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Abstract We introduce a Cartesian P-property for linear transformations
between the space of symmetric matrices and present its applications to the
semidefinite linear complementarity problem (SDLCP). With this Cartesian
P-property, we show that the SDLCP has GUS-property (i.e., globally unique
solvability), and the solution map of the SDLCP is locally Lipschitzian with
respect to input data. Our Cartesian P-property strengthens the correspond-
ing P-properties of Gowda and Song [15] and allows us to extend several
numerical approaches for monotone SDLCPs to solve more general SDLCPs,
namely SDLCPs with the Cartesian P-property. In particular, we address im-
portant theoretical issues encountered in those numerical approaches, such
as issues related to the stationary points in the merit function approach,
and the existence of Newton directions and boundedness of iterates in the
non-interior continuation method of Chen and Tseng [6].
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1 Introduction

There recently has been growing interest in searching for solution methods for
the semidefinite linear complementarity problem (SDLCP), ranging from the
general theoretical framework [36,39,34,5,29] to concrete numerical methods
including interior-point methods [23,32], path-following methods [37], non-
interior continuation methods [6], and smoothing Newton methods [22,35,
7], to name a few. Most of these numerical methods are extended from their
counterparts for linear complementarity problems (LCPs), which might be
nonmonotone.

Unlike LCPs, numerical methods proposed so far focus solely on monotone
SDLCPs. However, as we will see below, there are SDLCPs which may not
possess the monotone property. Thus a natural question is whether one can
identify a class of nonmonotone SDLCPs which are suitable for algorithmic
approaches.

To motivate this research, we start by introducing the mathematical for-
mulation of SDLCPs to be analyzed in this paper. Let X denote the space
of n x n block-diagonal real matrices with m blocks of sizes ni,...,nn,
(n = Y 1%, n;), respectively (the blocks are fixed). Thus, X is closed un-
der matrix addition X +Y, multiplication XY, and transposition X7, where
X,Y € X. Furthermore, if X € X is invertible, then its inverse X! € X.
We endow X with the inner product and norm:

(X, V) =t[XTY], [X|:=+(X,X),

where X,Y € X and tr[-] denotes the matrix trace (i.e., tr[X] = Y7 | X;).
(IIX|] is the Frobenius-norm of X). Let S denote the subspace comprising
those X € X that are symmetric, i.e., X7 = X. We denote by Sy (Si,
respectively) the cone of symmetric positive semidefinite (positive definite,
respectively) matrices in S. We use the symbol X > ()0 to say that X €
S1(S4+4)-

Given a function F' : S — S, the semidefinite complementarity problem
(SDCP(F)), is to find a matrix X € S such that

X>0,Y >0, and (X,Y)=0,F(X)-Y =0. )
When F is an affine function, i.e. F(X) := L(X)+Q for a linear transforma-
tion L : § — S and a matrix ) € S, the SDCP(F) reduces to the semidefinite

linear complementarity problem (SDLCP(L,Q)), of finding a matrix X € S
such that

X>0,Y:=LX)+Q >0, and (X,Y)=0. (2)
Finally, when X contains only the diagonal matrices (i.e., n1 =ns = ... =

Ny = 1 and m = n), then SDLCP(L, @) becomes the lznear complementamty
problem, denoted by LCP(M, q), of finding a vector z € R" such that

x>0, y:=Mz+q>0, and (z,y) =0 3)
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where M € R™*™ and ¢ € R" (in fact, M is the matrix representation of L
and ¢ = diag(Q)).

It is well known (see [8]) that a class of nonmonotone LCPs which has been
well solved is the P-LCPs (i.e., the matrix M in LCP(M,q) is a P-matrix).
Apparently, in this case, the corresponding SDLCPs are not monotone any-
more and hence it is not clear whether the numerical methods proposed so
far are still appropriate. Thus, it is important to identify a class of nonmono-
tone SDLCPs, called Cartesian P-SDLCPs, which can be solved by some of
these well-developed algorithms.

Earlier attempts along this direction have been made by Gowda and Song
[15] in identifying more general SDLCPs which enjoy certain properties, the
so-called P-type properties generalized from LCPs (see also [16,17,30,18] for
more discussions on these P-type properties). Unfortunately, it is not known
whether SDLCPs with their P-type properties can be solved by any of the
above well-developed numerical methods.

Recall that for the LCP(M,q), M € R™*™ is a P-matrix if one of the
following equivalent characterizations holds:

(i) For each nonzero z € ", there exists an index ¢ € {1,...,n} such that
z;(Mz); > 0.
(ii) The implication

zeR”, zx(Mz)<0 = z=0

holds, where z * (Mz) is the componentwise product of vectors z and
Mz, and the inequality is defined componentwise.

It is known that if M is a P-matrix then (see [28] for (iii) and [14] for (iv))

(iii) LCP(M, q) is globally uniquely solvable for all ¢ € " (i.e., GUS-property
of M).

(iv) The solution map of LCP(M,q) is locally Lipschitzian with respect to
data (M, q).

The P-property introduced by Gowda and Song is a natural extension
of (ii) to linear transformations L : S — S and has close relations to the
Lyapunov stability theorem [15, Theorem 5]. Unfortunately, even though
SDLCP(L, ) is globally solvable for all () € S when L has the P-property, it
may admit more than one solution (i.e., GUS-property of L may not hold). To
achieve the GUS-property of L, they further introduced the P»-property (see
Section 3 for definitions of those concepts). In some sense the Ps-property
seems to be a proper extension of P-matrix notion to its counterpart in
symmetric-matrix spaces. However, its definition presents itself a great deal
of difficulty in analyzing it, see [30]. Furthermore, it is not clear whether the
Py-property implies the locally Lipschitzian property of the solution map of
SDLCP(L, Q) with respect to data (L, @), neither is known if the P-type
SDLCPs can be numerically solved by any methods mentioned above. Thus
there is a need in identifying more appropriate P-type transformations so that
properties like (iii) and (iv) hold and such P-type SDLCPs can be solved by
certain efficient numerical methods.
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In this paper, we introduce a new concept, called Cartesian P-property,
which is a natural extension of definition (i) of P-matrix and is motivated
by P properties on Cartesian products in " introduced by Facchinei and
Pang in their recent book [10]. This Cartesian P-property guarantees not
only the GUS-property of L (see Proposition 3 and Corollary 3), but also
the locally Lipschitzian property of the solution map of SDLCP(L, Q) with
respect to data (L, Q) (see Proposition 4 and Proposition 6). This makes
a complete extension of (iii) and (iv) for P-LCPs to their counterparts in
SDLCPs. In some extreme cases, the Cartesian P-property reduces to well-
known concepts. For example, when X contains only the diagonal matrices
(i.e., m = n), the Cartesian P-property reduces to the P-property of a matrix.
If X contains only one diagonal block (i.e., m = 1), the Cartesian P-property
of L is equivalent to the strong monotonicity of L (i.e., (X, L(X)) > 0 for
all 0 # X € S). However, when X contains non-trivial diagonal blocks (i.e.,
1 < m < n), this equivalent characterization is no long valid. We also note
that non-trivial diagonal blocks of X may arise from certain SDLCP reformu-
lations of semidefinite linear programming problems, see Kojima et.al. [23],
and also [16, Appendix A].

Our new concept of Cartesian P-property allows us to generalize two im-
portant numerical approaches, namely the merit function approach and the
continuation /smoothing approach, to more general SDLCPs. The first ap-
proach was initiated by Tseng [36] and has a close relation to the second, see
[6,22,35,7,5]. An important issue in the merit function approach is when the
stationary points of merit functions are the solutions of the original problem,
a question raised by Tseng [36, Q1]. We answer this question by focusing on
two commonly used merit functions: the implicit Lagrangian function and
the Fischer-Burmeister function (their original appearance in the context of
nonlinear complementarity problems (NCP) can be found in Mangasarian
and Solodov [26] and Fischer [12,13]). In particular, we show, in Proposition
8, that if L has the Cartesian P (respectively, Fy)-property then the sta-
tionary points of the implicit Lagrangian function (respectively, the Fischer-
Burmeister function) are the solutions of the original problem. This provides
an answer to the question raised by Tseng [36, Q1]. For the second approach,
we show that the non-interior continuation method of Chen and Tseng [6]
for solving general monotone semidefinite complementarity problems is suit-
able for the solution of Cartesian P-SDLCPs. We prove its global as well as
its local superlinear convergence by addressing two important issues of the
algorithm: nonsingularity of Jacobian matrices (which define Newton’s equa-
tions) and boundedness of neighborhoods of iterates (see Proposition 9 and
Corollary 6). This part of investigation not only verifies that Chen-Tseng’s
algorithm is suitable for nonmonotone problems, but also opens up the pos-
sibility of applying several other numerical methods to problems having the
Cartesian P-property. Indeed, careful study reveals that similar results also
hold for the smoothing methods studied by Kanzow and Nagel [22] and by
Sun, Sun, and Qi [35].

The paper is organized as follows. In Section 2, we introduce the new
concept of Cartesian P-property and study its equivalent characterization.
In Section 3, we show that the Cartesian P-property implies both the GUS-
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property and locally Lipschitzian property of the solution map. The GUS-
property actually follows from the fact that the Cartesian P-property implies
the Py-property. The converse of this fact is not true. In Section 4, we an-
alyze the merit function approach for SDLCPs with the Cartesian P- or
Py-property. In Section 5, we show that Chen-Tseng’s algorithm can be ap-
plied to solve P-SDLCPs by addressing important issues of nonsingularity
of Jacobian matrices and boundedness of neighborhoods of iterates, and we
conclude Section 5 by remarking that Chen-Tseng’s algorithm is globally as
well as locally superlinearly convergent for the Cartesian P-SDLCP. We draw
our conclusion in Section 6.

Notation: For a matrix A € X, A;; denotes its (i, j)th element; diag(A)
denotes a vector in " whose ith component is A;;. Conversely, for a vector
u in R™, Diag(u) denotes a diagonal matrix whose ith diagonal element is
u;. The p-norm of A is defined by [|Al|, := supy,),=1 [[Az|[,- Two frequently
used inequalities are

max [Aij| < [| 4]l and [[A[l2 < max{y/ng,..., /im }H[Allo- (4)

For X € S, let X, denote its vth block and [X] denote its projection to S;.
Let S, denote the subspace of n, x n, symmetric matrices. Then it follows
from [37, Lemma 2.1] that X; = Diag([X1]+,- -, [Xm]+), where [X,]4 is
the orthogonal projection of X, to (S,)4+, the cone of positive semidefinite
matrices of n, X n,. For v € {1,...,m}, let Z, contain all the indices belong-
ing to the vth block of X, O, denotes the set of orthogonal matrices of size
ny, X n,, and O denote the set of orthogonal P € X (i.e., PT = P71, P € X).
Given two matrices A, B € X, A o B denotes the Hadamard product of A
and B, ie., Ao B = [4;;B;;]7;_,. For a linear transformation L : § — S, we
denote its operator norm |[||L||| := max) x| =1 [|L(X)||. For v € {1,...,m},
X € S, we denote L, (X) the vth block of L(X). Given a matrix A € X, the
Lyapunov transformation L : S = S is defined by La(X) := AX + X AT,
Suppose F' : S — S is differentiable, we let VF(X) denote the Jacobian of
F at X.

2 Cartesian P properties

We first state definitions of Cartesian P properties for a linear transformation
L:S—S.

Definition 1 A linear transformation L : S — S is said to have

(i) the Cartesian P-property if for any 0 # X € S

max (X, L,(0) > 0; 6

(ii) the Cartesian Py-property if for any 0 # X € S thereexistsv € {1,...,m}
such that

X, #0 and (X,,L,(X)) > 0. (6)
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Definition 1 is motivated by P properties on Cartesian products in "
introduced by Facchinei and Pang in their recent book [10, Section 3.5.2]. It is
easy to see that when X contains only one block (i.e., m = 1), the Cartesian
(P) Py-property becomes the (strong) monotonicity of L, i.e., {X, L(X))(>
) > 0 for all X € S, and when X contains only diagonal matrices (i.e.,
m = n), it becomes the (P) Py properties of matrices. Both cases have been
well studied, see [23,37,6,22,35] for the former and the recent book [10] for
the latter. The following equivalent characterization is very useful.

Proposition 1 For a linear transformation L : S — S, it holds

(i) L has the Cartesian P-property if and only if for any 0 # X € S and any
P € O, there exists an index i € {1,...,n} such that

(PXL(X)PT).. >0, (7)

and
(i) L has the Cartesian Py-property if and only if L+ €I has the property (7)
for every e > 0, where I is the identity transformation on S.

When X contains only one block, Proposition 1 gives an interesting equiv-
alent characterization of strong monotone linear tranformations as formally
stated below.

Corollary 1 When X contains only one block (i.e., m = 1), a linear trans-
formation L : S — S is strong monotone if and only for any 0 # X € S and
any P € O, there exists an index i € {1,...,n} such that (7) holds.

The significance of characterization (7) is with the fact that it involves
all orthogonal matrices in X, which quite often are nonsymmetric, while
definition (5) only involves symmetric matrices. This fact is particular useful
as our analysis is often conducted on spectral decomposition of symmetric
matrices, rather than on symmetric matrices themselves. In order to prove
this equivalence, we need some lemmas.

Lemma 1 Let A be a 2 X 2 symmetric real matriz. Then the following state-
ments hold:

(i) There exists an orthogonal matriz P in R2%2 such that the nonzero diag-
onal entries of PAPT have the same sign.

(ii) If tr[A] # 0, there exists an orthogonal matriz P in R**? such that both
the diagonal entries of PAPT have the same sign as tr[A].

Proof. Since A is symmetric, there exists an orthogonal matrix ) such
that QAQ” is a diagonal matrix. So without loss of generality, we assume
that A is a diagonal matrix and A = Diag(A1, A\2).

(i) If A is positive semidefinite (i.e., A;A2 > 0), then we are done. Now
we assume that A\ A2 < 0. Let the orthogonal matrix P be

P::;(m \/W)
VIl + Pl A=Vl VI
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Then it is straightforward to show that the two diagonal entries of PAPT
are A1 + A2 and 0.
(ii) Let the orthogonal matrix P be

1 1 1
P (A1)
Then both of the two diagonal entries of PAPT are (A1 + A2)/2. The proof
is completed by noticing that the product of any two orthogonal matrices is

also an orthogonal matrix. |
A direct but very useful consequence of the proof of Lemma 1 is

Corollary 2 Let A be a 2 X 2 symmetric real matriz. If A is not definite,
then there exists an orthogonal matriz P such that PAPT has at least one
zero diagonal entry.

Now we extend the results above to the general case. The proof involves
repeating use of Lemma 1 and Corollary 2.

Lemma 2 Let A be a matriz of size v x r and O, be the set of orthogonal
matrices of size v x r. Then, there exists P € O, such that all nonzero
diagonal entries of the matrix PAPT have the same sign. Furthermore, if
tr[A] # 0, then there exists P € O, such that all of the diagonal entries of
PAPT have the same sign as tr[A].

Proof. Without loss of generality, let r > 2. First we assume A is sym-
metric. Suppose there exist ,j € {1,...,r} such that ¢ < j and A;;A4;; <0,

we consider the 2 x 2 minor of A, denoted A(%, j) with the entries being the
intersections of ith, jth rows and ith, jth columns, i.e.,

Ai Ay
Ay g) = (4 49 ) .
(6,) (Aji Ajj
From Corollary 2, there exists an orthogonal matrix P € R2*2, say
P. P.
P .= i ij
(Pji Pj; )

such that at least one diagonal entry of PA(i, j)PT equals 0. Now define an
“almost” diagonal matrix @ € R™*" by

1 s=t#1,]
Qst: PT‘S S,tE{i,j}
0 otherwise.

Then it is easy to see that @ is an orthogonal matrix, and the diagonal entries
of A and QAQT are different in only two entries. Moreover, QAQT has one
more zero diagonal entry than A. Repeating this process on the new matrix
QAQT until all nonzero diagonal entries have the same sign. Since there is
one more zero diagonal entry at each step, the process will end in a finite
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number of steps. Let B denote the final matrix of such process. This proves
the first part of Lemma 2.

If tr[A] # 0, it is easy to see that tr[A] = tr[B]. Then at least one diagonal
entry of B is nonzero. By Lemma 1 (ii), and using the similar process above
on B, we can obtain a matrix whose all diagonal entries have the same sign,
which of course is the same as tr(A).

If A is not symmetric, we consider the symmetric matrix A := (4+AT)/2.
We observe that for any orthogonal P, PAPT and PAPT have the same
diagonal entries. Then our result follows from the proof for the symmetric
case. |

Proof of Proposition 1. (i) Suppose that L has the Cartesian P-property.
Then for any 0 # X € S there exists v € {1,...,m} such that (X,, L, (X)) >
0. Let P € O be arbitrary but fixed and write P = Diag[P;, ..., Py,] where
P, € O,,. Then it follows the identity

tr[P, X, L,(X)PT] = (X,,L,(X)) >0

there must exist an i € Z, such that (P,X,L,(X)PF); > 0. This proves
that the property (7) holds.

Now suppose the property (7) holds and L does not satisfy the Carte-
sian P-property. Then there exists 0 # X € S such that (X,,L,(X)) <0
for all v € {1,...,m}. It follows from Lemma 2 that there exists for each
v an orthogonal matrix P, € O, 6 such that all the diagonal elements of
P,X,L,(X)PT are nonpositive. Let P = Diag[P},..., Py]. Then P € O and
at the same time all the diagonal elements of the matrix PX L(X)PT are
nonpositive, contradicting the property (7). This establishes the Cartesian
P-property of L.

(ii) Suppose that L has the Cartesian Py-property, then for any but fixed
0 # X € S there exists v € {1,...,m} such that X, # 0 and (X, L, (X)) >
0. Therefore, for any € > 0

(X,,L,(X)+€eX,) > €||X,||? > 0.

That is, L + eI has the Cartesian P-property. The first part (i) implies that
L + €I has the property (7).

Suppose now that L + €I has the property (7). Then, (i) implies that it
also has the Cartesian P-property. That is, for any given 0 # X € S, there
exists v € {1,...,m} (depending on €) such that

0 <(X,,L,(X)+eX,) = (X,,L,(X)) + €| X, |*.

We may choose a subsequence {e} as e goes to zero such that the index v
satisfying the above inequality be fixed (due to the finite many choices of v).
It is necessary that X, # 0 and (X, L, (X)) > 0. Hence, we proved that L
has the Cartesian Py-property. |

An obvious consequence of the proof above is that L has the Cartesian
Py-property if and only if L + €I has the Cartesian P-property. The following
result is an equivalent characterization of the Cartesian P-property and will
be useful later on. Its proof is trivial and is hence omitted.
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Proposition 2 A linear transformation L : S — S satisfies the Cartesian
P-property if and only if for any 0 # X € S, any orthogonal matrix P €
O, and any nonsingular diagonal matriz D € X, there exists an index i €
{1,...,n} such that

(DPXL(X)P"D™1); > 0.

3 Lipschitz continuity of the solution map

In this section, we study existence, uniqueness, and continuity of solutions
of SDLCP(L, @) when L has the Cartesian P-property. We simply call such
a problem the Cartesian P-SDLCP. Let ¢(L, Q) denote the solution set of
SDLCP(L, Q). The main results in this section are:

(a) ¢(L, Q) contains a unique solution for any @ € S (i.e., L has the GUS-
property), and (b) ¢(L,Q) is locally Lipschitz continuous with respect to
data L and Q.

We furnish result (a) by investigating the relations of the Cartesian P-
property with other P-type properties introduced by Gowda and Song [15].
Notice that Gowda and Song define these properties for S with m = 1. How-
ever, it is straightforward to extend their definitions to the general (block)
space S.

Definition 2 Given a linear transformation L : S — &, we say that L has
the

(i) P-property if
X and L(X) commute, XL(X)<0= X =0;

and
(ii) P»-property if

X0,V >0, (X-Y)LX)—L|(X+Y)<0 = X =Y.

The commutativity of X and L(X) in the P-property makes the analysis
of the P-property simpler, since X and L(X) are simultaneously diagonal-
izable. It is known that the P-property of L implies the global solvability
of SDLCP(L,Q), i.e., ¢(L,Q) # 0 for any Q € S. However, an example in
Gowda and Song [15] shows that ¢(L, () may contain more than one ele-
ment. Thus, they propose the P»-property, which implies the uniqueness of
p(L,Q) for any @) € S (i.e., L has the GUS-property). We point out that
Gowda and Song show that the Py-property implies the GUS-property for S
with m =1 (i.e, S contains only one back). However, their proof carries over
to the general (block) space S. Few results for the P>-property (compared to
the P-property) has been known, partly because the concept of Pp-property
is not amenable to analysis. Recently, Parthasarathy et.al. showed that if
L is strongly monotone, then L has the Ps-property [30, Theorem 4]. This
motivates them to ask whether the converse is true.

In the following we show that the Cartesian P-property implies the P;-
property of L. This result in turn implies that the converse of [30, Theorem
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4] is not true for the general (block) space S, i.e., a linear transformation
having the P,-property might not be strongly monotone, because a linear
transformation L having the Cartesian P-property might not be strongly
monotone.

Proposition 3 If a linear transformation L : S — S has the Cartesian
P-property, then it has the Ps-property.

Proof. Assume that L has the Cartesian P-property. If m = 1, i.e.,, X
contains only one diagonal block, then L must be strongly monotone, which
in turn implies the Py-property of L [30, Theorem 4].

Now assume that m > 1, i.e., each element of X contains more than one
diagonal block. For simplicity, we only consider the case where X' contains
two diagonal blocks. The general case follows a similar argument. Suppose
there exist two matrices X > 0 and Y > 0 with

(X ([
= (Mx) 7= (")
such that

(X =Y)[L(X) - LY)(X +Y) 20, (®)

we shall show that X =Y. The proof below is motivated by the proof of [30,
Theorem 4] where X and Y contain only one block (i.e., corresponding to
X1 =Y =0 in our case).

Assume that X #Y. Certainly 0 # X +Y > 0, since X > 0 and Y > 0.
Then there exist P € O and positive numbers A1,..., A, (0 < 7 < nq)
and B1,...,08r (0 <re <mg), r1 +r2 > 1, such that the following spectral
decomposition holds:

T _ E 0
P(X +Y)P _D(O E2>D,

(PO (D10 (I, 0 (1,0
P_<0P2>’D_(OD2>’E1_<OO E2={ 00 )
D1::Diag(\//\l,...,\//\Tl,l,...,l)G?R"lxnl,
D2::Diag(\/ﬂl,...,wﬂw,l,...,l)e%mxm,

and I is the identity matrix of size r x r.
Let A=D"'PXPTD"' and B=D"'PYPTD~!, then A # B,

_(E 0
A+B_<0 EQ) 9)
and

X =PTDADP, Y =PTDBDP. (10)
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Since A > 0 and B > 0, we must have

A O B,
00 . 0
4,,0 and B = B, 0]

00 00

0
A= 0

where A, and B, are symmetric positive semidefinite matrices of size r x r.
It follows from (8) and (10) that

D(A - B)[L(A) — L(B)|(A+ B)D < 0, (11)
where L(Z) = DPL(PT DZDP)PTD. Writing
Cy Cs
> - | C3 Cy
L(A) - L(B) = o, Cs |
Cs Cs

we get from (11) and (9) that D, (A,, — B,;)CiD,, < 0,i = 1,2, where

D,, = Diag(\/x,...,\/m) and D,, := Diag(\/ﬁ_l,...,\/ﬂ:).

Therefore, we have

{((AT1 —B,,)C1)j; <0 Vje{l,...,r} and (12)
((Ap, = By,)C05);5 <0 Vi€ {l,...,m}.
We note that
D 'P(P'DzZDP)L(PTDZDP)PTD
= ZDPL(PT"DZDP)P"D
= Z1(2). (13)

Since L has the Cartesian P-property, it follows from Proposition 2 that for
any nonzero Z € S, there exists i € {1,...,n} such that

(D~'P(P"DZDP)L(P"DZDP)PTD);; > 0.
Thus (13) implies that for such i, we have
(ZL(Z))ii > 0, (14)

i.e., L has the Cartesian P-property.
Letting Z = A — B # 0, we have

(Ar, — B;,)Cy (A, — B;,)C3
N 0 0
ZL(Z) = (ATZ - Br2)02 (A’I‘z - BT‘Z)C5

0 0

Hence (14) implies that there exists ¢ € {1,...,71} or i € {1,...,r2} such
that
((ATl - BT1)Cl)ii >0 or ((AT‘2 - Brz)c2)z'i > 0.
This strict inequality contradicts the established fact (12). Thus we must
have A = B, or equivalently X =Y. That is, L has the P»-property. |
Since the Py-property implies the GUS-property of L [15], the next result
follows immediately.
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Corollary 3 If a linear transformation L : S — S satisfies the Cartesian
P-property, then p(L,Q) contains unique solution for any Q € S.

The following example shows that the converse of Proposition 3 is not
true in general, i.e., the Py-property does not necessarily imply the Cartesian
P-property.

Ezxample 1 Given a matrix A € X, the associated two-sided multiplication
transformation My : S — S is defined by M4(X) := AXAT. According to
[18, Corollary 6], M4 has the Pp-property if and only if A is positive definite
or negative definite. Now let

(4 ()

It is easy to see that M4 has the P»-property. However,
0-2
XMa(X) = <2 0 ) ’
that is, M4 does not satisfy the Cartesian P-property.

Given a matrix A € X, in terms of the Lyapunov transformation L 4,
Parthasarathy et. al. [30, Theorem 5] asserts that

A is positive definite <= L4 has the P;-property
<= L, is strongly monotone.

For any linear transformation L, the strong monotonicity of L implies the
Cartesian P-property. Considering Proposition 3 we have the following corol-
lary.

Corollary 4 Given o matriz A € X, the following statements are equivalent:

(i) A is positive definite.

(i) La has the strong monotonicity property.
(iii) La has the Py-property.

(iv) L4 has the Cartesian P-property.

When A + AT is nonsingular, we have the following equivalence, which is
an extension of [30, Corollary 1] to the Cartesian P-property.

Corollary 5 Suppose det(A+ AT) # 0 where A € X, then the following are
equivalent:

(i) La has the GUS-property.
(i) La satisfies the Py-property.
(##1) La satisfies the Cartesian P-property.
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Proof. We already know that (iii) = (ii) = (i) (see, Corollary 3 and
[30, Corollary 1]). So it suffices to prove (i) = (iii). Suppose L4 has the
GUS-property, according to [15, Theorem 9] A is positive semidefinite. It
follows that A+ AT is positive definite because it is nonsingular. This implies
that

tr[XLa(X)] = tr[X(A+ AT)X] >0 forany 0 # X € S. (15)
That is, A is positive definite, which together with Corollary 4 immediately
implies that L 4 satisfies the Cartesian P-property. |

Not only does the Cartesian P-property imply the GUS-property of L,
but also it implies the local Lipschitz continuity of the solution map ¢(L, Q)
with respect to the data (L, Q). We shall prove the latter below.

For a linear transformation L : § — S having the Cartesian P-property,
we define

L) := mi X, L, (X)).
oll):= min max ( &)

It is easy to see that a(L) > 0.

Proposition 4 Assume that tlAze linear tmnsfoz‘mation L :S8 — S has the
Cartesian P-property. Let Q,Q € S and X,X be the unique solution of
SDLCP(L,Q) and SDLCP(L, Q) respectively. Then
IX - X[| < a(L)7HIQ - Q- (16)
Proof. Let
Y:=L(X)+Q and Y := L(X) + Q.
We note that X,Y, X , Y are all positive semidefinite. It follows that
(X -XLEX-X) =X -X){Y -Y - (Q-Q)}
=—XY-XYV-(X-X)(Q-0).

The second inequality uses the relation XY =XY =0.
It then follows from the definition of a(L) that

DX - X|* < max (X, - X,, L(X - X))

< max <XV - XV)QV - QV>

— 1<v<m

< lg}/agxm ||X1/ - XI/||||QV - Qu“

<X -XxlllQ - QI
where the second inequality holds since XY, X , Y are all positive semidefi-
nite. This gives (16). |

If we let Q) = 0, then (16) gives the following bound for the unique solution
of SDLCP(L, Q)

I1X1l < a(L) M- (17)

In fact, we have a more tight bound as follows, which generalizes its LCP
correspondence [27, Lemma 1].
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Proposition 5 Assume that L has the Cartesian P-property, and let X de-
note the unique solution of SDLCP(L,Q). Then

X1 < a(D) T I=Q1+II- (18)

Proof. Because X is the solution of SDLCP(L,Q), X > 0. From this
inequality and the fact X (L(X) + Q) = 0, we have that

AL)|XIP < max (X, L(X))

max <X1/a _Qu>

1<v<m

max (X,,[-Qu]+)

1<v<m

(max [1XllI=Qv )|

IX=Q1+1I;

where the second inequality follows from the positive semidefiniteness of X.
This proves the bound (18). |
The bound (18) clearly says that zero is the only solution if @Q is positive
semidefinite. Recall from [27, Lemma 1] the LCP correspondence of the bound
(18), in which the following fact is essential: For any 0 < z € R, it holds

IN A

IN

Txq < T *qy for all ¢ € R"

where * means the componentwise product of vectors and ¢4 := max{0, ¢}.
Unfortunately, we do not have the corresponding result for matrices:

(X(—Q))u < (X[—Q]_{_)u for all Q €S andi= 1,...,n (19)

where X > 0 is given (the use of —@Q in the above inequality is only to keep
consistence with the proof of (18)). The following example due to Lewis [24]
disproves this possibility.

FEzxample 2 Let

54 2 -3
X = [45] €Sy and @Q:= [_3 8]

Then it is easy to see that [-Q]+ = 0. We see (X(—Q))11 = 2. Hence, the
inequality (19) cannot hold for this choices of X and Q.

Proposition 6 Let L be a compact set of linear transformations which have
the Cartesian P-property and O be a bounded subset of S. Then ¢ is Lips-
chitzian on £ x Q. In this case

le(L, Q) = (L, Q) < (1L = LIl + 1@ - Q1) (20)

for all (L,Q) and (ﬁ, Q) in L x Q, where
=0t -1 ;= mi = . 21
k=07 max{1,06"}, §:=mino(L), 6:=max(Q (21)
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Proof. We first note that all constants in (21) are well defined. Assume
that (L, Q) = {X} and ¢(L, Q) = {X}. By putting @ = 0 in (16), we have
bound (17). We note that ¢(L, (L —L)(X)+ Q) = {X }, we deduce from (16)
that

1X = X1l < a(L) (L - B)(X) + Q@ - Q)
<a@) {IlL - LIIxI+1Q - QIl}
<a@)H{a@ L - Lilel+ 1@ - I}

<r(lIZ-Lil+1Q-Ql).

|

It is interesting to note that when X contains only diagonal matrices,

bounds (16) and (20) reduce to their counterparts in LCPs; see [14, Theorem
10 and Theorem 11].

4 Stationary points of merit functions

Merit function approach for the solution of SDCPs was initiated by Tseng
[36], which is also closely related to subsequent studies of several other ap-
proaches, see [34,22,6,5,7,35]. Roughly speaking, the merit function ap-
proach reformulates the SDCP(F) defined in (1) as an equivalent uncon-
strained optimization problem

min f(X), (22)

XeSs

where f : § — R, is often differentiable and is called a merit function of
SDCPs, in the sense that f(X*) = 0 if and only if X* is a solution of the
SDCP. Thus, finding a solution for SDCP(F') is equivalent to solving the
optimization problem (22). Unfortunately, numerical methods for (22) often
stop at some stationary point X* (i.e., Vf(X*) = 0). It is hence of vital
importance to identify conditions under which any stationary point of f(X)
is a solution of SDCP(F). Some previously known conditions include the
positive definiteness or positive semidefiniteness of VF(X*), depending on
the merit functions; see Tseng [36] or Proposition 7 below for more details.
In this section, we analyze two commonly used merit functions, namely
the implicit Lagrangian function and the Fischer-Burmeister function (their
first appearance in the context of NCPs can be found in [26] and [12,13]), and
show that the Cartesian P (respectively, Py)-property provides the required
sufficient conditions for the implicit Lagrangian function (respectively, the
Fischer-Burmeister function). It is worth mentioning that those two functions
play significant roles in the merit function approach for NCPs [10]. It is also
appropriate to point out that similar results also apply to some other merit
functions analyzed by Tseng [36] and Yamashita and Fukushima [39].
Recall from [36] the implicit Lagrangian function

7X) = e {(FOOX = 2) = (,X) = - (IF) = VP 41X - 21P) |
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where v > 1 is a fixed constant, and the Fischer-Burmeister function

Fr(X) = SIB(F(X), X,

where @ : S x S — S is the function
®(A,B) := (A2 + B?)'/? — (4 + B).

The following results provide conditions under which any stationary point of
fy or frp gives a solution of SDCP(F).

Proposition 7 [36, Propositions 5.1, 6.1] Assume that F : S — S is differ-
entiable. Then the following holds:

(i) fy is differentiable on S and any stationary point, X*, of f, (i.e., V fy(X*)
= 0) is a solution of SDCP(F) provided that VF(X*) is positive definite.

(i) frp is differentiable on S and any stationary point, X*, of frp (i-e.,
Vfre(X*) =0) is a solution of SDCP(F) provided that VF(X*) is pos-
itive semidefinite.

In the following, we extend Proposition 7 to more general SDCPs, namely
to SDCP(F) in which VF(X) has Cartesian P-property or Py-property. (No-
tice that corresponding results, in the context of NCPs, have been established
in [9,11,19].) For this purpose, we give a brief overview on some known results
from Tseng [36, Sections 5, 6]. The following result, regarding the gradient
of the implicit Lagrangian function, is adapted from Proposition 5.1 and its
proof in Tseng [36].

Theorem 1 Assume that F' : S — S is differentiable. Then f, is differen-
tiable and

V) = VFE) (R0 - 15,00) + (S0 - TR, ey

where

Ry(X) =X — [X —yF(X)]s and 8,(X):= F(X) ~ [F(X) -7 X];.

Furthermore,
1 1
(Ry(X) — ;SA,(X),SA,(X) — ;RW(X)) >0 forall X € S. (24)

The next result, regarding the gradient of the Fischer-Burmeister func-
tion, is adapted from Lemma 6.3 and Proposition 6.1 in Tseng [36]. Before
presenting this result, we introduce some notation. Define a linear mapping
L¢ - SC = Sc by

LelX] = CX + XC,

where C' > 0 and S¢ is the subspace of S comprising those X € S¢ whose
nullspace contains the nullspace of C. As observed by Tseng [36], L¢ is
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positive definite on S¢ and hence has an inverse, Lal, which is also positive
definite on S¢. Let ¥(A, B) := %||45(A,B)||2. Tseng [36] shows that

Va¥(A,B) =sym [L;'[C — A- BJ(A-0)], (25)
and
Vp¥(A,B) =sym [L;'[C — A— B)(B-C)], (26)

where C := (A2 + B?)'/? and sym[X] := (X + XT)/2 for any X € X.

Theorem 2 Assume that F' : S — S is differentiable. Then frp is differen-
tiable and

Vire(X) = VF(X)V4¥(F(X), X) + Vp¥ (F(X), X). (27)
Furthermore,
(VAP (F(X),X),VpP(F(X),X)) > |(C - F(X) - X)G|*. (28)

for X € S, where C := (F(X)+ X)'/? and G := L' (C — F(X) - X).

Tt is easy to verify that (24) and (28) also hold for each individual diagonal
block.

Lemma 3 For any X € S, we have, for any v =1,...,m, that

() ([RV(X)—ES (X))o, [S7(X )——R (X)]v) = 0. (29)

(i) ([Va¥(F(X ) )],,,[VBM'/( (X) X)) 2 I(C = F(X) = X),G. 1%, (30)
where G, = L' (C, — F(X), — X,).

We are now ready to extend Proposition 7 to SDCP(F) in which VF(X)
has the Cartesian P-property or Py-property.

Proposition 8 Assume that F : S — S is differentiable. Then the following
holds:

(i) f, is differentiable on S and any stationary point, X*, of f (i.e., V f,(X*)
= 0) is a solution of SDCP(F') provided that VF(X*) has the Cartesian
P-property.

(i) frp is differentiable on S and any stationary point, X*, of frp (i-e.,
Vfre(X*) =0) is a solution of SDCP(F) provided that VF(X™*) has the
Cartesian Py-property.

Proof. (i) Assume that X* is a stationary point of f,, i.e., X* € S and
Vi, (X*) =0.It is easy to see that R,(X),S,(X) € S for any X € S.

Assume that R,(X*) — %S,y (X*) # 0. From the assumption that VF(X)

has the Cartesian P-property for any X € S, there must exist an v €
{1,...,m} such that

([Ry(X") - %sv(X*)]y, [VE(X*)((Ry(X*) - %&(X*))]V) >0. (31)
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Furthermore, the inequality (29) implies that
([Ry(X7) - ;SW(X ), [Sy(X7) — ;RV(X )]v) >0,

which, together with inequality (31), implies that V f,(X*) cannot be zero.
Thus, R,(X*) — %S,,(X*) = 0. Using the fact that Vf,(X*) = 0, we see

Sy (X*) — %R.Y(X*) = 0. Finally, since v > 1, we easily see that R,(X*) =
S, (X*) =0, or equivalently f,(X*) = 0. Hence X* is a solution of SDLCP(F).

(ii) Assume that X* is a stationary point of frp, i.e., X* € S and
Vfre(X*) = 0. Inequality (30) implies that, for any v = 1,2,...,m, either
veTorv € J,where Z and J define a partition of the set {1,2,...,m}
and are defined as follows:

I={v|(F(X"), +X))"/?-F(X"), - X; =0},

and

T =L v [([Va¥(F(X"),X")],, [VB¥(F(X"),X")],) >0 }.
If v € Z, (25) and (26) imply that

[VAP(F(X™), X¥)]y = [VE(F(X7), X)], = 0.

On the other hand, since VF(X*) has the Cartesian Py-property, there exists
a v € J such that

(VAP (F(X7), X7)y, (VF(X7)V 4 (F(X7), X)) 2 0,

which, together with the definition of set 7, contradicts the assumption that
Vire(X*) =0.

Therefore, 7 = § and Z = {1,2...,m}, which implies that X* is a
solution of SDCP(F). |

We remark that Proposition 8 provides an affirmative answer to the open
question Q1 in [36], which asks whether there exists some appropriate prop-
erty such that under this property, any stationary point of a merit function
is a solution to SDCP(F). Indeed, as we demonstrate in Proposition 8, the
Cartesian P-property proposed here provides us exactly such a property. It
is also appropriate to point out that the analysis in this section may be
extended to other merit functions studied in [36,39).

5 Applications to a non-interior continuation method for SDCPs

In this section we apply the Cartesian P-property to the non-interior contin-
uation method of Chen and Tseng [6] for solving SDCPs. We demonstrate
that the Cartesian P-property ensures not only the nonsingularity of the
Jacobian matrices but also the boundedness of neighborhoods used in the
method, and thus extends these properties of the method from the mono-
tone case to the nonmonotone case. Consequently, Chen-Tseng’s algorithm is
actually applicable to more general problems other than monotone problems.
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Suppose, for SDCP(F) defined in (1), there exists a continuously differen-
tiable function ¢, : S x § —= S, parameterized by a “smoothing parameter”
© > 0, having the property that

¢u(A,B) > 0and (4,B,p) - (X,Y,0) = X € 5,,Y € 54,(X,Y) =0.

Accordingly, (1) can be approximated by the smooth equation H,(X,Y) =0,
where

H,(X,Y) = (¢u(X,Y), F(X) - Y).
Typically, ¢, can be constructed via any function from the CM class [38]
which consists of convex continuously differentiable functions g : ® — &
with the properties that

lim ¢g(r) =0, lim g(r) —7=0 and 0< ¢'(r) <1lforall 7€ R
T——00 T—00

Then, similar to Chen and Mangasarian’s proposal in the LP/CP [3,4], ¢,
can be chosen as follows

Pu(X,Y) :=X — pg((X =Y)/p) (32)
where, for any A € S we have g(A) = PTDiag[g(\1),...,9(\,)]P with P €
O and Aq,...,\, € R satisfies A = PTDiag[)1,..., \n]P. One important
example of the CM class is as follows (see, Chen-Harker [1,2], Kanzow [20,
21], and Smale [33])

g(r) == ((7* + 4)1/2 +7)/2.

With a particular choice of ¢,, Chen-Tseng’s algorithm starts with any
p>0and Z € SxS. For a fixed u, few Newton-type steps for H,(Z) = 0 are
applied to update, and then the parameter y is decreased and re-iterate. Two
important theoretical issues of this method are the solvability of Newton’s
equations and boundedness of neighborhoods, namely the nonsingularity of
VH,(Z) and the boundedness of the neighborhood

Nsi={(Z,m) € S xS x Ryy ¢ [|HW(Z)]| < Bu},

where f € R, is a constant. It is appropriate to point out that other
assumptions for the global and local superlinear convergence of the algorithm
are less restrictive and can be easily satisfied when we replaced the monotone
requirement by the Cartesian P-property .

The following result, which appears in [6, Lemma 2], gives the Jacobian
of ¢,(X,Y). Notice that the Jacobian of a general matrix-valued function
can be traced back to Lowner [25].

Lemma 4 [6, Lemma 2] Fiz any p € R4y and any X,Y,U,V € S. For ¢,
given by (32) with g € CM, we have that ¢, is Fréchet-differentiable and

Vou(X,Y)(U,V) =U — PT((P(U - V)P") o C)P, (33)

where P € O and M,...,\, € R are such that PTDiag[\1,...,\,]P =
(X =Y)/u, C €S and fori,j in the same diagonal block,

Cy = {gg((i:)) —9(X))/ (X = X)) Z iz i ij (34)
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At each step of Chen-Tseng’s algorithm with iterate (X,Y) € S x S, we
find a solution (U, V) € SxS satistying the Newton equation VH,(X,Y)(U,V)
= (R, S) for some given (R, S) € S x S. Equivalently, at each step, we solve
the following equation systems:

Véu(X,V)U,V)=R, VFX)U-V=035.

It is shown in [6, Lemmas 6,7] that VH,, is nonsingular if ' is monotone and
uniformly bounded if F' is strongly monotone. We now extend these results
to the SDLCP(L, Q) case when L has the Cartesian P-property.

Proposition 9 Assume that F(X) = L(X)+Q and L has the Cartesian Py-
property. Let ¢, be given by (32) with g € CM. Then VH, (Z) is nonsingular
forall Z € Sx S and p > 0. If, in addition, L has the Cartesian P-property,
we have that

sup [|[VHL(Z) 7] < .

o<p
ZeSxS

Proof. Fix any X,Y € S and p € Ryy. To show that VH,(X,Y) is
invertible, it suffices to prove that zero is the only solution of the linear
system

Vou(X,Y)(U,V) =0, LU)-V=0. (33)

From Lemma 4 we have that V¢, (X,Y)(U,V) is given by (33), where P € O
and A, ..., A, € R are such that PTDiag[\,...