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Abstract—The single-source localization problem (SSLP),
which is nonconvex by its nature, appears in several importat
multidisciplinary fields such as signal processing and thelgbal
positioning system. In this paper, we cast SSLP as a Euclidea
distance embedding problem and study a Lagrangian dual
approach. It is proved that the Lagrangian dual problem must
have an optimal solution under the generalized Slater condion.
We provide a sufficient condition for the zero-duality gap ard
establish the equivalence between the Lagrangian dual appach
and the existing Generalized Trust-Region Subproblem (GTB)
approach studied by Beck et al. [3]. We also reveal new impla:
tions of the assumptions made by the GTRS approach. Moreover
the Lagrangian dual approach has a straightforward extensbn to
the multiple-source localization problem. Numerical simuations
demonstrate that the Lagrangian dual approach can produce
localization of similar quality as the GTRS and can significatly
outperform the well-known semidefinite programming solver
SNL SDP for the multiple source localization problem on the tested
cases.

Index Terms—Euclidean distance matrix, Lagrangian duality,
orthogonal projection, low-rank approximation.
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|. INTRODUCTION

calls [4], and the GPS localization [2] (to name just a few ap-

plications). The most often studied criteria for mathecadly

formulating SSLP are the maximum likelihood (ML) criterion
and the least-squares (LS) in the squared domain [4, S&¢t. 1.
Both ML and LS formulations are nonconvex. While the ML
criterion has the property of a statistical inference, tH& L
has the unrivaled property that it can be solved to its global

optimality. This is a rare property for nonconvex problemd a

was first revealed by Beck et al. [3]. Moreover, the subseguen

equation. It is known that the GTRS possesses a necessary
and sufficient condition that characterizes its optimalisohs
[21], [11]. Beck et al. [3] studied in detail when the GTRS can
be effectively and practically solved to its global optirtal
Another group of important contributions to source localiz
tion problems come from the Euclidean distance embedding
for sensor network localization, which can be cast as a
multiple-source localization problem (see the nice susvey
[18], [20] and the references therein). An outstandingufiesat
in this group of papers is that the embedding problem can be
related to the celebrated semi-definite programming (S§89),
[1], [5], [28]. The embedding problem can also be relaxed to
the nearest Euclidean distance matrix problem [17], [114],
[23] and it can also be tackled directly through a Lagrangian
dual approach with a majorized penalty technique [24].
However, there is lack of study whether the research
from the Euclidean distance embedding has any en-
hanced/favourable properties for SSLP. This paper tries to
initiate such a study by exploring the relationship between
the Lagrangian dual approach and the GTRS approach. The

HE single-source localization problem (SSLP) appears fRajor contributions of this paper are summarized as follows
many important applications including the mobile phonedi) We initiate the study of the Lagrangian dual approach

to the SSLP. We develop a new set of mathematical
tools showing that the Lagrangian dual approach is well
defined (e.g., the dual problem must admit an optimal
solution) under the generalized Slater condition. Those
tools also allow us to characterize a sufficient condition
for the zero-duality gap to hold. We further establish
the equivalence of these two approaches, which are
seemingly unrelated while having surprising connections
because of our results. Also revealed is a new geometrical
interpretation of the assumptions used in the GTRS.

papers [4], [2] show that this property of the LS formulatior(ii) The Lagrangian dual approach leads to an unconstrained

plays a key role in designing efficient iterative algorithfos

the ML formulation. In this paper, we will focus on the LS

formulation.

An important approach that emerged from [3] is to refor-
mulate the LS problem as a Generalized Trust-Region Sub-
problem (GTRS), which has just one constraint of quadratic
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convex optimization, which can be efficiently solved by
the well-knownHANSO package [22], [19]. Moreover, the
Lagrangian dual approach can handle more constraints
such as the fixed-distance constraint (45), which would
enforce one more quadratic constraint to the GTRS.
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multiple-source localization problem is investigatedeTh
advantage of the approach is numerically demonstrated
by comparison with the well-knowsemidefinite pro-
gramming solver SNLSDP developed by Biswas et al.
[5]. On some standard test problems from [5], [29], the
Lagrangian dual approach requires only a small fraction



of the cpu time of SNLSDP solver and yet provides the exist pointsps,...,p, in R such thatD;; = |p; — p;?
localizations of similar quality. fori,j =1,...,n. " is often referred to as the embedding
In the following, we describe the basic model of the SSLBpace and is the embedding dimension when it is the smallest
Suppose we have a networksmfknown sensors (often known suchr. All vectors are treated as column vectard. means
as anchors in the literature of sensor network localizjtiothe transpose of the vectet hence it is a row vector.
whose coordinates aeg = x; € R", i = 1,...,m. Suppose  We note thatD must belong taSy; if it is an EDM. We let
there is single unknown source, whose coordinatétinis £" be the set of all EDMs is", and&™(r) be the set of all
denoted ax € R". From the unknown source, each anchpr EDMs in 8™ with embedding dimensions not greater than
receives a signal, which can be converted to Euclideanrdista  (b) Characterizations of EDM. It is well-known that a

r; betweena; andx, possibly with contaminated noise: matrix D € 8" is an EDM if and only if
r; = |la; — x|| + €, 1=1,...,m. DeS8! and J(—D)J =0, with J:=1—ecel/n, (2)
The SSLP is to findk that solves where I (or I, when the indication of dimension is needed)
m ) is the identity matrix inS™ ande is the vector of all ones in
min (Ilx —a;l|* = r7)". (1) %™ The origin of this result can be traced back to Schoenberg
it [27] and an independent work [30] by Young and Householder.

We note that problem (1) is the formulation of the squarediee also Gower [16] for a nice derivation of (2). Moreover,
range-based least squares considered in [3, Sect. B] andhg corresponding embedding dimension is- rank(.JJD.J).
further called the least squares problem in the squared ijomgonsequently, we have

[4, Eq. (1.3)]. We will study a Lagrangian dual approach for E"={A: AcSP
(1) and establish its links to the GTRS. ' h

The paper is organized as follows. In the next section, vesd
provide a brief background on Euclidean distance embedding
In Sect. lll, we study the Lagrangian dual approach. We first g(r)=&"n{Ae 8" rank(JAJ) <r}.

reformulate the SSLP as a Euclidean embedding problefje note thats” is a closed convex cone agd (r) is closed,
followed by deriving the Lagrangian dual problem. We thepg,t not convex.

prove that the dual problem has an optimal solution under the s noted that the matrix, when treated as an operator, is
general_med Slater condition (E’rop. 3.4). A su.ff|C|ent dood  ihe orthogonal projection onto the subspacde:= {z € R :
is provided for the zero-duality gap result in Thm. 3.6. Inr,. _ 0}. The characterization (2) simply means tifats an

Sect. IV, we establish the equivalence between the Lagaangipn if and only if D € S and D is negative semidefinite
dual approach and the GTRS. Numerical results in Sect. 3, the subspace’:

show that the Lagrangian dual approach yields localizatifon
similar quality as that by the GTRS. Moreover, we demonstrat —D € Kl := {A€ 8" : 27Az >0, z€et}. (3)
its application to the multiple-source localization pretl and
show its efficiency by comparison with the popular semideF—
inite programming solvelSNLSDP of [5]. We conclude in

Sect. VI. EM =8N (—=Kn). 4)

and — JAJ = 0}

follows that ! is a closed convex cone.
We therefore have another characterizatior€ Bf

n
Il. BACKGROUND ONEUCLIDEAN DISTANCE EMBEDDING PO £"(r), we have

There are three elements that have become basics in the E™(r) =Sy N (=K (r)), (5)
research of Euclidean distance embedding. The first oneis th
definition of the squared Euclidean distance matrix (EDMY/Nere
The second are various characterizations of EDMs. And the n . n .
third one is the Procrustes analysis that produces the lactua il =k n{des™: rank{JAJ) <7}
embedding in a Euclidean space. We briefly describe them(c) Euclidean Embedding.If D is an EDM with embed-
one by one. Standard references are [9], [6], [10]. ding dimensiornr, then—JDJ = 0. Let
(a) Squared EDM. Let S™ denote the space at x n _JDJ/2 = PPT
symmetric matrices equipped with the standard inner prioduc
(A,B) = trace(AB) for A,B € S". Let || - || denote the where P € R"*". Let p, denote theith column of PT. It
induced Frobenius norm. L&t} denote the cone of positiveis known [9] that{p,,...,p,} are the embedding points of
semidefinite matrices 6™ (often abbreviated aX > 0 for p in ®", i.e., D;; = |lp; — pj||*>. We also note that any
X € 81). The so-callechollow subspaceS;' is defined by rotation and shifting of p1, . . ., p» } would give the samé.
“=" means define) In other words, there are infinitely many sets of embedding
N n. 1 _ points. To find a desired set of embedding points that match
Spi={Aes": diag(d) =0}, positions of the existing anchors, one needs to conduct the
wherediag(A) is the vector formed by the diagonal elementBrocrustes analysis, which is a simple computational sehem
of A. A matrix D is a (squared) EDM ifD € S;' and there see [9, Chp. 5]. We omit the details.



I11. L AGRANGIAN DUAL APPROACH B. The Lagrangian Dual Problem

In this section, we first cast problem (1) as a Euclidean The purpose of this part is to solve (7) through its La-
distance embedding problem. We then derive its Lagrangidffngian dual problem. Let us first define a few more nota-
dual problem. Finally, we study when the dual problem admins. Define two linear mappingd; : §" — R" and A, :
an optimal solution and provides a sufficient condition fog t ™ + R 1/ by (we identify a vectow € R™(m=1/2

zero-duality gap. by ordering its components as;, i < j = 2,...,m)
A(Y) = diag(Y) and (A3(Y))y; =Y.
A. SSLP as Euclidean Distance Embedding Correspondingly, defing? € R andb® € Rm(m-1)/2 py
For SSLP (1), we haver known anchorgas, ..., a,,} and b= 0 and 0 =Dy Vi<j=2,...m.

an unknown source € R". Define the EDMY™* € §™ (with
n :=m + 1) by (only define the upper triangular part bf) Let

. . d
ve.o f llai—ag|? ifi<j=2....m A::(jl) and b:z—(go). (8)
K la; —x||*> if j=m+1. 2

It follows from (2) that—.JY*.J > 0 and one set of embedding'Ve 16LA" : 1" x R m=1)/2 — 8" be the adjoint ofA.
points{py, ..., pn} in " would be the columns aP”, where ~ Because of (5), problem (7) is equivalent to

P € R"*" satisfies 1
€ min Z[[Y ~DJ* st A(Y)=-b and Y € KL(r),

o * _ T
JY*J[2 = PP". ©) or equivalently by replacing” with —Y
Moreover, {aj,...,an,x} would be obtained from 1 ) N
{P1,...,pn} through the Procrustes analysis. vp :=min S [[Y +D|" s.t. A(Y) = bandY € K% (r). (9)

However, the only issue with the above procedure is that thgo Lagrangian dual function for (9) is
distances in the last columns B (the distances between
andx) are not completely known so that the decomposition of L(Y,y) := 1||y +D|?+ (b— AY), ),
(6) is not possible. We only know the contaminated distance 2
measurement; betweena; and x. We need to recover thewhereY € S andy € R x R™*(m=1/2_ The Lagrangian
true distances from those measured distadegs dual problem is then given by

Define D € §™ by 6(s) (10)
Y)

Vd -— max
YyERT x P X (m—1)/2

T if j=m+1. where

K2

i—ayl? ifi<j=2,...
DZ] :{ ||23L aJH IfZ—j 2) , M

. 0(y) = i L(Y,y).
Our purpose is to recovér* from D. We know thatY™* has ) Yé?clf(r) )

to satisfy the following conditions: It always holds that,, > v4. The quantityv, — v, is called the

Yi=D; fori<j=2...,m, Y*egn, duality gap. When this quantity vanishes, we say there is no
v duality gap (i.e., zero-duality gap). We now derive an eipli
and Y* has to have the embedding dimensionWe are expression fod(y).
therefore to recovet ™ through the following optimization Given a closed se€ C S§" and X € S™, let II¢(X)
problem: denote an optimal solution of the following metric projecti
problem:

V" =argmin [V — D|*/2 (7) min||Z - X|> st Zec.
StY,j =D, i<j=2,...,m, Y €&(r).

_ _ When( is convex,Il¢(X) is unique. WherC is not convex,
It r; = |la; — x| (true distances), ther” = D is the there may be multiple solutions and we I&f (X) denote the
original EDM. Otherwise, this problem is to calculate th@gt of g projections ofX onto C. Let 87 (r) be the set of

nearest EDM fromD subject to the requirements that they| positive semidefinite matrices whose ranks are not great
solution must obey the pairwise distances among the knowyin . Both S7(r) and K7 (r) are not convex.

anchors{a; } and that it has to have an embedding dimension | et X have the spectral decomposition
not greater tham.

Once the optimal solutiol * of (7) is obtained, we can use X = PA(X)PT,
(6) and the Procrustes analysis to obtain the actual em'h@chvhereA(X) .= Diag(A(X)), A1 (X) > > A\ (X) are the
{ai, ..., anm, x}. The solution method that we propose in thig;qonyayes oft being arranged in the non-increasing order

paper for (7) is the Lagrange dual approach. We will sho%dp € O™ with O™ being the set of alh x n orthogonal
that this approach has some nice and important Properti&s matrices. Define

as mentioned in Introduction. In particular, it has a close
relationship with the GTRS. We describe this approach below := {i | A\;(X) > A\.(X)} and g := {i | \i(X) = A\ (X)}.



For an index se C {1,...,n}, X7 denotes the submatrix C. Existence of Optimal Dual Solutions and Zero Duality Gap
consisting of the columns i indexed byZ and|Z| denotes | gt ys consider the linear system
the cardinality ofZ. .

Lemma 3.1:[13, Lemma 2.4] The sell, , (X) can be AY)=b and Y €KY, (16)

characterized as follows. ’ with 4 and b defined in (8). It is obvious that the linear

5 . mappingsA; and .4, are linearly independent. We say that
g, () (X) = {[Pa, PsVs|Diag(v)[Pa, PsVa]" | Vs € O'ﬂ‘} the (generalized) Slater condition for (16) holds if thexésts
Y% e K1 such that

where = MX )4, (A (X))4,0,...,007 € . n
§R|a\+|5\:u (( 1( ))+ ( ( ))+ ) Y() c Hlt(’CJr) and .A(YO) _ b, (17)
Lemma 3.2:[24, Prop. 3.3] The seilZ, (n(X) can be whereint (K" ) is the interior ofC!.
characterized as follows. * The Slater condition is closely related to the polar cone
(Kn)* of K7t
B _ 118
ey ((X) = Uy (n (JXT) + (X = JXT). - (A) (enye = Ay esn: (X, 4)<0 ¥ Aek?)
Moreover, for any paiI(H,Ci(,,A) (X), Hsi(,,A)(JXJ)) satisfy- - {Q { g 8 ] Q: Ze 51_1}’ (18)
ing
Tr () (X) = g () (JXJT) + (X — JXJ), where the last equallt)_/ used [23, Eqg. (16)] agdis the
+ + Householder matrix defined by
we have Q::If%va with v:=11,...,1,vn+1]7 € R
vtv

Tk () (BOI? = [Ty ) (JX D) + | X = JXJ|?, (12)  The following result is a direct consequence of a result o Ga
[13] when applied to (16).

Jjen (0 (X)J = Ign () (JXJT), (13) Proposition 3.3:[13, Prop. 2.20] If the Slater condition
- - holds for (16), then(b,y) < 0 for any 0 # y € R" x
and Rmx(m=1)/2 satisfying.A*(y) € (K7)*.
(Ir (1 (X), X — M (1) (X)) = 0. (14) The foII0\_N|ng result shows_ that the _Slater condition guaran
+ + tees the existence of an optimal solution for the dual prable
We now derive an explicit formula fof (y). '(Dlri)h T4h§653roof of the following result is motivated by [13,
0y) = min L(Y,y) Proposition 3.4:Assurr.1§ that thiSIaE:La(rrf?B%tl,on holds for
YeKn (r) (16). Then the level sdt.. := {y € R" xR 1 O(y) <

) 1 ) . ¢} is bounded for any constant € R. Consequently, the
T yerntm SIY + DI = (Y, A*(y)) + (b, ) Lagrangian dual problem (15) must have an optimal solution.
N 1 Proof: We prove the conclusion of this result by con-
= _min_ 5HY — (=D + A*()? tradiction. Suppose that there exists a constasuch that
Yel'c+(") ) L. is unbounded. There must be a sequefg®} satisfying
_§H _D+A*(Q)H2+§|‘D||2+<b7 y> Hka *) oo and @(yk) < c fOfk all yk._ Without |0]§S of
) generality, we assume that'/||y*|| — y. Denote B* =
1 1 consider two separate cases. Casdl(y) £ (K’ )* and Case
—5I=D+ A @2+ DI + (b, v) 2: A*(5) € (K1)".
1 1 Case 1.Denote
= [ Hgn () (=D + A @)%+ 51D + (b, y). 5 b1 -
27 2 QA*(7)Q =: { ,;Tl ; ] with B, e "~ (19)
The last equality used (14). Hence, the dual problem (10?1 ] 0 o )
becomes (in the form of minimization) The I_—|ouseho_lder r_natrl@ and the projection matri¥ have
the nice relationship.
—vg = min O(y), (15) I..1 0O
JQ[ 01 O]Q. (20)
where
It follows that
1 2 1 2 n
- == n ey (— * - —= . . B
O(y) = —0(y) = 5Tk () (= D+A"W) = (b, y)—5 D] JA ) = O { 0 ] 0. 1)

We note that9(-) is convex. In the next section, we StUdYBecauseQQ — I, we have from (21) that
when the problem (15) has an optimal solution and when the L 5 S
duality gap vanishes (i.ev, = v,). sy () (JCA" @D = [Tgn—1 () (B)] (22)



and ThenZ<(-) is convex and its subdifferential is the convex hull

A" () — J(A* (@) T[> = 2/1B]1” + b of Hﬁm(Z):
In this case,A*(y) ¢ (K')*. That is (because of (18)), =¢(2) = ConV{H,lgi(r)(Z)} .
QA*(9))Q & {{ g 8 } A —Sﬁ_l}. Theorem 3.6:Suppose thay is an optimal solution of the

dual problem (15). LeA; > A2 > ... > )\, be the eigenvalues
It follows from (19) that there are two possibilities. Subea of J(—D + A*(y))J. If A\,4+1 < 0 or in the case of\,; >
1.1: By ¢ —S7" and Subcase 1.26",bo] # [0,0]. For 0, A, > A4, thenHﬁiOA)(—D + A*()) contains just one

Subcase 1.1B; must have at least one positive eigenvalugement, denoted by := Micr () (=D + A*(y)). Moreover
1 * + T . 1

Then it follows from (22) that there exist > 0 such that Y globally solves the problem (9) and the zero duality holds.

||H$,,L(T)(JA*(Q)J)H2 - HHS"*I(T)(EI)HQ > 6. Proof: Since ©(-) is convex,y is an optimal solution
* * of (15) if and only if 0 € 9O(y). We note thato(-) is
For Subcase 1.2, there exists> 0 such that composition of=¢(-) and A*, i.e.,

(D) — JA(DJTIZ = 21blI2 =52 > 5. e . 1
IA"() = JAT @)1 = 2[pll" + b5 2 02 O(y) = Z(~D + A (v) — (b, y) — 5/1DJ

By the continuity 0f||H,<1(T)(-)H2 (due to it being convex, see
Lemma 3.5 below), we have

: " ky|12
Jim ([Mer ) (BY)]
= Jim (Mg (TBED)P + 1BY — I8 )
IMsy ) (JA*@ D) + |14 (@) = JA* @)

By the chain rule of the subdifferential, we have
90(y) = AOE(-=D+A"(y) —b (23)
= A (conv{H}gi(r)(—D A (y))}) —b
= A (conv{ngi(r)(J(—D + A*(y))J)}

> min{o1, 0} > 0, ~(=D+ A (y) = J(~D + A (y)])) b
where the first equation used (12). Hence, we have The second equality used Lemma 3.5 and the last equality
used Lemma 3.2.
klggo o(y") Under the condition in the theorem, it is easy to verify from
. 1 I . Lemma 3.1 thall{, . (J(~D +A*(g))J) is singleton. This

= [Jim (§|HK1(T)(_D + A DI = sy >) implies thatd®(y) is singleton. The optimality conditiod &
1 00(y) means B

> tim 1 (510 ey o B)P ~ o)) = +oc. b AT

Case 2.We note thaty # 0. It follows from Prop. 3.3 that a“dY - H’,C’i(r)(_D + A(y)) € K1 (r). Therefore,Y" is a
(b,) < 0. Therefore feasible point of (9). Moreover, we have

lim (") > lim [ly*(~. y*/ly* ) v > O(y) =L(Y,y) = %II7+DIIQ+<6—A(7), v)
(b, )

1 —
- k| — = —|IY+D|*>v,.
— i [y = oo, SIIY + D" = vy

Vv

. . . This provesvy = v, because we always havg > v4. In
Either of the cases contradicts our assumption {itafy" < p
is bounded. This contradiction establishes 51e bound&s&]}:’]‘esOther words.Y” globally solves the problem (9) and the zero
the level set. - duality gap holds. [ |

The generalized Slater condition is a standard assumptigr;r he duk;al pr?blfT dlsthconvEx 2a3nd tf(]jethsubglfferetntl_al t.Of
in optimization. It is worth noting that the condition (173 i f('ﬁga” ;C‘f" CEa N ;Ongh( f) an HA?\goaraclfrlza 'on
equivalent to the following Euclidean distance matrix céenp 0 Si(v‘)( ) in Lemma 3.1. The famou package

tion problem: There exists Euclidean distance ma¥fissuch [22): [19] can be used to solve (15). As mentioned in the
thatY;; = Dy; for i < j = 2,...,m and the embedding introduction, another global method is the GTRS contribute

dimension ofY" is (n — 1). We omit its proof. However, it PY Beck etal. [3]. Itis surprising that these two approacres

is also worth mentioning that there may exist other EDM _actually equwal_ent under reasonable conditions. It isv@do

such thay’;; = Dy; fori < j = 2,...,m with its embedding " the next section.

dimension strictly less thafm — 1). We do not know whether

the generalized Slater condition is also necessary for.Prdp IV. EQUIVALENCE TO GTRS

Next we present our zero duality gap result, which needs thein this section, we first state the GTRS reformulation by

following result. Beck et al. [3], its global optimality condition, and the as®-
Lemma 3.5:[24, Prop. 3.4] Let tions that ensure an efficient solution method of the GTRS. We

1 also study some implications of those assumptions. We then
E(2) = §||HIC1(7~)(Z)H27 VZes" establish the equivalence between these two approaches.



A. GTRS and Its Global Optimality Condition with ¥ being the diagonal matrix of the singular values of
Beck et al. [3, Sect. B] reformulated this problem as thé1 A andU,V € O". We have the following results.

Generalized Trust-Region Subproblem (GTRS): () Assumption (H1) implies
n;eiri | Az — c|? st z'Cz+2g’z =0, (24) A=2Z,P.
zERT 1
. . (i) Let x denote an optimal solution of (1) ard, denote
wherez® := (x", pg) and an optimal solution of (1) when the set of locations
—2aT 1 2 — |lag 2 {21,...,z_m} are used instead ofay,...,a,,}. Under
_ Assumption (H2), we must have
A= I , (25)
—2af, 1 2~ [lan|? on = Fx.
Proof: (i) Define the linear operatof : S™ — S™ by
C = Ir 07"><1 — 01><r
Tl 0 0 |T®T| —05 | L(X) := diag(X)e! + ediag(X)" —2X, V X € S™

It follows from [21, Thm. 3.2] thatz € R"*! is an optimal It follows that
solution of (24) if and only if there exists € i such that

(£(2:27)),;, = |zl + |zl - 22] 2
(ZTZerC)z = Zchpg, = |z —z?
270z +2g7z = 0, (26) = la; —ay
AA+pC = 0. = (£(AAT)),..

There are two assumptions that ensure an efficient solutippe identity £(2, 2T) = L(AAT) implies
algorithm of (24). !

_ T T

(H1) The matrixA dTefined in (25) has full column rank. 21z = AA. (29)

(H2) The matrix (A" A + pC) is positive definite, where  The full column rank ofd implies thatm > r+1 and the affine

satisfies (26). hull of {ay, ..., a,,} spansk”. It follows from [18, Thms. 5.1

Under the two assumptiong,is the unique solution of and 5.2] that there exists an orthogonal maffxe O" such

that
—T—

p(p)=0 —and A" A+ pC -0, (27) ZiP=A and P=UVT, (30)
where whereU andV come from the singular value decomposition
o(p) :==2(p)"Cz(p) + 287 2(p) ZF A = UxvT andy is the diagonal matrix with the singular

values ofZ{ A being its diagonal.

and (i) The optimal location ofx is given by

a(p) = (A A+ pC) (A" ¢ — pg).

Furthermore, there exists an efficient solution method td fin®(?) =
the root of (27) (see [3] for details%. It is emphasized in [
P.1773] that the “hard case” (.4 A + pC) is just posi-
tive semidefinite) never occurred in their extensive nuogri 7, .= [ —2Z; e | and P:= { OP 011><r } .
simulations. rxl

We now state a result of implications from those twqhenP is orthogonal and
assumptions. Without loss of generality and for simplicity — _

[ x } _ (@A A+ p0) (A e — pg) for somep.
0

?befine

we assume that the anchofas,...,a,} are centered at - [ —24 e ] - [ —2Z,P e ] =P (31)
the origin. That is, 3" a; = 0. Otherwise, we can always|t is easy to calculate that
consider the pointqay,...,a,,} instead of{a;,...,a;}, PR g
wherea; := a; —a anda := Zyilal/m P (ZIZ1 +pC’)P:A A+pC>O
Proposition 4.1: Suppose that there is another setaf o L
sensors k", denoted by{z,...,Z, }, satisfying Therefore,Z; Z; + pC = 0. ReplacingA by Z; in (26) will
give rise to another set of necessary and sufficient comditio
{ Yiliai = 7 =0, il = | (2) [N erms ofZ. Define
7. — 712 = la;, —asll2. Vi 7=
2 = 250" = s — 2l V&g =, sm a(p) = (Z, Z1+ pC) " (Z1 ¢ — pg).

Define —T— — 7 _
It follows from (Zszl +pC)~t = P(ATA+ pC)—lPT that
ZV =1(z,...,2,], AT :=]a,...,a,] andP :=UV7T, — 7 —T —
= lE ) a1, ) 2(p) = P(A A+pC)"'P' (Zyc— pg)
whereU andV come from the singular value decomposition _ ?(ZTZJF pC)‘l(ZTc ~pg)
ZIA=Uxv?T, = Pz(p). (32)



The second equality above used (31) d_ﬂjg = g. Further- and

more, the function 5 2 .

olp) = z(p) Cz(p)+ 28" z(p) S
= a(p)"P" CPu(p) + 287 Pa(p) eline
— s(nTC m
= z(p)C ( +2g Z( ) Zo 1= Zzi/m andz; :=z;—z9, Vi=1,...,m+1. (37)

(p) = i=1

The penultimate equality usel' CP = C and ﬁTg = g. Thenthe set of locations of the first points{z,, . .., z,, } are
Therefore,z(p) must be an optimal solution and its las€entered at the origin and they obviously satigly — z; || =

\
S

element must bgy. Denote the firstn elements ofz(p) by [lai —a;|| foré,j =1,...,m. According to Prop. 4.1, there
the vectorz,. It follows (32) that exists an orthogonal matri® € O" such that
. _ Zp _ Px z;,=Pa;, Vi=1,....m and Z,,,H_lsz, (38)
z(p) N Po N Po
) o where x is the optimal solution of (1). In other words, the
which givesz, = Px. _ _ B |ocations of(zy, .. .,z,) can be translated ttay, ..., a,,,x)
We have two remarks regrading this result. after the shifting (37) and rotation (38). We note that those

(R1) Prop. 4.1 has a very nice geometrical interpretati@t. Liocalizations are also centered:
the m known anchors be placed at two sets of locations,
_ _ . m+1

denoted by{ay,...,a,,} and{z,...,z,} re_spgctlvc_ely. 7T — Z 2 = 0. (39)
Suppose they are centred and obey the pairwise distances
in the sense of (28). Assumption (H1) means that one set
of locations can be obtained from the other through alf'is can be easily verified through (34) 4s = 0. We have
orthogonal rotation. As in the result, letandz,, denote the following technical lemma.
the respective optimal solution of (1) when the two sets Lemma 4.2:Recall y := (u, )
of m anchors were used. Assumption (H2) implies thdbe optimal solution of (15). We have

i=1

c pmt+l « %m(’m—l)/Q is

the recovered locatiom of the unknown source can be m
obtained through the same orthogonal rotatiorzof U1 = — Z (lai — x| = r2) .
(R2) Without Assumption (H2) (i.e4’ A+pC is only positive i=1

semidefinite, which is referred to as the “hard case” in Proof: Throughout this proof, we use the faet= m 1
the literature of trust region methods), it is not knowrb note ’ ’ '

whether we would still have the same interpretation in % g
(R1). The difficulty lies with the facts that there might { g% 7 } =Q(-D + A"(y)Q,
be multiple solutionx of (1) and that it is very hard to 0

characterize them (see [21, Sect. 5]). where?; € S™. It follows from (11) that

YV = Hepn(J(=D+ A (5))J)

B. Equivalence to GTRS
+(=D+A"(9) - (J(=D + A*())J)
(J (-

Let the optimal solution of (15) be denoted py= (@, v) €

R x Rm(m=1/2 (recalln = m + 1). We assume that = JYJ+ (=D +A() - D+ A*(y))J)

= " Y1 O

Y = Ties (=D + A° (7)) (33) — 22 oram - ¢ § e @
solves (9) (such” exists, for example, under the conditionhe second equality above used (13) and the last equality
in Thm. 3.6). used (34) and (20). BecaugeY) is the EDM generated by

The Schoenberg-Young-Householder theorem [27], [3% .2, }, the last column ol is

says (note that—Y) is a Euclidean distance matrix as we
negatedY” in leading to (9)) that the rows of € R™*T, Y(,n) = —[lz1 — zall%, - -, [|2m — 2]/, 0]%.

which satisfies

1 —=
SJYJ =227, (34) We compare the Iast_ cqlumn &f with the last column of the
2 right-hand-side matrix in (40).
are localizations ofm + 1) points that satisfy the constraints 21 — 2|2 (21, Zn) 2
in (9). Let z; denote the coordinates (column vector) of the ! _ " 1’_ " .1
ith point and _ : - 9 : + :
z" = [Z1,. .. Zmg1] Zm — Zn”2 (Zm, Zn) 77”72n
0 (Zn, Zn) Ut 1

Then we have

7?ij:||zi7Zj||2, Vl,jil,,m+1 (35)



Here, we use the structure of*(y), whose last column is Assumptions (H1) and (H2) hold and that the makfixlefined

[0,-+,0,%ms1]T. And e, is thenth coordinate vector ifR™.
By the definition of@, we haveQe,, = —¢/+/n and

o 3]0l

Vn 0

Vi _
i O]Qen

\/_(n+\/_)
0

0
e'Yie/n |’
Therefore, we have

11 — zn|? (21, zn)

_ . ) = 2 : +
Zm — 2l (Zom, Zn)
0 <Zn7 Zn>

1 v e Ye

7—Y1€+ —1c
n n-+

B NGO Vn(nty/m) ¢ (41)

eT?le/n

'am+1

The last equation in (41) gives
lims1 = e Yie/n — 2||z,|%. (42)

Summing the firstn equations in (41) yields

= Yl =2 ) -
=1

(43)

Subtracting (43) from (42) and re-arranging the like- terms

in (33) is an optimal solution of (9). Then, we must have

p=—2Umi1,

where p is the (unique) optimal solution of (26). Moreover,
the two problems (1) and (9) return the same optimal objectiv
value.

Proof: Consider the optimality condition (26). The second
equation in (26) simply requiresy = ||x||?. It is easy to see

that
<a1,x>
— x
Az = -2 + poe, CZ[O}
(am,x)
and ) )
T [[au |
c=1 : |- : =:Pp1 — P2
T llam?

The first equation in (26) can be written as

—T — —T

A (Az+P2)+p[)5}=A P1 — pg. (44)
We note that theth component of Az + p2) is ||a; — x||2.
After re-arranging terms in (44), we obtain

lar — x||* =}

—T 0 X
: —0.5 0
lam —x[|* =2,

which by the definition of4 yields

= 22 la; — x| —

r?) = —2Up41.  (by Lemma 4.2)

leads to
Umt1 = *Z (llz; — zn|* — r7) — 2<Z Z; + Zn, Zn) Now let {z;} be defined by (37). The optimal objective
i=1 i=1 value of (9) is
m
= =D (= =zl =r}) (by (39)) ¥+ e
Z;Ll m m
AV 2
= 2Pl =) Gy 38) = 33 i+ D+ Y Titmen) + Dinin)
1,j=1 i=1
m m
= —Z(Hai—xHQ—r?). = 5 Z HZz*ZJH *D2J>
i=1 2] 1
This proves our result. [ S - )
Now we are ready to present our characterization of the Z;(HZZ Zm-41[|” = Digm+1) (by (35))
solution of optimality condition (26). In the charactetina, o
we list all the assumptions that have been made so far to _— Z(Hzi = Zpn|)? *Di(m+1))2 (by (36))
clarify the situation when such characterization hold< fitst =1
two assumptions, as assumed in [3], remove the possibfiity o m
“hard case” of the trust region subproblem from happening = > ([2i — Zmu1l> = 77)*  (by (37))
and the third condition assumes that the problem (9) can be i=1
solved globally. The result is that there is a close relatidm U s o
between the obtained solutions, as characterized below. > (IPai — Px||* =) (by (38))

Theorem 4.3:Consider the SSLP problem (1). Let the

matricesA and C be defined as in (25). Lej := (4,?) €

R+l gm(m=1)/2 splve the dual problem (15). Assume that

i=1
m

= > (= x| -

i=1



Hence, the two problems (1) and (9) return the same optiniala relatively good approximation of the true source lawati
objective value. B The solution obtained by the Lagrangian dual approach is
This result characterizes the nice situation defined by tlie2.0189,2.9585), same as obtained by GTRS. The Lagrange
assumptions (H1) and (H2). The unpleasant situation happenultiplier @,,+, = 1.1122. Therefore,p = —2u,,+1 should
when (H1) and (H2) fail to hold. As already remarked in (R2)e a good approximation to the optimal solution of GTRS by
after Prop. 4.1, it would be hard to characterize the optim@&hm. 4.3.
solution of the GTRS. The good thing is that the failure of Example 5.2:[4, Example 4.3] In this examplel00 in-
(H1) or (H2) does not contradict the zero-duality gap result stances are randomly generated. In each instance, thefe are
Thm. 3.6. In other words, the Lagrangian dual approach wouénsors whose locatioms and the source locatiox are ran-
still have chance to find the global solution of the SSLP unddomly generated from a uniform distribution over the square
this situation. [—10,10] x [-10, 10]. The observed distancés are given by
lla; — x|| + ¢; with ¢; being independently generated from a
V. NUMERICAL EXAMPLES normal distribution with mean zero and standard deviation

This numerical part includes three subsections. Sub—We testedGTRS and the Lagrangian dual methdcigD

sect. V-A uses the existing SSLP test problems to show Example 5.2GTRS aims at finding the root op(p) = 0

that the Lagrangian Dual (denoted hagD) method pro- In (27). It is knqwn t_hat the root_is containgd_ in the interval
vides localization of similar quality as that by the GTRS(’—)’OO) andyp(p) is strictly decreasing over this interval, where
Subsect. V-B further explores the possibility of includimgre p=—1/M(C, ZTZ)

constraints in the SSLP model. For example, if two more fixed I

constraints of the type (45) are added to the modalgD and X\ (C, A )r is the largest eigenvalue of the matrix
can accurately recover the unknown sousce= (—2,3) in (ZTZ)%NC(Z A)~1/2 (see [3, Sect. lI(B))).

Example 5.1. In theory, the Lagrangian dual approach can bén our implementation ofSTRS, we first narrow the half-
straightforwardly extended to the problem of multiple s®ur line interval (p, ) to (p,p), Wwherep = p + 10ig and ig
localizations. Subsect. V-C demonstrates its efficiencthoge is the first positive integeri such thatyp(p + 10i) < 0.
standard test problems (e.g., the number of unknown sour@ssthe strictly decreasing property of, the root must lie
are up to300) by comparison with the popular SDP solvein the interval (p, ). We then use the bisection method (as
SNLSDP [5]*. All of our results can be reproduced by usinguggested in [3]) to find the root. The tolerance used to
the Mat | ab codeLagD?. All tests were carried out using theterminate GTRS is |¢(p)| < 10~ (smaller tolerance such
64-bit version of MATLAB 2012a on a Windows 7 desktoms 10~° would not achieve significantly more accuracy in
with a 64-bit operating system having Intel Core 2 Duo CPldcalization). ForGIRS, | ter is the number of function

of 3.16 GHz and 4.0GB of RAM. evaluations ofp till the termination. ForLagD, | t er is the
number of iterations used IYANSO package. We also report
A. The Case of Single Source the squared position errgik —x||?, wherex is the solution by

the corresponding method. All results are based on the geera

The single source localization problem, treated as a Leag;c/—er 100 random realizations. It can be seen thainD and

Square (LS) problem in [3], [4], can be solved by reformulat= - L S o
ing it as a generalized trust-region subproblem (GTRS). TE?TRS return localizations with highly similar squared position

. . . rors, which are consistent with our theoretical finding in
Lagrangian dual approach, as proved in Thm. 4.3 for th's’caﬁeorem 43 9
also solves the GTRS under the conditions assumed in [3]. We e

use the two examples tested in [3], [4] to verify this theioadt Example 5.2 GTRS , LagD 2
result. We usedHANSO package to solve the Lagrangian dual o lter [Ix — x| | Iter [jx — x|

bl 15) TOOE-03 | 11 1.20E-06| 36  1.21E-06
problem (15). 1.00E-02 | 11  1.38E-04| 41  1.38E-04

Example 5.1:[3, Example 1] There ar& known sensors 1.00E-01 | 12 1.73E-02| 39 1.73E-02
(anchors){a;} in the plane £ = 2) whose coordinates are 1.00E+00 | 42 146 37 1.45

TABLE |
{(65 4)T7 (07 _1O)T7 (57 _3)T7 (17 _4)Ta (35 _3)T} . MEAN SQUARED POSITION ERROR OKTRS AND LAGD METHODS

The unknown source’s coordinates ate= (—2,3)7. The
exact distance$||x — a;||) and the observed noisy distances

= |x —a; ;) are given b . .
(ri = [lx — ]| + &) g y B. Including More Constraints

exact 8.0622 13.1529 9.2195 7.6157 7.8102 One advantage of the Lagrangian dual approach is its capa-
noisy 8.0051 13.0112 9.1138 7.7924 8.0210. bility of incorporating more information about the unknown
Each noise component, is a realization of a GaussianSeurce. For example, we may have a good chance to know in

distributed random variable with mean zero and standa?gvance the distance to the ancherfrom the sourcex, i.e.,
deviation0.1. The GTRS solution i§—2.018,2.9585), which IIx —as]| =7 for some;.

LAvailable from http://www.math.nus.edu.sghattohkc/SNLSDP.html. Such constraints are common in the literature of Euclidean
2Available from http://iwww.personal.soton.ac.uk/hdqi. distance matrix completion problems in the form of that the
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distanceD,; is known for some paifi, j). For example, such oo

. . h . . e ¥,

constraints appear in the Euclidean distance matrix compl °*¢ ‘\;\\\‘}}\; %/‘ oo b Fo o0 "‘:,
. . . . o
tion formulation of the famousissing number problem of  ° E.; ;;{f’” 02 v Weg e v

. . ¥
sphere packingsee [10, Problem 504]). Each of such prior ° e DS LTI AR
. . . . - 02 ~02 ? %o ooy ¢
information would introduce one more quadratic constraant MM S o IO
the GTRS approach, which would need one more Lagrangii ¢ +* ./ 0. AR $ 8% wmo
multiplier p in order to state the corresponding condition: o1 w2 o o2 oi oo i oz 0 oz o oe

LagD: RMSD = 1.13e-01 LagD-Refinement: RMSD = 2.66e-02

of (26). The existing global optimality theory as well as the
GTRS algorithm (i.e., bisection method) for the one quadratFig. 1. Comparison of localizations gD before and after the Refinement
equation case would run into difficulties in extensionn Step on Example 5.4 = 100, 4 outer anchorsfz = 0.3, nf = 0.2, random

. . tate 0. The symbol+ represents the true positions of the sensors and
contrasf[, the Lagrang|an dugl approach would just take aucfepresents the localization tyagD.
constraint as a linear equation because we always have (from
Partli(c))

edge setM is defined by
M=A{(i,k) : ||xi—ag]| <R, 1<i<n, 1<k<m}.

12 = |x — ayl|? = Yin = 0.5(Eim, Y), (45)

where E;; is the zero matrix except its having the valuet

the positiong(4, j) and (7, 4). It is assumed that the distancés andd;;, are perturbed by
In this case, the problem (9) then becomes random noises;; ande;;, as follows:
1 = iy dii = i — X1 nf I ‘,‘ eN
min LY 4+ DI st { AY)=b, Y € KL(r) io= k=l nf eyl (,9)
2 (Bin, Y) =21, die = xi—al[L4nf xeyl (i.k) €M,

We can derive its corresponding Lagrangian dual problefynere,. ¢, are independent standard normal random vari-

which is also unconstrained. Consequently, it would hg)as andhf is the noisy factor taken to bef — 0.2.
straightforward to generalize the Lagrangian dual apgroac Example 5.5:This is the test problem in [29] and is a

to including this case. In order to appreciate this cap@biliy,qgification of Example 5.4 in the following way. A total

of the Lagrangian dual approach, let us have another 100k @t sensors are generated as in Example 5.4n8et0.1N

Example 5.1. . _ (i.e., 10% of the sensors are anchors) and= N — m are

~ Example 5.3:Assume that the distance betweerandaz nknown sensors. The remaining calculations are the same as
is known. That is||x —az|| = v/173 (note that it is the largest ;, Example 5.4.

distance among all measured distances). The Lagrangidn dugg follow the SNLSDP solver [5] and also for the compar-

approach foundx = (—1.9982,3.0003), a much accurate json pyrpose, we calculate the Root Mean Square Distance

localization with the errofx — (~2,3)|| = 1.8 x 107%. If  RMSD) to measure the accuracy of the estimated positions
the distances to the first two anchasis and a, are also g

X, 1=1,...,n:
respectively known to bg/65 and+/173, the Lagrangian dual 12
approach would recover the troewith the error2.5 x 1078, 1 o )
The latter case would enforce two more quadratic constaint RMSD = ﬁ Z lI%i — x| .
i=1

to the GTRS approach.
One of the very useful techniques that have been developed

in [5] to improve the localization quality of th&NLSDP
solver is the Refinement step, which is a gradient descent
Another advantage of the Lagrangian dual approach is thakthod applied to the objective distance function defined in
the Euclidean distance embedding reformulation (7) of tllg, Eq.(18)] (for details, see [5, Part V]). We found that
SSLP does not depend on the number of the unknown soufgy Refinement step also improves the localization quality
as long as we can define the initial matiX Therefore, it of our LagD solver. Figure 1 shows the improvement of the
can handle multiple unknown sources. Below, we demonstrgg@alization of LagD before and after the Refinement step.

its efficiency by comparison with the well known SDP relaxHence, we will report the resultingVSD by LagD with this
ation method studied in [5] (denoted IBNLSDP) on several refinement step.

C. The Case of Multiple Sources

standard test problems. . In Tables Il and Ill,cpu time are in seconds.t er denotes
Example 5.4:This is the test problem in [5, II(C)]. The the number of iterations used. FamgD, it is the number
true positions of then unknown sensorsx,...,x, are of jterations used byHANSO. The initial point for HANSO is

independently generated by the uniform distribution on thgovided by the Newton method [23] on the convex relaxation
unit square[—0.5,0.5]%. The edge set\" is generated by problem of (7) with K () being replaced by its convex
ConSidering Only pail’s of pOintS that have distances lean thcounterparﬂ(:’i_ All other parameters oHANSO are taken to
R =0.3: be their default values.
T _ _ .. We include here a brief discussion on the computational

N=AG)) ¢ Ik =xll < R 1<i<jsn}. complexity of the algorithms involved. The complexity of
There are four/p = 4) anchors either taking to be (auter LagD comes from two parts. One is computing the initial
anchorg[+0.45, +0.45] or (b)inner anchorg+0.2, £0.2]. The point by solving the convex relaxation problem of (7), which
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is done by the quadratically convergent Newton's method ahd Qi and Yuan [24] for Euclidean distance embedding
[23]. The other part is from thélANSO package. We refer problems. When specialized to the SSLP, the Lagrangian dual
to [19] for its computational analysis (we report the numbepproach is proved to be equivalent to the GTRS approach.
of iterations used byHANSO in Tables Il and Ill). As for the Moreover, a nice geometrical interpretation of the assionpt
GTRS, itis also an iterative algorithm and its complexityg® used by the GTRS approach is revealed. We also study when
on how the functiony(p) is computed or approximated. Wethe Lagrangian dual problem has an optimal solution and
refer to [3] for details. TheSNLSDP solver solves a convex characterized when the zero duality gap holds for the SSLP.
SDP and hence has polynomial time complexity, which doesThe reported numerical results on SSLP are consistent with
not necessarily imply it is faster (see Tables Il and 1lI). our theory in the sense that the resulting algorithagD
provides localizations of similar quality as that @GTRS.

NExampleS ItLagD _ Slft\'LSDP . Moreover, the numerical results on multiple source loedion
ame | n cpu er rms cpu er rms . .
60 1 06 35 ES12E3 16 21  828E2 problems clearly shows the great potential of the Lagrangia
80 | 04 17 345E-2| 2 22  3.82E-2 dual approach when compared to the pop&islt SDP solver
5.4(a) igg 0-;'1 ;g ggggg lg gi %gig% [5]. We also show that the Lagrangian dual approach can
4Aa . - . - . . .
180 5> 23 189E2| 39 24 191E-2 handle the fixed d|stgnce constraint .of the type (45). A more
200 3 24 1.84E-2| 61 23 1.87E-2 general type of the distance constraint takes the form:
250 | 5 26  1.65E-2| 182 23  1.67E-2
300 | 10 29 1.44E-2| 494 23  1.46E-2 lij < ||xi — x5 < wij for some(s, j),
60 | 0.3 16 4.49E2| 1 21 9.86E=2
?go 8-2 ig ggggg i gg g‘;ggg where ¢;; and u,;; are the lower and upper bounds of the
54() | 150 | 1 15 198E-2| 20 24 198E-2 distance _bet\_/veeni andx;. Such constraints arise from many
180 1 16 1.83E-2| 43 23 1.83E-2 real applications, see e.g., [15]. However, the currennfof
ggg g ig i-igg-g 182 gg i-igé—% the Lagrangian dual approach cannot be directly used to deal
300 | 10 17 137E-2| 563 23  136E-2 with such constraints. We leave this as a future researgb.top

TABLE I A_nother_ f_uture topic, as suggested_ by one r_eferee, is to
COMPARISON OFLAGD AND SNLSDP ON EXAMPLE 5.4(a): OUTER design efficient algorithms for the maximum likelihood (ML)
ANCHORS AND EXAMPLE 5.4(b): INNER ANCHORS. formulation of the localization problem based on the effitie
methods such as the Lagrangian dual approach for the least-
squares (LS) formulation. A pioneering work has been done
We report the average results 60 randomly generated in [4], [2] which makes use of the GTRS to solve the ML
instances for each of the examples. Thesd columns in formulation of the SSLP. We may follow a similar framework
Tables Il and 11l show that bothagD and SNLSDP yielded of [4] to design a sequential algorithm that uses the Lageamg
the localizations of similar quality in terms ofrsd (i.e., allin dual approach in each step.
the order ofl0~2). However, thecpu used byLagD is only Acknowledgments.We would like to thank the three ref-
a small fraction of that used b$NLSDP, especially when erees as well as the associate editor for their constructive
n is of a few hundreds. Those results clearly demonstrateggestions, which have significantly improved the quatity
the potential of the Lagrangian dual approach for variotike paper.
localization problems. The research serves a good starting

point for further investigations to be discussed in the next REEFERENCES
section.
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