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Abstract

Correlation stress testing is employed in several financial models for determining the
value-at-risk (VaR) of a financial institution’s portfolio. The possible lack of mathemati-
cal consistence in the target correlation matrix, which must be positive semidefinite, often
causes breakdown of these models. The target matrix is obtained by fixing some of the cor-
relations (often contained in blocks of submatrices) in the current correlation matrix while
stressing the remaining to a certain level to reflect various stressing scenarios. The com-
bination of fixing and stressing effects often leads to the mathematical inconsistence of the
target matrix. It is then naturally to find the nearest correlation matrix to the target matrix
with the fixed correlations unaltered. However, the number of fixed correlations could be
potentially very large, posing a computational challenge to existing methods. In this paper,
we propose an unconstrained convex optimization approach by solving one or a sequence of
continuously differentiable (but not twice continuously differentiable) convex optimization
problems, depending on different stress patterns. This research fully takes advantage of the
recently developed theory of strongly semismooth matrix valued functions, which makes fast
convergent numerical methods applicable to the underlying unconstrained optimization prob-
lem. Promising numerical results on practical data (RiskMetrics database) and randomly
generated problems of larger sizes are reported.

AMS subject classifications. 49M45, 90C25, 90C33

1 Introduction

Stress testing, an important tool to “gauge how the value of an institution’s portfolio of securities
and derivatives will be affected by large movements in, say, stock prices or exchange rates”
(Fender, Gibson, and Mosser 2001), is conducted on a regular basis by financial institutions.
One common feature of the stress test in several financial models, such as the covariance VaR
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and the Monte Carlo VaR models (Alexander 2001, Section 9.6), is to determine the value-at-risk
(VaR) of a bank’s portfolio via the stressed covariance matrices.

Covariance matrix based stress testing is often known as the correlation stress testing because
of the way that the stress is reflected. Suppose that V is the current estimated covariance
matrix based on historical data. By decomposing V as V = DCDT , where D is a diagonal
matrix with positive entries representing volatilities and C is the correlation matrix1, one can
stress volatilities (perturbing the diagonal terms of D) separately from stressing correlations
(Kupiec 1998). However, unlike the diagonal matrix D, alterations in the correlation matrix
C may cause breakdown of the underlying VaR models because the newly formed correlation
matrix, denoted by Ĉ and is often referred to in the literature as the target correlation matrix,
is no longer guaranteed to be positive semidefinite, an essential mathematical property that any
covariance/correlation matrix must satisfy. Finger (1997) illustrated this, in association with
the covariance VaR model in RiskMetrics, by constructing an example.

The obstacle in conducting correlation stress testing is due to the fact that there are several
desirable properties including the positive semidefiniteness that the target correlation matrix Ĉ
must possess simultaneously. One such situation is the case that some of the correlations in Ĉ
should be kept unchanged. To see why this is so in reality, let us consider a portfolio consisting
of n assets {s1, . . . , sm, sm+1, . . . , sn}. Then the current estimated correlation matrix C takes

the form C =
( C1 C2

C T
2 C3

)
, where C1 ∈ IRm×m is the correlation matrix corresponding to the

first group of assets {s1, . . . , sm}, C3 ∈ IR(n−m)×(n−m) is the correlation matrix for the second
group of assets {sm+1, . . . , sn}, and C2 ∈ IRm×(n−m) is the cross-group correlation matrix that
contains correlations between every pair of si and sj , with si in the first group and sj in the
second group.

Suppose now that we aim to conduct stress testing on the assets in the second group of our
portfolio by changing correlations in C3 to form a new symmetric matrix Ĉ3

2. Of course, not all
correlations in C3 are necessarily subject to change. While the correlations in C2 may or may not
be changed depending on different situations, the ones in C1 should not be altered (see Finger
1997 for a concrete example consisting of four Asian currencies and three non-Asian currencies).

The target correlation matrix Ĉ should therefore take the form Ĉ =
( Ĉ1 Ĉ2

Ĉ T
2 Ĉ3

)
with Ĉ1 =

C1 and/or Ĉ2 = C2 . However, when Ĉ2 is not properly selected (e.g., Ĉ2 = C2), the matrix
Ĉ may fail to be positive semidefinite even if Ĉ3 is positive (semi)definite. This phenomenon
will lead to physically infeasible negative volatilities of some assets if Ĉ were used to calculate
the VaR of a portfolio. So, immediately a replacement matrix X for Ĉ has to be introduced.
In order to compute a meaningful VaR under the stress test, this replacement must be positive
(semi)definite and in the meantime captures the stress information in Ĉ3. An intrinsic question
then arises: what is the best replacement and in what sense? The main purpose of this paper is

1A real symmetric matrix is called a correlation matrix if it is positive semidefinite and all its diagonal entries
are ones.

2Each financial institution has its own views on how bC3 can be forecasted. We will not address this issue here.
Rather we focus on calibrating improperly stressed correlation matrices.
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to answer this question.

Many authors from the finance industry and the academia (Finger 1997, Kupiec 1998, Re-
bonato and Jäckel 2000, Bhansali and Wise 2001, Rapisrada, Brigo, and Mercurio 2000, León et
al. 2002, Turkey, Epperlein, and Christofides 2003, Dash 2004, to name only a few) have consid-
ered the correlation stress testing problem in different scenarios by adding various constraints
on the replacement matrix X. The constraints in these scenarios may look rather different.
But, they actually can be classified and completely captured through the following three types
of constraints.

(H1) All of the diagonal elements of X must be 1,

(H2) X has to be positive semidefinite (mathematical consistence), and

(H3) Xij = Ĉij for some indices (i, j) ∈ B, where the index set B specifies the locations of the
fixed correlations.

Sometimes, we need the positive definiteness constraint, which replaces (H2):

(H2′) X is positive definite.

Constraints (H1) and (H2) together ensure that X is a correlation matrix. Constraint (H3)
simply specifies those correlations that are not allowed to change. The index set B may assume
various forms. The positive definiteness constraint (H2′) is particularly important in methods
where it is used of the inverse of a covariance matrix, e.g., RiskMetrics VaR model using con-
ditional covariance matrix (RiskMetrics document 1996, Page 185) or the Cholesky factor of a
covariance matrix, e.g., the Monte Carlo VaR model (Alexander 2001, Section 9.4).

As mentioned above, there are a few available methods known to the finance community
to select a replacement matrix X satisfying some/all of the constraints. For example, ignoring
the fixed element constraint (H3), the hyperspherical decomposition method of Rebonato and
Jäckel (2000) and its modified variant by Bhansali and Wise (2001) and Kercheval (2006) try to
find the nearest correlation matrix to Ĉ (measured in the Frobenius norm of matrices). See also
Chapters 23 and 24 in Dash (2004) for more treatments on this case. However, the resulting
optimization problem is highly nonlinear and nonconvex3. The shrinkage method of Kupiec
(1998) and the sequential single-stress method of Turkey, Epperlein, and Christofides (2003),
where the case Ĉ1 = C1 and Ĉ2 = C2 is formally referred to as the local correlation stress testing,
both are capable of handling the constraints (H1)-(H3), but, as commented by Rebonato and
Jäckel (2000) that “there is no way of determining to what extent the resulting matrix is optimal
in any easily quantifiable sense”4. Finger’s method as well as other spectral decomposition based
methods proposed in those studies also suffer similar drawbacks.

3The hyperspherical decomposition method can be adapted to incorporate the constraint (H3), but it would
lead to a nonlinearly constrained nonconvex optimization problem, which is often very difficult to solve for a
global solution.

4The comment is only on the shrinkage method, but it apparently applies to the sequential single-stress method.
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On a parallel development in matrix analysis and optimization research, there also exist a
number of successful methods of finding the nearest correlation matrix to a given matrix. Those
methods include the alternating projection method of Higham (2002), quasi-Newton methods
of Malick (2004) and Boyd and Xiao (2005), Newton’s method of Qi and Sun (2006), and the
inexact primal dual path-following method of Toh, Tütüncü, and Todd (2006). Although all of
those methods are conceptually applicable to handle the fixed element constraint (H3), theory
and numerical experiment are mainly developed to address the constraints (H1) and (H2). The
general consensus in those studies is that the nearest correlation matrix problem of satisfying
(H1) and (H2) can be efficiently solved even when n is moderately large. However, the presence
of the fixed correlation constraint (H3) may cause a great deal of difficulty to existing methods.

The first issue that has to be dealt with is the feasibility problem. If the fixed correlations
are not from an existing positive correlation matrix there may not even exist a true correlation
matrix satisfying the fixed correlations (e.g., the problem is not well posed). This is why we
assume that the current correlation matrix C is positive definite5. The second issue is the
extra computational complexity that the fixed correlation constraint may bring to a already
very difficult problem when n is large. For some cases, this extra complexity may not cause
too much concern. The commonly studied local correlation stress testing in Turkey, Epperlein,
and Christofides (2003), for example, can be reduced to a nearest correlation matrix via the
Schur complement decomposition technique. Therefore, the extra complexity can be removed
for this case. However, for many other cases this extra complexity has to be dealt with directly
or indirectly. Furthermore, the total number, which is sometimes very large and is denoted
by κ(B), of the fixed correlations alone is not an accurate indicator for the complexity. The
structure of B (i.e., whereabouts of those fixed correlations) seems to be another attribute in the
complexity. Therefore, in this paper we mainly address the case where the stressed correlations
have band structure, which is equivalent to say B is contained in a fixed diagonal square block.
The major reason for considering this case is that theory and algorithms can be developed nicely
and can be readily extended to more general cases. The third issue is whether or not a large
number of fixed correlations may cause loss of the quadratic convergence of Newton’s method
developed for the case without the fixed correlation constraint.

To put it in another way, in correlation stress testing we face a task that requires to construct
a correlation matrix with a large number of pre-fixed elements. On top of this, one is to seek
such a correlation matrix that is nearest to a given target matrix (measured in the Frobenius
norm here and throughout the paper). Moreover, we need a fast algorithm to accomplish the
task. Combination of all of those features gives rise to a very challenging task.

The main purpose of this paper is to solve this challenging problem via an unconstrained
optimization approach, which refers to either the Lagrangian dual approach or the augmented
Lagrangian dual approach, depending on different situations in the correlation stress testing.
Roughly speaking, the Lagrangian dual approach is for the case when κ(B) is relatively small
and the augmented Lagrangian dual approach is for the case when κ(B) is relatively large.

5In practice, C may not be positive definite due to various reasons including insufficiency of historical data
and numerical truncations. To make sure that the fixed correlations do come from a positive definite correlation
matrix, Algorithm 3.1 (with τ > 0) will be used to achieve this purpose at a very low cost.
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Considerable part of this paper is devoted to modelling and methodology. In the modelling
part, we formulate the correlation stress testing problem via convex optimization techniques,
distinguishing several interesting cases from each other (Section 2). In the methodological
part, we describe in details how the Lagrangian dual method (Section 3) and the augmented
Lagrangian dual method (Section 4) can be developed to solve the modelled convex optimization
problems. At the core of either of the approach is the quadratically convergent Newton method
(Algorithm 3.1), which involves heavy calculations to reach formulae necessary for its numerical
implementation and is only made possible due to recent advances on the theory of strongly
semismooth matrix valued functions. We include the calculation as well as some theoretical
proofs in Appendices (Appendix A, B, and C).

The purpose of this arrangement is threefold. Firstly, for readers who are familiar with the
Lagrangian and augmented Lagrangian theory, the methodological part clearly shows what the
best of the theory we can have when coming to the correlation stressing testing. Secondly, for
readers who are not very familiar with the theory, the minimal coverage of the methodology
provides sufficient material to understand it without having to referring to a vast number of
related references. Last but not least, for practitioners who may be only interested in how
to use the methodology proposed here, we provide concrete algorithms (Algorithm 3.1 and
Algorithm 4.3) and formulae (Appendix A) to make it easier for them to adapt the companion
MATLAB codes (available at http://www.math.nus.edu.sg/∼matsundf) to their own correlation
stress testing problems. We hope that the superb numerical evidence reported in this paper,
backed by strong theoretical convergence results, may lead to further research on this important
topic and relieve practitioners from spending countless hours searching for an efficient numerical
method for dealing with the challenging task of conducting the correlation stress testing in their
financial models.

The paper is thus organized as follows. In the next section, we formulate the correlation stress
testing problem of various types as a convex optimization problem. We study its Lagrangian dual
and the augmented Lagrangian dual approaches in the next two sections. Section 5 contains
our numerical results for examples collected from the relevant literature and some randomly
generated hard problems. We conclude the paper in Section 6. Appendices include detailed
calculations necessary for implementing the Newton method and some theoretical proofs.

Notation: Sn and Sn
+ are, respectively, the linear space of n × n symmetric matrices and

the cone of positive semidefinite matrices in Sn; and ‖ · ‖ is the Frobenius norm defined by the
trace inner product 〈A,B〉 = tr(AB) for A,B ∈ Sn. Sometimes, we use X Â (º)0 meaning X
is positive (semi-) definite.

For X ∈ Sn, X+ denotes the orthogonal projection onto Sn
+ and Xij denotes the (i, j)th

entry of X. We use ◦ to denote the Hardmard product of matrices, i.e., for any A,B ∈ Sn

A ◦B = [AijBij ]ni,j=1.

The matrix E denotes the matrix of all ones in Sn. For subsets α and β of {1, 2, . . . , n}, Bαβ

denotes the submatrix of B indexed by α and β. For any pair (i, j), we use Eij to denote the
matrix whose (i, j)th entry is 1 and all other entries are zeros. Let e denote the vector of all
ones. For a vector x, Diag(x) is the diagonal matrix whose diagonal entries are the vector x.
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Conversely, for a square matrix X, diag(X) denotes the vector formed by the diagonal entries
of X.

2 The Convex Optimization Formulation

This section contains a straightforward convex optimization reformulation of finding the nearest
correlation matrix to Ĉ satisfying constraints (H1), (H2) or (H2′), and (H3). We will distinguish
several cases with each having its own importance. In particular, we will treat the case B 6= ∅
and B = ∅ separately. We will also address how to handle the positive definiteness constraint
(H2′) in our formulation.

2.1 The Case B 6= ∅
Recall that the index set B specifies the locations of fixed correlations in Ĉ. For the purpose of
later development, we assume that B takes the following general form:

B := {(i`, j`) | i` < j`, ` = 1, . . . , κ} (1)

for some κ ≤ n(n− 1)/2. We often use κ(B) to indicate the dependence of κ on B. Let c be the
vector in IRκ obtained by stacking up the fixed correlations Ĉij , (i, j) ∈ B column by column
from top to bottom. Then, for any 1 ≤ ` ≤ κ, there exists a unique index (i, j) ∈ B such that
c` = Cij . Because of this, to facilitate our description, for a vector z ∈ IRκ, without causing
confusion we often write z ≡ (zij)(i,j)∈B to match the structure of B.

The following two examples illustrate what B and c may look like.

Example 2.1 (Local correlation stress testing of Turkey, Epperlein, and Christofides 2003) In
this example, Ĉ1 = C1 and Ĉ2 = C2. Then

{ B = {(i, j) | i = 1, . . . ,m, j = i + 1, . . . , n } ,
cij = Cij , for (i, j) ∈ B.

(2)

Example 2.2 (Band correlation stress testing) Compared to Example 2.1, Ĉ2 in this example
is allowed to change freely while Ĉ1 = C1 remains unchanged

{ B = {(i, j) | 1 ≤ i < j ≤ m} ,
cij = Cij , for (i, j) ∈ B.

(3)

The special structure of B in the local correlation stress testing in Example 2.1 allows us
to use the Schur complement decomposition to transform it to a nearest correlation matrix
problem of reduced dimension. Consequently, this case can be handled more directly and solved
efficiently by existing methods (see Subsection 3.2). As suggested already by its name, the band
correlation stress testing in Example 2.2 indicates that the stressed correlations (i.e., those not
in B) form a structure of band. The importance of this case is with its generality in the sense
that the approach and analysis developed can be readily extended to cover more general cases
including the “rectangular” B (see, Remark R2 in Subsection 3.3).
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Once we have the location index set B and the fixed correlation vector c, any replacement
correlation matrix X must satisfy the following conditions:

X ∈ Cn and Xij = cij for all (i, j) ∈ B, (4)

where Cn is the set of all n× n correlation matrices. Note that B only specifies the upper part
of fixed elements in X. But, since X is a symmetric matrix, the lower part of fixed elements is
automatically included.

Our eventual goal is to find the nearest correlation matrix to Ĉ from all those of satisfying
conditions in (4). This leads to the following least-square optimization problem:

min
1
2
‖X − Ĉ‖2

s.t. Xii = 1, i = 1, . . . , n ,

Xij = cij , (i, j) ∈ B ,

X ∈ Sn
+ .

(5)

Note that the objective function in (5) is quadratic in X and all the constraints are linear except
X being in Sn

+, which is a closed convex cone. So, (5) is a convex optimization problem.
To single out the linear equations in (5), we define two linear operators A1 : Sn 7→ IRn and

A2 : Sn 7→ IRκ, respectively, by

A1(X) := diag (X) and (A2(X))ij := Xij for (i, j) ∈ B . (6)

Note that in (6), for each X ∈ Sn, A2(X) is a column vector in IRκ with the notation being
explained earlier. Recall that e is defined to be the vector of all ones in IRn. Problem (5) can
thus be equivalently written as

min
1
2
‖X − Ĉ‖2

s.t. A1(X) = e ,
A2(X) = c ,
X ∈ Sn

+ .

(7)

This is the problem we aim to solve in this paper. To alleviate the concern about the feasibility
issue of this problem as well as the unconstrained dual problems to be developed in the next
section, we assume that this problem is strictly feasible. Apparently, a sufficient condition for the
strict feasibility is that the current correlation matrix C is positive definite, which is a practical
condition required in the financial industry.

2.2 The Case B = ∅
This is the simplest case of (7) and is often referred to as the nearest correlation matrix problem
(Higham 2002):

min
1
2
‖X − Ĉ‖2

s.t. A1(X) = e ,
X ∈ Sn

+ .

(8)
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This problem is always strictly feasible, e.g., X = I, regardless whether C is positive definite
or not. There are n linear constraints comparing to n + κ(B) in (7), where κ(B) could be
significantly larger than n (i.e., κ(B) À n).

The nearest correlation matrix problem (8) also distinguishes itself from the general problem
(7) numerically. Problem (8) can be efficiently solved even when n is large (e.g., n = 2, 000), say,
by Newton’s method of Qi and Sun (2006) or the inexact primal-dual path-following method
of Toh, Tütüncü, and Todd (2006). We will make use of this fact in two aspects. First, the
Lagarangian dual approach, which the quadratically convergent Newton’s method for solving
problem (8) (Qi and Sun 2006) is based on, is extended to the case B 6= ∅. The computational
effeciency consideration of handling a large number κ(B) of constraints will naturally lead us to
consider an augmented Lagrangian dual approach, which handles constraint (H3) more directly.
Second, problem (8) is used to generate a good starting point for methods developed for the
case B 6= ∅.

2.3 Incorporating the Positive Definiteness Constraint (H3)

In a straightforward way, we can add the positive definiteness constraint (H2′) to formulation
(7) as follows

min
1
2
‖X − Ĉ‖2

s.t. A1(X) = e ,
A2(X) = c ,
X − τI ∈ Sn

+ ,

(9)

where 0 < τ < 1 is a user-specified parameter, usually small (e.g., τ = 0.5 × 10−4), to ensure
that the solution matrix is positive definite. Because of this, problem (9) will be called the
regularized version of problem (7).

After simple linear transformations, problem (9) can be reformulated to the form of (7), but
with different input matrix and right-hand side constant vector. Specifically, let Y ≡ X − τI.
Then (9) is equivalent to

min
1
2
‖Y − (Ĉ − τI)‖2

s.t. A1(Y ) = (1− τ)e ,
A2(Y ) = c ,
Y ∈ Sn

+ .

(10)

We see that the input matrix now becomes (Ĉ − τI) (versus Ĉ in (7)) and the right-hand side
constant vector corresponding to the linear operator A1 now becomes (1− τ)e (versus e in (7)).
It is obvious that these two problems have the same level of complexity. The only issue that
warrants attention is about the choice of τ . To ensure the strict feasibility of (9), τ has to satisfy
0 ≤ τ < λmin(C), the smallest eigenvalue of C. Problem (9) and its equivalent form (10) with
0 ≤ τ < λmin(C) are the main problems we intend to solve. When τ = 0, (9) reduces to (7).

The above discussion also applies to the case where B = ∅. We simply write it down below

8



without further comments for easy reference later on:

min
1
2
‖X − Ĉ‖2

s.t. A1(X) = e ,
X − τI ∈ Sn

+ ,

(11)

where 0 < τ < 1. This problem is always strictly feasible and always yields a positive definite
matrix near to Ĉ. The corresponding equivalent form for (11) is as follows

min
1
2
‖Y − (Ĉ − τI)‖2

s.t. A1(Y ) = (1− τ)e ,
Y ∈ Sn

+ .

(12)

3 A Lagarangian Dual Newton Method

It has been widely recognized that the difficulty in updating a correlation matrix to a desired
one is to keep it being positive semidefinite. In other words, the constraint X ∈ Sn

+ is where the
difficulty arises. Moreover, in correlation stress testing, another type of difficulty comes from
preserving constraint (H3), especially when κ(B) is not very small. In this section, we shall focus
on dealing with these two types of difficulties, by extending the generalized Newton’s method
studied in Qi and Sun (2006) based on a Lagrangian dual approach proposed by Rockafellar
(1974) for general constrained optimization problems.

3.1 General Discussions

Consider the following least-square semidefinite optimization problem:

min
1
2
‖X −X0‖2

s.t. A(X) = b ,
X ∈ Sp

+ ,

(13)

where X0 ∈ Sp is given, A : Sp → IRq is a linear operator, and b ∈ IRq. Define the ordinary
Lagrangian function l : Sp

+ × IRq → IR by

l(X, y) :=
1
2
‖X −X0‖2 + 〈y, b−A(X)〉, (X, y) ∈ Sp

+ × IRq . (14)

Let θ : IRq → IR be defined by

θ(y) := − inf
x∈Sp

+

l(X, y), y ∈ IRq .

Then the dual of problem (13) takes the following form:

max −θ(y)
s.t. y ∈ IRq .

(15)
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The function θ(y) has a nice analytical form. To present this form, for any X ∈ Sp
+, we let

ΠSp
+
(X) denote the metric projection of X onto Sp

+, i.e., ΠSp
+
(X) is the unique optimal solution

to the following convex programming problem

min
1
2
‖Y −X‖2

s.t. Y ∈ Sp
+ .

(16)

Then for any y ∈ IRq, we have

θ(y) =
1
2
‖X0 +A∗y‖2 − 1

2
‖X0 +A∗y −ΠSp

+
(X0 +A∗y)‖2 − 〈b, y〉 − 1

2
||X0‖2, (17)

where A∗ : IRq → Sn is the adjoint6 of A. Since Sp
+ is a closed convex cone, we know from

Zarantonello (1971) that

θ(y) =
1
2
‖ΠSp

+
(X0 +A∗y)‖2 − 〈b, y〉 − 1

2
||X0‖2, y ∈ IRq (18)

and that θ is a continuously differentiable convex function with its gradient at y being given by

∇θ(y) = AΠSp
+
(X0 +A∗y)− b , y ∈ IRq . (19)

Recall that the generalized Slater condition is said to hold for the convex optimization
problem (13) if { A : Sp → IRq is onto,

∃ X ∈ Sp
+ such that A(X) = b, X ∈ int

(Sp
+

)
,

(20)

where “int” denotes the topological interior of a given set. The classical duality theory for convex
programming of Rockafellar (1974) says that under the generalized Slater condition (20), the
following hold: For every real number η, the level set {y ∈ IRq : θ(y) ≤ η} is closed, bounded,
and convex; and the unique solution to the original problem (13) is given by

X∗ = ΠSp
+
(X0 +A∗y∗) , (21)

where y∗ ∈ IRq is any optimal solution to the dual problem (15). The relation (21) suggests the
following approach: first solve the unconstrained convex optimization problem (15) for y∗ and
then obtain the unique solution to the original problem (13) by (21). This is exactly the well-
known Lagrangian dual approach outlined by Rockafellar (1974). However, θ fails to be twice
continuously differentiable because the metric projector ΠSp

+
is not continuously differentiable.

This seems to imply that one may not be able to get quadratic convergence when Newton’s
method is applied to the unconstrained convex optimization problem (15). As a matter of
fact, the classical Newton’s method is invalid in this situation as the Hessian of θ(·) at some
points may not exist at all. Fortunately, the recent study conducted by Qi and Sun (2006) for
the nearest correlation matrix problem (8) indicates that one may still expect a quadratically
converging Newton’s method by using the fact ΠSp

+
is strongly semismooth everywhere in Sp,

6For the linear operator A : Sp → IRq, its adjoint A∗ : IRq 7→ Sp is defined by 〈A∗y, X〉 = 〈y,A(X)〉 for any
X ∈ Sp and y ∈ IRq.
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a key property proven by Sun and Sun (2002) and extended by Chen, Qi, and Tseng (2003) to
some more general matrix valued functions.

Denote
F (y) := ∇θ(y) = AΠSp

+
(X0 +A∗y)− b , y ∈ IRq . (22)

Since ΠSp
+

is globally Lipschitz continuous with modulus 1, the mapping F is Lipschitz contin-
uous on IRq. According to Redemacher’s Theorem (Rockafellar and Wets 1998, Section 9.J), F
is differentiable almost everywhere on IRq. We let

DF := {y ∈ IRq| F is differentiable at y} .

Let F ′(x) denote the Jacobian of F at y ∈ DF . The B-subdifferential of F at y ∈ IRq, a name
coined by Qi (1993), is then defined by

∂BF (y) :=
{

V ∈ IRq×q |V is an accumulation point of F ′(yk), yk → y, yk ∈ DF

}
.

The generalized Jacobian in the sense of Clarke (1983) is the convex hull of ∂BF (y), i.e.,

∂F (y) = conv ∂BF (y) .

If F is strictly differentiable at y, Clarke’s generalized Jacobian of F at y reduces to the classical
Jacobian of F at y, i.e., ∂F (y) = {F ′(y)}. The generalized Hessian of θ at y ∈ IRq is defined as

∂2θ(y) := ∂F (y) .

Define
∂̂2θ(y) := A ∂ΠSp

+
(X0 +A∗y)A∗ , y ∈ IRq .

By Clarke (1983, Page 75), we know from (22) that for y ∈ IRq and d ∈ IRq,

∂2θ(y)d ⊆ ∂̂2θ(y)d ,

which implies that if every element in ∂̂2θ(y) is positive definite, then so is every element in
∂2θ(y).

Given the above preparations, we can extend directly the generalized Newton method devel-
oped in Qi and Sun (2006) from the nearest correlation problem (8) to problem (15) with ∂2θ(·)
being replaced by ∂̂2θ(·).

Algorithm 3.1 (Newton’s Method)

Step 0. Given y0 ∈ IRq, η ∈ (0, 1), µ ∈ (0, 1), and ρ ∈ (0, 1/2). k := 0.

Step 1. Select an element Vk ∈ ∂̂2θ(yk) and apply the conjugate gradient (CG) method of
Hestenes and Stiefel (1952) to find an approximate solution dk to

∇θ(yk) + Vkd = 0 (23)

such that
‖∇θ(yk) + Vkd

k‖ ≤ ηk‖∇θ(yk)‖ , (24)

11



where ηk := min{η, ‖∇θ(yk)‖}. If (24) is not achievable or if the condition

∇θ(yk)T dk ≤ −ηk‖dk‖2 (25)

is not satisfied, let dk := −B−1
k ∇θ(yk), where Bk is any symmetric positive definite matrix

in Sq.

Step 2. Let jk be the smallest nonnegative integer j such that

θ(yk + ρjdk)− θ(yk) ≤ µρj∇θ(yk)T dk .

Set tk := ρjk and yk+1 := yk + tkd
k.

Step 3. Replace k by k + 1 and go to Step 1.

The implementation of Algorithm 3.1 heavily hinges on the availability of computing an
element from the set ∂̂2θ(yk) for all k. Thanks to recent progress on variational analysis of the
metric projector ΠSp

+
, the set ∂̂2θ(yk) can be completely charaterized. See Appendix A for a

detailed account. On the theoretical side of Algorithm 3.1, by Qi and Sun (2006) and Bai, Chu,
and Sun (2007), we readily have the following convergence results.

Theorem 3.2 Assume that both {‖Bk‖} and {‖B−1
k ‖} in Algorithm 3.1 are uniformly bounded.

Then, an infinite sequence {yk} is generated by Algorithm 3.1 and any accumulation point y∗

of {yk} is a solution to the unconstrained convex optimization problem (15). Furthermore, if
every element in ∂̂2θ(y∗) is positive definite at any accumulation point y∗ of {yk}, then the whole
sequence {yk} converges quadratically to the unique solution y∗ of (15).

Note that if the generalized Slater condition (20) holds (which is true for our correlation stress
testing problems), then the infinite sequence {yk} generated by Algorithm 3.1 is guaranteed to
be bounded and thus has at least one accumulation point y∗ which solves problem (15). In
Theorem 3.2, the crucial condition for obtaining the quadratic convergence of {yk} is on the
positive definiteness of every element in ∂̂2θ(y∗). Actually, in proof of this theorem one important
hidden condition has also been used: the strong semismoothness of the metric projector ΠSp

+
.

However, as mentioned earlier, this has already been settled by Sun and Sun (2002). So, in the
subsequent analysis, we shall mainly focus on checking the positive definiteness of all elements
in ∂̂2θ(y∗).

3.2 Local Correlation Stress Testing

Recall that for this case (B, c) is given by (2). We shall make use of the special structure of B.
Let X have the conformal structure of C as

X =
( X1 X2

XT
2 X3

)

with X1 ∈ Sm. For the sake of simplicity and for this subsection only, we let τ = 0. The
argument below carries through for τ > 0 with minor modifications.

12



It is easy to see that problem (9) (now assuming τ = 0) has the following equivalent forma-
tion:

min
1
2
‖X − Ĉ‖2

s.t. (X3)ii = 1, i = 1, . . . , n−m,

X =
( C1 C2

CT
2 X3

)
∈ Sn

+

⇐⇒
min

1
2
‖X3 − Ĉ3‖2

s.t. (X3)ii = 1, i = 1, . . . , n−m,

X =
( C1 C2

CT
2 X3

)
∈ Sn

+ .

(26)

Note that C is assumed to be positive definite. Therefore, X ∈ Sn
+ if and only if the Schur

complement (X3 − CT
2 C−1

1 C2) of C1 in X is positive semidefinite. This leads to the following
equivalent problem of (26):

min
1
2
‖X3 − Ĉ3‖2

s.t. (X3)ii = 1, i = 1, . . . , n−m,

(X3 − CT
2 C−1

1 C2) ∈ Sn−m
+ .

(27)

Let Y := X3 − CT
2 C−1

1 C2. Then problem (27) becomes

min
1
2
‖Y − (Ĉ3 − CT

2 C−1
1 C2)‖2

s.t. Yii = 1− di, i = 1, . . . , n−m,
Y ∈ Sn−m

+ ,

(28)

where d := diag(CT
2 C−1

1 C2). We have

Proposition 3.3 It holds that di < 1, i = 1, . . . , n−m.

Proof. From

C =
( C1 C2

CT
2 C3

)
Â 0 ,

we know that the Schur complement

C3 − CT
2 C−1

1 C2 Â 0.

Thus, we have for each i ∈ {1, . . . , n−m} that

0 < (C3 − CT
2 C−1

1 C2)ii = (C3)ii − (CT
2 C−1

1 C2)ii = 1− di ,

which completes the proof. ¤

Problem (28) is of the type of the nearest correlation matrix problem (8) with a reduced
dimension of (n−m) and the diagonal entries of Y being positive numbers instead of being all
1. This type of problem can be quite efficiently solved by Algorithm 3.1 as shown by Qi and Sun
(2006). Note that for problem (28), the generalized Slater condition holds and that all elements
in the corresponding set ∂̂θ(y∗)(= ∂θ(y∗) in this case) at any solution y∗ to the dual problem are
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positive definite (Qi and Sun 2006). Therefore, we can obtain that when Algorithm 3.1 is applied
to the dual of problem (28), the infinitely generated sequence {yk} converges quadratically.

Once the optimal solution Y ∗ of problem (28) is found, the optimal solution X∗ of the local
correlation stress testing problem (26) can be recovered by

X∗ :=
( C1 C2

CT
2 Y ∗ + CT

2 C−1
1 C2

)
.

3.3 The Band Correlation Stress Testing

Recall that for this case (B, c) is given by (3) and any replacement matrix X has to satisfy the
following constraint:

X =
( C1 X2

XT
2 X3

)
º 0 .

Therefore, the Schur complement decomposition technique cannot be applied to this constraint
as X2 is no longer fixed.

Let A1 : Sn 7→ IRn and A2 : Sn 7→ IRκ be defined by (6). Then, we have

A∗1(x) = Diag(x) for x ∈ IRn and A∗2(z) =
1
2

∑

(i,j)∈B
zij

(
Eij + Eji

)
for z ∈ IRκ. (29)

Define A : Sn → IRn+κ by

A(X) :=
[ A1(X)
A2(X)

]
, X ∈ Sn . (30)

Then, obviously, A : Sn → IR(n+κ) is surjective. The adjoint of A takes the following form

A∗(y) = A∗1(x) +A∗2(z) , y ≡ (x, z) ∈ IRn × IRκ . (31)

For any τ ∈ [0, 1), let bτ = ((1− τ)eT , cT )T . Then problem (10) can be written as

min
1
2
‖Y − (Ĉ − τI)‖2

s.t. A(y) = bτ ,
Y ∈ Sn

+ ,

(32)

which is a special case of problem (13). Here, we allow τ = 0 in order to include problem (7).
For any X ∈ Sn, denote X+ ≡ ΠSn

+
(X). Thus, by Section 3.1, we know that the uncon-

strained dual problem of (32) turns to be

min θτ (y)
s.t. y ∈ IRn+κ ,

(33)

where
θτ (y) =

1
2
‖((Ĉ − τI) +A∗(y)

)
+
‖2 − bT

τ y − 1
2
‖Ĉ − τI‖2 , y ∈ IRn+κ .

Let τ ∈ [0, λmin(C)). By using the facts that C is positive definite and A : Sn → IR(n+κ) is onto,
we know that the generalized Slater condition (20) for problem (32) holds. Thus, Algorithm
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3.1 will generate a bounded sequence {yk} when it is applied to problem (33). Let y∗ be an
accumulation point of {yk}. We shall next establish the quadratic convergence of {yk} by
showing that all elements in ∂̂θτ (y∗) are positive definite.

Proposition 3.4 Assume that τ ∈ [0, λmin(C)). Let y∗ ∈ IRn+κ be an optimal solution to
problem (33). Then any element in ∂̂2θτ (y∗) is symmetric and positive definite.

Proof. See Appendix B. ¤

Now we are ready to present our convergence result for solving (33).

Theorem 3.5 Assume that τ ∈ [0, λmin(C)). Let the sequence {yk} be generated by Algorithm
3.1 applied to the unconstrained dual convex optimization problem (33). If both {‖Bk‖} and
{‖B−1

k ‖} in Algorithm 3.1 are uniformly bounded, then the whole sequence {yk} converges to
the unique solution of (33) quadratically.

Proof. First, by Theorem 3.2 and the fact that the generalized Slater’s condition (20) for
problem (32) holds, we know that {yk} is bounded, which implies that {yk} has at least one
accumulation point, say y∗. This point also must be an optimal solution to problem (33).
Therefore, from Proposition 3.4 and Theorem 3.2, we conclude that the whole sequence {yk}
converges to y∗ quadratically. ¤

We make a few remarks regarding using Algorithm 3.1.

(R1) The matrix Ĉ can be any symmetric matrix. It may have nothing to do with the current
correlation matrix C. The resulting optimal solution is just the nearest correlation matrix
to Ĉ satisfying the constraints involved.

(R2) For the Newton method to converge quadratically, C does not have to be positive definite.
What we really need in the proof of, say, Proposition 3.4, is that the leading m×m principle
submatrix of C is positive definite. The matrix C being positive definite is merely a nice
sufficient condition. This observation allows us to consider more general situations. For
example, B may take the “rectangular” form

B := {(i, j) | i = 1, . . . , m, j = i + 1, . . . , m1 }
for any m1 ≥ m. Such an index set B simply means that we fix the correlations contained
in the rectangular submatrix Cαβ with α := {1, . . . , m} and β := {1, . . . ,m1}.
The proof of Proposition 3.4 can readily be extended to cover the rectangular case. The
proof, instead of using the positive definiteness of the leading m×m principal submatrix
of C, now uses the positive definiteness of all the (m + 1)× (m + 1) principal submatrices
of the form Cα̃α̃ with

α̃ := {1, 2, . . . ,m} ∪ {j} and m ≤ j ≤ m1.

Furthermore, the fixed elements may not even form a block of submatrix (refer to the
5-factor example in the numerical experiment section). We may explore it further to state
sufficient conditions ensuring the quadratic convergence for this case, but it would be more
involved.
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(R3) If the sequence {yk} generated by the Newton method converges to y∗ quadratically, then
the corresponding matrix sequence {Y k} defined by

Y k =
(
(Ĉ − τI) +A∗(yk)

)
+

converges to the solution Y ∗ =
(
(Ĉ − τI) +A∗(y∗))

+
and satisfies

‖Y k+1 − Y ∗‖ = ‖((Ĉ − τI) +A∗(yk+1)
)
+
− (

(Ĉ − τI) +A∗(y∗))
+
‖

≤ ‖A∗(yk+1 − y∗
)‖ = O(‖yk − y∗‖2),

where the non-expansion property of the projection operator has been used.

4 An Augmented Lagrangian Dual Approach

Note that the dimension of the unknown vector in the Lagrangian dual function θτ (y) in problem
(33) is (n + κ(B)). When κ(B) is large, the unconstrained convex optimization problem (33) is
often costly to solve as it may need a large number of CG iterations to solve an (n + κ(B)) ×
(n + κ(B)) linear equation at each step even it is well-posed in theory. This computational
consideration prompts us to study the augmented Lagrangian method, which attempts to solve
a sequence of unconstrained convex optimization problems of lower dimensions.

Recall that problem (5) and its regularized version (9) can be uniformly written as

min
1
2
‖X − Ĉ‖2

s.t. Xii = 1, i = 1, . . . , n ,

Xij = cij , (i, j) ∈ B ,

X − τI ∈ Sn
+ ,

(34)

where τ ∈ [0, 1). Another way to look at problem (34), different from the Lagrangian dual
approach introduced in the last section, is to first eliminate all the fixed correlations from the
problem and then to solve the resulted problem of reduced dimension. This is of particular
interest when the number of fixed correlations is much larger than the number of ones to be
stressed.

This new way of looking at problem (34) leads to the development of the augmented La-
grangian dual approach, which goes along the following line: After eliminating the fixed cor-
relations in problem (34), we have its equivalent version (35), whose Lagrangian dual (36) is
no longer unconstrained. To get an unconstrained convex problem, we study its augmented
Lagrangian dual problem (43). The augmented Lagrangian method is then applied to this prob-
lem. To address the fast convergence of the method, we relate the iterate Y k+1 in (46) to the
solution of the proximal-type problem (47) so that Rockafellar’s classical result on the proximal
method can be applied. This saves us from giving a complete convergence analysis from scratch.
Below is the detailed account of the augmented Lagrangian dual approach.

Let N denote the indices of those correlations not in B, i.e.,

N := {(i, j) | 1 ≤ i < j ≤ n} \ B .
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Let κ̄ := κ̄(N ) be the number of indices in N . For the convenience of subsequent discussions,
we introduce a linear operator A : Sn 7→ IRκ̄ by

A(Y ) := x with xij = Yij for (i, j) ∈ N ,

where, as in Section 2, for any x ∈ IRκ̄ we write x ≡ (xij)(i,j)∈N to match the structure of N .
Let A∗ : IRκ̄ 7→ Sn be the adjoint of the linear operator A. Then for any x ∈ IRκ̄, the symmetric
matrix A∗(x) takes the following form

[A∗(x)
]
ij

=





0 if i = j ,
0 if (i, j) ∈ B ,
1
2xij if (i, j) ∈ N ,

1 ≤ i ≤ j ≤ n .

Denote the symmetric matrix A0 ∈ Sn by

[A0 ]ij =





1 if i = j ,
cij if (i, j) ∈ B ,
0 if (i, j) ∈ N ,

1 ≤ i ≤ j ≤ n

and the vector ĉ ∈ IRκ̄ by
(ĉ)ij := Ĉij , (i, j) ∈ N .

Then, in consideration of the fact that Ĉij = Cij for all (i, j) ∈ B (i.e., the fixed correlations in
the target matrix), problem (34) becomes

min
1
2
‖x− ĉ‖2

s.t. Aτ +A∗(x) ∈ Sn
+ ,

(35)

where we add “1
2” to the objective function for the sake of convenience and for any τ ∈ [0, 1),

we write Aτ ≡ A0 − τI.
Let l0 : IRκ̄ × Sn → IR be the ordinary Lagrangian function for problem (35), i.e.,

l0(x, Y ) :=
1
2
‖x− ĉ‖2 − 〈

Y, Aτ +A∗(x)
〉
, (x, Y ) ∈ IRκ̄ × Sn .

Then, the Lagrangian dual of problem (35) is

max −
(〈

Y,Aτ +A∗(ĉ)〉 +
1
2
‖A (Y )‖2

)

s.t. Y ∈ Sn
+ ,

(36)

which is no longer an unconstrained problem as problem (33). The Karush-Kukn-Tucker (KKT)
conditions, i.e., the first order optimality conditions for problem(35), are

{ ∇xl0(x, Y ) = x− ĉ−A(Y ) = 0 ,

Sn
+ 3

(
Aτ +A∗(x)

) ⊥ Y ∈ Sn
+ ,

(37)
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where “
(
Aτ +A∗(x)

) ⊥ Y ” means that the two matrices are orthogonal, i.e.,
〈
Aτ +A∗(x), Y

〉
= 0.

Any point (x∗, Y ∗) ∈ IRκ̄ ×Sn satisfying (37) is called a KKT point. By using the fact that Sn
+

is a self-dual cone, we know from Eaves (1971) that (x∗, Y ∗) ∈ IRκ̄ × Sn satisfying (37) if and
only if (x∗, Y ∗) is a solution to the following system of nonsmooth equations

Fτ (x, Y ) ≡
[

x− ĉ−A(Y )

Y − [
Y − (

Aτ +A∗(x)
) ]

+

]
=

[
0
0

]
, (x, Y ) ∈ IRκ̄ × Sn .

Next, we shall study the existence (and uniqueness) of a KKT point (x∗, Y ∗) ∈ IRκ̄×Sn and
the local Lipschitz invertibilty of Fτ near (x∗, Y ∗). Denote

gτ (x) ≡ Aτ +A∗(x) , x ∈ IRκ̄ .

Assume that τ ∈ [0, λmin(C)). Then, since the objective function in problem (35) is strongly
convex and the feasible set is nonempty (e.g., C itself is a feasible solution), problem (35) has a
unique optimal solution x∗. Furthermore,

X∗ := gτ (x∗) + τI

is the unique optimal solution to (34), and hence

Y ∗ := gτ (x∗) (38)

is the optimal solution of (10).
Let TSn

+
(gτ (x∗)) denote the tangent cone of Sn

+ at gτ (x∗) in the sense of convex analysis. We
use lin

(TSn
+
(gτ (x∗))

)
to denote the largest linear space contained in TSn

+
(gτ (x∗)). Then, we have

the following useful result.

Lemma 4.1 Assume that τ ∈ [0, λmin(C)). Then the following constraint nondegenerate con-
dition holds at x∗ :

A∗(IRκ̄) + lin
(TSn

+
(gτ (x∗))

)
= Sn . (39)

Proof. See Appendix C. ¤

Lemma 4.1 implies that there exists a unique Y ∗ ∈ Sn
+ such that (x∗, Y ∗) is the unique KKT

point satisfying (37). See Bonnans and Shapiro (2000) for a general discussion on this. Then,
we can obtain the local Lipschitz invertibility of Fτ near (x∗, Y ∗).

Proposition 4.2 Assume that τ ∈ [0, λmin(C)). Then there exist a neighborhood O of (x∗, Y ∗)
in IRκ̄ × Sn and a constant ν > 0 such that

‖Fτ (x, Y )− Fτ (x̃, Ỹ )‖ ≥ ν‖(x, Y )− (x̃, Ỹ )‖ ∀ (x, Y ) and (x̃, Ỹ ) ∈ O .

Proof. This follows directly from the strong convexity of the objective function in (35), Lemma
4.1, and Theorem 4.1 in Sun (2006). ¤
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Now, we are ready to introduce the augmented Lagrangian dual approach for solving problem
(35). Let σ > 0. The augmented Lagrangian function for problem (35) is

Lσ(x, Y ) :=
1
2
‖x− ĉ‖2 +

1
2σ

{‖(Y − σgτ (x)
)
+
‖2 − ‖Y ‖2

}
, (x, Y ) ∈ IRκ̄ × Sn . (40)

Strictly speaking, the augmented Lagrangian function Lσ should also depend on the prescribed
constant τ . We drop this dependence as it can be seen clearly from the context. Here, we
will omit the details on deriving this augmented Lagrangian function as excellent discussions on
augmented Lagrangian functions for general optimization problems can be found easily in the
literature, e.g., Section 11.K in Rockafellar and Wets (1998). For any Y ∈ Sn, the augmented
Lagrangian function Lσ(·, Y ) is strongly convex in x and continuously differentiable with

∇x

(
Lσ

)
(x, Y ) = x− ĉ−A (Y − σgτ (x))+ , x ∈ IRκ̄ . (41)

For any Y ∈ IRκ̄, let xσ(Y ) be the unique optimal solution to

min Lσ(x, Y )

s.t. x ∈ IRκ̄ .
(42)

The augmented Lagrangian dual problem then takes the following form

max −ϑσ(Y )

s.t. Y ∈ Sn ,
(43)

where ϑσ : Sn → IR is defined by

ϑσ(Y ) := −Lσ(xσ(Y ), Y ) , Y ∈ Sn . (44)

The function ϑσ(·) is a continuously differentiable convex function in Sn with

∇(ϑσ)(Y ) := σ−1
[
Y − (Y − σgτ (xσ(Y )) )+

]
, Y ∈ Sn . (45)

Note that both ϑσ(Y ) and ∇(ϑσ)(Y ) depend implicitly on the unique optimal solution xσ(Y ) to
problem (42). While for each Y ∈ Sn, the computation of xσ(Y ) can be obtained by applying
the quadratically convergent Newton’s method – Algorithm 3.1 to (42) directly, it is not clear
immediately if Algorithm 3.1 can be applied to solve the augmented Lagrangian dual problem
(43). However, recent research conducted by Sun, Sun, and Zhang (2006) reveals that when σ
is sufficiently large, the augmented Lagrangian method in the context of general nonlinear semi-
definite programming problems including problem (43) can be locally treated as an approximate
version of Algorithm 3.1.

The augmented Lagrangian method for solving problem (43) can be stated as follows.

Algorithm 4.3 (An Augmented Lagrangian Method)

Step 0. Given σ0 > 0. Let x0 ∈ IRκ̄ be arbitrary and Y 0 ∈ Sn
+ be the initial estimated La-

grangian multiplier. k := 0.
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Step 1. Let θk(·) ≡ Lσ(·, Y k). Define

∂̂2θk(x) := I + σA ∂ΠSn
+

(
Y k − σgτ (x)

)A∗, x ∈ IRκ̄ .

Compute xk+1 = xσk
(Y k) by applying Algorithm 3.1 to problem (42) for Y = Y k, i.e.,

min θk(x)

s.t. x ∈ IRκ̄ ,

with the starting point xk.

Step 2. Compute Y k+1 by
Y k+1 :=

(
Y k − σkgτ (xk+1)

)
+

(46)

and update σk to σk+1 ≥ σk.

Step 3. Replace k by k + 1 and go to Step 1.

Comparing (46) with (45), we can see that at the kth iteration of Algorithm 4.3:

Y k+1 = Y k − σk∇(ϑσk
)(Y k) = Y k − Y k +

(
Y k − σkgτ (xk+1)

)
+

=
(
Y k − σkgτ (xk+1)

)
+

,

which implies that Algorithm 4.3 is a gradient descent method of steplength σk at the kth
iteration. This suggests that Algorithm 4.3 may converge very slowly. However, as we mentioned
earlier, locally Algorithm 4.3 can be treated as a kind of approximate generalized Newton’s
method. So good convergence may still be expectable. In fact, from Proposition 6 in Rockafellar
(1976b)7, we know that Y k+1 is the unique optimal solution to the following “proximal-type”
problem centered at Y k :

max −
(〈

Y,Aτ +A∗(ĉ)〉 +
1
2
‖A (Y )‖2 +

1
2σk

‖Y − Y k‖2
)

s.t. Y ∈ Sn
+ ,

(47)

which implies that Algorithm 4.3 is a proximal point algorithm applied to the Lagrangian dual
problem (36). This connection allows us to use the convergence theory developed by Rockafellar
(1976a, 1976b) for proximal point methods for maximal monotone operators.

Theorem 4.4 8 Assume that τ ∈ [0, λmin(C)). Let {Y k} be a sequence generated by Algorithm
4.3 with lim

k→∞
σk = σ∞ < +∞. Then, {Y k} converges to Y ∗. Furthermore, let ν > 0 be the

constant obtained in Proposition 4.2. Then for all k sufficiently large,

‖Y k+1 − Y ∗‖ ≤ ak‖Y k − Y ∗‖ ,

where
ak :=

ν√
ν2 + σ2

k

→ a∞ =
ν√

ν2 + σ2∞
< 1 . (48)

7One needs to slightly modify the proof given by Rockafellar for nonlinear convex programming to include the
the problem discussed here.

8Theoretically speaking, in order to make Algorithm 4.3 practical, one should consider the case that xk+1 ≈
xσk (Y k) instead of xk+1 = xσk (Y k). However, from computational point of view, this consideration is not of vital
importance when the quadratically convergent Algorithm 3.1 is applied to solving problem (42).
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Proof. This is a direct application of Theorem 2 in Rockafellar (1976a) (also cf. Rockafellar
1976b, Theorem 5) and Proposition 4.2. ¤

We conclude this section by making the following remarks about Algorithm 4.3.

(R1) The computation of xk+1 for Y = Y k in Step 1 of Algorithm 4.3 can be obtained very
rapidly by applying the quadratically convergent Algorithm 3.1 to problem (42) with the
starting point xk. This is particularly the case when xk is not far away from the solution
x∗. Note that there is no need to do one more spectral decomposition to get Y k+1 in Step
2 as, from (41), it has already been computed in Step 1 when xk+1 is computed.

(R2) From Theorem 4.4, (37), (41), and (46), we know that {xk} converges to x∗ with

‖xk+1 − x∗‖ = ‖A (Y k+1 − Y ∗)‖ ≤ ak‖Y k − Y ∗‖ ,

where ak is defined in (48).

5 Numerical Experiments

In this section, we report our numerical experiments conducted for the correlation stress testing
problem carried out in MATLAB 7.1 running on a PC Intel Pentium IV of 2.40 GHz CPU.

Our first numerical experiment is to test some examples of small scales available in the
literature. These examples include: a 7-factor example in Finger (1997), a 4-factor example in
Turkay, Epperlein, and Christofides (2003), a 12-factor example in Rebonato and Jäckel (2000),
and a 5-factor example in Bhansali and Wise (2001). For all these examples, Newton’s method
- Algorithm 3.1 found better solutions. Instead of listing all these numerical results, we just use
the 5-factor example in Bhansali and Wise (2001) to illustrate the performance of Algorithm
3.1.

In the 5-factor example in Bhansali and Wise (2001), the target matrix Ĉ is given by

Ĉ =




1 − 0.50 −0.30 −0.25 −0.70
1 0.90 0.30 0.70

1 0.25 0.20
1 0.75

1




.

The confidence matrix of equation (7) in Bhansali and Wise (2001) indicates that the man-
agers are highly confident that correlations in the boldface font, i.e., Ĉ12, Ĉ14, Ĉ15, and Ĉ23,
are accurately estimated and want to keep those correlations unchanged. This means for this
example

B = {(1, 2), (1, 4), (1, 5), (2, 3)} .

Algorithm 3.1 (with τ = 0 as the current correlation matrix is not available) found the following
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nearest correlation matrix

C∗ =




1.0000 −0.5000 −0.2830 −0.2500 −0.7000
1.0000 0.9000 0.3391 0.6134

1.0000 0.2179 0.2710
1.0000 0.7198

1.0000




.

The sum of the squared difference between the target matrix Ĉ and the optimally calibrated
correlation matrix C∗ is ‖C∗− Ĉ‖2 = 0.0326, which is much smaller than the corresponding sum
of the squared difference 1.0343 between Ĉ and the correlation matrix found in equation (7) of
Bhansali and Wise (2001). This also indicates that the hyperspherical decomposition method
employed in Bhansali and Wise (2001) may not be able to produce an optimal correlation matrix.

Our next experiment is to test the capabilities of our algorithms on two relatively large
scale examples. The first is a 387× 387 correlation matrix case taken from the database of the
RiskMetrics and the second one is randomly generated with n = 1, 000 and 1, 500, respectively.

Example 5.1 The current matrix C is the 387 × 387 1-day correlation matrix (as of June
15, 2006) from the lagged datasets of RiskMetrics (www.riskmetrics.com/stddownload edu.html).
The publicly available 25-day and the regulatory correlation matrices were also tested. The
numerical performance9 of our algorithms for the two matrices was similar to the 1-day matrix
and was thus not reported here.

Example 5.2 The current matrix C is a randomly generated correlation matrix by using MATLAB’s
built-in function randcorr. For the numerical testing purpose, the matrix C is deliberately gen-
erated to be ill-conditioned with very large and very small eigenvalues10.

Note that the current correlation matrix C in examples 5.1 and 5.2 needs to be preprocessed
in order to ensure that the calibrated optimal correlation matrix X∗ ≥ τI (we take τ = 0.5×10−4

in our tests, but obviously allow other choices to be specified by the users). Actually, the
current matrix C in Example 5.1 contains small negative eigenvalues and the current matrix C
in Example 5.2 is very close to be singular. For the local stress testing, we apply Algorithm 3.1
to the nearest correlation matrix optimization problem (12) to get an updated positive definite
matrix C ≥ τ0I (we take τ0 = 1.0 × 10−4 as τ0 should be larger than τ). For the band stress
testing, we apply Algorithm 3.1 to update only the top left m by m principal submatrix of C,
i.e., C1, to ensure that the smallest eigenvalue of the updated C1 is at least τ0.

In our numerical experiments for examples 5.1 and 5.2, the target correlation matrix Ĉ is
stressed in the following way:

Ĉij :=
{

Cij if (i, j) ∈ B ,
(1− 0.1)× Cij + 0.1×Gij if (i, j) /∈ B ,

9The stress test on the three matrices bears no physical meaning as to which correlations should be justifiably
stressed. Our purpose here is solely to test the capability of our algorithms handling real and large correlation
matrices.

10The following was used to generate the correlation matrix C: n1 = round(n/10); d1 = rand(n1,1)/n;

k =min(10, n-m); d3 = n*rand(k,1); d = rand(n,1); d(1:n1) =d1; d(n-k+1:n,1)=d3; d = n*d/sum(d);

C =gallery(’randcorr’,d);
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where G is a randomly generated real symmetric matrix satisfying Gij ∈ [−1, 1] for i 6= j and
Gii = 1 for all i and j.

The initial parameters used in our numerical tests are more or less quite standard. More
specifically,

• For Algorithm 3.1: η = 10−5, µ = 10−4, and ρ = 0.5. The stopping criterion is ‖∇θ(yk)‖ ≤
10−6. The starting point is y0 = 0.

• For Algorithm 4.3: σ0 = 100 and σi = min{10σi−1, 105} for i ≥ 1. The stopping criterion is
‖Fτ (xk+1, Y k)‖ ≤ 10−6 with τ = 0.5×10−4. The starting point (x0, Y 0) is obtained by applying
Algorithm 3.1 to the nearest correlation matrix optimization problem (12).

We list our numerical results for Example 5.1 and Example 5.2 in Tables 1-4, where It.,
Func., and Res. stand for the number of total linear equations solved, the number of function
evaluations, and the residual at the final iterate (‖∇θ(yk)‖ or ‖Fτ (xk+1, Y k)‖), respectively.
Moreover, in Tables 1 and 3, Test type indicates the stress testing type: “Local” means the
local stress testing and “Band” refers to the band stress testing. The Levels in Tables 2 and 4
indicates the number of calls to Algorithm 3.1 at Step 1 in Algorithm 4.3.

Test type m cputime Iter. Func. Res.
Local 5 44 s 12 13 1.0× 10−8

Local 50 1 m 19 s 10 11 2.9× 10−10

Local 100 1 m 43 s 15 18 2.4× 10−9

Local 200 26 s 13 17 7.1× 10−7

Local 300 18 s 28 52 2.7× 10−8

Local 385 13 s 3 4 3.2× 10−8

Band 5 22 s 6 7 1.4× 10−7

Band 10 34 s 7 8 1.0× 10−10

Band 20 53 s 7 8 1.8× 10−7

Band 30 5 m 33 s 12 13 8.9× 10−7

Band 40 11 m 25 s 14 15 6.9× 10−9

Band 50 14 m 07 s 13 14 3.6× 10−7

Band 100 1 h 08 m 31 s 14 15 3.5× 10−9

Band 150 3 h 01 m 31 s 20 21 5.7× 10−8

Table 1: Numerical results of Example 5.1 for Algorithm 3.1

We make several observations about our numerical experiments in the following.

• The preprocessing step should be an integrated part of the stress testing as the current
correlation matrix may even fail to be positive semidefinite due to insufficient historical data or
numerical truncations. The quadratically convergent Newton’s method - Algorithm 3.1 makes
this step easy to implement.

• The local stress testing problem can be solved quite efficiently, regardless the size of m, by
Algorithm 3.1.
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m Levels cputime Iter. Func. Res.
386 5 1 m 53 s 21 31 2.2× 10−8

385 4 2 m 42 s 20 29 2.6× 10−7

384 4 4 m 05 s 21 30 8.4× 10−7

380 5 8 m 40 s 24 34 1.7× 10−7

377 6 15 m 24 s 31 43 1.3× 10−7

370 6 21 m 34 s 31 44 2.6× 10−7

350 9 1 h 15 m 46 s 51 75 7.3× 10−7

300 13 3 h 11 m 18 s 73 120 9.2× 10−7

Table 2: Numerical results of Example 5.1 for Algorithm 4.3.

• The band stress testing problem is more difficult to solve than the local stress testing
problem when m becomes larger. Algorithm 3.1 should be used to solve the band stress testing
problem with a relatively small m and Algorithm 4.3 is more favorable when m is close to n.

• The randomly generated problem is relatively easier to solve than the problem from the
market data.

• The numerical results reported in Tables 1-4 indicate that our approach is highly efficient.
For examples, in Table 3 for the band stress testing with n = 1, 500 and m = 500, we need
to solve at each step a linear equation of 125, 250 unknowns and in Table 4 for n = 1, 500 and
m = 1, 200, we need to solve at each step a linear equation of 405, 850 unknowns.

6 Conclusion

In this paper, we developed an unconstrained convex optimization approach for the difficult
correlation stress testing problem. The key for the success of our approach strongly hinges on
the efficiency of the quadratically convergent Newton method - Algorithm 3.1, which makes use
of recently developed theory of strongly semismooth matrix valued functions. We believe that
the research conducted here can relieve practitioners from being troubled by lack of efficient nu-
merical algorithms and allow them to pay more attention to their financial models. On the other
hand, the methodology developed here is not confined to the correlation stress testing problem.
It can certainly be used to deal with similar problems where an improper covariance/correlation
matrix needs to be calibrated.

Appendix A: Characterizing the set ∂̂2θ(y)

There are two issues that have to be addressed before employing Algorithm 3.1:

(i) Calculating one element Vy ∈ ∂̂2θ(y) at an arbitrary point y; and

(ii) Characterizing the whole set ∂̂2θ(y∗) at the solution point y∗.
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Test type n m cputime Iter. Func. Res.
Local 1,000 5 7 m 34 s 6 7 2.4× 10−9

Local 1,000 100 5 m 43 s 12 13 6.4× 10−11

Local 1,000 500 1 m 40 s 11 14 3.0× 10−7

Local 1,000 998 41 s 3 4 1.2× 10−10

Local 1,500 5 34 m 08 s 6 7 1.4× 10−7

Local 1,500 200 16 m 09 s 12 13 4.7× 10−7

Local 1,500 750 6 m 06 s 12 13 2.1× 10−7

Local 1,500 1, 498 2 m 28 s 3 4 3.1× 10−10

Band 1,000 5 2 m 55 s 5 6 8.6× 10−9

Band 1,000 10 3 m 33 s 5 6 8.2× 10−7

Band 1,000 20 3 m 40 s 5 6 5.4× 10−7

Band 1,000 50 5 m 20 s 6 7 5.4× 10−11

Band 1,000 100 5 m 55 s 6 7 5.8× 10−11

Band 1,000 200 9 m 04 s 6 7 1.4× 10−7

Band 1,000 300 12 m 55 s 7 8 2.1× 10−10

Band 1,500 5 9 m 12 s 5 6 7.4× 10−8

Band 1,500 50 18 m 02 s 6 7 6.2× 10−9

Band 1,500 100 21 m 35 s 6 7 1.9× 10−7

Band 1,500 250 36 m 04 s 7 8 1.6× 10−10

Band 1,500 500 1 h 10 m 02 s 8 9 1.2× 10−7

Table 3: Numerical results of Example 5.2 for Algorithm 3.1.

The first issue is related to the practical implementation of Newton’s method where in each
step Vk is required; and the second issue is necessary to study the convergence rate of the method
by assessing the nonsingularity of every element in ∂̂2θ(y∗) (see Theorem 3.2). We address the
two issues separately below.

(i) Calculating one element Vy ∈ ∂̂2θ(y). Recall that F (·) = ∇θ(·) is defined by (22),
i.e.,

F (y) := ∇θ(y) = AΠSp
+
(X0 +A∗y)− b , y ∈ IRq .

For any given X ∈ Sp
+, let λ(X) be the eigenvalue vector of X with its components being

arranged in the nonincreasing order, i.e., λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X). Let O denote the set
of all orthogonal matrices in IRp×p and OX be the set of orthornormal eigenvectors of X defined
by

OX :=
{
P ∈ O| X = PDiag[λ(X)]P T

}
.

For simplicity, let
X(y) := X0 +A∗(y), λ(y) := λ(X(y)).

We further have the spectral decomposition

X(y) = PDiag(λ(y))P T , P ∈ OX(y).
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n m Levels cputime Iter. Func. Res.
1, 000 999 3 11 m 13 s 12 20 2.8× 10−8

1, 000 995 3 24 m 24 s 24 34 1.3× 10−8

1, 000 990 3 44 m 10 s 15 34 1.9× 10−7

1, 000 900 4 1 h 51 m 26 s 20 47 1.4× 10−8

1, 000 700 4 3 h 32 m 30 s 25 68 2.8× 10−8

1, 500 1, 499 3 32 m 30 s 11 22 5.8× 10−9

1, 500 1, 490 3 1 h 00 m 58 s 15 31 5.7× 10−7

1, 500 1, 450 3 2 h 05 m 59 s 17 35 9.8× 10−7

1, 500 1, 400 4 3 h 38 m 04 s 19 39 1.8× 10−8

1, 500 1, 200 4 10 h 44 m 27 s 25 60 3.3× 10−8

Table 4: Numerical results of Example 5.2 for Algorithm 4.3.

Define three sets of indices associated with λ(y) by

α(y) := {i|λi(y) > 0} ,

β(y) := {i|λi(y) = 0} ,

γ(y) := {i|λi(y) < 0} .

When the dependence of those sets on y is clear from the context, y is often omitted for simplicity.
Let Wy : Sp → Sp be defined by

WyH = P (My ◦ (P T HP ))P T ∀H ∈ Sp , (49)

where

My :=




Eαα Eαβ (νij) i∈α
j∈γ

Eβα 0 0
(νji) i∈α

j∈γ
0 0


 , νij :=

λi(y)
λi(y)− λj(y)

, i ∈ α, j ∈ γ.

Since Wy ∈ ∂BΠSp
+
(X(y)) (cf. Pang, Sun, and Sun 2003), we obtain that

Vy := AMyA∗ ∈ ∂̂2θ(y) .

Then, for any h ∈ IRq we have

Vyh = A (
P (My ◦ (P TA∗(h)P )P T

)
. (50)

Note that there is no need to form the matrix Vy explicitly for our numerical implementation.

(ii) Characterization of the whole set ∂̂2θ(y). Define a set of symmetric matrices at y
by

My :=





M ∈ Sp | M =




Eαα Eαβ (νij) i∈α
j∈γ

Eβα (ωij) i∈β

j∈β
0

(νji) i∈α
j∈γ

0 0


 ,

ωij = ωji ∈ [0, 1]
for i, j ∈ β
νij = λi(y)/(λi(y)− λj(y))
for i ∈ α, j ∈ γ





.
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We note that My is a compact set and 1 > νij > 0 for any M ∈My. Then, from Chen, Qi, and
Teng (2003) or Pang, Sun, and Sun (2003), we obtain that

∂̂2θ(y)h ⊆ conv {A(W (A∗(h)))| W ∈ Wy} for any h ∈ IRq, (51)

where Wy consists of all W : Sp → Sp such that

W (H) = P
(
M ◦ (P T HP )

)
P T ∀H ∈ Sp

for some P ∈ OX(y) and M ∈My.

We now specify the two characterizations to the problems we have encountered in the La-
grangian dual approach and the augmented Lagrangian dual approach respectively.

(iii) Specialization to problem (33). In the Lagrangian dual approach, θ takes the form
θτ in (33). The corresponding F is given by

F (y) = A
(
(Ĉ − τI) +A∗(y)

)
+
− bτ ,

where

A =
( A1

A2

)
and A∗(y) = A∗1(x) +A∗2(z) for y = (x, z) ∈ IRn × IRκ.

Vy can be characterized via the formula (50) with λ(y) being the eigenvalues of the matrix(
(Ĉ − τI) +A∗(y)

)
of having the spectral decomposition:

((Ĉ − τI) +A∗(y)) = PDiag(λ(y))P, P ∈ O
(( bC−τI)+A∗(y))

.

In the formula, α, β, and γ are respectively the set of indices of positive, zero, and negative
eigenvalues of ((Ĉ − τI) + A∗(y)). Moreover, ∂̂2θτ (y) is also characterized in using the same
spectral decomposition.

(iv) Specialization to problem (42). In the augmented Lagrangian dual approach (see
Algorithm 4.3), when Algorithm 3.1 was applied to problem (42), θ takes the form Lσ(x, Y )
defined in (40) with x being a variable and Y being fixed. In this case (see also (41))

∇θ(x) = ∇xLσ(x, Y ) = x− ĉ−A(
Y − σgτ (x)

)
+
, x ∈ IRκ̄.

As we just did for calculating Vy, we can calculate a matrix Vx ∈ ∂̂2θ(x) by the following formula

Vxh = h + σA
(
P (Mx ◦ (P TA∗(h)P )P T

)
, h ∈ IRκ̄ (52)

with

Mx :=




Eαα Eαβ (νij) i∈α
j∈γ

Eβα 0 0
(νji) i∈α

j∈γ
0 0


 , νij :=

λi(x)
λi(x)− λj(x)

, i ∈ α, j ∈ γ,
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where λ(x) is the eigenvalue vector of the matrix
(
Y − σgτ (x)

)
of having the spectral decompo-

sition:
Y − σgτ (x) = PDiag(λ(x))P, P ∈ O(Y−σgτ (x)).

In the formula, α, β, and γ are respectively the set of indices of positive, zero, and negative
eigenvalues of (Y − σgτ (x)).

Notice that in this case, due to the form of ∇θ(x), any matrix in ∂̂2θ(x) has two parts with
the first being the identity matrix I and the second being a positive semidefinite matrix (e.g.,
see Vx). Therefore, any matrix in ∂̂2θ(x) is always positive definite. Consequently, Algorithm
3.1 is always quadratically convergent when applied to problem (42).

Appendix B: Proof of Proposition 3.4

We first need a technical lemma.

Lemma 6.1 Let Y ∗ be the optimal solution of problem (10) so that X∗ = Y ∗+τI is the optimal
solution of problem (9). Suppose Y ∗ has r positive eigenvalues and has the following spectral
decomposition:

Y ∗ = PDiag(λ∗1, . . . , λ
∗
r, 0 . . . , 0)P, P ∈ OY ∗ .

Let P = [P1, P2], where P1 ∈ IRn×r and P2 ∈ IRn×(n−r) respectively denote the first r columns
and the last (n− r) columns of P . For any matrix Z ∈ Sn of the form

Z =
(

Z1 0
0 Diag(xm+1, . . . , xn)

)
, Z1 ∈ Sm, xm+1, . . . , xn ∈ IR (53)

satisfying the condition
P T

1 Z = 0,

we have Z = 0.

Proof. The explicit form of Y ∗ in terms of the eigenvectors in P and positive eigenvalues
λ∗1, . . . , λ

∗
r is

Y ∗ =
(

Y ∗
ij =

r∑

`=1

(λ∗`Pi`Pj`)
)

i,j=1,...,n.
(54)

The consequences of this explicit form, together with the fact that Y ∗ satisfies the constraints
in (10), are

Y ∗
ij =

r∑

`=1

(λ∗`Pi`Pj`) = Cij , ∀(i, j) ∈ B (55)

and

Y ∗
ii =

r∑

`=1

(λ∗`P
2
i`) = 1− τ, ∀ i = 1, . . . , n. (56)
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Now suppose Z takes the form (53) and satisfies

Ω := P T
1 Z = P T

1

(
Z1 0
0 Diag(xm+1, . . . , xn)

)
= 0.

We prove Z = 0 in the following two cases.
Case 1. j > m. For this case we calculate

0 = Ωij = xjPji = xjP
2
ji, i = 1, . . . , r.

Multiplying λ∗i with Ωij and summing over i = 1, . . . , r, we have

0 =
r∑

i=1

(λ∗i Ωij)

= xj

r∑

i=1

(
λ∗i P

2
ji

)

= xj(Y ∗
jj)

2 (by (56))
= (1− τ)xj (notice 0 ≤ τ < 1).

This proves xj = 0 for j = m + 1, . . . , n.

Case 2. j ≤ m. For this case

0 = Ωij =
m∑

`=1

P`iZ`j , i = 1, . . . , r.

Therefore,

λ∗i Ω
2
ij =

m∑

`=1

λ∗i Z
2
`jP

2
`i + 2

m−1∑

`=1

m∑

k=`+1

λ∗i PkiP`iZkjZ`j .

Summing over the index i = 1, . . . , r gives

0 =
r∑

i=1

λ∗i Ω
2
ij =

m∑

`=1

[
Z2

`j

(
r∑

i=1

(
λ∗i P

2
`i

)
)]

+ 2
m−1∑

`=1

m∑

k=`+1

[
ZkjZ`j

(
r∑

i=1

(λ∗i PkiP`i)

)]

=
m∑

`=1

[
Z2

`jY
∗
``

]
+ 2

m−1∑

`=1

m∑

k=`+1

[ZkjZ`jY
∗
k`] (by (54))

=
m∑

`=1

(1− τ)Z2
`j + 2

m−1∑

`=1

m∑

k=`+1

[ZkjZ`j(C1)k`] (by (3), (55) and (56))

= ZT
·j (C1 − τI)Z·j , (by (C1)`` = 1− τ for ` = 1, . . . ,m)

where Z·j denotes the jth column of Z1. Because 0 ≤ τλmin(C), we have τ < λmin(C1), which
implies (C1 − τI) is positive definite. Therefore, Z·j = 0 for any j ≤ m. This proves Z1 = 0.
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Putting Case 1 and Case 2 together we have proved Z = 0. This finishes the proof. ¤

Proof of Proposition 3.4. Recall y∗ is an optimal solution of (33). Denote

C∗ =
(
Ĉ − τI

)
+A∗(y∗).

Suppose C∗ has the spectral decomposition

C∗ = PDiag(λ∗1, . . . , λ
∗
r, λ

∗
r+1, . . . , λ

∗
n)P T , P ∈ OC∗

and suppose it has r positive eigenvalues λ∗1, . . . , λ
∗
r. Define

α∗ :=
{

i
∣∣∣ λ∗i > 0, i = 1, . . . , n

}
= {1, . . . , r} ,

β∗ :=
{

i
∣∣∣ λ∗i = 0, i = 1, . . . , n

}
,

γ∗ :=
{

i
∣∣∣ λ∗i < 0, i = 1, . . . , n

}
.

It follows from the general formula (21) that the optimal solution Y ∗ of problem (10) is given
by

Y ∗ = PDiag(λ∗1, . . . , λ
∗
r, 0 . . . , 0)P T , P ∈ OY ∗ .

Recall that (B, c) is given by (3). For a given point y = (x, z) ∈ IRn × IRκ, it follows (29)
and (31) of calculating A∗1, A∗2 and A∗ that

A∗(y) = A∗1(x) +A∗2(z) := Z =
(

Z1 0
0 Diag(xm+1, . . . , xn)

)
, (57)

where Z1 is defined by

(Z1)ij :=





0.5zij if j > i
0.5zji if j < i
xi if j = i

i, j = 1, . . . , m.

Suppose that V is an arbitrary element in ∂̂2θτ (y∗)). We need to prove V is nonsingular.
Suppose there exists y = (x, z) ∈ IRn+κ such that

V (y) = 0. (58)

We need to show y = 0 in order to establish the nonsingularity of V . Now we suppose that (58)
holds. It then follows from the inclusion relation (51) (see (iii) in Appendix A for the application
of (51) to function θτ in (33)) that there exists a matrix M ∈My∗ such that

V (y) = A (
P (M ◦ (P T HP ))P T

)
with H := A∗1(x) +A∗2(z), (59)

and M is given by

M =




Eα∗α∗ Eα∗β∗ (νij) i∈α∗
j∈γ∗

Eβ∗α∗ (ωij) i∈β∗
j∈β∗

0

(νji) i∈α∗
j∈γ∗

0 0


 ,

for some ωij = ωji ∈ [0, 1], for i, j ∈ β
νij = λ∗i /(λ∗i − λ∗j )
for i ∈ α∗, j ∈ γ∗.
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Note that the matrix P in the above equation is the one that yields the spectral decomposition
of (Ĉ − τI) +A∗(y∗). We then have

〈y, V (y)〉 = 〈y,A (
P (M ◦ (P T HP ))P T

)〉
= 〈A∗(y), P (M ◦ (P T HP ))P T 〉 (by definition of the adjoint)
= 〈P T (A∗(y))P, M ◦ (P T HP )〉 (by the property of trace)
= 〈P T HP,M ◦ (P T HP )〉 (by A∗(y) = A∗1(x) +A∗2(z)).

Let H̃ := P T HP . Then by the Hardmard product we have

〈y, V (y)〉 = 〈H̃, M ◦ H̃〉
≥

∑

i∈α∗

( ∑

j∈α∗∪β∗
H̃2

ij +
∑

j∈γ∗
νijH̃

2
ij

)

≥ ν
r∑

i=1

n∑

j=1

H̃2
ij ,

where ν := mini∈α∗,j∈γ∗ νij > 0.
By assumption (58) we have

H̃ij = 0 ∀i = 1, . . . , r and j = 1, . . . , n.

This means that the first r rows of H̃ are zero, which, by recalling P = [P1, P2], implies

P T
1 HP = 0. (60)

Since P is nonsingular, this equation, together with (57) and (59), means

Ω := P T
1 H = P T

1 (A∗1(x) +A∗2(z)) = P T
1

(
Z1 0
0 Diag(xm+1, . . . , xn)

)
= 0. (61)

Now the result in Lemma 6.1 implies that Z1 = 0 and xj = 0 for all j = m + 1, . . . , n. By the
way Z is defined, we know that x = (y, z) = 0. Hence V is nonsingular. The proof is completed.
¤

Appendix C: Proof of Lemma 4.1

Proof. Recall that gτ (x∗) is positive semidefinite. We assume that it has r positive eigenvalues
and it has the following spectral decomposition:

gτ (x∗) = PDiag(λ1, . . . , λr, 0, . . . , 0)P T , P ∈ Ogτ (x∗).

It is also known from (38) that Y ∗ = gτ (x∗) is the optimal solution of (10). Therefore, Lemma
6.1 applies to the eigenvector matrix P in the above decomposition.
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The largest linear space lin
(TSn

+
(gτ (x∗))

)
contained in the tangent cone of Sn

+ at gτ (x∗) is
given by (cf. Arnold 1971):

lin
(
TSn

+
(gτ (x∗))

)
:=

{
P

(
U V
V T 0

)
P T : U ∈ Sr, V ∈ IRr×(n−r)

}
.

Our first observation is that the set A∗(IRκ̄) has the following characterization:

A∗(IRκ̄) =
{

X ∈ Sn
∣∣∣ 〈Eij + Eji, X〉 = 0, for all (i, j) ∈ B
〈Eii, X〉 = 0, i = 1, . . . , n

}
.

That is, A∗(IRκ̄) is the intersection of the null spaces of Eij , ((i, j) ∈ B) and Eii, i = 1, . . . , n
under the standard trace inner product.

Using this observation and the structure of lin
(TSn

+
(gτ (x∗))

)
, it follows from a result (Theo-

rem 1, Alizadeh, Haeberly, and Overton 1997) that the constraint nondegeneracy (i.e., the primal
nondegeneracy in Alizadeh, Haeberly, and Overton 1997) holds if and only if the matrices

Bij :=
(

P T
1 AijP1 P T

1 AijP2

P T
2 AijP1 0

)
,

Aij = 0.5(Eij + Eji),
for (i, j) ∈ B and i = j = 1, . . . , n.

are linearly independent.
We now prove the linear independence of those Bij . Suppose there exist y ∈ IRn and z ∈ IRκ

(recall κ = κ(B)) such that
n∑

i=1

yiB
ii +

∑

(i,j)∈B
zijB

ij = 0. (62)

We want to prove y = 0 and z = 0. Taking into account of the special structure of Eij ’s, it is
easy to see equation (62) is equivalent to

(
P T

1 Diag(y)P1 P T
1 Diag(y)P2

P T
2 Diag(y)P1 0

)
+

(
P T

1 ΞP1 P T
1 ΞP2

P T
2 ΞP1 0

)
= 0,

where
Ξ := 0.5

∑

(i,j)∈B
(zijE

ij + zijE
ji).

Due to the symmetry, the above equation is equivalent to the first r-rows being zeros, i.e.,

P T
1 Diag(y)P + P T

1 ΞP = P T
1 (Diag(y) + Ξ) = 0.

Note that the matrix (Diag(y)+Ξ) has the exact structure of the matrix Z defined in (53) when
(B, c) is given by (3). Then Lemma 6.1 implies y = 0 and Ξ = 0, which in turn implies z = 0.
This proves that the constraint nondegeneracy holds. ¤

As discussed in Remark R2 in Section 3, the constraint nondegeneracy property can be
extended to other general cases including the rectangular B. Consequently, the augmented
Lagrangian method applies to stress testing in those general cases.
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