message.rtf
 






kernel_Oct19.pdf


An Application of the Nearest Correlation Matrix on Web
Document Classification


Houduo Qi∗ Zhonghang Xia† and Guangming Xing‡


October 19, 2006


We are honored to be able to dedicate this paper to our teacher and mentor Professor Changyu
Wang for his 70th birthday. Prof. Wang’s contributions to the operations research community
in China are prodigious. He has authored or coauthored many well known papers in operations
research. To single out one contribution is difficult, but he is particularly well known for his
pioneering work on gradient projection methods. As a senior scientist, he was very supportive
to us as beginners and by his advices played very important roles throughout our careers, for
which we are extremely grateful. Prof. Wang had a very close and long-lasting relationship with
his students. He treated us as part of his family. He set very high academic standards for his
students, and more importantly, he instilled moral values in his students.


Abstract


The Web document is organized by a set of textual data according to a predefined logi-
cal structure. It has been shown that collecting Web documents with similar structures can
improve query efficiency. Most of existing classification algorithms require vectorial input
formats. Usually, a kernel method is applied to represent structural data with pairwise sim-
ilarity. As a result, a set of Web data can be fed into classification algorithms in the format
of kernel matrix. However, since distances among Web documents are usually obtained ap-
proximately, the derived distance matrix is not a kernel matrix. In this paper, we propose
to use the nearest correlation matrix (of the estimated distance matrix) as the kernel matrix,
which can be fast computed by a Newton-type method. Experimental studies show that the
classification accuracy can be significantly improved.


1 Introduction


The rapid expansion of the World Wide Web has greatly facilitated the growth of e-commence.
Each day, more and more movies, books, and articles are created and the information is posted
online through Web pages. Consequently, users quickly become overwhelmed and are spending
more and more time to search their desired targets. The demand of efficient search tool has led
to an extensive research in the area of information retrieval. An essential task of information
retrieval is text categorization which can be used to classifying news and guide users’ search in
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a yahoo-like manner. Current techniques [18] developed for text categorization mainly focus on
handling plain text documents.


Most Web documents, however, are in the form of Extensible Markup Language (XML),
which is defined by the logical structure and the textual data, and hence the name semi-structured
data, making the information hard to query. In this case, structural information plays an impor-
tant role in the information retrieval. A word may have different meanings depending on differ-
ent positions in a documents. For example, Kevin Costner as a value of element ’director’ or a
value of element ’cast’ will give you different information. The semistructured data extracted
from Web pages are usually maintained by relational database technologies [23], where Web
documents are decomposed and inserted into a set of tables. Studies [23] show that grouping
documents with similar structures together can reduce table fragmentation, and, thus, improve
query performance.


Machine learning, building an automatic text classifier through learning pre-labeled doc-
uments, is a standard paradigm in the plain text categorization field. Many approaches have
proposed such as decision trees, neural networks, association rules, naive-Bayes, and nearest
neighbors, etc. Compared to these approaches, support vector machines (SVMs) show very
high accuracy [8] and can be analyzed theoretically using concepts from computational learn-
ing theory. Like other machine learning techniques, classical SVM algorithms are only used on
vectorial data and thus not suitable for Web data containing structural information.


It seems that this problem can be solved by using kernel methods with which we can repre-
sent data having complex structures, e.g. trees and graphs, through pairwise comparisons [19].
Without knowing vectorial formats of training data, a kernel-based learning algorithm requires
only pairs of similarities among a set of data. These similarities are usually specified by a so-
called kernel matrix. It has been proved that any symmetric positive semidefinite matrix is a
valid kernel matrix. Since an XML document can be represented by an ordered, labeled tree,
tree edit distance is a common metric to measure the similarity/disimilarity between two docu-
ments. Various algorithms have been proposed to compute the tree-edit distance between trees
[24, 3, 2, 12]. The cost of computing the tree edit distances reported in current work is quadratic
to the document size, which is not suitable for a collection of large documents. A faster algorithm
is proposed in [2] for a large set of documents.


A problem arises when we measure the similarity between two documents with the kernel
method in practice. As many XML documents are without DTDs, some inference techniques,
e.g. [6] are used to infer a DTD schema from a set of sample documents. Actually, it is not
necessary for a document to exactly conforms to its inferred DTD schema. The inferred DTD
schema works well for categorizing XML documents as long as the gap is small. In this case, the
edit distance estimated by inference techniques is more likely not to be Euclidean. However, a
kernlel matrix should be positive semi-definite according to the definition of the kernel function.
A deviation of the kernel matrix may cause conflict similarity measures among the data points,
and thus, derive very poor classification accuracy.


In this paper, we proposed a novel method to determine a positive semi-definite matrix near-
est to the estimated distance matrix. The problem of searching the nearest kernel matrix is for-
mulated as a quadratic Semi-Definite Programming (QSDP), which is a special case of a number
of nearest correlation matrix problems considered in [15]. A fast convergent Newton method of
[15] is then applied to solve this formulated QSDP. In order to evaluate the nearest correlated
matrix method, we compare our solution with a straightforward method in which each Web doc-
ument is represented as vector formed by a group of documents. We test the proposed method
on document sets selected from [13]. Since existing inferred techniques can hardly work on
large-size data sets, we modify the Xtract scheme to make it more efficient. Experimental stud-
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ies show that our approach outperforms the algorithm with original similarity matrix in terms of
the classification accuracy.


The rest of the paper is organized as follows. Section 2 introduces the background knowledge
of the support vector machine (SVM) classifier, kernel methods, and the measure of similarity
between XML docuements. In Section 3, we formulate the problem of finding a kernel matrix as
a quadratic semi-definite programming (QSDP). The nearest correlation matrix is studied and the
Newton method of [15] is outlined in Section 4. Experimental studies are presented in Section
5. Section 6 states the conclusion of the paper.


2 Classification of XML Documents


2.1 SVM Classifier


Given a set of XML documents, we aim to learn a model from some labeled documents and then
use this model to assign unlabeled documents to correct categories. A general notion of the clas-
sification problem can be described as follows. Given a set of n training data (x1, y1), (x2, y2),
. . . , (xn, yn) ∈ χ × {1, . . . , k}, the goal is to estimate a prediction function f : Rn −→
{y1, y2, . . . , yn} such that it can classify an unseen data x.


SVMs have been used successfully in the context of text classification. Consider a simple
case where all documents can be strictly separated into two categories with labels +1 or -1. With
SVMs, we need to determine a linear function of the form f(x) = wT x + b, with w ∈ Rp and
b ∈ R. A document x is assigned to a label +1 if f(x) � 0, and a label -1 otherwise. We can
determine w and b by solving the following optimization problem:


min 1
2 (||w||)2


subject to yi(wT x + b) � 1, 1 � i � n
(1)


However, in practice, a given data set may not be linearly separable. Suppose that two classes
overlap due to some noise. The above SVM classifier may have errors. To deal with this problem,
one can introduce the slack variables ξi � 0, 1 � i � n to allow some classification errors. In
this case, the above optimization problem can be written as follows:


min 1
2(||w||)2 + C


n∑
i=1


ξi


subject to yi(wT x + b) � 1 − ξi, 1 � i � n
ξi � 0, 1 � i � n


(2)


where C is a predefined constant to control the tradoff between the gap of two classes and errors
of classification.


Lagrange multiplier method is a standard technique for solving this problem. Let α =
(α1, . . . , αn) � 0 denote Lagrange multipliers for the constraints. One has


w =
n∑


i=1


yiαixi


and, for any i,


b = yi −
n∑


j=1


yiαix
T
i xj


3







Then, the classifier is given by


f(x) =
n∑


j=1


yiαixix + b.


The above binary classification method can be extended for solving multi-class classification
problems [4]. Two well-known methods based on the binary model are one-against-all and one-
against-one. Given a k-class problem, one-against-all method constructs k binary classifiers.
When the nth classifier is trained, all training data in class i are re-assigned with label +1 and all
other data with label -1. After the training process, we have k decision functions wT


i x + bi, 1 �
i � k. For a new data x, we assign it to class i∗ where


i∗ = argmini=1,...,kw
T
i x + bi.


In one-against-one method, a binary classifier is constructed for each pair of classes i and j,
and totally k(k − 1)/2 binary classifiers have to be constructed. If a classifier wT


ijx+ bij assigns
x to the ith class, then a vote for the ith class increases by one; otherwise, a vote for the jth class
increases by one. Finally, the largest vote decides the class label of x. Studies in [4] show that
the one-against-one performs better.


SVM classifiers (1) and (2) discussed above can easily be extended to more general kernel-
based classifiers, see [20]. In the next two subsections, we review the structures of Web docu-
ments and define a similarity measure by which a pairwise similarity matrix is constructed.


2.2 XML Documents and Similarity


An XML document can be represented as an ordered, labeled tree T . Each node in T represents
an XML element in the document and is labeled with the element tag name. Each edge in T
represents the element nesting relationship in the document. Fig. 1. shows an example of a
segment of an XML document and its corresponding tree.


</SigmodRecord> 47


SigmodRecord


issue


volume number articles


article
11 12


title initPage authorendPage


45XML Someone


         <initPage> 45 </initPage>
         <endPage> 47 </endPage>
         <authors>
            <author> Someone </author>
         </author>


         <title> XML </title>


<SigmodRecord>
   <issue>
      <volume> 11 </volume>
      <number> 12 </number>
      <articles>
         <article>


         </article>
      </articles>
   </issue>


Figure 1: SigmodRecord Data and Tree Representation


For the purpose of classification, a proper similarity/dissimilarity metric should be provided.
Tree edit distance which is a natural extension of string edit distance can be used to measure the
structural difference between two documents. Shasha and Zhang [24] proposed three types of


4







elementary editing operations for ordered, labeled forests: (1) insert, (2) delete, and (3) replace.
An example is given in Fig. 2. Given two trees T1 and T2, the tree edit distance, denoted by
δ(T1, T2), is defined as the minimum number of tree-edit operations to transform one tree to
another.


aa a


bA B C A


B


Insert


C


a b Replace


a


b


Delete


Figure 2: Edit operations


However, using the tree edit distance between two documents directly may not be a good idea
of measuring the dissimilarity. Consider two SigmodRecord documents which contain 10 and
100 articles respectively. In order to transform one tree to another, 90 insertions (or deletions)
are required. Although they have similar structures, the tree edit distance can be very large.


<!ELEMENT author (#PCDATA)>


<!ELEMENT issue (volume,number,articles) >
<!ELEMENT volume (#PCDATA)>
<!ELEMENT number (#PCDATA)>
<!ELEMENT articles (article)* >
<!ELEMENT article (title,initPage,endPage,authors) >
<!ELEMENT title (#PCDATA)>
<!ELEMENT initPage (#PCDATA)>
<!ELEMENT endPage (#PCDATA)>
<!ELEMENT authors (author)* >


 <!ELEMENT SigmodRecord (issue)* >


Figure 3: An example of DTD for SigmodRecord document


Note that these two documents may conform to the same DTD. We say an XML document
conforms to a DTD if it can be generated by the DTD. An DTD example of a SigmodRecord
document is given in Fig. 3. DTD has been widely used to specify the schema of an XML
document since it provides a simple way to specify the structure of an XML document. Different
document sources may use different DTD schemas to export their documents. A DTD schema
can be represented by a tree in which edges are labeled with the cardinality of the elements.


Hence, a potential solution to measure the dissimilarity between two documents is using
the cost that a document conforms to the schema generating the other document. This cost is
actually the edit distance between the document and DTD. Specifically, given two documents xi


and xj and the corresponding schemas s(xi) and s(xj) respectively. According to [2], the cost
that xi conforms to s(xj) is δ(xi, s(xj)). Since this cost depends on the sizes of xi and s(xj),
we normalize it as


δ̂(xi, s(xj)) =
δ(xi, s(xj))
|xi| + |s(xj)| .


Obviously, one has 0 � δ̂(xi, s(xj)) � 1. Similarly, we have normalized distance δ̂(xj , s(xi)).
Now, let’s define the dissimilarity between xi and xj by


δij =
1
2
δ̂(xi, s(xj)) +


1
2
δ̂(xj , s(xi))


5







and similarity by


sij = 1 − δij . (3)


However, not all XML documents provide DTDs in practice. In this case, to measure the
similarity among documents, the inference technique [6] has to be used to infer DTD schemas
from a set of sample documents. That is, given a collection of XML documents, find a schema
s, such that these document instances can be generated by schema s.


A schema can be represented by a tree in which edges are labeled with the cardinality of the
elements. As a DTD may be recursive, some nodes may lead to a infinite path. A normalized
regular hedge grammar [11] became a common practice rather than DTD itself. Note that the
definition of an element in a schema is independent of the definitions of other elements and
it restricts only the sequence of sub-elements (the attributes are omitted in this paper) nested
within the element. Extracting a schema can be simplified by inferring a regular expression R
(right linear grammar or nondeterministic finite automata) from a collection of input sequences
I satisfying: 1) R is concise, i.e., the inferred expression is simple and small in size; 2) R is
general enough to accept sequences that are similar to those in I; 3) R is precise enough to
exclude sequences not similar to those in I .


Inferring regular expressions from a set of strings has been studied in the Xtract scheme
[6], which introduces Minimum Length Description (MLD) to rank candidate expressions. In
general, the MLD principle states that the best grammar (schema) to infer from a set of data is
the one that minimizes the sum of the length of the grammar Lg and the length of the data Ld


when encoded with the grammar. The overall goal is to minimize L = Lg + Ld.
According to our experimental studies, the Xtract scheme is not efficient for the large set


of documents. To solve this problem, we modify the Xtract scheme and the details will be
introduced in the experimental studies when a similarity matrix is constructed.


2.3 Kernel Methods


In order to classify data with SVM classifiers, the first thing to be addressed is how to represent
XML documents as vectors. A straitforward solution can be described as follows. Given a set of
documents χ and x ∈ χ. Define a mapping φ(x) : χ −→ F = Rp, where F is a Hilbert space,
also called a feature space, and p is the dimension of the feature space. This means, for each
document x ∈ χ, its representation can be a real-valued vector in Rp. One can choose a finite
set of documents x1, x2, . . . , xp ∈ χ [19]. Then, any document x ∈ χ can be represented by a
vector in the feature space:


x ∈ χ �−→ φ(x) = (s(x, x1), s(x, x2), . . . , s(x, xp))T ∈ Rp,


where s(x, y) is the similarity/dissimilarity between document x and y.
Another way to represent data objects with complex structures is the kernel method, by


which data objects are represented through a set of pairwise comparisons [19]. For the example
of n XML documents given above, the data set χ is represented by a n × n matrix, where the
ijth element is a pairwise comparison kij = k(xi, xj). Formally, a function k : χ × χ −→ F is
called a positive semi-definite kernel iff it is symmetric, that is, k(x, x′) = k(x′, x) for any two
objects x, x′ ∈ χ, and positive semi-definite, that is,


n∑
i=1


n∑
j=1


cicjk(xi, xj) � 0
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for any n > 0, any choice of n objects x1, x2, . . . , xn ∈ χ, and any choice of real numbers
c1, . . . , cn ∈ R.


It is well known that for any kernel function k on a space χ, there exists a Hilbert space F
and a mapping φ : χ −→ F such that


k(x, x′) =< φ(x), φ(x′) >, for any x, x′ ∈ χ.


Hence, the similarity between x and x′ is actually measured by the inner product of their images
in the feature space F . The kernel function k allows us to calculate the similarity without
explicitly knowing the mapping φ. There are some well known kernels, such as linear kernel,
Gaussian RBF kernel, and sigmoid kernel, etc. However, these kernels may not specifically
adapt to XML documents.


With kernel trick, we get the kernel-based SVM by


f(x) =
n∑


j=1


yiαiφ(xi)φ(x) + b =
n∑


j=1


yiαik(xi, x) + b. (4)


3 Finding a Kernel Matrix


We solve the problem by finding a positive semi-definite matrix nearest to the estimated distance
matrix. This problem can be described as follows. Given a symmetric matrix D, find a positive
semidefinite matrix K such that the following norm is minimized:


min
K�0


||D − K||2
:= min


K�0


∑
i,j


(dij − kij)2,
(5)


where K � 0 means that K is positive semidefinite symmetric matrix and the norm used is the
Frobenius norm.


It is considered effective to normalize K so that all the diagonal elements are 1. Note that
there is no close-form solution to problem (5) if D has negative eignvalues. An easy normal-
ization may work as follows. Since D is symmetric, it can be written in terms of its spectral
decomposition


D = V ΛV T ,


where Λ = diag(λ1, λ2, . . . , λn) is the diagonal matrix of eigenvalues of D, and V = [v1, . . . , vn]
is the matrix of correspoinding eigenvectors. Then K ′ = V Λ̂V T , where Λ̂ = diag(max(λ1, 0),
. . . , max(λn, 0)), is the solution to problem (P). Let


kij =
k′


ij√
k′


iik
′
jj


,


and we have kii = 1. A potential problem with this method is k′
ii may be close to 0 for some i


in practice.
Our approach is to consider a matrix nearness problem as follows.


min ‖D − K‖2


subject to K � 0
Kii = 1.


(6)
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It is widely known that this problem can be reformulated as a semi-definite programming prob-
lem (SDP) by introducing new variables:


min t


subject to


⎛
⎝


K 0 0
0 In2 vec(D) − vec(K)
0 (vec(D) − vec(K))T t


⎞
⎠ � 0,


Kii = 1


where the vec operator stacks the columns of a matrix into one long vector. As counted in
[7], in total there are n4/2 + 3n2/2 + n + 1 constraints in this SDP formulation, where n is the
number of training documents in our case. Higham further commented on this reformulation that
“unfortunately, this number of constraints makes it impractical to apply a general semidefinite
programming solver – merely specifying the constraints (taking full advantage of their sparsity)
requires prohibitive amount of memory.” Numerical experiments with the SeDuMi package [21]
against problems of n � 50 confirm this conclusion.


4 A Newton-type Method


In this section, we show how a Newton-type method of Qi and Sun [15] can be applied to the
problem (6). We also report a new result characterizing the rank-deficient nearest correlation
matrix, a property often wanted in practice often under the name of low-rank approximation.


Given a symmetric matrix G, computing its nearest correlation matrix is recently studied by
using projection method in [7]. The projection method is known to be linearly convergent. When
the underlying problem is big, the projection method is quite slow, requiring many iterations
to terminate. To introduce the semismooth techniques in our Newton’s method, we re-write
problem (6) as


min ‖G − K ‖2


s.t. Kii = 1, i = 1, . . . , n
K ∈ S+ ,


(7)


where S+ is the cone of positive semi-definite matrices in S , the set of n×n symmetric matrices.
The Newton method for (7) is based on its dual problem, rather than on itself. According to


Rockafellar [17], the dual problem is the following unconstrained and differentiable problem:


min
z∈�n


θ(z) :=
1
2
‖ (G + A∗z)+ ‖2 − bT z, (8)


where A : S �→ �n is the diagonal operator defined by A(K) = diag(K) and A∗ is its adjoint
operator, b = e the vector of all ones, and for a matrix K ∈ S , K+ denotes its orthogonal
projection to S+. We note that θ(·) is only once continuously differentiable. Hence, quasi-
Newton methods are suitable to find a solution of (8), see [9, 1]. However, the convergence rate
of these methods appears to be only linear at best. A fast convergent method is more desired
in order to save computation given that the variables are of matrices with positive semi-definite
constraints to satisfy.


The optimality condition of the dual problem (8) is


A (G + A∗z)+ = b, z ∈ �n. (9)


Once a solution z∗ of (9) is found, we can construct the optimal solution of (7) by


K∗ = (G + A∗z∗)+ . (10)
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A very important question on K∗ is when it is of full rank (i.e., Rank(K∗) = n). Equiva-
lently, one may ask when K∗ is rank-deficient (i.e., Rank(K∗) < n). An interesting interpreta-
tion of the rank of K∗ is that it represents the number of defining factors among all n factors.
These defining factors usually characterize the fundamental structure of the space that consists
of all n factors. It remains to see how the low rank approximation K∗ can be interpreted for the
problem (6).


In order to present the result characterizing the rank of K∗, we need some notations. Let


U := {Y ∈ S : Yii = 1, i = 1, . . . , n} .


Then K is a positive semi-definite matrix if and only if K ∈ S+ ∩ U . For K,Y ∈ S , the inner
product of K and Y is defined by


〈K,Y 〉 = Trace(KY ).


The normal cone of the convex sets S+ and U at a point K ∈ S are given as follows [7,
Lemmas 2.1 and 2.2].


∂S+(K) = {Y ∈ S : 〈Y,K〉 = 0, Y � 0}
∂U(K) = {diag(ηi) : ηi arbitrary} .


The following result characterizes when K∗ is of full rank.


Proposition 1 Let G ∈ S be given and K∗ denotes its nearest positive semi-definite matrix.
Let C++ denote the set of all positive definite correlation matrices and D denote the set of all
diagonal matrices. Then Rank(K∗) = n if and only if


G ∈ D + C++.


Proof. It follows from [7, Theorem 2.4] that a positive semi-definite matrix K∗ solves (7) if
and only if


K∗ = G + (V DV T + diag(τi)),


where V ∈ �n×n has orthonormal columns spanning the null space of K∗, D = diag(di) � 0,
and the τi’s are arbitrary.


Suppose now that Rank(K∗) = n (i.e, K∗ ∈ C++), then V = 0, which yields that


K∗ = G + diag(τi).


Equivalently,
G = K∗ − diag(τi) ∈ C++ + D.


This completes the necessary part of the proof.
Now suppose we have G ∈ C++ + D. Then there exists a diagonal matrix D and a positive


definite matrix Y ∈ C++ such that
G = D + Y. (11)


It follows from the characterization of K∗ [7, Eq. 2.4] that


G − K∗ ∈ ∂S+(K∗) + ∂U(K∗).
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Hence there exits a matrix Z satisfying Z � 0 and 〈Z,K∗〉 = 0, and a diagonal matrix D′ ∈
∂U(K∗), such that


G − K∗ = −Z + D′.


Noticing (11), we have
D − D′ = K∗ − Y − Z,


which gives
K∗ = D − D′ + Y + Z.


Because both K∗ and Y are correlation matrices, their diagonal elements are all equal to 1.
Hence,


D − D′ = −diag(Z),


where diag(Z) is the diagonal matrix whose diagonal elements are that of Z .
By using the relation that 〈K∗, Z〉 = 0 and relations above, we have


0 = 〈Z,K∗〉
= 〈Z,D − D′〉 + 〈Z, Y 〉 + ‖Z‖2


= −〈Z, diag(Z)〉 + 〈Z, Y 〉 + ‖Z‖2


� 〈Z, Y 〉.
The inequality uses the fact that ‖Z‖2 − 〈Z, diag(Z)〉 � 0. Since Y is positive definite and
Z is positive semi-definite, the fact that 〈Z, Y 〉 � 0 means that Z = 0, which in turn implies
D − D′ = 0. Hence


K∗ = D − D′ + Y + Z = Y


and Rank(K∗) = Rank(Y ) = n, completing the sufficient part of the proof. �


Proposition 1 provides an interesting justification on a heuristic method to find a positive
semi-definite matrix from a given matrix G. Specifically, we replace each of the diagonal ele-
ments of G with 1, denoted by G̃, and conduct a spectral decomposition of G̃. If G̃ is a positive
semi-definite matrix, then it is all done. Otherwise we will project G̃ to the semi-definite matrix
cone S+ and get a new matrix, denoted by G̃+. Replace all the diagonal elements of G̃+ by
one and test it if it is a positive semi-definite matrix. The procedure carries on until a positive
semi-definite matrix is found.


The Newton method tries to solve the optimality equation (9). For notation convenience, let


F (z) := A(G + A∗z)+.


Then equation (9) becomes
F (z) = b. (12)


Since F is not differentiable due to the projection operator (·)+, the classical Newton method is
not suitable. However, we may use the generalized Newton method to solve it.


zk+1 = zk − V −1
k (F (zk) − b), (13)


Vk ∈ ∂F (zk), k = 0, 1, 2, . . .


where ∂F (z) denotes the generalized Jacobian of F , see [5].
As analyzed in [15], the generalized Newton method has the following properties. Firstly,


the function F is strongly semismooth everywhere, a crucial property for the method to be
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convergent. Due to this reason, the method (13) is often referred to as the semismooth Newton
method. Secondly, every element in ∂F (z∗) is nonsingular, where z∗ is a solution of (12). This
nonsingularity property justifies why we can calculate the inverse of Vk when zk is near z∗. The
consequence of these properties is


Theorem 1 [15] The seminsmooth Newton method (13) is locally quadratically convergent.


To make use of the Newton method, we have to address how to select an element Vk in
∂F (yk). One of the choices can be found on [15, P.378]. Another issue is to globalize the
method (13), which in its current form is only locally convergent as indicated in the above
theorem. One globalized version based on the dual objective function θ(·) can also be found in
[15, Algorithm 5.1]. The code used in our computation is the one used in [15].


The Newton-type method reported recently in Qi and Sun [15] shows that problems with n
up to 2000 have been successfully solved under reasonable amount of time on PCs.


5 Experimental Studies


In this section, we examine the effectiveness of the kernel-based approaches on the classifica-
tion of structured data. The goal is to evaluate the classification accuracy of the kernel-based
approaches and compare the nearest semi-definite matrix method with the method using the
original similarity matrix without correction.


The dataset used in our experiments is obtained from MovieDB corpus, which was created by
using IMDB [13] database. The dataset contains 9643 XML documents. MovieDB is designed
for both the structure only, and structure and content tasks. Since our algorithm exploits only
structural information, all labels of the documents come from 11 possible structure categories,
which correspond to transformations of the original data structure. There are four classification
tasks, created with different levels of noise on the structure. Training and test sets are generated
by randomly selecting samples from 6 out of 11 categories. At two different noise levels, we
each generate five training sets and five test sets, using 5, 10, 20, 30, and 40 samples respectively
in each selected categories.


In order to construct kernel matrices over the five sets of samples, we first infer their schema
and then compute similarities among these documents according to (3). Similar to the Xtract
scheme, we extract candidate regular expressions based on the frequencies of the repeat patterns
appearing in the input sequences. The candidate regular expressions are ranked by using the
MLD principle. To make the Xtract scheme usable on large-size document sets, we modify it as
follows:


1. The frequencies of the child sequences are evaluated and some victims not covered by the
inferred regular expressions are selected. The victims are those sequences that appears
very infrequently. We find that this modification can reduce the negative effects of noises
in classification.


2. The aim of the modification is to minimize L = λLg + Ld, where λ is the weight to
balance the preciseness and generality of the schema. We develop a practical scheme to
manipulate λ.


3. We use the cost of nondeterministic finite automata (NFA) simulation rather than enumer-
ating multiple sequence partitions to compute the minimum cost of encoding so that the
computation complexity is reduced.
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Methods 30 60 120 180 240
Similarity Matrix 87.23 92.67 91.33 96.67 97.33


NPSD Matrix 94.0 96.67 94.0 97.33 100


Table 1: Classification Accuracy (%) for data sets at nosie level 1


Methods 30 60 120 180 240
Similarity Matrix 63.33 68.33 71.67 70.0 73.33


NPSD Matrix 71.67 73.33 76.67 71.67 80.33


Table 2: Classification Accuracy (%) for data sets at nosie level 3


After the schema have been extracted, we construct the kernel matrices by computing the
similarities among samples, resulting in five 30× 30, 60× 60, 120× 120, 180× 180, 240× 240
matrices for each noise level.


The implementation of the nearest semi-definite matrix method is supported by the LibSVM
software package [4] and codes for the Newton-type method [15]. All experimental studies were
carried out on a PC with Pentium IV 3.4GHz CPU, 2 GB of memory. The results obtained for
two different noise levels are given in Table 2 and Table 3, respectively.


As we can see in Table 2, the correctness of classification has been improved over each data
set and, for the group 30 × 30, the correctness was improved about 7%. We note that the results
depend on the number of samples available and how to select them. As shown in the table, the
correctness increases generally when the number of samples increases. However, the accuracy
for data set 120 × 120 drops a little because more noise data are chosen in this group. The data
sets in Table 3 are presented with more noise than those in Table 2. Hence, the correctness of
each data set in Table 3 is much lower than that of Table 2. The results in both tables suggest
that the nearest semi-definite matrix method can significantly improve the performance of the
kernel-based SVM classifier.


5.1 Conclusion


In this paper, we proposed a kernel-based SVM algorithm to classify XML documents using
their structures. Due to the complex structures of the XML data, we consider a kernel method
by which the data can be represented through pairwise comparisons. Based on the fact that
many XML documents are without schema, we first infer the document schema given a set
of documents and then estimate the similarities among the documents. Since the estimated
similarity matrix is usually not a distance matrix, it is not a well-defined kernel matrix. We
formulate the problem as a nearest semi-definite matrix problem and present a novel Newton-
type method to determine a kernel matrix for the set of XML documents.


We have also improved the Xtract scheme to adapt to large-size document collections. Exper-
imental results show that the proposed kernel method can significantly improve the classification
accuracy of the kernel-based SVM algorithm.


On the future research side, Proposition 1 suggests that the nearest correlation matrix is likely
to be rank-deficient. This prompts a low-rank approximation to D given by


min 1
2‖D − K‖2


s.t. Kii = 1, i = 1, . . . , n
K ∈ S+ and Rank(K) = m
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where m < n. A disadvantage of this low rank approximation problem is that its feasible region
is nonconvex and hence it is a nonconvex nonlinear minimization problem, which is extremely
hard to solve. It is interesting to see how the low rank correlation matrix will work on the web
document classification problem.
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