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New Sufficient Conditions for Global Robust
Stability of Delayed Neural Networks

Houduo Qi

Abstract— In this paper, we continue to explore application
of nonsmooth analysis to the study of global asymptotic robust
stability (GARS) of delayed neural networks. In combination
with Lyapunov theory, our approach gives several new types
of sufficient conditions ensuring GARS. A significant common
aspect of our results is their low computational complexity. It
is demonstrated that the reported results can be verified either
by conducting spectral decompositions of symmetric matrices
associated with the uncertainty sets of network parameters, or by
solving a Semidefinite Programming problem (SDP). Nontrivial
examples are constructed to compare with some closely related
existing results.

Index Terms— Delayed neural networks, equilibrium point,
global asymptotic robust stability, nonsingularity, Lyapunov func-
tion.

I. I NTRODUCTION

T HE level of reliability of delayed neural networks de-
pends on the global uniqueness of an equilibrium point

as well as its global asymptotic stability, known as the GAS
property. There is a large body of publications of addressing
stability properties of different classes of neural networks with
delay, to just name a few, see [1], [2], [3], [9], [10], [11], [13],
[14], [16], [18], [21], [23], [24], [25], [26], which also aspire
our investigation in this paper.

The delayed neural networks considered in this paper can
be modelled by the differential equation:

ẋ(t) = −Cx(t) + Af(x(t)) + Bf(x(t− τ)) + u, (1)

where x(t) = (x1(t), . . . , xn(t))T ∈ IRn, C = diag(ci >
0)n×n is a positive diagonal matrix,A = (aij)n×n,
B = (bij)n×n, u = (u1, . . . , un)T ∈ IRn, f(x(t)) =
(f1(x1(t)), . . . , fn(xn(t)))T ∈ IRn and f(x(t − τ)) =
(f1(x1(t − τ1)), . . . , fn(xn(t − τn)))T ∈ IRn. The matrices
C, A,B are often referred to as the network parameters,τi is
the delay associated with theith neuron,fi is an activation
function andui is a constant input to the neuroni.

There are statistically justified reasons [4], [29] (due to,
for example, physical implementation of the networks and/or
experimental errors) that the network parameters often appear
in random nature. In other words,(C,A, B) may be subject to
random errors. For example,A may take the following form:

A = E(A)±∆A,
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where E(A) denotes the expectation of random variableA
and ∆A is the possible error. To put into a different form,
the network parameters(C,A, B) are often contained in the
following sets:

C =
{
C = diag(ci) | 0 < C ≤ C ≤ C̄, i.e., 0 < ci ≤ ci ≤ c̄i

}

A =
{
A = (aij) | A ≤ A ≤ Ā, i.e., aij ≤ aij ≤ āij

}

B =
{
B = (bij) | B ≤ B ≤ B̄, i.e., bij ≤ bij ≤ b̄ij

}

for all i, j = 1, . . . , n, where the matricesC, C̄, A, Ā andB
and B̄ are known. Those are the sets that contain uncertainty
(hence, often referred to as uncertainty sets). This results in
neural networks with uncertainty setsC, A andB:{

ẋ(t) = −Cx(t) + Af(x(t)) + Bf(x(t− τ)) + u
(C,A, B) ∈ C × A× B andu ∈ IRn (2)

The robust stability (in the sense of GAS) of this system has
recently been studied in [7], [8], [19], [20], [22], [27]. In
this paper, we will report new sufficient conditions for the
global asymptotic robust stability (GARS) of model (2). We
also develop a semidefinite programming problem (SDP) to
verify one of our main results, while the others can be verified
by spectral decompositions of a small number of symmetric
matrices. SDP verification is not shared by many of existing
similar results. Another purpose of this paper is to promote
application of nonsmooth analysis in the stability study of
neural networks. Two basic lemmas that we used are derived
via nonsmooth analysis. We refer the reader to [23] for much
detailed discussion on them. We organize our paper as follows.

In Section II, we give a formal definition of GARS and
include some technical lemmas, which are frequently used in
Section III to derive several sufficient conditions of new type
for GARS. In Section IV, we conduct comparison with several
closely related known results. A significant common aspect of
our new conditions is their low computational complexity. We
demonstrate this low cost complexity in Section V that our
new conditions can be verified either by conducting spectral
decomopositions of certain symmetric matrices associated
with the uncertainty setsA andB, or by solving a semidefinite
programming problem. We conclude the paper in Section VI.

Notation:We assume that all the activation functions belong
to K, which denotes the class of nondecreasing Lipschtiz
functions, i.e.,f ∈ K if there exist some positive constants
ki such that

0 ≤ fi(x)− fi(y)
x− y

≤ ki, ∀x 6= y ∈ IR, i = 1, . . . , n.

:= means ‘define’. For a symmetric matrixM , λmax(M)
and λmin(M) denote the largest eigenvalue and the small-
est eigenvalue ofM , respectively. ForM ∈ IRn×n (not
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necessarily symmetric),µ2(M) := 0.5λmax(M + MT ), i.e.,
µ2(M) is the largest eigenvalue of the symmetric part ofM .
M Â (≺)0 means thatM is symmetric and positive (negative)
definite. For a vectorv ∈ IRn, ‖v‖ denotes the Euclidean
norm of v and for a matrixM , ‖M‖2 denotes the matrix
norm induced by the vector norm‖ · ‖. Equivalently,‖M‖2 =√

λmax(MMT ). Furthermore,|v| := (|v1|, . . . , |vn|)T ∈ IRn.
I is the identity matrix of appropriate dimension. Define
K := diag(k1, . . . , kn), r̄ := min(ci/ki) and c := min(ci).
Finally, we letΛ := diag(ci/ki).

II. BASIC DEFINITIONS AND TECHNICAL LEMMAS

We first recall that for any given dataC,A, B andu, a state
x∗ ∈ IRn is called an equilibrium point of (1) if it satisfies

−Cx∗ + (A + B)f(x∗) + u = 0.

Central to the study of model (1) is itsglobal asymptotic
stability (GAS), which is widely studied in literature. It is
known that GAS requires both existence and uniqueness of
an equilibrium point for anyu ∈ IRn. The following results,
adapted to model (1) and proved by Qi and Qi in [23] via
nonsmooth analysis, are for this purpose.

Lemma 2.1:[23, Theorem 1] Supposef ∈ K and the
network parametersC, A andB are given. Let

W =





W ∈ IRn×n
∣∣∣

W = C − (A + B)D,
D = diag(d1, . . . , dn),
0 ≤ di ≤ ki,
for all i = 1, . . . , n





.

If every matrixW ∈ W is nonsingular, then model (1) has a
unique equilibrium point for anyu ∈ IRn.

Lemma 2.2:[23, Theorem 2 (iii)] Supposef ∈ K and the
network parametersC, A andB are given. If

µ2(A + B) < min
1≤i≤n

(ci/ki),

then model (1) has a unique equilibrium point for anyu ∈ IRn.
When the network parameters contain errors, we need a

stronger property of the robust stability to ensure the reliability
of the networks.

Definition 2.1: [8] (GARS) Model (2) isglobally asymptot-
ically robust stableif for any instance(C, A, B) ∈ C×A×B,
model (1) is globally asymptotically stable.

We also need the following inequalities of norms of matrices
concerning the uncertainty setsA andB:

Lemma 2.3:[8, Lemma 3] For anyA ∈ [A, Ā] and B ∈
[B, B̄], the following inequalities hold:

‖A‖2 ≤ ‖A∗‖2 + ‖A∗‖2,
‖B‖2 ≤ ‖B∗‖2 + ‖B∗‖2,
‖∆A‖2 ≤ ‖A∗‖2, ‖∆B‖2 ≤ ‖B∗‖2,

where ∆A = A − A∗, ∆B = B − B∗, A∗ = 1
2 (A + Ā),

A∗ = 1
2 (Ā−A), B∗ = 1

2 (B̄ + B) andB∗ = 1
2 (B̄ −B).

The boundedness of the setsA and B also implies the
following

Lemma 2.4:There exist̄λA > 0 and λ̄B > 0 such that

λmax(AT A) ≤ λ̄A andλmax(BT B) ≤ λ̄B ∀A ∈ A, B ∈ B.

III. N EW CONDITIONS FORGARS

As hinted in Section 2, the analysis of GARS is carried out
in two steps. For any(C,A, B) ∈ C × A × B, we need to
address (i) the existence and uniqueness of an equilibrium
point, say x∗, of (1) for any u ∈ IRn; and (ii) that the
equilibrium point x∗ attracts all the solutionsx(t) of (1).
We will use Lemmas 2.1 and 2.2 to address (i). To facilitate
the proof of (ii), we shift x∗ to the origin through the
transformation:

z(t) = x(t)− x∗ and z(t− τ) = x(t− τ)− x∗.

Model (1) then can be equivalently written as the following
system:

ż(t) = −Cz(t) + AΦ(z(t)) + BΦ(z(t− τ)) (3)

where
z(·) = (z1(·), . . . , zn(·))T ,

Φ(z(·)) = (φ1(z1(·)), . . . , φn(zn(·)))T ,

and
φi(zi(·)) = fi(zi(·) + x∗i )− fi(x∗i ).

For f ∈ K, it is easy to see that

‖Φ(z(·))‖2 ≤
n∑

i=1

kizi(·)φi(zi(·)) (4)

and
φi(0) = 0, ∀ i = 1, . . . , n. (5)

Hence, to show thatx∗ is GAS for model (1) is equivalently
to show that the origin is GAS for model (3).

The proof of our first result uses, apart from Lemma 2.1, a
Lyapunov function proposed by Ozcan and Arik [22].

Theorem 3.1:Let f ∈ K. The neural network model (2) is
GARS if there exists a positive diagonal matrixP = diag(pi >
0) such that

Ω̄ := 2PΛ− (PA∗ + (A∗)T P )
−2‖P‖2 (‖B∗‖2 + ‖B∗‖2 + ‖A∗‖2) I Â 0,

whereΛ := diag(ci/ki).
Proof. For any(C, A,B) ∈ C ×A×B, we shall prove that

model (1) is globally asymptotically stable. The proof is in
two steps.

Step 1(Existence and uniqueness of an equilibrium point).
In this part we prove any matrixW ∈ W in Lemma 2.1 is
nonsingular so that Lemma 2.1 implies that model (1) has a
unique equilibrium point for anyu ∈ IRn. SinceW ∈ W,
there must be a diagonal matrixD = diag(di) with 0 ≤ di ≤
ki, i = 1, . . . , n, such that

W = C − (A + B)D.

SupposeW is singular, we shall derive a contradiction. Obvi-
ously, the matrix

PWK−1 = PCK−1 − P (A + B)DK−1

is also singular. Let

Q := DK−1 = diag(q1, . . . , qn) with qi := di/ki.
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We immediately know that0 ≤ qi ≤ 1 for all i. Since
PWK−1 is singular, there must be a vector0 6= x ∈ Cn

(the field of complex numbers) such that

PCK−1x− P (A + B)Qx = 0. (6)

First we note thatQx 6= 0. Otherwise equation (6) would
imply x = 0, which contradicts the factx 6= 0.

Multiplying equation (6) from left side bȳxT Q (here x̄
denotes the conjugate vector ofx) and substitutingA with
A∗ + ∆A, we have

0 = x̄T QPCK−1x− x̄T QP (A + B)Qx

≥ x̄T QPΛx− x̄T Q(PA∗)Qx− x̄T QP (∆A + B)Qx

≥ x̄T QPΛQx− 1
2
x̄T Q(PA∗ + (A∗)T P )Qx

−‖P‖2(‖∆A‖2 + ‖B‖2)‖Qx‖2

≥ (Qx̄)T PΛ(Qx)− 1
2
(Qx̄)T (PA∗ + (A∗)T P )(Qx)

−‖P‖2(‖A∗‖2 + ‖B∗‖2 + ‖B∗‖2)(Qx̄)T I(Qx)

=
1
2
(Qx̄)T Ω̄(Qx).

The second inequality above uses the property0 ≤ Q2 ≤ Q
and P and Λ are positive diagonal matrices, and the third
inequality uses Lemma 2.3. BecauseΩ̄ is positive definite, we
must haveQx = 0, which contradicts the factQx 6= 0. This
contradiction establishes the nonsingularity ofW . Therefore,
by Lemma 2.1, model (1) has a unique equilibrium for any
given (C, A, B) ∈ C ×A× B.

Step 2(Global asymptotic convergence.) In this part, we
use the Lyapunov theory to prove the global convergence of
any solution of (1) to its unique equilibrium pointx∗. This is
equivalent to show that the origin is GAS for system (3). The
positive definite Lyapunov function we are about to employ is
the one proposed by Ozcan and Arik [22] (hence in our proof
we will use several technical inequalities, without proofs of
them, of concerning the function derived in [22]):

V (z(t)) = ‖z(t)‖2 + 2α

n∑

i=1

∫ zi(t)

0

piφi(s)ds

+(αγ + β)
n∑

i=1

∫ t

t−τi

φ2
i (zi(ξ))dξ,

whereα, β andγ are some positive constants to be determined
later on. The time derivative ofV (z(t)) along the trajectories
of equation (3) is calculated as follows:

V̇ (z(t)) = −2zT (t)Cz(t) + 2zT (t)AΦ(z(t))
+2zT (t)BΦ(z(t− τ))− 2αΦT (z(t))PCz(t)
+2αΦT (z(t))PAΦ(z(t))
+2αΦT (z(t))PBΦ(z(t− τ))
+αγ

(‖Φ(z(t))‖2 − ‖Φ(z(t− τ))‖2)

+β
(‖Φ(z(t))‖2 − ‖Φ(z(t− τ))‖2) (7)

We recallc := min(ci) and note the following inequalities:

−zT (t)Cz(t) ≤ −c‖z(t)‖2. (8)

−c‖z(t)‖2 + 2zT (t)AΦ(z(t))
≤ (1/c)ΦT (z(t))AT AΦ(z(t))
≤ (1/c)λmax(AT A)‖Φ(z(t))‖2. (9)

−c‖z(t)‖2 + 2zT (t)BΦ(z(t− τ))
≤ (1/c)ΦT (z(t− τ))BT BΦ(z(t− τ))
≤ (1/c)λmax(BT B)‖Φ(z(t− τ))‖2. (10)

The following inequality can be proved either independently
or by following its counterparts Eq. (17) on [22, Page 169]:

2αΦT (z(t))PBΦ(z(t− τ))
≤ α‖P‖2‖B‖2

(‖Φ(z(t))‖2 + ‖Φ(z(t− τ))‖2) . (11)

By using (4) and the factf ∈ K, we can easily have

−2αΦT (z(t))PCz(t) ≤ −2αΦT (z)PCK−1Φ(z). (12)

We also note the following inequality

2αΦT (z(t))PAΦ(z(t))
= 2αΦT (z(t))(P (A∗ + ∆A))Φ(z(t))
≤ αΦT (z(t))(PA∗ + (A∗)T P )Φ(z(t))

+2α‖P‖2‖∆A‖2‖Φ(z(t))‖2, (13)

whereA = A∗ + ∆A. Using (8)-(13) in (7) yields

V̇ (z(t)) ≤ (1/c)λmax(AT A)‖Φ(z(t))‖2
+(1/c)λmax(BT B)‖Φ(z(t− τ))‖2
−2αΦT (z)PCK−1Φ(z)
+α‖P‖2‖B‖2

(‖Φ(z(t))‖2 + ‖Φ(z(t− τ))‖2)

+αΦT (z(t))(PA∗ + (A∗)T P )Φ(z(t))
+2α‖P‖2‖∆A‖2‖Φ(z(t))‖2
+αγ

(‖Φ(z(t))‖2 − ‖Φ(z(t− τ))‖2)

+β
(‖Φ(z(t))‖2 − ‖Φ(z(t− τ))‖2) .

Let κ1 := 1/c. Using inequalities in Lemmas 2.3 and 2.4, we
further estimateV̇ (z(t)) as follows:

V̇ (z(t)) ≤ (
κ1λ̄A + β

) ‖Φ(z(t))‖2
+

(
κ1λ̄B − β

) ‖Φ(z(t− τ))‖2
−2αΦT (z)PCK−1Φ(z)
+α (‖P‖2(‖B∗‖2 + ‖B∗‖2)
+2‖P‖2‖A∗‖2 − γ) ‖Φ(z(t))‖2
+α (‖P‖2(‖B∗‖2 + ‖B∗‖2)− γ) ‖Φ(z(t− τ))‖2
+αΦT (z(t))(PA∗ + (A∗)T P )Φ(z(t)).

Now let β := κ1λ̄B and γ := ‖P‖2(‖B∗‖2 + ‖B∗‖2). We
further use the relationΛ ¹ CK−1 to get the following
simplified estimation ofV̇ (z(t)):

V̇ (z(t)) = κ1

(
λ̄A + λ̄B

) ‖Φ(z(t))‖2 − αΦT (z(t))Ω̄Φ(z(t))
≤ κ1

(
λ̄A + λ̄B

) ‖Φ(z(t))‖2 − αλmin(Ω̄)‖Φ(z(t))‖2.
Note thatΩ̃ is positive definite, the choice

α >
κ1

(
λ̄A + λ̄B

)

λmin(Ω̄)
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ensures thaṫV (z(t)) is negative definite for allΦ(z(t)) 6= 0.
This implies that the origin of (3) is GAS. Detailed proof for
this claim based oṅV (z(t)) < 0 when Φ(z(t)) 6= 0 can be
found on [22, Page 170]. We omit the details. This completes
the proof. ¤

We have the following corollary.
Corollary 3.1: Supposef ∈ K. The neural network model

(2) is GARS if there exists a positive diagonal matrixP =
diag(pi) such that

Ω̃ := 2rI − (PA∗ + (A∗)T P )
−2‖P‖2 (‖B∗‖2 + ‖B∗‖2 + ‖A∗‖2) I Â 0,

wherer := min(pici/ki). Moreover,Ω̃ Â 0 if the following
two bounds hold:

1) µ2(A∗) + ‖A∗‖2 ≤ r̄, and
2) ‖B∗‖2 + ‖B∗‖2 < r̄ − (µ2(A∗) + ‖A∗‖2),

where r̄ := min(ci/ki).
Proof. By the definition ofr, it is straightforward to see

that 2rI ¹ 2PΛ. Hence,Ω̃ Â 0 must imply Ω̄ Â 0, which in
turn by Theorem 3.1 implies the GARS of (2).

Now let P = I in Ω̃. We then knowr̄ = r. Ω̃ Â 0 means

2r̄I − (A∗ + (A∗)T )− 2(‖B∗‖2 + ‖B∗‖2 + ‖A∗‖2)I Â 0.

Equivalently

1
2

(
A∗ + (A∗)T

) ≺ (r̄ − (‖B∗‖2 + ‖B∗‖2 + ‖A∗‖2))I,

i.e, the largest eigenvalue of(A∗ + (A∗)T )/2 must be less
than the quantitȳr− (‖B∗‖2 + ‖B∗‖2 + ‖A∗‖2), which gives

µ2(A∗) < r̄ − (‖B∗‖2 + ‖B∗‖2 + ‖A∗‖2).
Equivalently

‖B∗‖2 + ‖B∗‖2 < r̄ − (µ2(A∗) + ‖A∗‖2).
The last condition also implies that

µ2(A∗) + ‖A∗‖ ≤ r̄

as‖B∗‖2 + ‖B∗‖2 ≥ 0. ¤

In Section IV, we will compare this result with a closely
related result [22, Theorem 1] of Ozcan and Arik. It is
interesting to point out that Corollary 3.1 is actually the
best among a class of sufficient conditions depending on a
parameterβ. We list this class of conditions below with only
a sketch of its proof.

Theorem 3.2:Supposef ∈ K. The neural network model
(2) is GARS if the following conditions hold:

1) µ2(A∗) + ‖A∗‖2 ≤ r̄, and
2) ‖B∗‖2 + ‖B∗‖2 < β

√
(2/β)(r̄ − µ2(A∗)− ‖A∗‖2)− 1

for someβ ∈ (0, 2(r̄ − µ2(A∗)− ‖A∗‖2)).
Proof. For any(C, A,B) ∈ C ×A×B, we shall prove that

model (1) is globally asymptotically stable under the sets of
conditions. As before, the proof is in two steps.

Step 1(Existence and uniqueness of an equilibrium point).
In this part we use Lemma 2.2. It follows from

(β − (r̄ − µ2(A∗)− ‖A∗‖2))2 ≥ 0

that

µ2(A∗) + ‖A∗‖2 + β
√

(2/β)(r̄ − µ2(A∗)− ‖A∗‖2)− 1 ≤ r̄.

This inequality and the condition in 2) give us:

µ2(A + B) = µ2(A∗ + ∆A + B∗ + ∆B)
≤ µ2(A∗) + ‖A∗‖2 + ‖B∗‖2 + ‖B∗‖2
< µ2(A∗) + ‖A∗‖2

+β
√

(2/β)(r̄ − µ2(A∗)− ‖A∗‖2)− 1
≤ r̄ ≤ min(ci/ki).

Then Lemma 2.2 implies that there exists a unique equilibrium
point for any(C,A, B) ∈ C × A× B andu ∈ IRn.

Step 2(Global asymptotic convergence.) Once again, we
use the Lyapunov theory to prove the global convergence of
any solution of (1) to its unique equilibrium pointx∗. Let us
consider the Lyapunov function of the type proposed in [2]:

V (z(t)) = α‖z(t)‖2 +
2
β

n∑

i=1

∫ zi(t)

0

φi(s)ds

+
n∑

i=1

∫ t

t−τi

(
φ2

i (ξ) +
α

c
ΦT (z(ξ))BT BΦ(z(ξ))

)
dξ,

where α > 0 is to be chosen appropriately andβ is the
constant appeared in Theorem 3.2. The remaining task is to
estimate the time derivative ofV (z) as we did for Theorem
3.1 or Theorem 3.3 below, or on [24, Page 1703]. We omit
this part. What interests us is that Corollary 3.1 is the best
version of this theorem, as we show below. ¤

The bound in the right hand side of 2) in Theorem 3.2
depends on parameterβ. We now seek the biggest possible
bound offered by this condition. Let

h(β) := β
√

(2/β)(r̄ − µ2(A∗)− ‖A∗‖2)− 1,

with β ∈ (0, 2(r̄ − µ2(A∗) − ‖A∗‖2)). We want to find the
largest value ofh(β) on the interval(0, 2(r̄ − µ2(A∗) −
‖A∗‖2)). Since the square ofh(β) does not change the
location of the maximum ofh(β), we consider

`(β) := h2(β) = 2β(r̄ − µ2(A∗)− ‖A∗‖2)− β2.

`(·) is concave on the interval and hence the optimality
condition`′(β) = 0 gives the maximum

β∗ = r̄ − µ2(A∗)− ‖A∗‖2.
Substituting this value inh(β), we get the largest bound

h(β∗) = r̄ − µ2(A∗)− ‖A∗‖2.
This shows that Corollary 3.1 is the best version of Theorem
3.2. It is also interesting to point out that Corollary 3.1 is
reached via two different routes, one as a consequence of
Theorem 3.1 (withP = I); the other is through Theorem
3.2. Both theorems are proved by different techniques.¤

Our next results give sufficient conditions involving the
largest eigenvalues of the symmetric part of the matrices
A∗ + B∗ andA∗ −B∗. We recall that̄r := min(ci/ki).

Theorem 3.3:Let f ∈ K. The neural networks model (2)
is GARS if one of the following two conditions holds:
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(i)

2µ2(A∗ + B∗) + (‖B∗ − I‖2 + ‖B∗‖2)2
+ 2 (‖A∗‖2 + ‖B∗‖2) < 2r̄. (14)

(ii)
µ2(A∗ + B∗) + (‖A∗‖2 + ‖B∗‖2) < r̄ (15)

and

2µ2(A∗ −B∗) + (‖B∗ + I‖2 + ‖B∗‖2)2
+ 2 (‖A∗‖2 + ‖B∗‖2) < 2r̄. (16)

Proof. First we note that condition (14) in (i) also implies
condition (15) in (ii). This fact suggests that we are able to
give the proofs for the two cases altogether.

For any(C, A,B) ∈ C ×A×B, we shall prove that model
(1) is globally asymptotically stable under either set of the
conditions. The proof is in two steps.

Step 1(Existence and uniqueness of an equilibrium point).
This part is based on Lemma 2.2:

µ2(A + B) = µ2(A∗ + ∆A + B∗ + ∆B)
≤ µ2(A∗ + B∗) + µ2(∆A + ∆B)
≤ µ2(A∗ + B∗) + ‖∆A‖2 + ‖∆B‖2
≤ µ2(A∗ + B∗) + ‖A∗‖2 + ‖B∗‖2
< r̄ ≤ min(ci/ki),

where we usedA = A∗ + ∆A and B = B∗ + ∆B with
∆A ∈ [−A∗, A∗] and ∆B ∈ [−B∗, B∗] and inequalities in
Lemma 2.3 were applied. This string of inequalities means
that Lemma 2.2 is satisfied under the condition of (15) and
hence step 1 is finished for case (ii). The proof for case (i)
is straightforward because condition (14) implies condition
(15). We note that condition (15) alone in Case (ii) already
guarantees the existence and uniqueness of an equilibrium
point. Condition (16) will ensure the global convergence as
we will see shortly.

Step 2(Global asymptotic convergence.) Once again, we
use the Lyapunov theory to prove the global convergence of
any solution of (1) to its unique equilibrium pointx∗. This
is equivalent to show that the origin is GAS for system (3).
Now assume (14) in (i) holds. Let us consider the Lyapunov
function of the type originally used in [3]:

V (z(t)) = ‖z(t)‖2 + 2α

n∑

i=1

∫ zi(t)

0

φi(s)ds

+(α + β)
n∑

i=1

∫ t

t−τi

φ2
i (zi(ξ))dξ,

where α and β are some positive constants chosen appro-
priately later on. The time derivative ofV (z(t)) along the
trajectories of equation (3) is calculated as follows:

V̇ (z(t)) = −2zT (t)Cz(t) + 2zT (t)AΦ(z(t))
+ 2zT (t)BΦ(z(t− τ))− 2αΦT (z(t))Cz(t)
+ 2αΦT (z(t))AΦ(z(t))
+ 2αΦT (z(t))BΦ(z(t− τ))
+ (α + β)

(‖Φ(z(t))‖2 − ‖Φ(z(t− τ))‖2) .(17)

We note the following inequalities:

−α‖Φ(z(t− τ))‖2 + 2αΦT (z(t))BΦ(z(t− τ))
= −α‖Φ(z(t− τ))−BT Φ(z(t))‖2

+αΦT (z(t))BBT Φ(z(t)) (18)

−2αΦT (z(t))Cz(t) ≤ −2αr̄‖Φ(z(t))‖2. (19)

Rearranging the terms in (17) and using inequalities (8)-(10),
(18), and (19), we obtain

V̇ (z(t)) ≤ κ1ΦT (z(t))AT AΦ(z(t))
+κ1ΦT (z(t− τ))BT BΦ(z(t− τ))
+2αΦT (z(t))AΦ(z(t))− α (2r̄ − 1) ‖Φ(z(t))‖2
+αΦT (z(t))BBT Φ(z(t))
+β

(‖Φ(z(t))‖2 − ‖Φ(z(t− τ))‖2)

≤ κ1λmax(AT A)‖Φ(z(t))‖2
+κ1λmax(BT B)‖Φ(z(t− τ))‖2
+2αΦT (z(t))AΦ(z(t))− α (2r̄ − 1) ‖Φ(z(t))‖2
+αΦT (z(t))BBT Φ(z(t))
+β

(‖Φ(z(t))‖2 − ‖Φ(z(t− τ))‖2) .

Using the facts in Lemma 2.4 and lettingβ := κ1λ̄B, we have

V̇ (z(t)) ≤ κ1

(
λ̄A + λ̄B

) ‖Φ(z(t))‖2
+2αΦT (z(t))AΦ(z(t))− α (2r̄ − 1) ‖Φ(z(t))‖2
+2αΦT (z(t))BΦ(z(t))
−2αΦT (z(t))BΦ(z(t))
+αΦT (z(t))BBT Φ(z(t)). (20)

Using the fact that

−2αΦT (z(t))BΦ(z(t)) + αΦT (z(t))BBT Φ(z(t))
= α‖BT Φ(z(t))− Φ(z(t))‖2 − α‖Φ(z(t))‖2
≤ α‖B − I‖22‖Φ(z(t))‖2 − α‖Φ(z(t))‖2
= −α(1− ‖B − I‖22)‖Φ(z(t))‖2.

We then have from (20) that

V̇ (z(t)) ≤ κ1

(
λ̄A + λ̄B

) ‖Φ(z(t))‖2
−α(1− ‖B − I‖22)‖Φ(z(t))‖2
−α (2r̄ − 1) ‖Φ(z(t))‖2
+αΦT (z(t))(A + AT + B + BT )Φ(z(t))

= κ1

(
λ̄A + λ̄B

) ‖Φ(z(t))‖2
−α(2r̄ − ‖B − I‖22)‖Φ(z(t))‖2
+αΦT (z(t))(A∗ + (A∗)T + B∗ + (B∗)T )Φ(z(t))
+2αΦT (z(t))(∆A + ∆B)Φ(z(t))

≤ κ1

(
λ̄A + λ̄B

) ‖Φ(z(t))‖2
−α(2r̄ − ‖B∗ − I + ∆B‖22)‖Φ(z(t))‖2
+2αµ2(A∗ + B∗)‖Φ(z(t))‖2
+2α‖∆A + ∆B‖2‖Φ(z(t))‖2

≤ κ1

(
λ̄A + λ̄B

) ‖Φ(z(t))‖2
−α(2r̄ − κ2)‖Φ(z(t))‖2, (21)
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where

κ2 := 2µ2(A∗+B∗)+(‖B∗−I‖2+‖B∗‖)2+2(‖A∗‖2+‖B∗‖2).
Now we consider the following three cases:
Case 1:Φ(z(t)) 6= 0 and z(t) 6= 0. It then follows from

(21) and condition (14) that the choice

α > κ1(λ̄A + λ̄B)/(2r̄ − κ2)

ensures thaṫV (z(t)) is negative.
Case 2:Φ(z(t) = 0, but z(t) 6= 0. Then it follows from

(17) and (8) that

V̇ (z(t)) ≤ −2c‖z(t)‖2 + 2zT (t)BΦ(z(t− τ))
−(α + β)‖Φ(z(t− τ))‖2

= −c‖z(t)‖2 + 2zT (t)BΦ(z(t− τ))− c‖z(t)‖2
−(α + β)‖Φ(z(t− τ))‖2

≤ 1
c
Φ(z(t− τ))BT BΦ(z(t− τ))− c‖z(t)‖2

−(α + β)‖Φ(z(t− τ))‖2
≤ −(α + β − λ̄B/c)‖Φ(z(t− τ))‖2 − c‖z(t)‖2.

We recall thatβ = λ̄B/c, which obviously implies the first
term in the last inequality is nonpositive and the second term
is strictly negative. Hence,̇V (z(t)) < 0 for this case.

Case 3:z(t) = 0. Clearly,Φ(z(t)) = 0 due to the fact (5).
In this case,V̇ (z(t)) is given by

V̇ (z(t)) = −(α + β)‖Φ(z(t− τ))‖2.
Hence,V̇ (z(t)) is negative ifΦ(z(t−τ)) 6= 0 andV̇ (z(t)) = 0
if and only if it happens in the last case where

z(t) = Φ(z(t)) = Φ(z(t− τ)) = 0.

We recall thatV (z(t)) is radially unbounded. According to
[17, Corollary 3.2, Ch.3] that the origin of (3) or equivalently
the equilibrium pointx∗ of (1) is GAS. This proves that model
(2) is GARS under condition (14).

Now assume conditions in (ii) hold. Starting from (20) and
using the fact that

2αΦT (z(t))BΦ(z(t)) + αΦT (z(t))BBT Φ(z(t))
= α‖BT Φ(z(t)) + Φ(z(t))‖2 − α‖Φ(z(t))‖2
≤ α‖B + I‖22‖Φ(z(t))‖2 − α‖Φ(z(t))‖2
= −α(1− ‖B + I‖22)‖Φ(z(t))‖2.

We then have from (20) that

V̇ (z(t)) ≤ κ1

(
λ̄A + λ̄B

) ‖Φ(z(t))‖2
−α(1− ‖B + I‖22)‖Φ(z(t))‖2
−α (2r̄ − 1) ‖Φ(z(t))‖2
+αΦT (z(t))(A + AT −B −BT )Φ(z(t))

=
...

≤ κ1

(
λ̄A + λ̄B

) ‖Φ(z(t))‖2
−α(2r̄ − κ3)‖Φ(z(t))‖2,

where

κ3 := 2µ2(A∗−B∗)+(‖B∗+I‖2+‖B∗‖)2+2(‖A∗‖2+‖B∗‖2).

Just repeating the arguments for the three subcases above, we
are able to show that model (2) is GARS under conditions in
(ii). This completes our proof. ¤

An interesting consequence of Theorem 3.3 is when the
uncertainty sets each contains only one element, i.e.,A∗ = 0
andB∗ = 0:

Corollary 3.2: Let f ∈ K. The neural network model (1)
is GAS if one of the following two conditions holds:
(i)

2µ2(A + B) + ‖B − I‖22 < 2r̄. (22)

(ii)
µ2(A + B) < r̄ (23)

and
2µ2(A−B) + ‖B + I‖22 < 2r̄. (24)

We note that condition (22) recovers the main result [23,
Theorem 3] and conditions (23) and (24) appear new from
many known results for GAS property of model (1).

IV. COMPARISON

In this section, we conduct comparison with several existing
and closely related results reported in [8], [22]. Our compar-
ison clearly shows the significance of the results reported in
the last section.

As we promised early on, we now compare Theorem 3.1
with following result by Ozcan and Arik.

Theorem 4.1:[22, Theorem 1] Letf ∈ K. then, the neural
network model (2) is GARS if there exists a positive diagonal
matrix P = diag(pi > 0) such that

Ω := 2rI + S − 2‖P‖2(‖B∗‖2 + ‖B∗‖2)I Â 0,

where S = (sij)n×n with sii = −2piāii and sij =
−max(|piāij + pj āji|, |piaij + pjaji|) for i 6= j.

An interesting corollary of the above theorem is the follow-
ing

Corollary 4.1: [22, Corollary 2] Let f ∈ K. Then, the
neural network model (2) is GARS if there exists a positive
diagonal matrixP = diag(pi > 0) such that

1) the symmetric matrixS is positive definite, i.e.,S Â 0,
and

2) ‖B∗‖2 + ‖B∗‖2 ≤ r/‖P‖2.
A surprising aspect of this corollary is that it covers a

seemingly different result by Cao and Wang [8], see the
discussion before Theorem 8 in [22].

Theorem 4.2:[8, Theorem 2] Letf ∈ K. Suppose also that
f is bounded. Then, the neural network model (2) is GARS if
there exists a positive diagonal matrixP = diag(pi > 0) and
a positive definite matrixD Â 0 such that

1) the symmetric matrixS is positive definite, i.e.,S Â 0,
and

2) ‖B∗‖2 + ‖B∗‖2 ≤ (2r − ‖D‖2)/(‖D−1‖2‖P‖22).
Remarks. In fact, Ozcan and Arik present a group of

similar conditions to Corollary 4.1, all involve the positive
definiteness ofS and various bounds on‖B∗‖2 +‖B∗‖2. The
positive definiteness ofS and the bounds are aimed to ensure
Ω Â 0. The proof of showing the existence and uniqueness
of an equilibrium point under this condition is based on a
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homeomorphism theorem of Forti and Tesi [10] and is quite
involved in analysis. It is worth to point out that Lemma 2.1
provides comparatively short and compact a proof.

SupposeΩ Â 0. We want to prove every matrixW in W is
nonsingular. SinceW ∈ W, there must be a diagonal matrix
D = diag(di) with 0 ≤ di ≤ ki for all i = 1, . . . , n such that
W = C − (A+B)D. SupposeW is singular, we shall derive
a contradiction. There must be a vector0 6= x ∈ Cn (the field
of complex numbers) such that

PCK−1x− P (A + B)Qx = 0, (25)

where Q = DK−1. First we note thatQx 6= 0. Otherwise
equation (25) would implyx = 0, which contradicts the fact
x 6= 0.

Multiplying equation (25) from left bȳxT Q, we have

0 = x̄T QPCK−1x− x̄T QP (A + B)Qx

≥ x̄T Qx− 1
2
x̄T Q(PA + AT P )Qx− x̄T QPBQx

≥ rx̄T Q2x− 1
2

n∑

i=1

2piaii(Qx̄)i(Qx)i

−1
2

n∑

i=1

n∑
j=1
j 6=i

(piaij + pjaji)(Qx̄)i(Qx)j

−‖P‖2‖B‖2‖Qx‖2

≥ r‖Qx‖2 +
1
2
|Qx̄|T S|Qx|

−‖P‖2(‖B∗‖+ ‖B∗‖2)‖Qx‖2

=
1
2
|Qx|T (2rI + S − 2‖P‖2(‖B∗‖+ ‖B∗‖2)I) |Qx|

=
1
2
|Qx|T Ω|Qx|.

The second inequality above uses the property0 ≤ Q2 ≤
Q. BecauseΩ is positive definite, we must haveQx = 0,
which contradicts the factQx 6= 0. Hence, everyW in W is
nonsingular. Lemma 2.1 implies the existence and uniqueness
of an equilibrium point under the conditionΩ Â 0. ¤

Although the appearance of the conditions in Theorem 3.1
and Theorem 4.1 looks similar, they are quite different as
demonstrated by the example below.

Example 4.1:Let the reference matrixA∗ and the pertur-
bation matrixE be:

A∗ = −1
2




2 1 1
1 2 1
1 1 1


 , E =




1 1 1
1 1 1
1 1 1


 .

Let
A = A∗ − εE, Ā = A∗ + εE

and
B = −aE, B̄ = aE,

whereε, a ≥ 0. We also let

C = C̄ = K = P = I,

so thatr = 1 and‖P‖2 = 1. It is also easy to see that

‖A∗‖2 = 3ε, ‖B∗‖2 = 3a and ‖B∗‖2 = 0.

S =




2 −1 −1
−1 2 −1
−1 −1 1


− 2εE

and−(A∗ + (A∗)T ) = −2A∗. We now calculatēΩ and Ω
respectively and obtain:

Ω̄ =




4− 6a− 6ε 1 1
1 4− 6a− 6ε 1
1 1 3− 6a− 6ε




and

Ω =




4− 6a− 2ε −1− 2ε −1− 2ε
−1− 2ε 4− 6a− 2ε −1− 2ε
−1− 2ε −1− 2ε 3− 6a− 2ε


 .

We note that for this examplēΩ = Ω̃ defined in Corollary 3.1.
To simplify our calculation, we letε = 0, which gives

Ω̄ =




4− 6a 1 1
1 4− 6a 1
1 1 3− 6a




and

Ω =




4− 6a −1 −1
−1 4− 6a −1
−1 −1 3− 6a


 .

Using the famous root formulae of cubic equations, we find
that whena ≥ 0,

Ω̄ Â 0 if and only if a ≤ 0.37799

and
Ω Â 0 if and only if a ≤ 0.26429.

Therefore, Theorem 3.1 provides a better bound for this
example than Theorem 4.1. We also note that since the roots
are continuous functions ofε, we can easily extend the case
ε = 0 to cases whereε > 0 is small enough.

The next example shows the difference of our result
Corollary 3.1 from Corollary 4.1. First we recall that̄r =
min(ci/ki) andr = min(pici/ki).

Example 4.2:SupposeC = C̄ = K = P = I so that
r̄ = r = 1. Now, conditions in Corollary 3.1 become

µ2(A∗)+‖A∗‖2 ≤ 1 and ‖B∗‖2+‖B∗‖2 < 1−µ2(A∗)−‖A∗‖2,
and conditions in Corollary 4.1 become

S Â 0 and µ2(A∗) + ‖A∗‖2 ≤ 1.

Let

E1 =
(

1 1/2
1/2 1

)
and E2 =

(
1 1
1 1

)
.

We define the network parameters as follows:

A = −I − εE1, Ā = I − εE1, B = −aE2 and B̄ = aE2,

whereε, a ≥ 0. Then we have

A∗ = −εE1, A∗ = I, B∗ =
(

0 0
0 0

)
, B∗ = aE2.

On the one hand, we have

S =
( −2(1− ε) −ε

−ε −2(1− ε)

)
,
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which is never positive definite forε ≤ 2. Hence, Corollary
4.1 does not apply to this case. On the other hand, we have

µ2(A∗) = −1
2
ε, ‖A∗‖2 = 1, ‖B∗‖2 = 0, ‖B∗‖2 = 2a.

It is easy to calculate that

µ2(A∗) + ‖A∗‖2 = 1− 1
2
ε ≤ 1

and

‖B∗‖2 + ‖B∗‖2 = 2a < 1− (µ2(A∗) + ‖A∗‖2) =
1
2
ε

for a < 1
4ε. Hence, Corollary 3.1 implies that model (2) is

GARS for this example with0 ≤ ε ≤ 2 and0 ≤ a < 1
4ε.

Remarks.The purpose of Example 4.2 is to show that
Corollary 3.1 does not needS to be positive definite. We
also note that a significant property of this corollary is that
the quantityµ2(A∗) + ‖A∗‖2 may be negative, leaving much
freedom forB∗ andB∗ as the bound(1− (µ2(A∗)+‖A∗‖2))
for ‖B∗‖2 + ‖B∗‖2 may exceed1. This possibility is ruled
out if we use Corollary 4.1. We verify this observation by
continuously examining Example 4.1. ¤

Example 4.3:(Example 4.1 continued) For this example,
we calculate that

µ2(A∗) = −0.5× 0.2679 = −0.13395.

Hence,

µ2(A∗) + ‖A∗‖2 = −0.13395 + 3ε ≤ 1 for ε ≤ 1.13395/3.

In particular,µ2(A∗) + ‖A∗‖2 ≤ 0 for ε ≤ 0.13395/3. It is
easy to see that

‖B∗‖2+‖B∗‖2 = 3a < 1−(µ2(A∗)+‖A∗‖2) = 1.13395−3ε

for a ≤ (1.13395− 3ε)/3. In particular, whenε < 0.13395/3,
1 − (µ2(A∗) + ‖A∗‖2) > 1. To summer up, Corollary 3.1
means this example has GARS property when

0 ≤ ε ≤ 1.13395/3 and 3a < 1.13395− 3ε.
Our last example shows that the two conditions in Theorem

3.3 are also different. We only give an example that no errors
of network parameters are in presence.

Example 4.4:Let C = C̄ = K = P = I and

M =
(

0.2 0
0.4 0.2

)
.

The network parameters are

A = Ā = M, B = B̄ = MT .

The we have

A + B = 0.4
(

1 1
1 1

)
, B − I =

( −0.8 0.4
0 −0.8

)

and

A−B =
(

0 −0.4
0.4 0

)
, B + I =

(
1.2 0.4
0 1.2

)
.

It is easy to see that

µ2(A + B) = 0.8, ‖B − I‖2 ≈ 1.0246

and
µ2(A−B) = 0, ‖B + I‖2 ≈ 1.4166.

Hence, condition (22) is not satisfied, while conditions (23)
and (24) are satisfied for this example.

If we let B = B̄ = −MT and keep other parameters
unchanged, then by symmetry we see that condition (22) is
satisfied, while conditions (23) and (24) are not satisfied.

We also note that Theorem 3.3 represents a different class
of conditions from those reported and cited in this paper. It
is not too hard to construct examples showing the differences.
We simply omit those examples. It is also worth to note that
there are several results reported in [7], [19], [20], [27] of
concerning GARS of model (2). It has been shown in [22]
that those results are different from Theorem 4.1 and Corollary
4.1. It is also possible to follow the ideas of [22] to construct
examples to show that our results are different as well.

V. V ERIFICATION

The significance of the reported results is their low computa-
tional cost that is needed to verify them. To be specific, results
in Corollary 3.1, Theorems 3.2 and 3.3 all involve calculation
of the largest symmetric matrices, which can be done via
a small number of spectral decompositions of symmetric
matrices involved. Verification of Theorem 3.1 can be done
by formulating its condition as a semidefinite programming
problem (SDP), to which efficient softwares are available [6].
It is not known, however, if other similar results cited in this
paper, say those by Ozcan and Arik [22], can be verified by
SDP, because most of their results involve a matrixS (see
Theorem 4.1 in last section) which is a nonlinear function of
P . In this section, we will first give a brief discussion how
spectral decomposition is sufficient for some cases, followed
by a detailed derivation how SDP can be used to verify
Theorem 3.1.

Verification via Spectral DecompositionWe use Condition
(i) in Theorem 3.3 as an example to demonstrate how the
spectral decomposition is sufficient to verify the condition.
For other results except Theorem 3.1, similar arguments hold.
For a square matrixA, define its symmetric part Sym(A) =
(A + AT )/2. Then for Condition (i), we need the spectral
decomposition

Sym(A∗ + B∗) = Qdiag(λ1, . . . , λn)QT ,

whereλ1 ≥ . . . ≥ λn be the eigenvalues of Sym(A∗ + B∗)
and Q are the matrix of corresponding eigenvectors. Then
µ2(A∗ + B∗) = λ1. Hence, to verify Condition (i), we
need 4 spectral decompositions, namely for Sym(A∗ + B∗),
(B∗ − I)((B∗)T − I), B∗BT

∗ , andA∗AT
∗ . An alternative for

doing spectral decomposition for products likeA∗AT
∗ is to

do a singular value decomposition ofA∗, see [12]. One can
actually avoid spectral/singular-value decomposition of those
matrices because what we really need in Condition (i) is the
largest eigenvalues of those matrices. There are good cheaper
(compared to spectral/singular-value decomposition) methods
that only calculate the largest eigenvalue of a symmetric
matrix. For our case, we are contented since we only need
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to do spectral decompositions of at most four symmetric
matrices.

Verification via SDPThe condition in Theorem 3.1 involves
a feasibility issue that asks whether there exists a positive
diagonal matrixP satisfying Ω̄ Â 0. It cannot be verified
through easy spectral decomposition like we did for other
cases. Fortunately, we are able to show how powerful SDP
can be applied to verify the positive definiteness ofΩ̄.

Recall

Ω̄ := 2PΛ− (PA∗ + (A∗)T P )− 2‖P‖2τ∗I Â 0 (26)

where τ∗ := ‖B∗‖2 + ‖B∗‖2 + ‖A∗‖2. Note that‖P‖2 =
max(pi). Dividing ‖P‖2 in both sides of (26) yields

2P̄Λ− (P̄A∗ + (A∗)T P̄ )− 2τ∗I Â 0

whereP̄ := P/‖P‖2. BecauseP is positive and diagonal,̄P
has to satisfy

P̄ Â 0, P̄ ¹ I and Πn
i=1(1− p̄i) = 0. (27)

The last identity in (27) means that at least one of the diagonal
elements ofP̄ has to be1. Hence condition (26) is satisfied
for someP = diag(pi) if and only if following conditions are
satisfied for someP = diag(pi).

2PΛ− (PA∗ + (A∗)T P )− 2τ∗I Â 0, (28)

P Â 0, P ¹ I,

and
Πn

i=1(1− pi) = 0. (29)

Note that we replaced̄P by P for notation simplicity. It is
easy to see (29) holds if and only if

pi = 1 for somei.

Moreover, (28) is equivalent to

P (A∗ − Λ) + (A∗ − Λ)T P + 2τ∗I ≺ 0.

To summarize, to check condition (26) is to check if there
exist a positive diagonal matrixP = diag(pi) such that





P (A∗ − Λ) + (A∗ − Λ)T P + 2τ∗I ≺ 0
−P ≺ 0

P ¹ I
for somei, pi = 1

(30)

We note that to assess there is no positive diagonal matrix
P satisfying (30) one has to checkn linear system of (30)
each corresponding to onepi = 1. Fortunately the size of the
variable in this system is justn becauseP is diagonal. The
difficulty in checking the feasibility of (30) is greatly relieved
by the following fact.

It is widely known in semidefinite programming [6] that the
feasibility of the linear system of the type (30) can be checked
by reformulating it as the following SDP:

min t
s. t. P (A∗ − Λ) + (A∗ − Λ)T P + 2τ∗I ¹ tI

−P ¹ tI
P ¹ I

for somei, pi = 1

(31)

A minor warning for this SDP reformulation is that the
constraintP ¹ I cannot be replaced by a relaxedP ¹ I + tI
as would be suggested in [6]. This is because it would be
contradictive fort < 0 between the relaxedP ¹ I + tI and
the last equality constraintpi = 1 for somei. We note that
(31) has an optimal solution. First, it is feasible. In fact, one
can easily verify that

(P = I, t = 1 + 2 max{µ2(A∗ − Λ + τ∗I), 1})
is a feasible point. Second, sincepi = 1 for somei, we must
have t ≥ −1 for any feasible pair(P, t). Hence an optimal
solution (P ∗, t∗) exists for this problem.

Standard SDP softwares are then used to produce a certifi-
cate stating that the linear system (30) is infeasible ift∗ ≥ 0
and it is feasible ift∗ < 0. In summary, the feasibility of
Ω̄ Â 0 can be low-costly verified by SDP.

VI. CONCLUSION

The paper may be viewed as continuation of our pursuit
in applying nonsmooth analysis to study of stabilities of
neural networks initiated in [23]. This time, we work with
models containing network parameter errors. The reported
results demonstrate again the potential of nonsmooth analysis
approach when combined with different Lyapunov functions
(three different Lyapunov functions are used in this paper).
One important common property of all of the reported results
is that they are easy to verify (in the sense of computational
complexity) either by spectral decomposition of symmetric
matrices or by the semidefinite programming, which can be
polynomially solved by interior-point methods [6]. We feel that
the development of SDP verification provides new incentive to
extending the nonsmooth analysis approach to other problems.
Since LMI is often closely related to SDP, we conclude this
paper by pointing out that it is worth to explore the application
of the nonsmooth analysis with LMI approach [5], [8], [18],
[25] to derive new conditions for GARS of model (2).
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