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Abstract—In this paper, we continue to explore application where E(A) denotes the expectation of random variable
of nonsmooth analysis to the study of global asymptotic robust and AA is the possible error. To put into a different form,

stability (GARS) of delayed neural networks. In combination the network parameter&”, A, B) are often contained in the
with Lyapunov theory, our approach gives several new types following sets: B

of sufficient conditions ensuring GARS. A significant common
aspect of our results is their low computational complexity. It _ _ di ) ~ < A
is gemonstrated that the reported resuﬁs can be verhfi)ed e)i/ther C={C=dagc)|0<C< C_S C,ie,0<e <ci<al
by conducting spectral decompositions of symmetric matrices A= {A = (aij) | AS A< A, de,q;; <ai < dij}
associated with the uncertainty sets of network parameters, or by _ _

solving a Semidefinite Programming problem (SDP). Nontrivial B={B=(by) | B < B, i.e. by <bj <by}
examples are constructed to compare with some closely related

existing results. forall i, =1,...,n, where the matrice§’, C, A, A and B

and B are known. Those are the sets that contain uncertainty
(hence, often referred to as uncertainty sets). This results in
neural networks with uncertainty sefs .4 and 5:

()= —-Czx(t)+ Af(z(t)) + Bf(z(t — 7))+ u @)
(C,A,B)eCx Ax Bandu € R"

N The robust stability (in the sense of GAS) of this system has
HE level of reliability of delayed neural networks de ?cently been studied in [7], [8], [19], [20], [22], [27]. In

pends on the global uniqueness of an equilibrium poi is paper, we will report new sufficient conditions for the
as well as its global asymptotic stability, known as the GA Paper, P

property. There is a large body of publications of addressir‘ﬁ-’é;Obal asymptotic robust stability (GARS) of model (2). We

stability properties of different classes of neural networks Wit%esr(.) d:::'gfoa f:}g':?gg'ﬁ?s prohglrsmrgIgt?]earsoglaimbéssz)'etg
delay, to just name a few, see [1], [2], [3], [9], [10], [11], [13],V ify u : Ui, whi vertti

. - by spectral decompositions of a small number of symmetric
Llu4r]’irggi’tiglﬂ(’)r[lziﬂ’tk[]?ss]l’aa[éi]r’ [25], [26], which also aspire matrices. SDP verification is not shared by many of existing

The delayed neural networks considered in this paper c%t'rm".ar r_esults. Another purpose pf Fh's Paper 1 to promote
. . L application of nonsmooth analysis in the stability study of
be modelled by the differential equation: . .
neural networks. Two basic lemmas that we used are derived

i(t) = —Cx(t) + Af(x(t)) + Bf(z(t — 7)) +u, (1) Via nonsmooth analysis. We refer the reader to [23] for much
detailed discussion on them. We organize our paper as follows.

Index Terms— Delayed neural networks, equilibrium point,
global asymptotic robust stability, nonsingularity, Lyapunov func-
tion.

I. INTRODUCTION

where z(t) = (21(t),...,2a(1))" € R", C = diagc; > In Section II, we give a formal definition of GARS and

O)nxn is a positive diagonal matrix,A = (aij)nxn, include some technical lemmas, which are frequently used in
B = (bij)axn, u = (ur,...,up)” € R f(z(t)) = Section 1l to derive several sufficient conditions of new type
(fi(@1(®), - fulza ()" € R™ and f(z(t — 7)) = for GARS. In Section IV, we conduct comparison with several
(fr(@1(t = 71)), -, fol@n(t = 7)))" € R". The matrices ¢josely related known results. A significant common aspect of

C, A, B are often referred to as the network parameterss  oyr new conditions is their low computational complexity. We
the delay associated with théh neuron, f; is an activation gemonstrate this low cost complexity in Section V that our
function andu; is a constant input to the neuran new conditions can be verified either by conducting spectral
There are statistically justified reasons [4], [29] (due tQecomopositions of certain symmetric matrices associated
for example, physical implementation of the networks and/Qjith the uncertainty setd and2, or by solving a semidefinite
experimental errors) that the network parameters often appgASgramming problem. We conclude the paper in Section VI.
in random nature. In other word§,’, A, B) may be subjectto = Notation: We assume that all the activation functions belong
random errors. For examplel may take the following form: {5 1 which denotes the class of nondecreasing Lipschtiz
A= E(A) + A4, functions, i.e.,f € K if there exist some positive constants
k; such that
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necessarily symmetriclys (M) = 0.5\max(M + M7T), ie., I1l. NEw CONDITIONS FORGARS
pa(M) is the largest eigenvalue of the symmetric parldf  As hinted in Section 2, the analysis of GARS is carried out
M - (<)0 means thafl/ is symmetric and positive (negative)iy two steps. For anyfC, A4, B) € C x A x B, we need to

definite. For a vectow € IR", [lv|| denotes the Euclidean aqdress (i) the existence and uniqueness of an equilibrium
norm of v and for a matrixA, ||M||> denotes the matrix point saya*, of (1) for anyu € R”; and (i) that the

norm induced by the vector norfp ||. Equwalently,ﬂMHg = equilibrium point z* attracts all the solutions:(t) of (1).

Amax(MMT). Furthermorejo| := ([vil,.., [va])” € R"™. " \We will use Lemmas 2.1 and 2.2 to address (i). To facilitate
I is the identity matrix of appropriate dimension. Defingne proof of (i), we shiftz* to the origin through the
K := diagki,...,ky,), 7 := min(c;/k;) and ¢ := min(c;).  transformation:

Finally, we letA := diag(c, /k;). ) = 2(®) —a* and 2(t— 1) = 2t — 1) — 2

[l. BASIC DEFINITIONS AND TECHNICAL LEMMAS Model (1) then can be equivalently written as the following
We first recall that for any given datd, A, B andu, a state sSystem:
z* € IR™ is called an equilibrium point of (1) if it satisfies () = —C2(t) + AD(2()) + BO(=(t — 7)) 3)
—Cx*+(A+B)f(z*)+u=0. where
Central to the study of model (1) is itglobal asymptotic 2() = (210)s -+ 5 za()T,
stability (GAS), which is widely studied in literature. It is (I)(Z()) _ (d)l(zl()) . (Z ()))T

known that GAS requires both existence and uniqueness of
an equilibrium point for any, € IR™. The following results, and
adapted to model (1) and proved by Qi and Qi in [23] via ¢i(2i(+) = fi(z () + i) — filaD).
nonsmooth analysis, are for this purpose.

Lemma 2.1:[23, Theorem 1] Suppos¢ € K and the For f € K, itis easy to see that

network parameter§’, A and B are given. Let 1D(=( )2 < Zkizi(')(bi(zi(')) (4)
W=C-(A+B)D, i=1
D =diag(dy,...,d,) d
W =L W e R"" ) ) . an
0<d; <ki, $:(0)=0, Vi=1,...,n. (5)

foralli=1,...,n
i i , Hence, to show that* is GAS for model (1) is equivalently
If every matrix W' € W is nonsingular, then model (1) has g, show that the origin is GAS for model (3).

unique equilibrium point for any € IR™. The proof of our first result uses, apart from Lemma 2.1, a
Lemma 2.2:[23, Theorem 2 (iii)] Supposg € K and the | y55,n0v function proposed by Ozcan and Arik [22].
network parameter€’, A and B are given. If Theorem 3.1:Let f € K. The neural network model (2) is
p2(A+ B) < 1r<n_i£ (¢;/ki), GARS if there exists a positive diagonal matix= diag(p; >

0) such that
then model (1) has a unique equilibrium point for ang IR". .— 2PA — (PA* + (A)TP)
When the network parameters contain errors, we need a .
stronger property of the robust stability to ensure the reliability =2[|Pll2 (IB"[l2 + [|B«lz + [l Axll2) I >0,
of the networks. where A := diag(c; /k:).
Definition 2.1: [8] (GARS) Model (2) isglobally asymptot-  proof. For any(C, A, B) € C x A x B, we shall prove that
ically robust stablef for any instance(C, 4, B) € Cx Ax B, model (1) is globally asymptotically stable. The proof is in

model (1) is globally asymptotically stable. two steps.
We also need the following inequalities of norms of matrices Step 1(Existence and uniqueness of an equilibrium point).
concerning the uncertainty sets and 3: B In this part we prove any matri¥/ € W in Lemma 2.1 is
Lemma 2.3:[8, Lemma 3] For anyA € [4, A] and B € nonsingular so that Lemma 2.1 implies that model (1) has a
(B, B], the following inequalities hold: unique equilibrium point for any. € RR™. SinceW € W,
IAll2 < [[A*[l2 + || As]lo, zher.e_must be a diahgorr;al matriX = diag(d;) with 0 < d; <
||BH2§||B*H2+||B*”2, i, t=1,...,n, such that
[AA[l2 < [[Asll2, [ABl2 < [[B]f2, W =C—(A+B)D.
where AA = A— A,, AB = B— B*, A* = {(A+ A), SupposéV is singular, we shall derive a contradiction. Obvi-
A, =3(A-A), B* = {(B+B) andB. = ;(B - B). ously, the matrix
The boundedness of the sets and B also implies the . . )
Lemma 2.4:There exist\ 4, > 0 and Az > 0 such that is also singular. Let

Amax(ATA) < A4 and Apax(BTB) < A VA € A, B € B. Q:=DK~' =diagqy,...,qn) with ¢ := d;/k;.



We immediately know that < ¢; < 1 for all . Since
PWK~! is singular, there must be a vector# = € C"
(the field of complex numbers) such that

PCK 'z — P(A+ B)Qz = 0. (6)

First we note thatQx # 0. Otherwise equation (6) would
imply z = 0, which contradicts the fact # 0.

Multiplying equation (6) from left side byt” Q (here z
denotes the conjugate vector of and substitutingA with
A* + AA, we have

0 #'QPCK 'z — zTQP(A + B)Qx

' QPAx — 27 Q(PA")Qx — 7 QP(AA + B)Qx
T QPAQx — %i‘TQ(PA* + (AT P)Qx
—[Pll2(1AA]l2 + [[Bll2) [ Q]

(Q2)T PA(Qr) — 5(Q)" (PA" + (A%) P)(Qx)
IIIPIIQ(IIA*IIz + 1Bz + || B<[l2)(Q2) " 1(Qx)
§(Qf)TQ(Qx)-

v

v

The second inequality above uses the propérty Q% < Q

and P and A are positive diagonal matrices, and the third

inequality uses Lemma 2.3. Becau3es positive definite, we
must haveQz = 0, which contradicts the faaQx # 0. This
contradiction establishes the nonsingularityl&t Therefore,

by Lemma 2.1, model (1) has a unique equilibrium for any

given (C,A,B) € C x Ax B.

Step 2(Global asymptotic convergence.) In this part, we
use the Lyapunov theory to prove the global convergence of

any solution of (1) to its unique equilibrium point. This is

equivalent to show that the origin is GAS for system (3). The

positive definite Lyapunov function we are about to employ

the one proposed by Ozcan and Arik [22] (hence in our proof
we will use several technical inequalities, without proofs of

them, of concerning the function derived in [22]):

n z; (t)
z t)||2+2a2/ pidi(s)ds
i=170
n t
Hov+8))
i=17t—

V(=(1))

(),

whereq, 5 andy are some positive constants to be determined

later on. The time derivative df (z(¢)) along the trajectories
of equation (3) is calculated as follows:

V(z(t)) —2T()Cz(t) + 22T (1) A

( ( (1))
+227 () BO(2(t — 1)

) — 2007 (=(t)) PC=(t)
+2a®7 (2(t)) A(I)(Z(t))
+2a®T (2(t))PB®(2(t — 7))
+ay ([N = @t —m)I?)
+B (@) = 1@ (=(t — 7)1?) (7)

We recallc := min(c;) and note the following inequalities:

=21 (£)C=(t) < —c|l=(D)]*. )

—cllz()1* + 227 (1) A®(2(1))
(1/c) @7 (=(t) AT AD(=(t

< )
< (1) Amax (AT A) | @(2(1))]. 9)
—c|lz(®)||* 4 22T (1) B®(2(t — 7))

< (1/g)<I>T(z(t — T))BTB(D(z(t —7))

< (1/&)Amax(BT B)[|®(z(t — 7)) 1*. (10)

The following inequality can be proved either independently
or by following its counterparts Eq. (17) on [22, Page 169]:
2007 (2(t))PB®(2(t — 7))
< aollPll2||Bll2 (12 (=) + [ @(=(t - 7))[I?) - (11)

By using (4) and the facf € K, we can easily have

—2a®T (2(t))PC2(t) < —2a® () PCK'®(2). (12)

We also note the following inequality

2007 (2(t)) PAD(2(t))

2007 (2(1))(P(A* + AA))®(2(1))
a®T (2(1))(PA* + (A*)T P)®(2(1))
+2a| P2 | AA2]|®(=(6)]1%,
whereA = A* + AA. Using (8)-(13) in (7) yields

V(=(t)) (1/&)Amax (AT A)[|@(=(6)) 12
+(1/€)Amax (BT B)||@(2(t — 7))
—2a0T (2) PCK~'®(2)
+al[P|l2||Bllz (|2 (z(0)]1* + [[@(=(t —
+a®” (2(t))(PA" + (A")TP)®(2(t))
+2a| P|l2[|AA]2]|@(2(1))

+ay ([[2(=()I1° — [@(=(t = 7))]1?)
+B (le(z0)I* — ezt — 7)) -
Let x; := 1/c. Using inequalities in Lemmas 2.3 and 2.4, we
further estimaté/(z(t)) as follows:

V(2(t)) (k1 + B) [|1D(=()]?

+ (81 s — B) @ (2(t — 7))

—20®T (2) PCK'®(2)

+a ([Pllz2(1B%[l2 + [ B«]l2)

+2/| P2l Asllz = 7) |2 (2(t)|I?

+a ([IPll2(/[B%|l2 + 1B.ll2) =) @ (=(t — 7))

+a®” (2(t))(PA* + (A)TP)®(2(1)).

Now let 3 := kiAg andy := ||P||2(|[B*||2 + ||B«|l2). We

further use the relatiom < CK~! to get the following

simplified estimation of// (z(t)):

V(=(1)) r1 (A + Ap) [|R((1))[1* — a®” (2(1)) 22 (=(1))
< k(A +As) 12(2()IP = admin () @(2(1)]1*.

Note that(} is positive definite, the choice

k1 (A + As)
)\min(Q)

IN

(13)

<

)I?)

is

<



ensures that/(z(t)) is negative definite for alib(z(¢)) # 0. that
This implies that the origin of (3) is GAS. Detailed proof for N — ” _
this claim based o (z(t)) < 0 when ®(=()) # 0 can be H2(47)+ (4] +BV2/B)(F = pa(A) = [Afl2) —1 < 7
found on [22, Page 170]. We omit the details. This completgsis inequality and the condition in 2) give us:

the proof.
p2(A+B) = pa(A*+AA+ B*+ AB)
We have the following corollary. < pa(AY) + ||All2 + | Bsll2 + || B2
Corollary 3.1: Supposef € K. The neural network model < pa(A%) + || Al

2) is GARS if there exists a positive diagonal matfix = —
((ji;g(pi) such that P : +6v/(2/B)(F — p2(A*) — [ Adll2) —

7 < min(c; /k;).

IN

Q = 2r] — (PA* 4+ (49)TP)
* Then Lemma 2.2 implies that there exists a unique equilibrium
—2||P B B, All2) I , .
1211z (1512 + B l2 + [ A«l2) I~ 0 point for any(C, A,B) € C x A x B andu € R™.

wherer := min(p;c;/k;). Moreover,Q > 0 if the following Step 2(Global asymptotic convergence.) Once again, we

two bounds hold: use the Lyapunov theory to prove the global convergence of

1) pa(A*) + [|As|l2 < 7, and any solution of (1) to its unique equilibrium point. Let us

2) IB*|l2 + | Bsll2 < 7 — (p2(A*) + || As]l2), consider the Lyapunov function of the type proposed in [2]:
where7 := min(c; /k;). zl(t)

Proof. By the definition ofr, it is straightforward to see V(z(t)) = aoflz(t)||* + 3 Z/
that2rI < 2PA. Hence,Q2 = 0 must implyQ > 0, which in
turn by Theorem 3.1 implies the GARS of (2). T T

Now let P = I in Q. We then knowr = r. Q > 0 means +Z/ )+ (I) (2(£))B7 Be(2()) ) de,

— * *\T *

27l — (A" +(A")7) = 2([B7[l2 + [ B<ll2 + [[Axll2)I = 0. \wherea > 0 is to be chosen appropriately antlis the
Equivalently constant appeared in Theorem 3.2. The remaining task is to
1 estimate the time derivative df (z) as we did for Theorem

3 (A" + (A7) < (7= (1B |l2 + |Bs|l2 + [|Adll2)), 3.1 or Theorem 3.3 below, or on [24, Page 1703]. We omit
. _ this part. What interests us is that Corollary 3.1 is the best
i.e, the largest eigenvalue ¢fi* + (A*)")/2 must be less version of this theorem, as we show below. O
than the quantity — (|[B*||2 + || B«|l2 + || A«||2), which gives  The bound in the right hand side of 2) in Theorem 3.2
pa(AY) < 7 — (| B*||l2 + || Bsll2 + | Asll2)- depends on parametét. We now seek the biggest possible

bound offered by this condition. Let
Equivalentl
q y — 8B — (A7) — Al — 1,

B*||2 + || B«ll2 < 7 — (2 (A™) + || Ax||2)-
I ”?. ” HQ_ . (A7) + [l ]l with 8 € (0,2(F — pa(A*) — [|A.]|2)). We want to find the
The last condition also implies that largest value ofi(3) on the interval (0,2(7 — pa(A*) —
pa(A*) + | A < 7 ||A*||.2)). Since thg square of(3) does. not change the
location of the maximum of(3), we consider

as|B*l2 + || B«[l2 = 0. 2 , .
U(B) :=h7(B) = 2B(F — p2(A") — | Axll2) —
In Section IV, we will compare this result with a closelyg() is concave on the interval and hence the optimality
related result [22, Theorem 1] of Ozcan and Arik. It '%ondmoné’(ﬂ) — 0 gives the maximum
interesting to point out that Corollary 3.1 is actually the
best among a class of sufficient conditions depending on a B =7 — pa(A") — || Asl|2-
parameter3. We list this class of conditions below with only
a sketch of its proof.
T_heorem 3_.2:Supposef e K. T_h_e neural network model h(B*) =7 — ua(A*) — || Asll2-
(2) is GARS if the following conditions hold:
1) p2(A*) +[|Asll2 <7, and
2) ||B*[l2 + 1Bz < Bv/(2/B)(7 — p2(A%) — [[Au]l2) — 1

Substituting this value ik (3), we get the largest bound

This shows that Corollary 3.1 is the best version of Theorem
3.2. It is also interesting to point out that Corollary 3.1 is
i B reached via two different routes, one as a consequence of

for some3 € (0,2(7 — p2(A") — [| A« 12)). Theorem 3.1 (withP = I); the other is through Theorem

Proof. For any(C, A, B) € C x A x B, we shall prove that ; .
3.2. Both theorems are proved by different techniques]
model (1) is globally asymptotically stable under the sets of . - . . ;
Our next results give sufficient conditions involving the

conditions. As before, the proof is in two steps. . : .
Step 1(Existence and uniqueness of an equilibrium poir],{Bargest eigenvalues of the symmetric part of the matrices
‘A* + B* and A* — B*. We recall thatr := min(c; /k;).

In this part we use Lemma 2.2. It follows from Theorem 3.3:Let f € K. The neural networks model (2)
(B— (7 — p2(A*) — || AL][2))? >0 is GARS if one of the following two conditions holds:




() We note the following inequalities:

that Lemma 2.2 is satisfied under the condition of (15) and
hence step 1 is finished for case (ii). The proof for case (i) +a®T (2(t)) BB ®(2(t)). (20)
is straightforward because condition (14) implies condition

(15). We note that condition (15) alone in Case (ii) alreadvSlng the fact that

2p2(A* + B*) + (||B* = I||2 + || B« 2)° —al|®(2(t = 7))|I* + 2097 (2(1)) BO(2(t — 7))
+  2(|| A2 + || Bil2) < 27. (14) = —a||®(z(t — 7)) — BT®(2(t))|?
(ii) +a®” (2(t))BBT®(2(t)) (18)
He(A+ B+ ([Acllz + 1B:fl2) <7 (19) —2a®7 (5(£))C2(t) < —207|(=(1) 2. (19)
d
an Rearranging the terms in (17) and using inequalities (8)-(10),
2in(A* — B*) + (| B* + I|2 + || B+ |l2)* (18), and (19), we obtain
+ 2(J A2 + I1Bull2) < 27 (16) | R T
Proof. First we note that condition (14) in (i) also impliesv(z(t)) s m® ()4 A(I)(T( )
condition (15) in (ii). This fact suggests that we are able to +r1®7 (2(t — 7)) BT BO(x(t - 7))
give the proofs for the two cases altogether. +2a®T (2(1))AD(2(t)) — o (27 — 1) || ®(2(1)) |
For any(C, A, B) € C x A x B, we shall prove that model +a®” (2(t)) BBT®(2(t))
(1) is globally asymptotically stable under either set of the P 2 _ 1% _ 2
conditions. The proof is in two steps. +6 (||2(= (T))H [® (= (275 NI?)
Step 1(Existence and uniqueness of an equilibrium point). < R Amax (AT A)[[@(z()) ]|
This part is based on Lemma 2.2: +K1 Amax (BT B)||®(2(t — 7)) ||?
T = 2
(A4 B) = (A" L AAL B+ AB) +BTEOIADEY) —a @ -1 IR
< pg(AF +B*) + p2(AA + AB) +a q() z(t)) ' ((I)(t))t 2
< ia(A* 4 B+ [Ad]s+ A +8 (2O = 12t = T)I?).
< po(A* 4+ BY) + || Asl2 + || Bill2 Using the facts in Lemma 2.4 and lettifig:= ~1 A3, we have
< r< mln(Cz/k ) V(Z(t)) < K (j\A + ;\B) |(I)(Z(t))||2
where we usedd = A* + AA and B = B’f + AB_ _with_ +2a®T (2(1))AD(2(t)) — o (2F — 1) || ®(2(2))]?
AA € [-A,,A,] and A_B € [—_B*,_B*] anql mequ_a_lltles in 42087 (2(1)) BO(2(1))
Lemma 2.3 were applied. This string of inequalities means T
—20®” (2(t)) BO(2(t))
(

gu_arantees _t_he eX|sten_ce and uniqueness of an equilibrium 2007 (2(t)) BB (2(t)) + a®T (2(t)) BBT®(2(t))
point. Condition (16) will ensure the global convergence as T 9 9
we will see shortly. = a[B7O(z2(t)) — (2(1)[I” — al|@(z(t))]]
Step 2(Global asymptotic convergence.) Once again, we < allB —I[3[|®(z(t))[* — al[®(=(t))]?
use the Lyapunov theory to prove the global convergence of = —a(1— ||B —I|3)|®(z(t))|*

any solution of (1) to its unique equilibrium point*. This

is equivalent to show that the origin is GAS for system (3)/\’e then have from (20) that

Now assume (14) in (i) holds. Let us consider the Lyapun < 2

function of the type originally used in [3]: C{Y = M (AA + AB) ”(I)2(Z(t))” )
—a(1—|[B = I|j3)[[®(=(t))ll

V(z(t) = ||z(t)||2+2aZ/Z1 ¢i(s)ds —a (27 = 1) [|@(=(1))[?
=170 +a®T (2(t))(A + AT + B+ BT)®(2(t))
Hor DY [ sratenas = m Qutde) RGO
=1/t —a(2r — || B~ I|3)[|2(=(1))]?
where o and 3 are some positive constants chosen appro- +a®T (2(t))(A* + (A" + B* + (B*)")®(=(t))
priately later on. The time derivative df (z(¢)) along the +2a0T (2(t ))(AA+AB) (2(1))
trajectories of equation (3) is calculated as follows: < (>\A T /\B) 1@ (2(8))]2
V(z(t) = —2zT()C=(t) + 22T (1) AD(=(t)) —a(2r — ||B" — I+ABII DlleC)]?
+ 227 (1) BO(2(t — 7)) — 20®7 (2(1))C=(1) +2ap2(A* + BY)[|@(2(1))|?
+ 2a<I>T(Z(t)) D(2(1)) +2a[[AA + AB|o[| @ (2(1))]?
+ 2a<I>T(z(t)) ( (t—1)) < w1 (Aa+ ) 12(2(1)])?
+ (a+0) ([P — (=t —))*)@7) —a(2F — r2)||®(2(1))]I?, (21)



where Just repeating the arguments for the three subcases above, we
v N are able to show that model (2) is GARS under conditions in
Ky 1= 209 (A*+ B )+ (| B* 1|2+ B ) *+2([| A2+ Bill2)-

(ii). This completes our proof. |
Now we consider the following three cases: An interesting consequence of Theorem 3.3 is when the
Case 1:®(z(t)) # 0 and z(t) # 0. It then follows from uncertainty sets each contains only one element, dg+ 0
(21) and condition (14) that the choice and B, = 0:

Corollary 3.2: Let f € K. The neural network model (1)

a> (A +Ap)/ (27 — k2) is GAS if one of the following two conditions holds:

ensures that/(z(t)) is negative. 0)
Case 2:®(z(t) = 0, but 2(t) # 0. Then it follows from 2us(A+ B) + ||B — I3 < 2r. (22)
(17) and (8) that (i)
V(z(t) < —2cllz(t)]* +2:T () BO(2(t — 7)) p2(A+ B) < (23)
—(a+ )@ (=(t = )| and
=~ + 22" (1) BR(2(t — 7)) — c[|=(1)]|® 25(A— B) + | B+1|% < 27. (24)
—(a+ B)||®(z(t — )| We note that condition (22) recovers the main result [23,
1 - ) Theorem 3] and conditions (23) and (24) appear new from
< Z0((t-7)B Be(x(t — 7)) — c[=(?)] many known results for GAS property of model (1).

2
—(a+B)[[@(z(t = 7)) IV. COMPARISON

< —(a+B=As/A)|@(=(t = T)II” = cll=(t)]*. . . . . -
_ _ . o . In this section, we conduct comparison with several existing
We recall that3 = Ag/c, which obviously implies the first and closely related results reported in [8], [22]. Our compar-
term in the last inequality is nonpositive and the second tefigbn clearly shows the significance of the results reported in

is strictly negative. Hence/ (z(t)) < 0 for this case. the last section.
Case 3:z(t) = 0. Clearly, ®(z(t)) = 0 due to the fact (5).  As we promised early on, we now compare Theorem 3.1
In this caseV (z(t)) is given by with following result by Ozcan and Arik.
V(z(t)) — (a4 B)|B(=(t — 7_))”2. Theorem 4.1:[22, Theorem 1] Letf € K. then, the neural

) ) network model (2) is GARS if there exists a positive diagonal
HenceV (z(t)) is negative if®(z(t—7)) # 0 andV (z(t)) =0 matrix P = diag(p; > 0) such that
if and only if it happens in the last case where

t) = ®(z(t)) = ®(2(t — 7)) = 0.
Z( ) (Z( )) ) (Z( T)) . where S = (Sij)nxn with s;; = —2p;a;; and Sij =
We recall thatV(z(t)) is radially uqb_ounded. Accor_dmg t0 — max(|p;a;; + pjajil, Ipia;; + pjaj,l) for i # j.
[17, Corollary 3.2, Ch.3] that the origin of (3) or equivalently An interesting corollary of the above theorem is the follow-
the equilibrium pointz* of (1) is GAS. This proves that modeling

Q:=2rI 4+ S —=2|P||2(| B*||2 + || B«||2)I > 0,

(2) is GARS under condition (14). Corollary 4.1: [22, Corollary 2] Let f € K. Then, the
Now assume conditions in (ii) hold. Starting from (20) angéeural network model (2) is GARS if there exists a positive
using the fact that diagonal matrixP = diag(p; > 0) such that
20®7 (2(1)) B®((1)) + a®T (2(1)) BBT®(2(1)) 1) the symmetric matrixS is positive definite, i.e.S > 0,
and
= af|BTe(2(t)) + @(2(1))|1” — af| @(=(1))[I?

N ) " 2) 1B ll2 + [I1B«ll2 < 7/[Pl2-
o B+ I[l2[[@ ()" — [ @(=(1))l A surprising aspect of this corollary is that it covers a
= —a(l—||B+I3)|®(z(t)]* seemingly different result by Cao and Wang [8], see the
discussion before Theorem 8 in [22].
We then have from (20) that Theorem 4.2:[8, Theorem 2] Letf € K. Suppose also that
V(z(t) < ki (Aa+ Ag) [ (=) f is bounded. Then, the neural network model (2) is GARS if
—a(1— B+ I|1D)|®(0)]? there exists a positive diagonal matidx= diag(p; > 0) and
_ 2 a positive definite matrix> >~ 0 such that
—a (2r — 1) [[2(=(1))]l

1) the symmetric matrixS is positive definite, i.e.S = 0,
FadT((0)(A+ AT~ B BTIRGD) O ang P

IA

and
2) [|B*||2 + [ Bull2 < (2r — [ Dll2)/(ID~H{|2[| P]13).-
Remarks.In fact, Ozcan and Arik present a group of

3 3 2
< k1 (At As) 12(2(1))ll similar conditions to Corollary 4.1, all involve the positive
—a(2F — K3)||®(2(1))]|?, definiteness of and various bounds ojhB*|| + || B«||2- The
where positive definiteness of and the bounds are aimed to ensure

Q > 0. The proof of showing the existence and uniqueness
kg i= 2pg(A*—B*)+(|| B*+I||2+| | Bi|))*+2(]| Ax||l2+|| B«||2). of an equilibrium point under this condition is based on a



homeomorphism theorem of Forti and Tesi [10] and is quite 2 -1 -1

involved in analysis. It is worth to point out that Lemma 2.1 S=1| -1 2 -1 [|-2FE
provides comparatively short and compact a proof. -1 -1 1
Suppose? - 0. We want to prove every matri¥” in Wis and —(A4* + (4*)T) = —24*. We now calculate and
nonsingular SincelV € W, there must be a diagonal matrixrespectively and obtain:
D =diag(d;) with 0 < d; <k; for all i =1,...,n such that

W = C — (A+ B)D. SupposdV is singular, we shall derive _ 4—6a —Ge ) )
a contradiction. There must be a vectog = € C™ (the field = 1 4—6a—6e 1
of complex numbers) such that 1 1 3 —6a — 6e
and
PCK™ 'z — P(A+ B)Qxz =0, (25)

4 — 6a — 2¢ —1—2¢ —1—2¢
where Q = DK~!. First we note thaQz # 0. Otherwise 0= —1—-2 4—6a—2¢ —1—2e
equation (25) would imply: = 0, which contradicts the fact —1—2¢ —1—2¢ 3 —6a—2¢

0. _ -
v 7l\é/|ultiplying equation (25) from left byz”Q, we have We note that for this example = Q2 defined in Corollary 3.1.
. . ’ To simplify our calculation, we let = 0, which gives
_ s -1, _ =
0 = =z QPCI;' x—Z QP(A+ B)Qx ) 41— 6a 1 1
> iTQxfAETQGZ4+/P?UQx7jTQPBQz Q= 1 4 —6a 1
1 1 3 —6a
> 7“-'15 J] -3 Z2pzau Q$) (Q.’L‘) and
4 — 6a -1 -1
Q= -1 4 — 6a -1
—*ZZ (piaij + pja;i)(QT)i(Qx); ~1 -1 3—6a
=t 57512 Using the famous root formulae of cubic equations, we find
~[1 P2l Bll2}| Qa1 that whena > 0,
> r|Qu|? + 1|Q@|T5|Qx| Q=0 ifand only if a <0.37799
- 2
=[IPll2(IB* [ + [ B«ll2) Q] and

1 . . Q=0 if and only if a <0.26429.
= Q" (2rl + 5 = 2| P[|2([|B"|| + [ Bll2)I) Q| : :
2 Therefore, Theorem 3.1 provides a better bound for this

= 1|Qx‘TQ|Qx|. example than Theorem 4.1. We also note that since the roots
2 are continuous functions af we can easily extend the case
The second inequality above uses the prop@rtg Q? < e =0 to cases where > 0 is small enough.
. Becausef? is positive definite, we must hav@z = 0, The next example shows the difference of our result
which contradicts the faaQx # 0. Hence, eveny in W is Corollary 3.1 from Corollary 4.1. First we recall that =
nonsingular. Lemma 2.1 implies the existence and uniquenessi(c;/k;) andr = min(p;c;/k;).
of an equilibrium point under the conditian > 0. a Example 4.2:SupposeC = C = K = P = I so that
Although the appearance of the conditions in Theorem 3r1= r = 1. Now, conditions in Corollary 3.1 become
omoneiated by the svample belon. ¢ U1e GHIETENY 85, (A%) ) 4.ll2 < 1 and B o+ B. 2 < 1=pa(A%) =] A
Example 4.1:Let the reference matrixd* and the pertur- and conditions in Corollary 4.1 become

bation matrixE be: S=0 and pa(A*) + Al < 1.

2 1 1 1 1 1
A=—g 121 ), B=(111] Let
11 1 11 1 B - ( 1}2 1{2 ) and E, — ( 1 } >.
Let
A=A —¢E, A=A"+¢E We define the network parameters as follows:
and A:—I—EEl, A:I—EEl, B = —aF; and B:CLEQ,
B=—ak, B=ak, wheree, a > 0. Then we have

o

wheree, a > 0. We also let

N:—@hAﬁﬂ,F:(
C=C=K=P=1,

0
0 0),3*—CI,E2.

) On the one hand, we have
so thatr = 1 and||P|l2 = 1. It is also easy to see that

_( —2(1-¢) —€
[Aull2 = 3¢, [1B.]l2 = 30 and B2 =0. s=( 700 Laty)



which is never positive definite for < 2. Hence, Corollary and
4.1 does not apply to this case. On the other hand, we have p2(A—B) =0, ||B+I|2~1.4166.

p2(A*) = —%e, |Al2 =1, |[|B*]l2=0, ||B.]2=2a. Hence, condition (22) is not satisfied, while conditions (23)
and (24) are satisfied for this example.
It is easy to calculate that If we let B = B = —M7T and keep other parameters
unchanged, then by symmetry we see that condition (22) is
satisfied, while conditions (23) and (24) are not satisfied.
We also note that Theorem 3.3 represents a different class
1 of conditions from those reported and cited in this paper. It
|1B*|l2 + [|Ball2 = 2a < 1 — (ua(A*) + || Asll2) = z€ is not too hard to construct examples showing the differences.
2 We simply omit those examples. It is also worth to note that
for a < fe. Hence, Corollary 3.1 implies that model (2) ighere are several results reported in [7], [19], [20], [27] of
GARS for this example witl) < e <2 and0 < a < 1e. concerning GARS of model (2). It has been shown in [22]
Remarks.The purpose of Example 4.2 is to show thaghat those results are different from Theorem 4.1 and Corollary
Corollary 3.1 does not need to be positive definite. We 4.1. It is also possible to follow the ideas of [22] to construct
also note that a significant property of this corollary is thajxamples to show that our results are different as well.
the quantityuz(A*) + ||A|l2 may be negative, leaving much
freedom forB* and B, as the bound1 — (ua(A*) + || A«||2))
for ||B*||2 + ||B«||2 may exceedl. This possibility is ruled
out if we use Corollary 4.1. We verify this observation by The significance of the reported results is their low computa-

1
B A7) + Al =1 - Je <1

and

V. VERIFICATION

continuously examining Example 4.1. (] tional cost that is needed to verify them. To be specific, results
Example 4.3:(Example 4.1 continued) For this examplein Corollary 3.1, Theorems 3.2 and 3.3 all involve calculation
we calculate that of the largest symmetric matrices, which can be done via
a small number of spectral decompositions of symmetric

pa(A”) = —0.5 x 0.2679 = —0.13395. matrices involved. Verification of Theorem 3.1 can be done

Hence, by formulating its condition as a semidefinite programming

problem (SDP), to which efficient softwares are available [6].
p2(A%) + [|Axll2 = —0.13395 + 3e < 1 for e <1.13395/3. It is not known, however, if other similar results cited in this
In particular, s (A*) + [[A.]l» < 0 for ¢ < 0.13395/3. It is paper, say those by Ozcan_ and Arik.[22], can be vgrified by
easy to see that SDP, becausg most of t.helr re§ults_ |nvolve.a maﬁ‘|>(s¢e

Theorem 4.1 in last section) which is a nonlinear function of
|B*|l2+|Bill2 = 3a < 1—(p2(A*)+||Asll2) = 1.13395—3¢  P. In this section, we will first give a brief discussion how

spectral decomposition is sufficient for some cases, followed

fora < (1.13395 —3¢)/3. In particular, where < 0.13395/3, 1 5 getajled derivation how SDP can be used to verify
1 — (p2(A") + [[Asll2) > 1. To summer up, Corollary 3.1 theorem 3.1.

means this example has GARS property when Verification via Spectral DecompositioiWe use Condition

0<e<1.13395/3 and 3a < 1.13395 — 3. (i) in Theorem 3.3 as an example to demonstrate how the

Our last example shows that the two conditions in TheorepRectral decomposition is sufficient to verify the condition.
3.3 are also different. We only give an example that no erroré" other results except Theorem 3.1, similar arguments hold.

of network parameters are in presence. For a square matri, define its symmetric part Sym) =
Example 4.4;LletC=C =K =P =1 and (A + AT)/2. Then for Condition (i), we need the spectral
decomposition
M= ( 0.2 0 )
04 02 )" Sym(A* + B*) = Qdiag\y, ..., \,)QT,
The network parameters are where); > ... > ), be the eigenvalues of Sym* + B*)
A=—A=M B=B=M" and @ are the matrix of corresponding eigenvectors. Then
- T ua(A* + B*) = A;. Hence, to verify Condition (i), we
The we have need 4 spectral decompositions, namely for &tin+ B*),
11 08 04 (B* —I)((B*)T —I), B.BT, and A, AT An alternative for
A+ B = 04( 1 1 ) , B-1I= ( 0 —0.8 ) doing spectral decomposition for products like AT is to

do a singular value decomposition df,, see [12]. One can
actually avoid spectral/singular-value decomposition of those
A_B= ( 0 —04 > Bil— ( 1.2 04 ) matrices because what we really need in Condition (i) is the
04 0 ’ 0 12 )° largest eigenvalues of those matrices. There are good cheaper
It is easy to see that (compared to spectral/singular-vall_Je decomposition) methods
that only calculate the largest eigenvalue of a symmetric
H2(A+ B) =038, ||B—1I|2~1.0246 matrix. For our case, we are contented since we only need

and



to do spectral decompositions of at most four symmetris minor warning for this SDP reformulation is that the

matrices.

Verification via SDPThe condition in Theorem 3.1 involves
a feasibility issue that asks whether there exists a positi
diagonal matrix P satisfying Q) = 0. It cannot be verified

constraintP < I cannot be replaced by a relaxéd< I + ¢/

as would be suggested in [6]. This is because it would be
wentradictive fort < 0 between the relaxed® < I + ¢tI and

the last equality constraint; = 1 for some:. We note that

through easy spectral decomposition like we did for oth€B1l) has an optimal solution. First, it is feasible. In fact, one
cases. Fortunately, we are able to show how powerful SIBBn easily verify that

can be applied to verify the positive definitenessof
Recall

Q:=2PA — (PA* + (A")TP) = 2|P|]o7* I = 0  (26)

where 7* = ||B*||2 + ||B«|l2 + ||A«||2. Note that||P||-
max(p;). Dividing || P||2 in both sides of (26) yields

2PA — (PA* + (ATP) — 271 = 0

where P := P/||P||,. BecauseP is positive and diagonalP?
has to satisfy

P=0, P<I and I (1 —p;) =0. (27)

(P=1,t=142max{us(A* = A+ 7*I),1})

is a feasible point. Second, sinpg= 1 for some:, we must
havet > —1 for any feasible pairP,t). Hence an optimal
solution (P*,t*) exists for this problem.

Standard SDP softwares are then used to produce a certifi-
cate stating that the linear system (30) is infeasibl& i 0
and it is feasible ift* < 0. In summary, the feasibility of
Q= 0 can be low-costly verified by SDP.

VI. CONCLUSION
The paper may be viewed as continuation of our pursuit

The last |dent|ty in (27) means that at least one of the d|agonﬁ| app|y|ng nonsmooth ana'ysis to Study of stabilities of

elements ofP has to bel. Hence condition (26) is satisfied
for someP = diag(p;) if and only if following conditions are
satisfied for someP = diag(p; ).

2PA — (PA* + (A*)TP) — 271 = 0, (28)
P~0, P=<I,
and
I, (1 —pi) =0. (29)

Note that we replaced by P for notation simplicity. It is
easy to see (29) holds if and only if

p; = 1 for somei.
Moreover, (28) is equivalent to

P(A* —A) + (A* = N)TP 27T <0.

neural networks initiated in [23]. This time, we work with
models containing network parameter errors. The reported
results demonstrate again the potential of nonsmooth analysis
approach when combined with different Lyapunov functions
(three different Lyapunov functions are used in this paper).
One important common property of all of the reported results
is that they are easy to verify (in the sense of computational
complexity) either by spectral decomposition of symmetric
matrices or by the semidefinite programming, which can be
polynomially solved by interior-point methods [6]. We feel that
the development of SDP verification provides new incentive to
extending the nonsmooth analysis approach to other problems.
Since LMI is often closely related to SDP, we conclude this
paper by pointing out that it is worth to explore the application
of the nonsmooth analysis with LMI approach [5], [8], [18],
[25] to derive new conditions for GARS of model (2).

To summarize, to check condition (26) is to check if there

exist a positive diagonal matriR = diag(p;) such that

P(A* —A) +(A* —NTP 4271 <0
—P <0

P <I

for somei, p; =1

(30)
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