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Abstract

The problem of data representation on a sphere of unknown radius arises from various
disciplines such as Statistics (spatial data representation), Psychology (constrained multidi-
mensional scaling), and Computer Science (machine learning and pattern recognition). The
best representation often needs to minimize a distance function of the data on a sphere as
well as to satisfy some Euclidean distance constraints. It is those spherical and Euclidean
distance constraints that present an enormous challenge to the existing algorithms. In this
paper, we reformulate the problem as an Euclidean distance matrix optimization problem
with a low rank constraint. We then propose an iterative algorithm that uses a quadrati-
cally convergent Newton method at its each step. We study fundamental issues including
constraint nondegeneracy and the nonsingularity of generalized Jacobian that ensure the
quadratic convergence of the Newton method. We use some classic examples from the spher-
ical multidimensional scaling to demonstrate the flexibility of the algorithm in incorporating
various constraints. We also present an interesting application to the circle fitting problem.

AMS subject classifications. 49M45, 90C25, 90C33.
Keywords: Euclidean distance matrix, Matrix optimization, Lagrangian duality, Spherical

multidimensional scaling, Semismooth Newton-CG method.

1 Introduction

In this paper, we are mainly concerned with placing n points {x1, . . . , xn} in a best way on a
sphere in IRr. The primary information that we use is an incomplete/complete set of pairwise
Euclidean distances (often with noises) among the n points. In such a setting, IRr is often a
low-dimensional space (e.g., r takes 2 or 3 for data visualization) and is known as the embedding
space. The center of the sphere is unknown. For some applications, the center can be put at
origin in IRr. Furthermore, the radius of the sphere is also unknown. In our matrix optimization
formulation of the problem, we treat both the center and the radius as unknown variables. We
develop a fast numerical method for this problem and present a few of interesting applications
taken from existing literature.

The problem described above has long appeared in the constrained Multi-Dimensional Scal-
ing (MDS) when r ≤ 3, which is mainly for the purpose of data visualization, see [9, Sect. 4.6]
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and [4, Sect. 10.3] for more details. In particular, it is known as the spherical MDS when r = 3
and the circular MDS when r = 2. Most numerical methods in this part took advantages of r
being 2 or 3. For example, two of the earliest circular MDS were by Borg and Lingoes [5] and
Lee and Bentler [27], where they introduced a new point x0 ∈ IRr as the center of the sphere
(i.e., circles in their case) and further forced the following constraints to hold:

d01 = d02 = · · · = d0n.

Here d0j = ‖x0 − xj‖, j = 1, . . . , n are the Euclidean distances between the center x0 and the
other n points. In their models, the variables are the coordinates of the (n + 1) points in IRr.
In [5], the optimal criterion was a stress function widely used in MDS literature (see [4, Chp.
3]), whereas [27] used a least square loss function as its optimal criterion.

In the spherical MDS of [10], Cox and Cox placed the center of the sphere at origin and
represented the n points by their spherical coordinates. Moreover, they also argued for the
Euclidean distance to be used over the seemingly more appropriate geodesic distance on the
sphere. This is particularly the case when the order of the distances among the n points are
more important than the magnitude of their actual distances. For the accurate relationship
between Euclidean distance and the geodesic distance on a sphere, see [36, Thm. 3.23], which is
credited to Schoenberg [45]. A recent method known as MDS on a quadratic surface (MDS-Q)
was proposed by de Leeuw and Mair [13], where geodesic distances were used. As noted in [13,
p. 12], “geodesic MDS-Q, however, seems limited for now to spheres in any dimension, with
the possible exception of ellipses and parabolas in IR2”. For the spherical case, MDS-Q places
the center at origin and the variables are the radius and the coordinates of the n points on the
sphere. The Euclidean distances were then converted to the corresponding geodesic distances.
The optimal criterion is a weighted least square loss function.

When the center of the sphere is placed at origin, any point on the sphere satisfies the
spherical constraint of the type ‖x‖ = R, where x ∈ IRr and R is the radius. Optimization
with spherical constraints has recently attracted much attention of researchers, see, e.g., [31,
30, 16, 17, 28, 52] and the references therein. Such a problem can be cast as a more general
optimization problem over the Stiefel manifold [50, 24]. One important example is the nearest
low-rank correlation matrix problem, where the unit diagonals of the correlation matrix yields
the spherical constraints [17, 28, 50, 24]. It is noted that the squential second-order methods
in [17, 28] as well as the feasibility-preserving methods in [50, 24] all rely on the fact that the
radius is known (e.g., R = 1). This is in contrast to our problem where R is a variable.

In this paper, we propose a matrix optimization formulation that is conducive to theoretical
investigation and design of (second-order) numerical methods. An important concept that we
will use is the Euclidean Distance Matrix (EDM), which will be the matrix variable in our
formulation. Hence, our optimization problem can be treated as an Euclidean distance problem,
recently surveyed by Liberti et al. [29]. EDM optimization has been extensively studied and
found many applications including sensor network localization and molecular confirmation, see,
e.g., [20, 11, 15, 18, 19, 35, 12, 49, 34, 26, 37, 39]. However, it appears that none of the
existing EDM optimization methods known to us can be directly applied to handle the spherical
constraints with an unknown radius.

The paper is organized as follows with the main contributions highlighted. In Sect. 2, We
first argue that when the EDM is used to formulate the problem, it is necessary to introduce
a new point to represent the center of the sphere. This is due to a special property arising
from embedding an EDM. The algorithmic framework that we use for the obtained non-convex
matrix optimization problem is closely related to the majorized penalty method of Gao and Sun
[17] for the nearest low-rank correlation matrix problem. One of the key elements in this type
of method is that the subproblems are convex. Those convex problems are structurally similar
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to a convex relaxation of the original matrix optimization problem and they all can be solved by
a quadratically convergent Newton method. We establish that this is the case for our problem
by studying the challenging issue of constraint nondegeneracy, which further ensures the non-
singualrity of generalized Jacobian used by the Newton method. Those results can be found in
Sect. 3. The algorithm is presented in Sect. 4 and its key convergent results are stated without
detailed proofs as they can be proved similarly as in [17]. Sect. 5 aims to demonstrate a variety
of applications from classical MDS to the circle fitting problem. The numerical performance is
highly satisfactory with those applications. We conclude in Sect. 6.

Notation. Let Sn denote the space of n × n symmetric matrices equipped with the standard
inner product 〈A,B〉 = Tr(AB) for A,B ∈ Sn. Let ‖ · ‖ denote the induced Frobenius norm.
Let Sn+ denote the cone of positive semidefinite matrices in Sn (often abbreviated as X � 0 for
X ∈ Sn+). The so-called hollow subspace Snh is defined by (“:=” means define)

Snh := {A ∈ Sn : diag(A) = 0} ,

where diag(A) is the vector formed by the diagonal elements of A. For subsets α, β of {1, . . . , n},
denote Aαβ as the submatrix of A indexed by α and β (α for rows and β for columns). Aα
denotes the submatrix consisting of columns of A indexed by α, and |α| is the cardinality of α.
Throughout the paper, vectors are treated as column vectors. For example, xT is a row vector
for x ∈ IRn. The vector e is the vector of all ones and I denotes the identity matrix, whose
dimension is clear from the context. When it is necessary, we use In to indicate its dimension
n. Let ei denote the ith unit vector, which is the ith column of I. Let Q be the Householder
transformation that maps e ∈ IRn+1 to the vector [0, . . . , 0,−

√
n+ 1]T ∈ IRn+1. Let

v := [1, . . . , 1, 1 +
√
n+ 1]T = e+

√
n+ 1en+1.

Then

Q = In+1 −
2

vT v
vvT .

Let

J := In+1 −
1

n+ 1
eeT .

We often use the following properties:

J2 = J, Q2 = I and J = Q

[
In 0
0 0

]
Q. (1)

2 The Matrix Optimization Formulation

In this section, we first give a brief review of the important concept EDM and its relevant
properties. We then apply EDM to our problem to derive the matrix optimization formulation.

2.1 Background on EDM

There are three elements that have become basics in the research of Euclidean distance em-
bedding. The first one is the definition of the squared Euclidean distance matrix (EDM). The
second are various characterizations of EDMs. And the third one is the Procrustes analysis
that produces actual embedding in an Euclidean space. We briefly describe them one by one.
Standard references are [9, 4, 12]. Throughout, we use dimension (n + 1), which is more con-
venient for our application. Of course, all results in this subsection can be stated in dimension n.
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(a) Squared EDM. A matrix D is a (squared) EDM if D ∈ Sn+1
h and there exist points

x1, . . . , xn+1 in IRr such that Dij = ‖xi − xj‖2 for i, j = 1, . . . , n+ 1. IRr is often referred to as
the embedding space and r is the embedding dimension when it is the smallest such r. We note
that D must belong to Sn+1

h if it is an EDM. Furthermore, if those {xi} lie on a sphere, D is
called an EDM on a sphere.

(b) Characterizations of EDM. It is well-known that a matrix D ∈ Sn+1 is an EDM if and
only if

D ∈ Sn+1
h and J(−D)J � 0. (2)

The origin of this result can be traced back to Schoenberg [44] and an independent work [51]
by Young and Householder. See also Gower [21] for a nice derivation of (2). Moreover, the
corresponding embedding dimension is r = rank(JDJ).

It is noted that the matrix J , when treated as an operator, is the orthogonal projection onto
the subspace e⊥ := {x ∈ IRn+1 : eTx = 0}. Characterization (2) simply means that D is an
EDM if and only if D ∈ Sn+1

h and D is negative semidefinite on the subspace e⊥:

−D ∈ Kn+1
+ :=

{
A ∈ Sn+1 : xTAx ≥ 0, ∀ x ∈ IRn+1 such that 〈x, e〉 = 0

}
.

It follows that Kn+1
+ is a closed convex cone. Let ΠKn+1

+
(X) denote the orthogonal projection of

X ∈ Sn+1 onto Kn+1
+ :

ΠKn+1
+

(X) := arg min ‖X − Y ‖ s.t Y ∈ Kn+1
+ .

A nice property is that this projection can be done through the orthogonal projection onto the
positive semidefinite cone Sn+1

+ and is due to Gaffke and Mathar [15]

ΠKn+1
+

(X) = X + ΠSn+1
+

(−JXJ) ∀ X ∈ Sn+1. (3)

(c) Euclidean Embedding. If D is an EDM with embedding dimension r, then −JDJ � 0
by (2). Let

−JDJ/2 = XTX

where X ∈ IRr×(n+1). Let xi denote the ith column of X. It is known that {x1, . . . , xn+1}
are the embedding points of D in IRr, i.e., Dij = ‖xi − xj‖2. We also note that any rotation
and shifting of {x1, . . . , xn+1} would give same D. In other words, there are infinitely many
sets of embedding points. To find a desired set of embedding points that match positions of
certain existing points, one needs to conduct the Procrustes analysis, which is a computational
scheme and often has a closed-form formula, see [9, Chp. 5]. We omit the details here. It is
also important to point out that in many applications, any set of embedding points would be
sufficient. The circular embedding of the colour example in Sect. 5 is such an application. On
the contrary, The circle fitting example would need to select the best embedding points by the
orthogonal Procrustes analysis, which will be described in Sect. 5.

2.2 The Matrix Optimization Formulation

Returning to our problem, we recall that our intention was to find n points {x1, . . . , xn} embed-
ded on a sphere in IRr satisfying certain optimal criterion. The available information for us is
the set of approximate (squared) Euclidean distances among the n points:

D0
ij ≈ ‖xi − xj‖2, i, j = 1, . . . , n.
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Denote the center of the sphere by xn+1 (the (n+ 1)th point) and its radius by R. Since the n
points are placed on the sphere, we must have

‖xj − xn+1‖ = R, j = 1, . . . , n.

Although we do not know the exact magnitude of R, we can be sure that twice the radius cannot
be bigger than the diameter of the data set:

2R ≤ dmax := max
i,j

√
D0
ij .

We therefore define the approximate distance matrix D ∈ Sn+1 by (only upper part of D is
defined)

Dij =


1
4d

2
max i = 1, . . . , n, j = n+ 1

D0
ij i < j = 2, . . . , n

0 i = j,

(4)

The elements in D are approximate Euclidean distances among the (n+1) points {x1, . . . , xn+1}.
But D may not be a true EDM. Our purpose is to find the nearest EDM Y to D such that the
embedding dimension of Y is r and its embedding points {x1, . . . , xn} are on a sphere centered
at xn+1. The resulting matrix optimization model is then given by

minY ∈Sn+1
1
2‖Y −D‖

2

s.t. Y ∈ Sn+1
h , −Y ∈ Kn+1

+ , rank(JY J) ≤ r
Y1(n+1) = Yj(n+1), j = 2, . . . , n.

(5)

We have following remarks regarding model (5).

(R1) Problem (5) is always feasible (e.g., the zero matrix is feasible). The feasible region is
closed and the objective function is coercive. Let Y be its optimal solution. The first
group of constraints in (5) implies that Y is an EDM with an embedding dimension not
greater than r. If r < n (i.e., rank(JY J) < n), the problem is nonconvex. If r = n, then
we can drop the rank constraint so that the problem is convex. This is due to the fact
that any EDM of size (n + 1) × (n + 1) has an embedding dimension not greater than
(n+ 1− 1) = n. Therefore, the rank constraint is automatically satisfied if r = n. Assume
that

−1

2
JY J =: XTX, (6)

where X ∈ IRr×(n+1). Let xi be the ith column of X. We then have

Y ij = ‖xi − xj‖2, i, j = 1, . . . , n+ 1.

The second group of constraints in (5) means that the distances from xi, i = 1, . . . , n
to xn+1 are equal. Hence, {x1, . . . , xn} lie on a sphere centered at xn+1. We call those
constraints spherical constraints and we note that they are linear. This is in contrast to
the nonlinear formulation of the spherical constraints in the previous studies [5, 27, 10, 13].

(R2) If D0 is a true EDM from n points {z1, . . . , zn} on a sphere centered at zn+1 and let D be
defined by (4), then Y = D and {x1, . . . , xn+1} can be exactly matched to {z1, . . . , zn+1}
through the orthogonal Procrustes analysis (see Sect. 5). If D0 is just an approximate
matrix to a true EDM on a sphere, then problem (5) finds the nearest EDM Y on a sphere
from D in the sense that the total deviation of D from the true EDM is the smallest. This
optimal criterion is similar to the one used in MDS-Q [13].
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(R3) The idea of introducing a variable representing the center (i.e., one more dimension in our
formulation) is similar to that of [5, 27], whose main purpose was for the case r = 2 and
the variables of the optimization problems are the coordinates of the points concerned.
Our model is more general for arbitrary r and is conducive to (second-order) algorithmic
development because the spherical constraints are linear. Furthermore, the actual embed-
ding is left out as a separate issue, which can be done by (6), possibly through Procrustes
analysis.

(R4) The following reasoning futher justifies why it is necessary to introduce a new point for the
center of the sphere. Let D0 denote the true squared Euclidean distance matrix among n
points on a sphere. By Schoenberg-Young-Householder theorem [44, 51], the decomposition

−1

2
JD0J = XTX with J := In −

1

n
eeT and X ∈ IRr×n, (7)

would provide a set of points {xi : i = 1, . . . , n} such that the distances in D0 are recovered
through D0

ij = ‖xi − xj‖2. In order for those points to lie on a sphere centered at origin,
it is necessary and sufficient to enforce the constraints

‖x1‖ = ‖x2‖ = · · · = ‖xn‖. (8)

We note that

‖xi‖2 = eTi (XTX)ei = −1

2
eTi JD

0Jei

= D0
ii +

1

2n

(
eiD

0e+ eTD0ei
)
− eTD0e

2n2

=
1

2n
〈D0, Ai〉 − eTD0e

2n2
,

where Ai := eie
T + eeTi . The spherical constraints are then equivalent to

〈D0, A1 −Ai〉 = 0, i = 2, · · · , n,

which are linear in the Euclidean distance matrix D0. It seems that there is no need to
introduce a new point to represent the center of the sphere. However, there is a potential
conflict in this seemingly correct argument. We note that there is an implicit constraint
we ignored. In (7), the embedding points in X have to satisfy (because of the projection
matrix J)

Xe = 0. (9)

A potential conflict is that the constraints (8) and (9) may be contradicting to each other.
Such possible contradiction can be verified through the following example: Let D0 be from
the tree points on the unit circle centered at origin:

x1 = (1, 0)T , x2 = (−1, 0)T , x3 = (0, 1)T .

There exists no X ∈ IR2×3 that satisfies (7) (hence (9)) and (8). Now we define D by (4)
and solves problem (5), we obtain the following 4 embedding points:

z1 = (−1, 0.25)T , z2 = (1, 0.25)T , z3 = (0,−0.75)T , z4 = (0, 0.25)T .

The first three points are on the unit circle centered at z4. The original three points x1,
x2 and x3 can be obtained through the simple shift xi = zi − z4 (the simplest Procrustes
analysis). This example shows that it is necessary to introduce a new point to represent the
center in order to remove the potential confliction in representing the spherical constraints
as linear equations.
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We now reformulate (5) in a more conventional format. By replacing Y by (−Y ) (in order
to get rid of the minus sign before Kn+1

+ ), we obtain

minY ∈Sn+1
1
2‖Y +D‖2

s.t. Y ∈ Sn+1
h , Y ∈ Kn+1

+ , rank(JY J) ≤ r
Y1(n+1) = Yj(n+1), j = 2, . . . , n.

Define three linear mappings A1 : Sn+1 7→ IRn+1, A2 : Sn+1 7→ IRn−1 and A : Sn+1 7→ IR2n

respectively by

A1(Y ) := diag(Y ), A2(Y ) :=
(
Y1(n+1) − Yj(n+1)

)n
j=2

and A(Y ) :=

(
A1(Y )
A2(Y )

)
.

It is therefore that solving (5) is equivalent to solving the following problem

minY ∈Sn+1
1
2‖Y +D‖2

s.t. A(Y ) = 0, Y ∈ Kn+1
+

rank(JY J) ≤ r.
(10)

We note that without the spherical constraints A2(Y ) = 0, the problem reduces to a problem
studied in Qi and Yuan [39]. However, with the spherical constraints, the analysis in [39],
especially for the semismooth Newton method developed in [37, 39] is not valid anymore because
it heavily depends on the simple structure of the diagonal constraints A1(Y ) = 0. One of our
main tasks in this paper is to develop more general analysis that covers the spherical constraints.

3 Convex Relaxation

The convex relaxation is obtained by dropping the rank constraint from (10).

minY ∈Sn+1
1
2‖Y +D‖2

s.t. A(Y ) = 0, Y ∈ Kn+1
+ .

(11)

The convex relaxation is not only important on its own right but also plays a vital role in our
algorithm because a sequence of such convex problems will be solved. This section has two parts.
The first part is about two constraint qualifications that the convex relaxation may enjoy. The
second part is about the semismooth Newton method that solves the convex relaxation and it
is proved to be quadratically convergent under the qualification of constraint nondegeneracy.

3.1 Constraint Qualifications

Constraints qualifications are essential properties in deriving optimality conditions and effective
algorithms for optimization problems, see, e.g., [3]. We only study two of them, which are
pertinent to our numerical method to be developed later on. The first is the generalized Slater
condition and the second is constraint nondegeneracy.

It follows from [37, p. 71] that the convex cone Kn+1
+ can be characterized as follows.

Kn+1
+ =

{
Q

[
Z z
zT z0

]
Q :

Z ∈ Sn+
z ∈ IRn, z0 ∈ IR

}
. (12)

It is easy to see that the linear equations in A(Y ) = 0 are linearly independent. We further
have.
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Proposition 3.1 The generalized Slater condition hold for the convex relaxation (11). That is,
there exists Y ∈ Sn+1 such that

A(Y ) = 0 and Y ∈ intKn+1
+ ,

where intKn+1
+ denotes the interior of Kn+1

+ .

Proof. Let xi = (
√

2/2)(ei − (1/(n+ 1))e), i = 1, . . . , n+ 1, where ei is the ith unit vector
in IRn+1. Define Y ∈ Sn+1 by

Yij = ‖xi − xj‖2 =

{
1 if i 6= j

0 if i = j.

It follows from Schoenberg-Young-Househoder theorem [44, 51] that

−1

2
JY J =

 (x1)T

...
(xn+1)T

 [x1, . . . , xn+1
]

and rank(JY J) = n.

Moreover, (−Y ) ∈ Kn+1
+ . By formula (12), there exist Z ∈ Sn+, z ∈ IRn and z0 ∈ IR such that

−Y = Q

[
Z z
zT z0

]
Q.

By using the facts in (1), we obtain that

JY J = Q

[
In 0
0 z0

]
QY Q

[
In 0
0 0

]
Q = −Q

[
Z 0
0 0

]
Q.

Since the rank of JY J is n and Z ∈ Sn+, Z must be positive definite. This proves that
Y ∈ intKn+1

+ . Apparently, A(Y ) = 0 by the definition of Y . Hence, the generalized Slater
condition holds. �

The concept of constraint nondegeneracy was first studied by Robinson [41, 42] for abstract
optimization problems and has been extensively used in Bonnans and Shapiro [3] and Shapiro
[46] for sensitivity analysis in optimization and variational analysis. It plays a vital role in the
characterizations of strong regularity (via Clark’s generalized Jacobian) in nonlinear semidefinite
programming (SDP) by Sun [47]. For linear SDP, it reduces to the primal (dual) nondegeneracy
of Alizadeh et al. [1], see also Chan and Sun [7] for further deep implications in SDP. It has been
shown fundamental in many optimization problems, see [38, 32, 37, 33, 25]. Our main result is
that constraint nondegeneracy holds for the convex problem (11) under a very weak condition
and it further ensures that the Newton method is quadratically convergent. For problem (11),
constraint nondegeneracy is defined as follows (note that the problem has 2n linear constraints).

Definition 3.2 We say that constraint nondegeneracy holds at a feasible point A of (11) if

A
(

lin(TKn+1
+

(A))
)

= IR2n, (13)

where TKn+1
+

(A) is the tangent cone of Kn+1
+ at A and lin(TKn+1

+
(A)) is the largest subspace

contained in TKn+1
+

(A).
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Let A ∈ Kn+1
+ and denote

A = Q

[
Z z
zT z0

]
Q, Z ∈ Sn+. (14)

We assume that rank(Z) = r and let λ1 ≥ λ2 ≥ . . . ≥ λr > 0 be the r positive eigenvalues of
Z in nonincreasing order. Let Λ := Diag(λ1, . . . , λr). We assume that Z takes the following
spectral decomposition

Z = U

[
Λ

0

]
UT , (15)

where U ∈ IRn×n and UTU = In. Let

U :=

[
U 0
0 1

]
∈ IR(n+1)×(n+1). (16)

Then U
T
U = I. It follows from [37, Eq. (24)] that

lin(TKn+(A)) =

QU
 [ Σ1 Σ12

ΣT
12 0

]
a

aT a0

UTQ :

Σ1 ∈ Sr
Σ12 ∈ IRr×(n−r)

a ∈ IRn, a0 ∈ IR

 . (17)

Consider matrix X of the following form:

X := QU

[
Γ −Γq +

√
n+ 1a

(−Γq +
√
n+ 1a)T qTΓq

]
U
T
Q, (18)

where

Γ :=

[
Σ1 Σ12

ΣT
12 0

]
∈ Sn, q := UT e, a ∈ IRn. (19)

Obviously, X ∈ lin(TKn+(A)). Define two linear mappings Ãi : Sn 7→ IRn for i = 1, 2 respectively
by

Ã1(Y ) = (Y11, Y22, . . . , Ynn)T

and
Ã2(Y ) =

(
Y1(n+1) − Y2(n+1), . . . , Y1(n+1) − Yn(n+1), Y(n+1)(n+1)

)T
.

We have the following lemma.

Lemma 3.3 For any given y ∈ IRn, there exists a ∈ IRn, independent of the choice of Γ in X
of (18), such that

Ã2(X) = y. (20)

Proof. Simple calculation can verify that

Qen+1 = − 1√
n+ 1

e and Q(e1 − ej) = e1 − ej for j = 1, . . . , n.

We now calculate the elements of Ã2(X). For j = 1, . . . , n− 1, we have(
Ã2(X)

)
j

= (e1 − ej+1)
TQU

[
Γ −Γq +

√
n+ 1a

(−Γq +
√
n+ 1a)T qTΓq

]
U
T
Qen+1

= (e1 − ej+1)
TU

[
Γ −Γq +

√
n+ 1a

(−Γq +
√
n+ 1a)T qTΓq

][ − 1√
n+1

q

− 1√
n+1

]

= (e1 − ej+1)
TU

[
−a
−qTa

]
= (uj+1 − u1)Ta, (using (16))
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where uj denotes the jth column of UT . Similarly, we can calculate the last element of Ã2(X):(
Ã2(X)

)
n

= X(n+1)(n+1)

=
1√
n+ 1

[qT , 1]

[
a
qTa

]
=

2√
n+ 1

qTa.

Then, equation (20) becomes the following simultaneous equations{
〈uj+1 − u1, a〉 = yj , j = 1, . . . , n− 1

〈UT e, a〉 =
√
n+1
2 yn.

(21)

It is easy to verify that the vectors {u2−u1, . . . , un−u1, UT e} are linearly independent. Hence,
there exists a unique solution a ∈ IRn to (21) for any given y ∈ IRn. We also note that the
solution of a is independent of Γ in X �

Lemma 3.4 Let A be decomposed as in (14). Suppose that there exists an eigenvector u ∈ IRn

of Z corresponding to one of its positive eigenvalues such that

τi := ui +
1√

n+ 1 + 1
ρ 6= 0 ∀ i = 1, . . . , n with ρ :=

n∑
j=1

uj . (22)

Then for any given z ∈ IRn and a ∈ IRn, there exists Γ of the type in (19) such that

Ã1(X) = z, (23)

where X is defined by (18).

Proof. Let a ∈ IRn and z ∈ IRn be given. Define

X := X1 +X2 +X3 +X4,

with

X1 =

[
Γ 0
0 0

]
, X2 =

[
0 −Γq

−(Γq)T 0

]
, X3 =

[
0 0
0 qTΓq

]
, X4 =

√
n+ 1

[
0 a
aT 0

]
.

We calculate the first n diagonal elements of X. For i = 1, . . . , n, we have

Xii = eTi QU

[
Γ −Γq +

√
n+ 1a

(−Γq +
√
n+ 1a)T qTΓq

]
U
T
Qei

=
〈
U
T
Qeie

T
i QU, X

〉
= 〈Wi, X〉,

where Wi := U
T
Qeie

T
i QU . Then equation (23) becomes

〈Wi, X1 +X2 +X3〉 = zi − 〈Wi, X4〉, i = 1, . . . , n. (24)

We would like to determine what Γ satisfies (24).
Note that for i = 1, . . . , n,

Qei = ei −
1

n+ 1 +
√
n+ 1

v

10



and

Wien+1 = U
T
Qeie

T
i QUen+1

= U
T
Qeie

T
i Qen+1 = − 1√

n+ 1
U
T
Qei

= − 1√
n+ 1

[
UT ei

0

]
+

1

(n+ 1)(
√
n+ 1 + 1)

[
UT e

1 +
√
n+ 1

]
.

We derive the following identities (we omit some details of the calculations)

〈Wi, X1〉 = Tr

(
[UT , 0]QeieiQ

T

[
U
0

]
Γ

)
=

〈
UT (ei −

1

n+ 1 +
√
n+ 1

e)(ei −
1

n+ 1 +
√
n+ 1

e)TU, Γ

〉
.

〈Wi, X2〉 = −2
〈
Wien+1, [qTΓ, 0]T

〉
=

2√
n+ 1

(qTΓUT ei)−
2

(n+ 1)(
√
n+ 1 + 1)

(qTΓUT e)

=
1√
n+ 1

〈
UT (eeTi + eie

T )U, Γ
〉
− 2

(n+ 1)(
√
n+ 1 + 1)

〈
UT eeTU, Γ

〉
.

〈Wi, X3〉 = qTΓq(eTn+1Qeie
T
i Qen+1) =

1

n+ 1
qTΓq =

1

n+ 1
〈UT eeTU, Γ〉.

The fact q = UT e was used above. We add together the identities above and simplify to get

〈Wi, X1 +X2 +X3〉 =
〈
UTW iU, Γ

〉
, (25)

with

W i :=

(
ei +

1√
n+ 1 + 1

e

)(
ei +

1√
n+ 1 + 1

e

)T
.

Now we assume that condition (22) holds. Without loss of generality, we assume that u is
the leading eigenvector of Z corresponding to the largest eigenvalue λ1. Let γ ∈ IRn and define
Γ ∈ Sn by

Γij :=


γ1 if i = j = 1

γj/2 if i = 1, j ≥ 2

γi/2 if j = 1, i ≥ 2

0 otherwise.

Such Γ is consistent with the structure in (19). It follows from (25) that

〈Wi, X1 +X2 +X3〉 = 〈UTW iUe1, γ〉 = 〈W iUe1, Uγ〉 = 〈W iu, γ〉,

where γ := Uγ and the fact u = Ue1 was used. Then the linear equations in (24) become

〈W iu, γ〉 = zi − 〈Wi, X4〉, i = 1, . . . , n (26)

with γ being unknown. To ensure the existence of γ that satisfies (26), it is enough to prove the
linear independence of the vectors {W iu}ni=1. Assume that there exist µi ∈ IR, i = 1 . . . , n such
that

n∑
i=1

µiW iu = 0,

11



which implies (by using the structure of W i)
µ1τ1 + 1√

n+1+1

∑n
i=1 µiτi = 0

...
...

...
µnτn + 1√

n+1+1

∑n
i=1 µiτi = 0.

We must have from the above equations that

µ1τ1 = µ2τ2 = · · · = µnτn = 0.

Under the assumption of (22), we have µi = 0 for i = 1, . . . , n. Hence, the vectors {W iu}ni=1 are
linearly independent. There is a unique γ satisfying (26). Therefore, γ = UTγ. Γ is well defined
and the resulting X defined in (18) satisfies (23). This proves the result. �

Combining the two lemmas together gives our constraint nondegeneracy result.

Proposition 3.5 Let A given by (14) be a feasible point of (11). Suppose condition (22) is
satisfied for A. Then constraint nondegeneracy holds at A.

Proof. By the definition of constraint nondegeneracy, it is sufficient to prove that for any
given x ∈ IR2n there exists X ∈ lin(TKn+1

+
(A)) such that A(X) = x. This is equivalent to

existence of X ∈ lin(TKn+1
+

(A)) such that both (20) and (23) hold simultaneously for any given

y, z ∈ IRn. Lemmas 3.3 and 3.4 just ensured this is the case. We can choose a ∈ IRn first in
Lemma 3.3 and then choose Γ in Lemma 3.4 to generate the matrix X of (18), which satisfies
(20) and (23) simultaneously for any given y, z ∈ IRn. Hence, constraint nondegeneracy holds
at A under assumption (22). �

In the following example, condition (22) holds everywhere but one point.

Example 3.6 Consider the (squared) Euclidean distance matrix

A =


0 4 2(1− t) 1
4 0 2(1 + t) 1

2(1− t) 2(1 + t) 0 1
1 1 1 0

 and − 1 ≤ t ≤ 1.

It corresponds to a triangular embedding on a unit circle with the length of one edge equal the
diameter of 2. The remaining point of the triangle moves around the circle. Hence rank(JAJ) =
2 (i.e., r = 2). The corresponding matrix Z is

Z =
1

18

 37− 12t −35 −5 + 30t

−35 37 + 12t −5− 30t

−5 + 30t −5− 30t 25

 .
It can be verified that condition (22) is satisfied for all t except t = 0.

12



3.2 Semismooth Newton Method

In this subsection, we develop the semismooth Newton method for the convex relaxation prob-
lem (11). The method is shown to be quadratically convergent under constraint nondegeneracy
at the optimal solution. We will use this method to solve a sequence of subproblems that will
appear in solving the nonconvex problem (10).

(a) Semismooth Newton Method. The Newton method is actually designed for the La-
grangian dual problem (in the form of minimization) of (11). We omit the detailed calculations
that lead to the following dual problem:

min
y∈IR2n

θ(y) :=
1

2
‖ΠKn+1

+
(−D +A∗(y))‖2 − 1

2
‖D‖2, (27)

where A∗ : IR2n 7→ Sn+1 is the adjoint operator of A.

We note that the linear transformations in A are linearly independent and that the general-
ized Slater condition holds for problem (11) (see Prop. 3.1). It follows from the general results
[16, Prop. 2.20, Prop. 4.11] that the dual function θ(·) is coercive (i.e., θ(y)→∞ as ‖y‖ → ∞).
Furthermore, because Kn+1

+ is a closed and convex cone, θ(·) is convex and continuously differ-
entiable (see [23, Chp. IV, Example 2.1.4]). Therefore, the dual problem (27) must admit an
optimal solution and the first-order optimality condition is

F (y) := ∇θ(y) = A
(

ΠKn+1
+

(−D +A∗(y))
)

= 0. (28)

It follows from the projection formula (3) of Gaffke and Mathar that F (y) is strongly semismooth1

because it is a composition of linear mappings and ΠSn+1
+

(·), which is known to be strongly

semismooth [48, 6]. Now it becomes natural to develop the semismooth Newton method: Given
y0 ∈ IR2n and let k := 0. Compute Vk ∈ ∂F (yk) and

yk+1 = yk − V −1k F (yk), k = 0, 1, 2, . . . . (29)

Since F is the gradient of θ, ∂F is often called the generalized Hessian of θ.

According to the basic theory (see e.g. [40, Thm. 3.2]) for the semismooth Newton method,
a key condition for it to be quadratically convergent is that the generalized Jacobian ∂F (y∗)
is nonsingular, where y∗ denotes the optimal solution of (27). The optimal solution Y ∗ for the
original convex problem (11) can be computed by

Y ∗ = ΠKn+1
+

(−D +A∗(y∗)). (30)

The main task below is to show that the nonsingularity of ∂F (y∗) under constraint nondegen-
eracy at Y ∗.

(b) Characterization of Constraint Nondegeneracy. Let A ∈ Kn+1
+ be decomposed as in

(14) and let λ1 ≥ λ2 . . . ≥ λr > 0 be the positive eigenvalues of Z in nonincreasing order. Let
α := {1, 2, . . . , r}. We have the following characterization of constraint nondegeneracy at A.

1A (locally) Lipschitz function Φ : IRm 7→ IR` is said to be strongly semismooth at x ∈ IRm if (i) Φ is
directionally differentiable at x, and (ii) for any V ∈ ∂Φ(x + h),

Φ(x + h)− Φ(x)− V h = o(‖h‖2), h ∈ IRm,

where ∂Φ(x) denotes the generalized Jacobian of Φ at x in the sense of Clarke [8, Sect. 2.6].
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Lemma 3.7 Let h ∈ IR2n be given. Denote

H =

[
H1 h

hT h0

]
:= Q(A∗(h))Q with H1 ∈ Sn, h ∈ IRn and h0 ∈ IR. (31)

Let A ∈ Kn+1
+ be decomposed as in (14) and the resulting Z has the spectral decomposition (15).

Constraint nondegeneracy holds at A if and only if the following implication holds

UTαH1 = 0
h = 0
h0 = 0

 =⇒ h = 0. (32)

Proof. By (13), constraint nondegeneracy holds at A if and only if

h ∈
{
A
(

lin(TKn+1
+

(A))
)}⊥

=⇒ h = 0. (33)

It follows from (17) that

{
QBQ : B ∈ A

(
lin(TKn+1

+
(A))

)}
=


 U

[
Σ1 Σ12

ΣT
12 0

]
UT a

aT a0

 :

Σ1 ∈ Sr
Σ12 ∈ IRr×(n−r)

a ∈ IRn, a0 ∈ IR

 .

The left-hand side of (33) is equivalent to, for any B ∈ A
(

lin(TKn+1
+

(A))
)

,

0 = 〈h,A(B)〉 = 〈A∗(h), B〉

= 〈QA∗(h)Q, QBQ〉 (because Q2 = I)

= 2〈h, a〉+ h0a0 + Tr

(
UTH1U

[
Σ1 Σ12

ΣT
12 0

])
.

The above identities are for any a ∈ IRn, a0 ∈ IR, Σ1 ∈ Sr and Σ12 ∈ IRn−r. Hence, we must
have (recall α = {1, 2, . . . , r})

h = 0, h0 = 0 and UTαH1U = 0.

Because of the nonsingularity of U , the above condition is equivalent to

h = 0, h0 = 0 and UTαH1 = 0.

Therefore, (33) holds if and only if (32) holds. �

(c) Structure of ∂F (y). For a given y ∈ IR2n, we let

Y := −J(−D +A∗(y))J and A := ΠKn+1
+

(−D +A∗(y)).

Denote [
Z z
zT z0

]
:= −Q(−D +A∗(y))Q with Z ∈ Sn, z ∈ IRn, z0 ∈ IR.

We then have from (1) that

Y = Q

[
Z 0
0 0

]
Q and ΠSn+1

+
(Y ) = Q

[
ΠSn+(Z) 0

0 0

]
Q. (34)
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We further have

QAQ = QΠKn+1
+

(−D +A∗(y))Q

= Q(−D +A∗(y))Q+QΠSn+1
+

(Y )Q (by (3))

= −
[
Z z
zT z0

]
+

[
ΠSn+(Z) 0

0 0

]
=

[
ΠSn+(−Z) −z
−zT −z0

]
.

We write A as in (14). It follows that

Z = ΠSn+(−Z), z = −z and z0 = −z0. (35)

Let Z admit the following spectral decomposition

Z = WΛW T ,

with Λ := Diag(λ1, . . . , λn) and λ1 ≥ . . . ≥ λn being the eigenvalues of Z and WW T = In.
Define

α := {i : λi > 0} , β := {i : λi = 0} and γ := {i : λi < 0} .

The relationship between Y and Z in (34) means that {λ1, . . . , λn} are the eigenvalues of Y .
Moreover, Y has just one more eigenvalue, which is zero, than Z. For those eigenvalues, define
the corresponding symmetric matrix Ω ∈ Sn with entries

Ωij :=
max{λi, 0}+ max{λj , 0}

|λi|+ |λj |
, i, j = 1, . . . , n (36)

where 0/0 is defined to be 1. Let

W = [Wα, Wβ, Wγ ] and W :=

[
Wα Wβ 0 Wγ

0 0 1 0

]
. (37)

The structure of ∂F (y) is described in the following result, whose proof can be patterned
after those in Sect. 3.1 to Sect. 3.3 of [37] for [37, Prop. 3.2]. The key difference here from
there is that the linear operator A in [37] is just the diagonal operator A1. We note that only
the submatrix Ωαγ is used in the description.

Proposition 3.8 For any given h ∈ IR2n. Let Q(A∗(h))Q have the partition in (31). For every
matrix M ∈ ∂F (y), there exists Ṽ ∈ ∂ΠS|β|+1(0) such that

Mh = A(A∗(h))−A(PWhP
T ), (38)

where P := QW and

Wh :=


W T
αH1Wα

[
W T
αH1Wβ 0

]
Ωαγ ◦W T

αH1Wγ W T
β H1Wα

0

 Ṽ

 W T
β H1Wβ 0

0 0

 0

ΩT
αγ ◦W T

γ H1Wα 0 0

 .
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(d) Nonsingularity of ∂F (y). Recall the matrices H and W are respectively defined in (31)
and (37). It is easy to verify that

W
T
HW =


W T
αH1Wα W T

αH1Wβ W T
α h W T

αH1Wγ

W T
β H1Wα W T

β H1Wβ W T
β h W T

β H1Wγ

hTWα hTWβ h0 hTWγ

W T
γ H1Wα W T

γ H1Wβ W T
γ h W T

γ H1Wγ

 . (39)

We further denote

G1 :=

[
W T
β H1Wβ W T

β h

hTWβ h0

]
, G2 :=

[
W T
β H1Wβ 0

0 0

]
.

It is easy to prove that

‖G1‖(‖G1‖ − ‖G2‖) ≥ ‖W T
β h‖2 +

1

2
h20. (40)

It follows from [7, Eq (17)] that

〈Z1, Ṽ (Z2)〉 ≤ ‖Z1‖‖Z2‖ ∀ Ṽ ∈ ∂Π
S|β|+1|
+

(0), Z1, Z2 ∈ S |β|+1. (41)

From (35), the positive eigenvalues of Z are just the opposite of those negative eigenvalues
in γ. Let Γ be the permutation matrix which maps the sequence {1, 2, . . . , |γ|} to its reverse
order. We have,

Z = Wγ(−Λγ)Wγ = (WγΓ)(Γ(−Λγ)Γ)(WγΓ)T .

Hence, Uα, which consists of the eignevectors of positive eigenvalues in the spectral decomposi-
tion (15), can be chosen to be

Uα = WγΓ. (42)

Theorem 3.9 Let y be the optimal solution of the dual problem (27). Let A := ΠKn+1
+

(−D +

A∗(y)). We assume that constraint nondegeneracy holds at A. Then every matrix M ∈ ∂F (y)
is positive definite.

Proof. We continue to use the notation developed so far. Let M ∈ ∂F (y). Our purpose is
to prove 〈h, Mh〉 > 0 for all 0 6= h ∈ IR2n. It follows from (38)

Mh = A(A∗(h))−A
(
PWhP

T
)
,

where Wh is given in Prop. 3.8.
We now calculate 〈h, Mh〉.

〈h, Mh〉 = ‖A∗(h)‖2 − 〈A∗(h), , PWhP
T 〉 = ‖QA∗(h)Q‖2 − 〈P TA∗(h)P, Wh〉

= ‖H‖2 − 〈W T
HW, Wh〉 (by (31) and P = QW )

= ‖W T
HW‖2 − 〈W T

HW, Wh〉 (by W W
T

= In+1)

= 2
{
‖W T

α h‖2 + ‖W T
αH1Wγ‖2 − 〈W T

αH1Wγ , Ωαγ ◦ (W T
αH1Wγ)〉

}
+2
{
‖W T

β H1Wγ‖2 + ‖W T
γ h‖2 + ‖W T

γ H1Wγ‖2/2
}

+‖G1‖2 − 〈G1, Ṽ (G2)〉.
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The last equality made use of the structure of Wh and (39).

Define τmax := maxi∈α,j∈γ Ωij . By (36), 0 < τmax < 1. We continue to simplify 〈h,Mh〉.

〈h, Mh〉 ≥ 2
{
‖W T

α h‖2 + ‖W T
γ h‖2 + ‖W T

β H1Wγ‖2 + (1− τmax)‖W T
αH1Wγ‖2

}
+‖W T

γ H1Wγ‖2 + ‖G1‖2 − ‖G1‖‖G2‖ (by (41))

≥ 2

{
‖W T

α h‖2 + ‖W T
γ h‖2 +

1

2
‖W T

β h‖2
}

+ ‖W T
γ H1Wγ‖2

+2
{

(1− τmax)‖W T
αH1Wγ‖2 + ‖W T

β H1Wγ‖2
}

+
1

2
h20 (by (40))

≥ 0. (43)

Hence, the assumption 〈h, Mh〉 = 0 would imply

W T
α h = 0, W T

β h = 0, W T
γ h = 0, and h0 = 0,

and

W T
αH1Wγ = 0, W T

β H1Wγ = 0, W T
γ H1Wγ = 0.

Because of (37) and nonsingularity of W , the two equations above yield:

h = 0, h0 = 0 and H1Wγ = 0,

which by (42) and the nonsingularity of Γ (Γ is a permutation matrix) leads to

h = 0, h0 = 0 and H1Uα = 0. (44)

By assumption, constraint nondegeneracy holds at A. Lemma 3.7 forces h = 0. The inequal-
ity (43) implies that 〈h, Mh〉 > 0 for any h 6= 0. Therefore, any matrix in ∂F (y) is positive
definite under constraint nondegeneracy. �

(e) Quadratic convergence. The direct consequence of Thm. 3.9 is the quadratic convergence
of the Newton method (29). Let y∗ be an optimal solution of the Lagrangian dual problem (27).

Theorem 3.10 The Newton method (29) is quadratically convergent provided that y0 is suffi-
ciently close to the optimal solution y∗ of (27) and constraint nondegeneracy holds at Y ∗ that is
defined by (30).

Proof. In the general quadratic convergence-rate theorem of Qi and Sun [40, Thm. 3.2]
for semismooth Newton methods, there are three conditions: (i) The function F is strongly
semismooth, which is true for our case because it is a composition of linear mappings and the
strongly semismooth mapping ΠSn+1

+
(·). (ii) Every matrix in the generalized Jacobian of ∂F (y∗)

is nonsingular, which has been proved in Thm. 3.9 under constraint nondegeneracy assumption.
The last condition is that the initial point y0 stays close to y∗. This proves our result. �

Since (27) is convex, globalization of the Newton method (29) is straightforward. We simply
use one of the well-developed globalization method (Newton-CG method) studied by Qi and
Sun [38] in our numerical experiment.
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4 Majorized Penalty Method

In this section, we extend the majorized penalty method of Gao and Sun [17] to our problem
(10). The method has previously been used to compute the nearest EDM of low embedding
dimensions in [39]. The situation here is that we have spherical constraints to deal with. The
structure of the extension is similar to that in [39]. We give a brief description of the method.

(a) The penalty problem. It has been shown that without the rank constraint rank(JY J) ≤
r, the convex relaxation problem (11) can be solved by Newton’s method (29). Problem (11)
implicitly implies a very important fact that the matrix (JY J) is positive semidefinite for any
feasible point Y . Define

p(Y ) :=
n∑

i=r+1

λi(JY J) = 〈In+1, JY J〉 −
r∑
i=1

λi(JY J)

= 〈J, Y 〉 −
r∑
i=1

λi(JY J), (because J2 = J)

where λ1(JY J) ≥ . . . ≥ λn+1(JY J) are the eigenvalues of (JY J). The equivalent relationship
below is obvious.

rank(JY J) ≤ r and JY J � 0 ⇐⇒ p(Y ) = 0 and JY J � 0.

Moreover, p(Y ) ≥ 0 for any Y satisfying JY J � 0. Therefore, the function p(Y ) can be used
as a penalty function for the rank constraint over the feasible region of (10). A similar fact has
been used by Gao and Sun [17] in their majorized penalty method for computing the nearest
low-rank correlation matrix, which is necessarily positive semidefinite. The resulting penalty
problem in our case is

min fc(Y ) := f(Y ) + cp(Y )

s.t. A(Y ) = 0, Y ∈ Kn+1
+ ,

(45)

where c > 0 is the penalty parameter and f(Y ) := ‖Y +D‖2/2.
The following result on the relationship between the original problem (10) and its penalty

counterpart (45) can be similarly proved as for [17, Prop. 3.1 and Prop. 3.2].

Proposition 4.1 Let Y ∗c denote a global optimal solution of (45), Yr be a feasible solution of
(10), and Y ∗ be an optimal solution of the convex problem (11).

(i) If rank(Y ∗c ) ≤ r, then Y ∗c already solves (10).

(ii) If the penalty parameter c is chosen to satisfy c ≥ (f(Yr)−f(Y ∗))/ε, for some given ε > 0,
then we have

p(Y ∗c ) ≤ ε and f(Y ∗c ) ≤ ν∗ − cp(X∗c ),

where ν∗ denotes the optimal objective vale of (10).

The result in (ii) means that when the rank error measured by p(·) at Y ∗c is less than ε,
the corresponding objective value comes very close to the optimal value ν∗. Such a solution is
referred to as an ε-optimal solution in [17].

(b) Majorized Penalty Approach. The focus now is on solving the penalty problem (45).
Since p(Y ) is concave (i.e., the sum of the first largest eigenvalues of a symmetric matrix is
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a convex function of the matrix), it can be majorized by the linear function defined by its
subgradient: For given Y k ∈ Sn+1 (the current iterate) and Uk ∈ ∂p(Y k), we have

p(Y ) ≤ mp
k(Y ) := p(Y k) + 〈Uk, Y − Y k〉 ∀ Y. (46)

The function mp
k(Y ) is called a majorization of p(Y ) at Y k because of (46) and p(Y k) = mp

k(Y
k).

The majorized (convex) subproblem to be solved is

min f(Y ) + cmp
k(Y ), s.t. A(Y ) = 0, Y ∈ Kn+1

+ . (47)

We now extend the majorized penalty algorithm of Gao and Sun [17] to our problem (10).

Algorithm 4.2 (Majorized Penalty Algorithm (MPA))

(S.1) Choose a feasible point Y 0 of (11). Set k := 0.

(S.2) Solve subproblem (47) to get Y k+1.

(S.3) If Y k+1 = Y k, stop; otherwise, set k := k + 1 and go to (S.2).

We have the following remarks about the algorithm.

(R1) There are a few choices for the starting (feasible) point Y 0 in (S.1). One of them is the
optimal solution of (11) by Newton’s method (29).

(R2) Alg. 4.2 generates a sequence of decreasing objective values {fc(Y k)} for fixed c. This is
because of the majorization property (46). In our practical implementation, the penalty
parameter is updated according to some rules.

(R3) Subproblem (47) can be solved by Newton’s method (29) because it is equivalent to the
following problem, which is the type of the convex problem (11) but with different input
D:

min
1

2
‖Y +D‖2, s.t. A(Y ) = 0, Y ∈ Kn+1

+ , (48)

where D := D + cUk. We note that the feasible region remains unchanged. Hence, the
generalized Slater condition and the constraint nondegeneracy results studied before hold
for those subproblems.

(R4) The algorithm converges to a B-stationary point of (10), which is stated below and whose
proof can be patterned after [17, Thm. 3.4]. For the definition of B-stationary point, see
[17]. Roughly speaking, as problem (10) is nonconvex, converging to a B-stationary point
is one kind of global convergence that the algorithm can best achieve. We omit the details.
We also note that if Y f is the final iterate of Alg. 4.2, then (−Y f ) should be the final
output as it is a true Euclidean distance matrix (put the minus back because we have
introduced the minus sign in the formulation process that led to problem (10)).

Proposition 4.3 Let {Y k} be the sequence generated by Alg. 4.2. Then {fc(Y k)} is a mono-
tonically decreasing sequence. If Y k+1 = Y k for some Y k, then Y k is an optimal solution of
(45). Otherwise, the infinite sequence {Y k} satisfies

1

2
‖Y k+1 − Y k‖2 ≤ fc(Y k)− fc(Y k+1), k = 0, 1, . . . .

Moreover, the sequence {Y k} is bounded and any accumulation point is a B-stationary point of
(45).
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5 Numerical Examples

In this section, we first briefly describe the Matlab implementation of Alg. 4.2. For ease of
reference, we call the resulting code FITS2, standing for “FIT data on a Sphere”. We then test a
few well-known examples that have spherical constraints. Through those examples, it is demon-
strated that FITS can provide data visualization of high quality and is capable of including extra
(linear) constraints such as the “pole constraints” in Ekman’s color example [14], which results
in a wheel representation of 14 colors. We are not aware any existing methods that can deal
with such pole constraints. It also provides an alternative method for the circle fitting problem,
recently studied by Beck and Pan [2].

(a) Termination Criterion. We terminate Alg. 4.2 when the following two conditions are
met. The first condition is on the objective function value.

ffrog :=
|
√
f(Y k)−

√
f(Y k−1)|

max{100,
√
f(Y k−1)}

≤ tol, (49)

where f(Y ) = 0.5‖Y +D‖2 and tol is a small tolerance level (e.g., 1.0× 10−4). In other words,
whenever there is lack of the relative progress on the successive objective function values, we
believe that the current iterate is a good candidate subject to the second condition below. This
stopping criterion was suggested by Gao and Sun [17] for the low-rank nearest correlation matrix
problem.

The second condition is on the rank of the current iterate Y k. There are two ways to monitor
the rank. One is to compute the absolute value of the eigenvalue residue:

rankerror :=
n∑

i=r+1

λi(JY
kJ) ≤ ranktol, (50)

where ranktol is a small tolerance (e.g., 10−2) and λ1 ≥ . . . ≥ λn are the eigenvalues of (JY kJ),
which is positive semidefinite. This quantity does not scale well with the magnitude of (JY kJ).
To rectify this drawback, we also calculate the percentage of the first r eigenvalues of (JY kJ)
out of all the eigenvalues.

Eigenratio :=
r∑
i=1

λi(JY
kJ)/

n∑
i=1

λi(JY
kJ) ≤ Eigentol, (51)

Eigentol is a high percentage (e.g., 90%). We terminate the algorithm when (49) and either of
(50) and (51) are satisfied.

(b) Initial Point and Updating the Penalty Parameter. The initial point is computed
by the Semismooth Newton-CG method [38] for the convex problem (11). We note that all
the subproblems of (48) are solved by the same Newton method. Alg. 4.2 solves the penalty
problem (45) for a fixed penalty parameter c. In practical implementation, we may start from
c0 and increase c a few times before we can find a good solution. The initial c0 = 10 in our
implementation. We update ck (k ≥ 1) as follows

ck :=

{
ck−1, if rank(JY k−1J) ≤ r
4ck−1, otherwise.

2Available from http://personal.soton.ac.uk/hdqi.
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That is, we keep the penalty parameter unchanged if the current iterate has the desired embed-
ding dimension. Otherwise, it is increased by 4 times.

(c) Numerical Examples. Four existing examples were tested. They are (E1) Ekman’s color
example [14], (E2) Trading globe in [10], (E3) 3D Map of global cities (HA30 data set3) in [22],
and (E4) Circle fitting problem in [2]. We also show how a Procrustes procedure can be devised
to assess the quality of the final embedding in (E3) or to help to get the final embedding to
match the existing points in (E4).

(E1) Ekman color example. This is a classical example in MDS where data can be
represented on a circle, called circular fitting. Ekman [14] presents similarities for 14 colors
(wavelengths from 434 to 674 nm). The similarities are based on a rating by 31 subjects where
each pair of colors was rated on a 5-point scale (0 means no similarity up to 4 meaning identical).
After averaging, the similarities were divided by 4 such that they are within the unit interval.
The similarity matrix is denoted by ∆. The initial distance matrix is obtained from (D0)ij :=
(1−∆ij)

2.

Fig. 1 (a) (the radius is R = 0.5354) is the resulting circular representation by FITS with
colors appearing on the circle one by one in order of their wavelength. This figure is similar to
[13, Fig. 2], where more comments on this example can be found. A pair of colors (i, j) are said
opposing to each other if their distance equals the diameter of the circle. That is

Yij = 4Y1(n+1), (52)

which means that the squared distance between opposing colors is fourfold of the radius squared.
This type of constraints is called “pole constraint”. An interesting feature is that we assume
that the first 7 colors are set to oppose the remaining 7 colors, the resulting circular represen-
tation appears as a nice wheel, without having changed the order of the colors, see Fig. 1(b)
(the radius is 0.5310). Practitioners in Psychology may have new interpretation of such nice
representation. We emphasize that our method can easily include the pole constraints and other
linear constraints without any technical difficulties. We are not aware any existing methods that
can directly handle those extra constraints.

(E2) Trading globe. The data in this example was first mapped to a sphere (r = 3) in
[10] and was recently tested in [13]. The data was originally taken from the New Geographical
Digest (1986) on which countries traded with other countries. For 20 countries the main trading
partners are dischotomously scored (1 means trade performed, 0 trade not performed). Based
on this dischotomous matrix X the distance matrix D0 is computed using the squared Jaccard
coefficient (computed by the Matlab build-in function pdist(X, ’jaccard’). The most intuitive
MDS approach is to project the resulting distances to a sphere which gives a “trading globe”.

In Fig. 2 (R = 0.5428), the counties were projected on to a globe with the shaded points
being on the other side of the sphere. The figure is from the default viewpoint of Matlab. It is
interesting to point out that obvious clusters of countries can be observed. For example, on the
top left is the cluster of Commonwealth nations (Australia, Canada, India, and New Zealand).
On the bottom right is the cluster of western allies (UK, US, and West Germany) with Japan
not far on above of them. On the north pole is China, which reflects its isolated trading situation
back in 1986. On the backside is the cluster of countries headed by USSR. On the left backside
is the cluster of Brazil, Argentina, Egypt. We note that this figure appears different from those
in [10, 13] mainly because that each used a different method on a different (nonconvex) model

3Data available from http://people.sc.fsu.edu/∼jburkardt/m src/distance to position sphere.html
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(a) Circular fitting without any constraints
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(b) Circuclar fitting with pole constraints

Figure 1: Comparison between the two circular fitting of Ekman’s 14 color problem with and without

pole constraints.

Figure 2: Spherical representation for trading data in 1986 between countries {Argentina, Australia,

Brazil, Canada, China, Czechoslovakia, East Germany, Egypt, France, Hungary, India, Italy, Japan, New

Zealand, Poland, Sweden, UK, USA, USSR, West Germany}.

22



Figure 3: Spherical embedding of HA30 data set with radius R = 39.5916.

of the spherical embedding of the data.

(E3) 3D Map of global cities in HA30 data set. HA30 is a dataset of spherical distances
among 30 global cities, measured in hundreds of miles and selected by Hartigan [22] from the
World Almanac, 1966. It also provides XYZ coordinates of those cities. In order to use FITS,
we first convert the spherical distances to Euclidean distances through the formula: dij :=
2R sin(sij/(2R)) where sij is the spherical distance between city i and city j and R = 39.59
(hundreds miles) is the Earth radius (see [36, Thm. 3.23]). The initial matrix D0 consists of
the squared distances d2ij . It is observed that the matrix (−JD0J) has 15 positive eigenvalues
and 14 negative eigenvalues and 1 zero eigenvalue. Therefore, the original spherical distances
are not accurate and contain large errors. Therefore, FITS is needed to correct those errors. We
plot the resulting coordinates of the 30 cities in Fig. 3. One of the remarkable features is that
FITS is able to recover the Earth radius with high accuracy R = 39.5916.

We now assess the quality of the spherical embedding in Fig. 3 through a Procrustes analysis.
Let Y be the final Euclidean distance matrix from FITS and let X be obtained from (6). Let
xi denotes the ith column of X. Then, xn+1 is the center of the sphere. We shift the center to
origin and the resulting points are zi := xi − xn+1. Let Z denote the matrix of consisting of zi

as its columns. The data set HA30 includes a set of XZY coordinates of those 30 cities. We let
A denote those coordinates (in columns). We would like to see how close Z and A are. This can
be done through solving the orthogonal Procrustes problem:

min
P∈IRr×r

f = ‖PZ −A‖, s.t. P TP = I, (53)

which seeks the best rotational (including rotations and flips) matrix P such that the columns in
Z best match the corresponding columns in A after the rotation. Problem (53) has a closed form
solution P = UV T , where U and V are from the singular-value-decomposition of AZT = USV T

with the standard meaning of U ,S, and V . The optimal objective is f = 0.2782. This small error
is probably due to the fact that the radius used in HA30 is 39.59 in contrast to ours 39.5916.
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Figure 4: Circle fitting of 6 points with R = 6.5673. The known points and their corresponding points

on the circle by FITS are linked by a line.

This small value also confirms the good quality of the embedding from FITS when compared to
the solution in HA30.

(E4) Circle fitting. The problem of circle fitting has recently been studied in [2], where
more references on the topic can be found. Let points {ai}ni=1 with ai ∈ IRr be given. The
problem is to find a circle with center x ∈ IRr and radius R such that the points stay as close
to the circle as possible. Two criteria were considered in [2]:

min
x, R

f1 =

n∑
i=1

(
‖ai − x‖ −R

)2
(54)

and

min
x, R

f2 =
n∑
i=1

(
‖ai − x‖2 −R2

)2
. (55)

Problem (55) is much easier to solve than (54). But the key numerical message in [2] is that
(54) may produce far better geometric fitting than (55). This was demonstrated through the
following example [2, Example 5.3]:

a1 =

[
1
9

]
, a2 =

[
2
7

]
, a3 =

[
5
8

]
, a4 =

[
7
7

]
, a5 =

[
9
5

]
, a6 =

[
3
7

]
.

Model (55) produces a very small circle, not truly reflecting the geometric layout of the data.
The Euclidean distance embedding studied in this paper provides an alternative model. Let

D0
ij = ‖ai − aj‖2 for i = 1, . . . , n and n = 6, r = 2 in this example. Let Y be the final distance

matrix from FITS and the embedding points in X be obtained from (6). The first 6 columns
{xi}6i=1 of X correspond to the known points {ai}6i=1. The last column x7 is the center. The

points {xi}6i=1 are on the circle centered at x7 with radius R (R =
√
Y 1(n+1)). We need to

match {xi}6i=1 to {ai}6i=1 so that the known points stay as close to the circle as possible. This
can be done through the orthogonal Procrustes problem (53).

We first centralize both sets of points. Let

a0 :=
1

n

n∑
i=1

ai, ai := ai − a0 and x0 :=
1

n

n∑
i=1

xi, xi := xi − x0, i = 1, . . . , n.
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Let A be the matrix whose columns are ai and Z whose columns are xi for i = 1, . . . , n. Solve
the orthogonal Procrustes problem (53) to get P = UV T . The resulting points are

zi := Pxi + a0, i = 1, . . . , n

and the new center, denoted by zn+1, is

zn+1 := P (xn+1 − x0) + a0.

It can be verified that the points {zi}ni=1 are on the circle centered at zn+1 with radius R. That
is

‖zi − zn+1‖2 = ‖P (xi − xn+1)‖2 = ‖xi − xn+1‖2 = R2.

This circle is the best circle from model (5) and is plotted in Fig. 4 with the pair of points
{ai, zi} being linked by a line. When the obtained center x = zn+1 and R are substituted to
(54), we get f1 = 3.6789, not far from the reported value f1 = 3.1724 in [2]. The circle fits the
original data reasonably well. We complete this example by noting a common feature between
our model (5) and the squared least square model (55) in that the squared distances are used
in both models. But the key difference is that (5) used all available pairwise squared distances
among ai rather than just those from ai to the center x as is in (55).

6 Conclusion

In this paper, we proposed a matrix optimization approach to the problem of Euclidean distance
embedding on a sphere. We applied the majorized penalty method of Gao and Sun [17] to the
resulting matrix problem. A key feature we exploited is that all subproblems to be solved share
a common set of Euclidean distance constraints with a simple distance objective function. We
showed that such problems can be efficiently solved by Newton’s method, which is proved to be
quadratically convergent under constrain nondegeneracy.

Constraint nondegeneracy is a difficult constraint qualification to analyze. We proved it
under a weak condition for our problem. We illustrated in Example 3.6 that this condition
holds everywhere but one point (t = 0). This means that constraint nondegeneracy is satisfied
for t 6= 0. For the case t = 0, we can verify (through verifying Lemma 3.7) that constraint
nondegeneracy also holds. This motivates our open question whether constraint nondegeneracy
should hold at any feasible point of (11) without any condition attached.

In the numerical part, we used 4 existing embedding problems on a sphere to demonstrate a
variety of applications that the developed algorithm can be applied to. The first two examples
are from classical MDS and new features (wheel representation for E1 and new clusters for
E2) are revealed. For E3, despite the large noises in the initial distance matrix, our method is
remarkably able to recover the Earth radius and to project accurate mapping of the 30 global
cities on the sphere. The last example is different from the others in that its inputs are the
coordinates of known points (rather than a distance matrix). Finding the best circle to fit
those points requires localization of its center and radius. A Procrustes procedure is described
to help finish the job. The resulting visualizations are very satisfactory for all the examples.
Since those examples are of small scale, our method took less than 1 second to find the optimal
embedding. Hence, we omitted reporting such information. In future, we plan to investigate
its application in machine learning on manifolds, which would involve large data sets as well as
higher dimensional embedding (r > 3).
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