d = (di, . ..,d,)T and each component of F is given by

KOy = [

a

b n
(ZA@) B;t)dt, j=1,...,n. (25)
=1 +
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Irvine, Marin, and Smith [27] developed Newton’s method for (24):
A =A= (M) (FQ) - d), (26)

where A and AT denote respectively the old and the new iterate, and M(\) € R™" is
given by

M), = [

a

| (; M%)O B;(1)B;(t)dt,

and

0o __ 1 ifr>0
(T)+_{ 0 if 7 <0.

Let e denote the element of all ones in IR", then it is easy to see that the directional
derivative of F' at A\ along the direction e is

F'(\ e) = M(Ne.

Moreover, if F' is differentiable at A then F'(\) = M()). Due to those reasons, the itera-
tion (26) was then called Newton’s method, and based on extensive numerical experiments,
was observed quadratically convergent in [27]. Independent of [27], partial theoretical re-
sults on the convergence of (26) was established by Andersson and Elfving [1]. Complete
convergence analysis was established by Dontchev, Qi, and Qi [18, 19] by casting (26)
as a particular instance of (21). The convergence analysis procedure verifies exactly the
availability of the three elements discussed above, in particular, M (\) € 0F(\). We will
present in the next section the procedure on the constrained interpolation problem in
Hilbert space.

4 Newton’s Method and Convergence Analysis

4.1 Newton’s Method

We first note that all results in Section 2 assume no other requirements for the set C' except
being convex and closed. Consequently, we are able to develop (conceptual, at least)
Newton’s method for the nonsmooth equation (8). However, efficient implementation of
Newton’s method relies on the assumption that there is an efficient way to calculate the
generalized Jacobian of APc(z). The most interesting case due to this consideration is
when C is a closed convex cone (i.e., the conical case [5]), which covers many problems
including (1). We recall our setting below

X = L*a,b], C={z € X|z >0}, Az = ({a1,2),...,{an,z)), b € R"

where a, € X, ¢ = 1,...,n (in fact we may assume that X = LP[a,b], in this case
ag € LYa,b] where 1/p+ 1/q = 1). This setting simplifies our description.
We want to develop Newton’s method for the equation:

APo(z® + A*X) = b.

11



Taking into account of the fact Po(z) = x4, we let
FA)—-b=0 (27)

where each component of F': R™ — IR" is given by

FJ(/\) = (aj, (.730 + i ag)\g)+>. (28)

=1

We propose a nonsmooth Newton method (in the spirit of Section 3) for nonsmooth
equation (27) as follows:

VINAT =X =b—F()\), V(A) € OF(A). (29)
One of several difficulties with the Newton method (29) is to select an appropriate matrix

V(A) from OF()\), which is well defined as F' is Lipschitz continuous under Assumption
4.1 stated later. We will also see the following choice satisfies all the requirements.

VO, = [ ’ <a:0 s AM>O aa;dt. (30)

=1 4

We note that for 5 € R"

n 0 /n 2
ﬁTV(/\)B = /b (330 + Z )\@G@) (Z ﬂe@g) dt > 0. (31)
a =1 + M=1

That is, V() is positive semidefinite for arbitrary choice A € R". We need an assumption
to make it positive definite. Let the support of a; be

supp(ae) := {t € [a, 0] |a,(t) # 0}.
Assumption 4.1 FEach a, is continuous, and any subset of functions
{ae, 0 € T C{1,...,n}|supp(a;) N supp(a;) # O for any pair i,j € I},
are linearly independent on Ugersupp(ag). Moreover,
U=y supp(ac) = [a, b].

This assumption is not restrictive. Typical choices of a, are {a; = t'} or {a; = B;}.
With Assumption 4.1 we have the following result.

Lemma 4.2 Suppose Assumption 4.1 holds. V() is positive definite if and only if (x° +
Y oio1 Aeag)+ does not vanish identically on the supporting set of each ag, £ =1,...,n.
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Proof. Suppose that (z° + 7, A\eag); is nonzero on each supp(ay). Due to the
continuity of (z° + ¥}, M\ear) and ay, there exists a Borel set €, C supp(ay) such that
(2% + 371 Aeag)® =1 for all t € Q; and the measure of Q is not zero. Let

Z() == {j| supp(az) N Qe # 0}.
Since {a;|j € Z(Q)} are linearly independent, 7V (A)8 = 0 implies 8; = 0 for all
J € Z(£2,). We also note that
U Z(Q) = {1,...,n}.

We see that 3; =0 forall j =1,...,nif 37V ()\)3 = 0. Hence, (31) yields the positive def-
initeness of V' (\). The converse follows from the observation that if (z°+ 37, Adag)+ =0
on supp(as) for some ¢ then STV (\)B =0 for § € R™ with 8, = 1 and §; = 0 for j # .
O

Due to the special structure of V(A), Newton’s method (29) can be simplified by
noticing that

b n
FJ()\) = /a <$O+Z)\ea5) ajdt
+

=1

b n 0 n
= / <x° + Z )\[CL[) (:130 + Z )\gd@) a;dt
¢ + +

=1 =1
n b n 0
= Z )\g(V()\))je + / (l’o + Z )\@G@) ajfvod(t).
=1 a =1 +
Thus we have .
FA)=VM)A+ A ((zo +> )\gd@) x()) :
=1 +
Recalling (29) we have

=1 +

vum+:b—A<Gﬁ+ﬁpwaoﬁ). (32)

A very interesting case is when 2° = 0, which implies that no function evaluations are
required to implement Newton’s method, i.e, (32) takes the form V(A)AT = b.

Other choices of V(A) are also possible as 0F()\) usually contains infinitely many
elements. For example,

i b n 0 1 ifr>0
— 0 o 0 ._ >
(V(/\))Z_j .—/a ((:c +e:zl)\gag> aia;dt, and (1) := { 0 ifr <o
It is easy to see that B7V(A\)B > BTV(A)B for any B € IR™. This means that V())
“increases the positivity” of V(1)) in the sense that V(A) — V()) is positive semidefinite.
The argument leading to (32) also applies to V()). We will show below that both V'())
and V()) are contained in 0F()).
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4.2 Splitting and Regularity

We now introduce a splitting technique that decomposes the (nonsmooth) function F
into two parts, namely F'* and F'~, satisfying that F'* is continuously differentiable at
the given point and F'~ is necessarily nonsmooth nearby. This technique facilitates our
arguments that lead to the conclusion that V(\) belongs to OF()\) and pave the ways
to study the regularity of F at the solution. For the moment, we let A be our reference
point. Let

TR = {t € o, 8] 2° + eg_j Sar =04, T = [a, 0]\ T(R).

Due to Assumption (4.1), T'(\) contains closed intervals in [a, b], possibly isolated points.
For j =1,...,n, define

Ff(X) ::/__ <x0+2/\gag> ajdt, F;(}) ::/ ) ($O+Z)\gag> a;dt,
®) =), 7(3) .

T =1
and
FY\) == (FFN), .., EXONT, F-(\) == (Fy (), ..., F, (\)T.
It is easy to see that
F(\) =Ft(\)+ F~(\).

It is elementary to see that the vector-valued function F'* is continuous differentiable in a
neighborhood AV (A) of A. Then from the definition of the generalized Jacobian we obtain
that for any A € N()),

OF(\) = VET(\) + 0F (), (33)

where VFEF*()) denotes the usual Jacobian of F'™ at A\. More precisely,

(VFJ’(/_\))_, = /T(,\) (mo + i 5\&@)0 a;a;dt. (34)

Y =1 4

Since n
.’EO + Z;\az = 0 fOI' all t € T(j\)a

=1
(34) can be written as

0

(VF“L(/_\))” = /ab (aco + Ei /_\ag> a;a;dt =V (N). (35)

%]
+

Regarding to F'~ we need following assumption:

Assumption 4.3 There ezists a sequence of {\*} in IR™ converging to zero such that the
sum Y7 My is negative on [a, b] for all N

This assumption also holds if each of a, is nonnegative or nonpositive.

14



Lemma 4.4 For any A € R™ every element in OF () is positive semidefinite. Moreover,
if Assumption 4.8 holds then the zero matriz belongs to OF ().

Proof. We denote

n
Y= (CUO +> /\eae> XT(3)
=1 +

where X3 is the characteristic function of the set T'(\). In terms of y, F'~ can be written

as F'~(A\) = Ay. Since T'()) consists of only closed intervals, without loss of generality we

assume T'()) is a closed interval. Let
C:={z e LX(T(N)|z>0}.

Then we have L2[a,b] C L2(T())) since (T(N)) C [a, b]. Define

n 2 n 2
= 0 A dt = Po(a° A dt.
9()\) /T()\) <.T +ezzl zag) /T(A) ( c(x + 2 gd@))

+ =1

According to [38, Lemma 2.1], 6()\) is continuously Gateaux differentiable and convex.
Moreover,
Vo) = Ay = F~()\).

Therefore, any matrix in the generalized Jacobian of the gradient mapping (which is re-
quired to be Lipschitz continuous) of a convex function must be positive semidefinite, see,
for example, [31, Proposition 2.3]. Now we prove the second part. Suppose Assumption
4.3 holds for the sequence {\¥} which converges to zero. Then F~(\+ A¥) is differentiable

because
n

> A+ X)ar, <0 forallt € T(X) and 7 > 0.

=1
Hence,
lim VE~(A+A\F) =0 € aF~ ().

k—o00

We then have

Corollary 4.5 For any A € R", V(X\) € OF(\).

Proof. It follows from Lemma 4.4 that 0 € 0F()) and from (35) that V()\) =
VF*()\). The relation (33) then implies V/(\) € F()). Since A is arbitrary we are done.
O

We need another assumption for our regularity result.

Assumption 4.6 b, #0 forall ¢ =1,...,n.

15



Lemma 4.7 Suppose Assumptions (4.1), (4.3) and (4.6) hold and let \* be the solution
of (27). then every element of OF (\*) is positive definite.

Proof. We have proved that
OF(N)=0F (\)+ VFT(\) =0F (\) +V()\)

and every element in OF~(\*) is positive semidefinite. It is enough to prove VF*(\*) is
positive definite. We recall that at the solution

b n
bi = F’,()\*) = / (330 -+ Z )\?G@) aidt, Vi = 1, ..,
a =1 +

The assumption (4.6) implies that (z° + 37, Aja,), does not vanish identically at the
support of each a;. Then Lemma 4.2 implies that VFT(A*) = V(A*) is positive definite. O

Illustration to problem (2). An essential assumption for problem (2) is that the
second divided difference is positive, i.e., d; > 0 for all + = 1,...,n. Hence, Assumption
(4.6) is automatically valid. It is easy to see that Assumptions (4.1) and (4.3) are also
satisfied for B-splines. It follows from the above argument that the Newton method
(26) is well defined near the solution. However, to prove its convergence we need the
semismoothness property of F', which is addressed below.

4.3 Semismoothness

As we see from Theorem 3.4 that the property of semismoothness plays an important
role in convergence analysis of nonsmooth Newton’s method (21). In our application it
involves functions of following type:

2 = [ "o\ )t (36)

where ¢ : IR X [a,b] — IR is a locally Lipschitz mapping. The following development is
due to D. Ralph [41] and relies on a characterization of semismoothness using the Clarke
generalized directional derivative.

Definition 4.8 [6/ Suppose ¢ : R™ — IR is locally Lipschitz. The generalized directional
derivative of v which, when evaluated at \ in the direction h, is given by

¥°(A; h) := limsup Y(B +dh) — w(ﬂ)

B—A 5
510

The different quotient when upper limit is being taken is bounded above in light of
Lipschitz condition. So ¥°(A; h) is well defined finite quantity. An important property of
1)° is that for any h,

$°(A; h) = max{(¢, )| & € OP(A)}. (37)

We now have the following characterization of semismoothness.
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Lemma 4.9 [{1] A locally Lipschitz function v : R"® — IR is semismooth at \ if and
only if ¥ s directionally differentiable and

Y () + ¥ (A= X) = ¥() < of|A = A]), and )
Y = 0 =2+ ) = (1) > o([]A = A]).

The equivalence remains valid if the inequalities are replaced by equalities.

Proof. Noticing that (37) implies —¢°(), —h) = mingegyn) 7€, the conditions in
(38) are equivalent to

D(A) + [=° (N = A+ A), 9 (A A = A)] =9 (A) = o([[]A = All).

Combining with the directional differentiability of ¢, this set-valued equation clearly
implies the semismoothness of 1) at A because for any & € 0i()\), we have

E'A=A) € [=° (A=A + A), (A A = A)].

Conversely, if 1 is semismooth at A then for any A we take an element ¢ € 9Y(\) (respec-
tively) to obtain

PAA=A) =N = X)  (respectively — °(X; =X+ A) = X (=X + V).

The existence of such £ follows from compactness of 0v(A). Then the required inequalities
follows from the semismoothness of ¢ at . O

Now we have our major result concerning the function in (36).

Proposition 4.10 [41] Let ¢ : R™ x [0,1] — R. Suppose for every t € [0,1] ¢(-,t) is
semismooth at A € R"™. Then ® defined in (36) is also semismooth at \.

Proof. The directional differentiability of ® follows from the first part of [18, Propo-
sition 3.1]. Now we use Lemma 4.9 to prove the semismoothness of ®. To this purpose it
is enough to establish the following relation:

[ (8000 +6°((0,8: (= 2,0) — 6(3,) dr = o(|1A ~ Al). (39)

This implies B B
D(A) = (A A= A) = () < of[[A = All)

because the first principles give
_ 1 _
O"(NA =) < [ 671 (A= A, 0))a
0

If in (39) we replace ¢°((),1); (A=A, 0)) by —¢°((\, t); (=A+A, 0)) and follow an argument
that is almost identical to the subsequent development, we obtain the counter condition

D(A) = (N —A+A) — B(A) = o(|[A = All)

17



and the proof is sealed in Lemma 4.9.
Now let U be the closed unit ball in IR™ and

e(y)=oy)+¢°(y;-—y) —6(), yelR"xI0,1].

Let € > 0 we will find § > 0 such that if A € A + 6U then

A%«X@(&ﬂﬂtgﬁA—ML

Since € can be made arbitrarily small, verifying existence of ¢ is equivalent to verifying
(39).
For any 6 > 0 let

A@%:{temJHdQJ)QtD S - M|VA€A+5U}
For each \ € IR™ the mapping ¢ — e((\, 1), (A, 1)) is measurable, hence the set

{t (0. 000) < SIA= A1

is also measurable. Thus, A(J), the interior of measurable sets, is itself measurable.
Obviously, A(§) C A(¢") if § > ¢§'. And for fixed t € [0, 1], semismoothness gives, via

Lemma 4.9, that ~
€2, 1), 1)
[[A = Al

i.e., for all small enough § > 0, t € A(J).

Let Q(0) := [0,1] \ A(6). The properties of A(J) yields (a) measurability of £2(d),
(b) Q(6) 2 Q(d") if § > ¢', and (c) for each t and all small enough 6 > 0, t ¢ Q(4). In
particular, Ns~€2(6) = @ and it follows that the measure of Q(d), meas(2(9)), converges
to0as d — 0.

Let L be the Lipschitz constant of ¢ in a neighborhood of (},0), so that for each A
near A\,

—0as0#A—\—0,

6N 1) — o\ )] +19°(A, 1); (A = A, 0))]

e((X,0), (A1) < ;
< 2L|A-X,0)] = 2L]A -]

using the 2-norm. To sum up,

A%“XUJ&ﬂMt

(/ /'> 1), (A, 1)dt

(A
(2L||A — A||)meas(£2(d

< )) + (IX = Alle/2)meas(A(d))
< ||A = A||(2Lmeas(2(d)) + €/2).
Choose 0 > 0 small enough such that meas(Q2(J)) < ¢/(4L), and we are done. O
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Corollary 4.11 Under Assumption 4.1, the functions F; defined in (28) are each semis-
mooth.

Proof. For each ¢ € [a,b], the mapping ¢, : R" — IR by

By 1) = a; ()@ + 3 Aeae) 4
=1

is piecewise linear with respect to A, and hence is semismooth. Then Proposition 4.10
implies that each F; defined in (28) is semismooth since Fj(A) = [? ¢;(), t)dt. O

Now we are ready to use Theorem 3.4 of Qi and Sun [40] to establish the superlinear
convergence of the Newton method (29) for the equation (27).

Theorem 4.12 Suppose that Assumptions (4.1), (4.8) and (4.6) hold. Then Newton’s
method (29) for (27) is superlinearly convergent provided that the initial point \° is close
enough to the unique solution \*.

Proof. Three major elements for the use of Theorem 3.4 have been established: (i)
V(A) € OF()) for any A € R" (see, corollary 4.5), (ii) F is regular at A\* (see, Lemma
4.7), and (iii) F' is semismooth since each Fj is semismooth (see, Corollary 4.11). The
result follows the direct application of Theorem 3.4 to the equation (27). O

Illustration to (26). The superlinear convergence of the method (26) is a direct
consequence of Theorem 4.12 because all the assumptions for Theorem 4.12 are satisfied
for the convex best interpolation problem (1). This recovers the main result in [18].
Refinement of some results in [18] by taking into account of special structures of the
B-splines leads to the quadratic convergence analysis conducted in [19].

4.4 Application to Inequality Constraints
Now we consider the approximation problem given by inequality constraints:

K =Cn{z|Az < b}.

Under the strong CHIP assumption, we have solution characterization (16) and (17),
which we restate below for easy reference.

A>0, w:=APc(z° + A*)) —b >0, X'w=0. (40)

Again for computational consideration we assume that C' is the cone of positive functions
so that Po(xz) = z,. Below we design Newton’s method for (40) and study when it is
superlinearly convergent. To do this, we use the well-known Fischer-Burmeister NCP
function, widely studied in nonlinear complementarity problems [23, 42], to reformulate
(40) as a system (semismooth) equations.
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Recall the Fischer-Burmeister function is given by
drp(a,b) :=a+b—Va?+ b2
Two important properties of ¢rp are
¢rB(a,0) =0 <= a>0,b6>0, ab=0
and the square ¢% 5 is continuously differentiable, though ¢y is not differentiable. Define

¢FB(/\1; wl)
(I)FB()\; ’UJ) =
d’FB()\na wn)
and

WA, w) = ( APt —;Bf(l/\)\z)u T b ) |

Then it is easy to see that (40) is equivalent to the nonsmooth equation
W (A w) = 0.
Since W is locally Lipschitz, direct calculation gives

vy o I V() € 9F(\)
W (A, w) € {( DO\ w) E(\w) ) | DO\ w), B\ w) satisfy (42) and (43) [+ (4D
D(\,w) and E(\, w) are diagonal matrices whose ¢/th diagonal element is given by

N
| (Xe, we)||’

We

Dy(A,w) =1~ 11y we) ||

E/\w):=1- (42)

if (Ag, we) # 0 and by
Dy(A\w) =1—&, Ef(A\w) =1~ py Y(&, pe) € R? such that ||(&, pe)|| < 1 (43)
if (/\g, ’wg) =0.

Lemma 4.13 Suppose every element V(X) in OF()\) is positive definite. Then every
element of OW (A, w) is nonsingular.

Proof. Let M (), w) be an element of the right side set in (41) and let (y, z) € IR*"
be such that M(y,z) = 0. Then there exist V(\) € dF()\) and D(\, w) and E(\, w)
satisfying (42) and (43) such that

V(N)y—2=0 and D\, w)y+ E(\,w)z=0.
Since V() is nonsingular, it yields that

(DV~'+ E)z =0.
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It is well known from the NCP theory [10, Theorem 21] that the matrix (DV~! + E) is
nonsingular because V! is positive definite according to the assumption. Hence, z = 0,
implying y = 0. This establishes the nonsingularity of all elements in OW (A, w). a

Newton’s method for (40) can be developed as follows
AT, wh) — (N w) = -MW(\w), MedW(\w). (44)

We have proved that each F} is semismooth (Corollary 4.11). Using the fact that compos-
ite of semismooth functions is semismooth and the Fischer-Burmeister function is strongly
semismooth, we know that T is semismooth function. Suppose (A*,w*) is a solution of

(40).
Assumption 4.14 FEach b, >0 for{=1,...,n.

Lemma 4.15 Suppose Assumption (4.1), (4.3) and (4.14) hold. Then every element in
OW (X*, w*) is nonsingular.

Proof. We note that at the solution it holds
AP (2% + A* M%) = b+ w*.

Since w; > 0, we see that by + w; > 0. Following the proof of Lemma 4.7 we can prove
that each element V' in OF(\*) is positive definite, and hence each element of OW (\*, w*)
is nonsingular by Lemma 4.15. O

All preparation is ready for the use of Theorem 3.4 to state the superlinear convergence
of the method (44). The proof is similar to Theorem 4.12.

Theorem 4.16 Suppose Assumptions (4.1), (4.8) and (4.14) hold. Then the Newton
method (44) is superlinearly convergent provided that the initial point (A\°,w®) is suffi-
ciently close to (\*, w*).

We remark that the quadratic convergence is also possible if we could establish the
strong semismoothness of W at (A*, w*). A sufficient condition for this property is that
each F} is strongly semismooth since the Fischer-Burmeister function is automatically
strongly semismooth.

4.5 Globalization

In the previous subsections, Newton’s method is developed for nonsmooth equations aris-
ing from constrained interpolation and approximation problems. It is locally superlinearly
convergent under reasonable conditions. It is also worth of mentioning it globalization
scheme that makes the Newton method globally convergent.
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The first issue to be resolved is that we need an objective function for the respective
problems. Natural choices for objective functions are briefly described below with out-
line of an algorithm scheme, but without global convergence analysis. It is easy to see
(following discussion in [38, 18]) that the function f given by

n 2 n
f()\) = /b <x0 + ZZ )\1{&@) dt — ZZ /\gbg
a —1 —1

+

severs this purpose because
V(A =F(\) —b.

Since f is convex, ||V f(A)|| = ||F()\) —b|| can be used to monitor the convergence of global
methods. We present below a global method, which globalizes the method (29) and has
been shown extremely efficient for the convex best interpolation problem (1).

Algorithm 4.17 (Damped Newton method)

(S.0) (Initialization) Choose \° € R™, p € (0,1),0 € (0,1/2), and tolerance tol > 0.
k:=0.

(S.1) (Termination criterion) If ¢, = ||F(A\*) —d|| < tol then stop. Otherwise, go to (S.2).

(S.2) (Direction generation) Let s* be a solution of the following linear system

(VN®) + e,1)s = =V f(AF). (45)
(S.8) (Line search) Choose my, as the smallest nonnegative integer m satisfying
FOE + pms) — FOF) < 0p™V F(F)TsE. (46)
(S.4) (Update) Set Net1 = Nk + pmegk k.= k + 1, return to step (S.1).

Since V() is positive semidefinite, the matrix (V' (A)+€l) is positive definite for € > 0.
Hence the linear equation (45) is well defined and the direction s* is a descent direction for
the objective function f. The global convergence analysis for Algorithm 4.17 is standard
and can be found in [19].

Globalized version for the method (44) can be developed as well, but with some notable
differences. To this case, the objective function f(\, w) is given by

fvw)= [

a

n 2 n
<$O+Z)\ga4> dt =" Xe(b+w) + || @rs(A, w)]%.
=1

+ =1

This function is also continuously differentiable, but not convex because | ®rp(\, w)||? is
not convex although continuously differentiable. We also note that the gradient of f(\, w)
is not W (A, w) any more. A global method based on f can be developed by following the
scheme in [10].
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5 Open Problems

It is obvious from Section 2 and Section 4 that there is a big gap between theoretical
results and Newton-type algorithms for constrained interpolation problems. For example,
the solution characterizations appeared in Theorems 2.2, 2.6, and 2.7 are for general
convex sets (i.e., C' is a closed convex set), however, the Newton method well-developed
so far is only on the particular case yet the most important case that C' is the cone of
positive functions. This is due to the fact that the projection is an essential ingredient
when solving the interpolation problem, and that the projection on the cone of positive
functions is easy to calculate.

There are many problems that are associated to the projections onto other convex sets
including cones. We only discuss two of them which we think are most interesting and
likely to be (at least partly) solved by the techniques developed in this paper. The first
one is the case that C is a closed polyhedral set in X, i.e.,

C={reX|{cz)y<r, i=1,...,m}

where ¢; € X and r; € IR. We note that cones are not necessarily polyhedral. It follows
from [11, Examples 10.7 and 10.9] that the sets {C,NH,} and {C,"#;} both have strong
CHIP. Hence the solution characterization theorems are applicable to the polyhedral case.
Questions related to Py include differentiability, directional differentiability, generalized
Jacobian and semismoothness of the mapping AP, and most importantly how to design
Newton’s method for this case.

The second is the problem of interpolating a finite set of points with a curve constrained
to lie between two piecewise linear splines (with knots at the abscissae of the given points).
The objective is to minimize the 2-norm of the second derivative of the interpolant. Let
(t;, y;) be given data points in IR? with

o <t <...<1y, ¢(t1)<yz<¢(tz) forizl,...,n.

Hence ¢ and 1) are given piecewise linear functions (or more generally lower and upper
semicontinuous functions, respectively) such that

inf (4(f) — (t)) > 0.

tefto,tn]

The constraint is X
C = {z € W*[tg, t]| (1) < 2(t) < (1)}

and
H :={z € W*[to,t,]| v(t;) = ys, 1=1,...,n}.

This problem can be reformulated as a constrained interpolation problem from a convex
set in certain Hilbert space [15, 2]. Questions similar to that for the first problem remain
unsolved for this interpolation problem from a strip.

Acknowledgment. The author would like to thank Danniel Ralph for his construc-

tive comments on the topic and especially for his kind offer of his material [41] on semis-
moothness of integral functions being included in this survey (i.e., Sec. 4.3). It is also
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interesting to see how his approach can be extended to cover the strongly semismooth

case.
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