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A Lagrangian Dual Approach to the Single-Source
Localization Problem

Hou-Duo Qi, Naihua Xiu, and Xiaoming Yuan

Abstract—The single-source localization problem (SSLP),
which is nonconvex by its nature, appears in several important
multidisciplinary fields such as signal processing and the global
positioning system. In this paper, we cast SSLP as a Euclidean
distance embedding problem and study a Lagrangian dual
approach. It is proved that the Lagrangian dual problem must
have an optimal solution under the generalized Slater condition.
We provide a sufficient condition for the zero-duality gap and
establish the equivalence between the Lagrangian dual approach
and the existing Generalized Trust-Region Subproblem (GTRS)
approach studied by Beck et al. [3]. We also reveal new implica-
tions of the assumptions made by the GTRS approach. Moreover,
the Lagrangian dual approach has a straightforward extension to
the multiple-source localization problem. Numerical simulations
demonstrate that the Lagrangian dual approach can produce
localization of similar quality as the GTRS and can significantly
outperform the well-known semidefinite programming solver
SNLSDP for the multiple source localization problem on the tested
cases.

Index Terms—Euclidean distance matrix, Lagrangian duality,
orthogonal projection, low-rank approximation.

I. I NTRODUCTION

T HE single-source localization problem (SSLP) appears in
many important applications including the mobile phones

localization [26], [7], [25], localization of the wirelessE911
calls [4], and the GPS localization [2] (to name just a few ap-
plications). The most often studied criteria for mathematically
formulating SSLP are the maximum likelihood (ML) criterion
and the least-squares (LS) in the squared domain [4, Sect. 1.2].
Both ML and LS formulations are nonconvex. While the ML
criterion has the property of a statistical inference, the LS
has the unrivaled property that it can be solved to its global
optimality. This is a rare property for nonconvex problems and
was first revealed by Beck et al. [3]. Moreover, the subsequent
papers [4], [2] show that this property of the LS formulation
plays a key role in designing efficient iterative algorithmsfor
the ML formulation. In this paper, we will focus on the LS
formulation.

An important approach that emerged from [3] is to refor-
mulate the LS problem as a Generalized Trust-Region Sub-
problem (GTRS), which has just one constraint of quadratic
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equation. It is known that the GTRS possesses a necessary
and sufficient condition that characterizes its optimal solutions
[21], [11]. Beck et al. [3] studied in detail when the GTRS can
be effectively and practically solved to its global optimality.

Another group of important contributions to source localiza-
tion problems come from the Euclidean distance embedding
for sensor network localization, which can be cast as a
multiple-source localization problem (see the nice surveys
[18], [20] and the references therein). An outstanding feature
in this group of papers is that the embedding problem can be
related to the celebrated semi-definite programming (SDP),see
[1], [5], [28]. The embedding problem can also be relaxed to
the nearest Euclidean distance matrix problem [17], [12], [14],
[23] and it can also be tackled directly through a Lagrangian
dual approach with a majorized penalty technique [24].

However, there is lack of study whether the research
from the Euclidean distance embedding has any en-
hanced/favourable properties for SSLP. This paper tries to
initiate such a study by exploring the relationship between
the Lagrangian dual approach and the GTRS approach. The
major contributions of this paper are summarized as follows.
(i) We initiate the study of the Lagrangian dual approach

to the SSLP. We develop a new set of mathematical
tools showing that the Lagrangian dual approach is well
defined (e.g., the dual problem must admit an optimal
solution) under the generalized Slater condition. Those
tools also allow us to characterize a sufficient condition
for the zero-duality gap to hold. We further establish
the equivalence of these two approaches, which are
seemingly unrelated while having surprising connections
because of our results. Also revealed is a new geometrical
interpretation of the assumptions used in the GTRS.

(ii) The Lagrangian dual approach leads to an unconstrained
convex optimization, which can be efficiently solved by
the well-knownHANSO package [22], [19]. Moreover, the
Lagrangian dual approach can handle more constraints
such as the fixed-distance constraint (45), which would
enforce one more quadratic constraint to the GTRS.
In contrast, the global theory and the corresponding
numerical methods of GTRS remain to be investigated
for such cases.

(iii) The application of the Lagrangian dual approach to the
multiple-source localization problem is investigated. The
advantage of the approach is numerically demonstrated
by comparison with the well-knownsemidefinite pro-
grammingsolver SNLSDP developed by Biswas et al.
[5]. On some standard test problems from [5], [29], the
Lagrangian dual approach requires only a small fraction
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of thecpu time of SNLSDP solver and yet provides the
localizations of similar quality.

In the following, we describe the basic model of the SSLP.
Suppose we have a network ofm known sensors (often known
as anchors in the literature of sensor network localization),
whose coordinates areai = xi ∈ ℜr, i = 1, . . . ,m. Suppose
there is single unknown source, whose coordinate inℜr is
denoted asx ∈ ℜr. From the unknown source, each anchorai

receives a signal, which can be converted to Euclidean distance
ri betweenai andx, possibly with contaminated noiseǫi:

ri = ‖ai − x‖+ ǫi, i = 1, . . . ,m.

The SSLP is to findx that solves

min
x∈ℜr

m∑

i=1

(
‖x− ai‖2 − r2i

)2
. (1)

We note that problem (1) is the formulation of the squared-
range-based least squares considered in [3, Sect. B] and is
further called the least squares problem in the squared domain
[4, Eq. (1.3)]. We will study a Lagrangian dual approach for
(1) and establish its links to the GTRS.

The paper is organized as follows. In the next section, we
provide a brief background on Euclidean distance embedding.
In Sect. III, we study the Lagrangian dual approach. We first
reformulate the SSLP as a Euclidean embedding problem,
followed by deriving the Lagrangian dual problem. We then
prove that the dual problem has an optimal solution under the
generalized Slater condition (Prop. 3.4). A sufficient condition
is provided for the zero-duality gap result in Thm. 3.6. In
Sect. IV, we establish the equivalence between the Lagrangian
dual approach and the GTRS. Numerical results in Sect. V
show that the Lagrangian dual approach yields localizationof
similar quality as that by the GTRS. Moreover, we demonstrate
its application to the multiple-source localization problem and
show its efficiency by comparison with the popular semidef-
inite programming solverSNLSDP of [5]. We conclude in
Sect. VI.

II. BACKGROUND ON EUCLIDEAN DISTANCE EMBEDDING

There are three elements that have become basics in the
research of Euclidean distance embedding. The first one is the
definition of the squared Euclidean distance matrix (EDM).
The second are various characterizations of EDMs. And the
third one is the Procrustes analysis that produces the actual
embedding in a Euclidean space. We briefly describe them
one by one. Standard references are [9], [6], [10].

(a) Squared EDM. Let Sn denote the space ofn × n
symmetric matrices equipped with the standard inner product
〈A,B〉 = trace(AB) for A,B ∈ Sn. Let ‖ · ‖ denote the
induced Frobenius norm. LetSn

+ denote the cone of positive
semidefinite matrices inSn (often abbreviated asX � 0 for
X ∈ Sn

+). The so-calledhollow subspaceSn
h is defined by

(“:=” means define)

Sn
h := {A ∈ Sn : diag(A) = 0} ,

wherediag(A) is the vector formed by the diagonal elements
of A. A matrix D is a (squared) EDM ifD ∈ Sn

h and there

exist pointsp1, . . . ,pn in ℜr such thatDij = ‖pi − pj‖2
for i, j = 1, . . . , n. ℜr is often referred to as the embedding
space andr is the embedding dimension when it is the smallest
suchr. All vectors are treated as column vectors.xT means
the transpose of the vectorx, hence it is a row vector.

We note thatD must belong toSn
h if it is an EDM. We let

En be the set of all EDMs inSn, andEn(r) be the set of all
EDMs in Sn with embedding dimensions not greater thanr.

(b) Characterizations of EDM. It is well-known that a
matrix D ∈ Sn is an EDM if and only if

D ∈ Sn
h and J(−D)J � 0, with J := I − eeT /n, (2)

whereI (or In when the indication of dimension is needed)
is the identity matrix inSn ande is the vector of all ones in
ℜn. The origin of this result can be traced back to Schoenberg
[27] and an independent work [30] by Young and Householder.
See also Gower [16] for a nice derivation of (2). Moreover,
the corresponding embedding dimension isr = rank(JDJ).
Consequently, we have

En = {A : A ∈ Sn
h and − JAJ � 0}

and

En(r) = En ∩ {A ∈ Sn : rank(JAJ) ≤ r} .

We note thatEn is a closed convex cone andEn(r) is closed,
but not convex.

It is noted that the matrixJ , when treated as an operator, is
the orthogonal projection onto the subspacee⊥ := {x ∈ ℜn :
eTx = 0}. The characterization (2) simply means thatD is an
EDM if and only if D ∈ Sn

h andD is negative semidefinite
on the subspacee⊥:

−D ∈ Kn
+ :=

{
A ∈ Sn : xTAx ≥ 0, x ∈ e⊥

}
. (3)

It follows thatKn
+ is a closed convex cone.

We therefore have another characterization ofEn:

En = Sn
h ∩ (−Kn

+). (4)

For En(r), we have

En(r) = Sn
h ∩ (−Kn

+(r)), (5)

where

Kn
+(r) := Kn

+ ∩ {A ∈ Sn : rank(JAJ) ≤ r} .

(c) Euclidean Embedding.If D is an EDM with embed-
ding dimensionr, then−JDJ � 0. Let

−JDJ/2 = PPT

whereP ∈ ℜn×r. Let pi denote theith column ofPT . It
is known [9] that{p1, . . . ,pn} are the embedding points of
D in ℜr, i.e., Dij = ‖pi − pj‖2. We also note that any
rotation and shifting of{p1, . . . ,pn} would give the sameD.
In other words, there are infinitely many sets of embedding
points. To find a desired set of embedding points that match
positions of the existing anchors, one needs to conduct the
Procrustes analysis, which is a simple computational scheme,
see [9, Chp. 5]. We omit the details.
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III. L AGRANGIAN DUAL APPROACH

In this section, we first cast problem (1) as a Euclidean
distance embedding problem. We then derive its Lagrangian
dual problem. Finally, we study when the dual problem admits
an optimal solution and provides a sufficient condition for the
zero-duality gap.

A. SSLP as Euclidean Distance Embedding

For SSLP (1), we havem known anchors{a1, . . . , am} and
an unknown sourcex ∈ ℜr. Define the EDMY ∗ ∈ Sn (with
n := m+ 1) by (only define the upper triangular part ofY ∗)

Y ∗
ij :=

{
‖ai − aj‖2 if i ≤ j = 2, . . . ,m
‖ai − x‖2 if j = m+ 1.

It follows from (2) that−JY ∗J � 0 and one set of embedding
points{p1, . . . ,pn} in ℜr would be the columns ofPT , where
P ∈ ℜn×r satisfies

−JY ∗J/2 = PPT . (6)

Moreover, {a1, . . . , am,x} would be obtained from
{p1, . . . ,pn} through the Procrustes analysis.

However, the only issue with the above procedure is that the
distances in the last columns ofY ∗ (the distances betweenai
andx) are not completely known so that the decomposition of
(6) is not possible. We only know the contaminated distance
measurementri betweenai and x. We need to recover the
true distances from those measured distances{ri}.

DefineD ∈ Sn by

Dij :=

{
‖ai − aj‖2 if i ≤ j = 2, . . . ,m
r2i if j = m+ 1.

Our purpose is to recoverY ∗ from D. We know thatY ∗ has
to satisfy the following conditions:

Y ∗
ij = Dij for i < j = 2, . . . ,m, Y ∗ ∈ En,

and Y ∗ has to have the embedding dimensionr. We are
therefore to recoverY ∗ through the following optimization
problem:

Y ∗ = argmin ‖Y −D‖2/2
s.t. Yij = Dij , i < j = 2, . . . ,m, Y ∈ En(r).

(7)

If ri = ‖ai − x‖ (true distances), thenY ∗ = D is the
original EDM. Otherwise, this problem is to calculate the
nearest EDM fromD subject to the requirements that the
solution must obey the pairwise distances among the known
anchors{ai} and that it has to have an embedding dimension
not greater thanr.

Once the optimal solutionY ∗ of (7) is obtained, we can use
(6) and the Procrustes analysis to obtain the actual embedding
{a1, . . . , am,x}. The solution method that we propose in this
paper for (7) is the Lagrange dual approach. We will show
that this approach has some nice and important properties
as mentioned in Introduction. In particular, it has a close
relationship with the GTRS. We describe this approach below.

B. The Lagrangian Dual Problem

The purpose of this part is to solve (7) through its La-
grangian dual problem. Let us first define a few more nota-
tions. Define two linear mappingsA1 : Sn 7→ ℜn andA2 :
Sn 7→ ℜm(m−1)/2 by (we identify a vectorv ∈ ℜm(m−1)/2

by ordering its components asvij , i < j = 2, . . . ,m)

A1(Y ) := diag(Y ) and (A2(Y ))ij := Yij .

Correspondingly, definebd ∈ ℜn andbo ∈ ℜm(m−1)/2 by

bd := 0 and boij := Dij ∀ i < j = 2, . . . ,m.

Let

A :=

(
A1

A2

)
and b := −

(
bd

bo

)
. (8)

We letA∗ : ℜn ×ℜm×(m−1)/2 7→ Sn be the adjoint ofA.
Because of (5), problem (7) is equivalent to

min
1

2
‖Y −D‖2 s.t. A(Y ) = −b and − Y ∈ Kn

+(r),

or equivalently by replacingY with −Y

vp := min
1

2
‖Y +D‖2 s.t.A(Y ) = b andY ∈ Kn

+(r). (9)

The Lagrangian dual function for (9) is

L(Y, y) :=
1

2
‖Y +D‖2 + 〈b −A(Y ), y〉,

whereY ∈ Sn andy ∈ ℜn × ℜm×(m−1)/2. The Lagrangian
dual problem is then given by

vd := max
y∈ℜn×ℜm×(m−1)/2

θ(y), (10)

where
θ(y) := min

Y ∈Kn
+
(r)

L(Y, y).

It always holds thatvp ≥ vd. The quantityvp−vd is called the
duality gap. When this quantity vanishes, we say there is no
duality gap (i.e., zero-duality gap). We now derive an explicit
expression forθ(y).

Given a closed setC ⊂ Sn and X ∈ Sn, let ΠC(X)
denote an optimal solution of the following metric projection
problem:

min ‖Z −X‖2 s.t. Z ∈ C.
WhenC is convex,ΠC(X) is unique. WhenC is not convex,
there may be multiple solutions and we letΠB

C (X) denote the
set of all projections ofX onto C. Let Sn

+(r) be the set of
all positive semidefinite matrices whose ranks are not greater
thanr. Both Sn

+(r) andKn
+(r) are not convex.

Let X have the spectral decomposition

X = PΛ(X)PT ,

whereΛ(X) := Diag(λ(X)), λ1(X) ≥ . . . ≥ λn(X) are the
eigenvalues ofX being arranged in the non-increasing order
andP ∈ On with On being the set of alln × n orthogonal
real matrices. Define

α := {i | λi(X) > λr(X)} andβ := {i | λi(X) = λr(X)} .
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For an index setI ⊆ {1, . . . , n}, XI denotes the submatrix
consisting of the columns inX indexed byI and |I| denotes
the cardinality ofI.

Lemma 3.1:[13, Lemma 2.4] The setΠB
Sn
+
(r)(X) can be

characterized as follows.

ΠB
Sn
+
(r)(X) =

{
[Pα, PβVβ ]Diag(v)[Pα, PβVβ ]

T
∣∣ Vβ ∈ O|β|

}

where v := ((λ1(X))+, . . . , (λr(X))+, 0, . . . , 0)
T ∈

ℜ|α|+|β|.
Lemma 3.2:[24, Prop. 3.3] The setΠB

Kn
+
(r)(X) can be

characterized as follows.

ΠB
Kn

+
(r)(X) = ΠB

Sn
+
(r)(JXJ) + (X − JXJ). (11)

Moreover, for any pair(ΠKn
+
(r)(X), ΠSn

+
(r)(JXJ)) satisfy-

ing

ΠKn
+
(r)(X) = ΠSn

+
(r)(JXJ) + (X − JXJ),

we have

‖ΠKn
+
(r)(X)‖2 = ‖ΠSn

+
(r)(JXJ)‖2 + ‖X − JXJ‖2, (12)

JΠKn
+
(r)(X)J = ΠSn

+
(r)(JXJ), (13)

and

〈ΠKn
+
(r)(X), X −ΠKn

+
(r)(X)〉 = 0. (14)

We now derive an explicit formula forθ(y).

θ(y) = min
Y ∈Kn

+
(r)

L(Y, y)

= min
Y ∈Kn

+
(r)

1

2
‖Y +D‖2 − 〈Y, A∗(y)〉+ 〈b, y〉

= min
Y ∈Kn

+
(r)

1

2
‖Y − (−D +A∗(y))‖2

−1

2
‖ −D +A∗(y)‖2 + 1

2
‖D‖2 + 〈b, y〉

=
1

2
‖ΠKn

+
(r)(−D +A∗(y))− (−D +A∗(y))‖2

−1

2
‖ −D +A∗(y)‖2 + 1

2
‖D‖2 + 〈b, y〉

= −1

2
‖ΠKn

+
(r)(−D +A∗(y))‖2 + 1

2
‖D‖2 + 〈b, y〉.

The last equality used (14). Hence, the dual problem (10)
becomes (in the form of minimization)

−vd = min Θ(y), (15)

where

Θ(y) = −θ(y) =
1

2
‖ΠKn

+
(r)(−D+A∗(y))‖2−〈b, y〉−1

2
‖D‖2.

We note thatΘ(·) is convex. In the next section, we study
when the problem (15) has an optimal solution and when the
duality gap vanishes (i.e.,vp = vd).

C. Existence of Optimal Dual Solutions and Zero Duality Gap

Let us consider the linear system

A(Y ) = b and Y ∈ Kn
+, (16)

with A and b defined in (8). It is obvious that the linear
mappingsA1 andA2 are linearly independent. We say that
the (generalized) Slater condition for (16) holds if there exists
Y 0 ∈ Kn

+ such that

Y 0 ∈ int(Kn
+) and A(Y 0) = b, (17)

whereint(Kn
+) is the interior ofKn

+.
The Slater condition is closely related to the polar cone

(Kn
+)

∗ of Kn
+:

(Kn
+)

∗ :=
{
X ∈ Sn : 〈X, A〉 ≤ 0 ∀ A ∈ Kn

+

}

=

{
Q

[
Z 0
0 0

]
Q : Z ∈ −Sn−1

+

}
, (18)

where the last equality used [23, Eq. (16)] andQ is the
Householder matrix defined by

Q := I − 2

vT v
vvT with v := [1, . . . , 1,

√
n+ 1]T ∈ ℜn.

The following result is a direct consequence of a result of Gao
[13] when applied to (16).

Proposition 3.3: [13, Prop. 2.20] If the Slater condition
holds for (16), then〈b, y〉 < 0 for any 0 6= y ∈ ℜn ×
ℜm×(m−1)/2 satisfyingA∗(y) ∈ (Kn

+)
∗.

The following result shows that the Slater condition guaran-
tees the existence of an optimal solution for the dual problem
(15). The proof of the following result is motivated by [13,
Prop. 4.16].

Proposition 3.4:Assume that the Slater condition holds for
(16). Then the level setLc := {y ∈ ℜn×ℜm(m−1)/2 : Θ(y) ≤
c} is bounded for any constantc ∈ ℜ. Consequently, the
Lagrangian dual problem (15) must have an optimal solution.

Proof: We prove the conclusion of this result by con-
tradiction. Suppose that there exists a constantc such that
Lc is unbounded. There must be a sequence{yk} satisfying
‖yk‖ → ∞ and Θ(yk) ≤ c for all yk. Without loss of
generality, we assume thatyk/‖yk‖ → ȳ. DenoteBk :=
(−D + A∗(yk))/‖yk‖. We havelimk→∞ Bk = A∗(ȳ). We
consider two separate cases. Case 1:A∗(ȳ) 6∈ (Kn

+)
∗ and Case

2: A∗(ȳ) ∈ (Kn
+)

∗.
Case 1.Denote

Q(A∗(ȳ))Q =:

[
B̂1 b̂

b̂T b̂0

]
with B̂1 ∈ Sn−1. (19)

The Householder matrixQ and the projection matrixJ have
the nice relationship.

J = Q

[
In−1 0
0 0

]
Q. (20)

It follows that

J(A∗(ȳ))J = Q

[
B̂1 0
0 0

]
Q. (21)

BecauseQ2 = I, we have from (21) that

‖ΠSn
+
(r)(J(A∗(ȳ))J)‖2 = ‖ΠSn−1

+ (r)(B̂1)‖2 (22)
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and
‖A∗(ȳ)− J(A∗(ȳ))J‖2 = 2‖b̂‖2 + b̂20.

In this case,A∗(ȳ) 6∈ (Kn
+)

∗. That is (because of (18)),

Q(A∗(ȳ))Q 6∈
{[

Z 0
0 0

]
: Z ∈ −Sn−1

+

}
.

It follows from (19) that there are two possibilities. Subcase
1.1: B̂1 6∈ −Sn−1

+ and Subcase 1.2:[b̂T , b̂0] 6= [0, 0]. For
Subcase 1.1,̂B1 must have at least one positive eigenvalue.
Then it follows from (22) that there existsδ1 > 0 such that

‖ΠSn
+
(r)(JA∗(ȳ)J)‖2 = ‖ΠSn−1

+
(r)(B̂1)‖2 ≥ δ1.

For Subcase 1.2, there existsδ2 > 0 such that

‖A∗(ȳ)− JA∗(ȳ)J‖2 = 2‖b̂‖2 + b̂20 ≥ δ2.

By the continuity of‖ΠKn
+
(r)(·)‖2 (due to it being convex, see

Lemma 3.5 below), we have

lim
k→∞

‖ΠKn
+
(r)(B

k)‖2

= lim
k→∞

(
‖ΠSn−1

+
(r)(JB

kJ)‖2 + ‖Bk − JBkJ‖2
)

= ‖ΠSn
+
(r)(JA∗(ȳ)J)‖2 + ‖A∗(ȳ)− JA∗(ȳ)J‖2

≥ min{δ1, δ2} > 0,

where the first equation used (12). Hence, we have

lim
k→∞

Θ(yk)

= lim
k→∞

(
1

2
‖ΠKn

+
(r)(−D +A∗(yk))‖2 − 〈b, yk〉

)

≥ lim
k→∞

‖yk‖
(
1

2
‖yk‖‖ΠKn

+
(r)(B

k)‖2 − ‖b‖)
)
= +∞.

Case 2.We note that̄y 6= 0. It follows from Prop. 3.3 that
〈b, ȳ〉 < 0. Therefore,

lim
k→∞

Θ(yk) ≥ lim
k→∞

‖yk‖(−〈b, yk/‖yk‖〉)

≥ −〈b, ȳ〉
2

lim
k→∞

‖yk‖ = +∞.

Either of the cases contradicts our assumption that{Θ(yk)}
is bounded. This contradiction establishes the boundedness of
the level set.

The generalized Slater condition is a standard assumption
in optimization. It is worth noting that the condition (17) is
equivalent to the following Euclidean distance matrix comple-
tion problem: There exists Euclidean distance matrixY such
that Yij = Dij for i < j = 2, . . . ,m and the embedding
dimension ofY is (n − 1). We omit its proof. However, it
is also worth mentioning that there may exist other EDMY
such thatY ij = Dij for i < j = 2, . . . ,m with its embedding
dimension strictly less than(n− 1). We do not know whether
the generalized Slater condition is also necessary for Prop. 3.4.
Next we present our zero duality gap result, which needs the
following result.

Lemma 3.5:[24, Prop. 3.4] Let

Ξe
r(Z) :=

1

2
‖ΠKn

+
(r)(Z)‖2, ∀ Z ∈ Sn.

ThenΞe
r(·) is convex and its subdifferential is the convex hull

of ΠB
Kn

+
(r)(Z):

∂Ξe
r(Z) = conv

{
ΠB

Kn
+
(r)(Z)

}
.

Theorem 3.6:Suppose that̄y is an optimal solution of the
dual problem (15). Letλ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues
of J(−D + A∗(ȳ))J . If λr+1 ≤ 0 or in the case ofλr+1 >
0, λr > λr+1, thenΠB

Kn
+
(r)(−D + A∗(ȳ)) contains just one

element, denoted byY := ΠKn
+
(r)(−D + A∗(ȳ)). Moreover,

Y globally solves the problem (9) and the zero duality holds.
Proof: Since Θ(·) is convex, ȳ is an optimal solution

of (15) if and only if 0 ∈ ∂Θ(ȳ). We note thatΘ(·) is
composition ofΞe

r(·) andA∗, i.e.,

Θ(y) = Ξe
r(−D +A∗(y))− 〈b, y〉 − 1

2
‖D‖2.

By the chain rule of the subdifferential, we have

∂Θ(y) = A (∂Ξe
r(−D +A∗(y)))− b (23)

= A
(

conv
{
ΠB

Kn
+
(r)(−D +A∗(y))

})
− b

= A
(

conv
{
ΠB

Sn
+
(r)(J(−D +A∗(y))J)

}

−(−D +A∗(y)− J(−D +A∗(y))J)
)
− b.

The second equality used Lemma 3.5 and the last equality
used Lemma 3.2.

Under the condition in the theorem, it is easy to verify from
Lemma 3.1 thatΠB

Sn
+
(r)(J(−D+A∗(ȳ))J) is singleton. This

implies that∂Θ(ȳ) is singleton. The optimality condition0 ∈
∂Θ(ȳ) means

b = A(Y )

andY = ΠKn
+
(r)(−D +A∗(y)) ∈ Kn

+(r). Therefore,Y is a
feasible point of (9). Moreover, we have

vd ≥ Θ(ȳ) = L(Y , ȳ) =
1

2
‖Y +D‖2 + 〈b−A(Y ), ȳ〉

=
1

2
‖Y +D‖2 ≥ vp.

This provesvd = vp because we always havevp ≥ vd. In
other words,Y globally solves the problem (9) and the zero
duality gap holds.

The dual problem is convex and the subdifferential of
Θ(·) can be calculated through (23) and the characterization
of ΠB

Sn
+
(r)(X) in Lemma 3.1. The famousHANSO package

[22], [19] can be used to solve (15). As mentioned in the
introduction, another global method is the GTRS contributed
by Beck et al. [3]. It is surprising that these two approachesare
actually equivalent under reasonable conditions. It is proved
in the next section.

IV. EQUIVALENCE TO GTRS

In this section, we first state the GTRS reformulation by
Beck et al. [3], its global optimality condition, and the assump-
tions that ensure an efficient solution method of the GTRS. We
also study some implications of those assumptions. We then
establish the equivalence between these two approaches.
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A. GTRS and Its Global Optimality Condition

Beck et al. [3, Sect. B] reformulated this problem as the
Generalized Trust-Region Subproblem (GTRS):

min
z∈ℜr+1

‖Az− c‖2 s.t. z
TCz+ 2gT

z = 0, (24)

wherezT := (xT , ρ0) and

A :=




−2aT1 1
...

...
−2aTm 1


 , c :=




r21 − ‖a1‖2
...

r2m − ‖am‖2


 , (25)

C :=

[
Ir 0r×1

01×r 0

]
, g :=

[
01×r

−0.5

]
.

It follows from [21, Thm. 3.2] thatz ∈ ℜr+1 is an optimal
solution of (24) if and only if there existsρ ∈ ℜ such that





(
A

T
A+ ρC

)
z = A

T
c− ρg,

z
TCz + 2gT

z = 0,

A
T
A+ ρC � 0.

(26)

There are two assumptions that ensure an efficient solution
algorithm of (24).

(H1) The matrixA defined in (25) has full column rank.
(H2) The matrix (A

T
A + ρC) is positive definite, whereρ

satisfies (26).

Under the two assumptions,ρ is the unique solution of

ϕ(ρ) = 0 and A
T
A+ ρC ≻ 0, (27)

where
ϕ(ρ) := ẑ(ρ)TCẑ(ρ) + 2gT

ẑ(ρ)

and
ẑ(ρ) := (A

T
A+ ρC)−1(A

T
c− ρg).

Furthermore, there exists an efficient solution method to find
the root of (27) (see [3] for details). It is emphasized in [3,
P.1773] that the “hard case” (i.e.,(A

T
A + ρC) is just posi-

tive semidefinite) never occurred in their extensive numerical
simulations.

We now state a result of implications from those two
assumptions. Without loss of generality and for simplicity,
we assume that the anchors{a1, . . . , am} are centered at
the origin. That is,

∑m
i=1 ai = 0. Otherwise, we can always

consider the points{ā1, . . . , ām} instead of{a1, . . . , am},
whereāi := ai − ā and ā :=

∑m
i=1 ai/m.

Proposition 4.1:Suppose that there is another set ofm
sensors inℜr, denoted by{z̄1, . . . , z̄m}, satisfying
{ ∑m

i=1 ai =
∑m

i=1 z̄i = 0, ‖ai‖ = ‖zi‖
‖z̄i − z̄j‖2 = ‖ai − aj‖2, ∀ i, j = 1, . . . ,m.

(28)

Define

ZT
1 := [z̄1, . . . , z̄m], AT := [a1, . . . , am] andP := UV T ,

whereU andV come from the singular value decomposition

ZT
1 A = UΣV T ,

with Σ being the diagonal matrix of the singular values of
ZT
1 A andU, V ∈ Or. We have the following results.
(i) Assumption (H1) implies

A = Z1P.

(ii) Let x denote an optimal solution of (1) and̄zn denote
an optimal solution of (1) when the set of locations
{z̄1, . . . , z̄m} are used instead of{a1, . . . , am}. Under
Assumption (H2), we must have

z̄n = Px.

Proof: (i) Define the linear operatorL : Sm 7→ Sm by

L(X) := diag(X)eT + ediag(X)T − 2X, ∀ X ∈ Sn.

It follows that
(
L(Z1Z

T
1 )
)
ij

= ‖z̄i‖2 + ‖z̄j‖2 − 2z̄Ti z̄j

= ‖z̄i − z̄j‖2
= ‖ai − aj‖2
=

(
L(AAT )

)
ij
.

The identityL(Z1Z
T
1 ) = L(AAT ) implies

Z1Z
T
1 = AAT . (29)

The full column rank ofA implies thatm ≥ r+1 and the affine
hull of {a1, . . . , am} spansℜr. It follows from [18, Thms. 5.1
and 5.2] that there exists an orthogonal matrixP ∈ Or such
that

Z1P = A and P = UV T , (30)

whereU andV come from the singular value decomposition
ZT
1 A = UΣV T andΣ is the diagonal matrix with the singular

values ofZT
1 A being its diagonal.

(ii) The optimal location ofx is given by

ẑ(ρ) =

[
x

ρ0

]
= (A

T
A+ ρC)−1(A

T
c− ρg) for someρ.

Define

Z1 :=
[
−2Z1 e

]
and P :=

[
P 01×r

0r×1 1

]
.

ThenP is orthogonal and

A =
[
−2A e

]
=
[
−2Z1P e

]
= Z1P . (31)

It is easy to calculate that

P
T
(
Z

T

1 Z1 + ρC
)
P = A

T
A+ ρC ≻ 0.

Therefore,Z
T

1 Z1 + ρC ≻ 0. ReplacingA by Z1 in (26) will
give rise to another set of necessary and sufficient conditions
in terms ofZ1. Define

z̄(ρ) := (Z
T

1 Z1 + ρC)−1(Z
T

1 c− ρg).

It follows from (Z
T

1 Z1 + ρC)−1 = P (A
T
A+ ρC)−1P

T
that

z̄(ρ) = P (A
T
A+ ρC)−1P

T
(Z

T

1 c− ρg)

= P (A
T
A+ ρC)−1(A

T
c− ρg)

= P ẑ(ρ). (32)
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The second equality above used (31) andP
T
g = g. Further-

more, the function

ϕ̄(ρ) := z̄(ρ)TCz̄(ρ) + 2gT
z̄(ρ)

= ẑ(ρ)TP
T
CP ẑ(ρ) + 2gTP ẑ(ρ)

= ẑ(ρ)TCẑ(ρ) + 2gT
ẑ(ρ)

= ϕ(ρ) = 0.

The penultimate equality usedP
T
CP = C andP

T
g = g.

Therefore, z̄(ρ) must be an optimal solution and its last
element must beρ0. Denote the firstm elements of̄z(ρ) by
the vector̄zn. It follows (32) that

z̄(ρ) =

[
z̄n

ρ0

]
=

[
Px

ρ0

]
,

which givesz̄n = Px.
We have two remarks regrading this result.

(R1) Prop. 4.1 has a very nice geometrical interpretation. Let
them known anchors be placed at two sets of locations,
denoted by{a1, . . . , am} and{z̄1, . . . , z̄m} respectively.
Suppose they are centred and obey the pairwise distances
in the sense of (28). Assumption (H1) means that one set
of locations can be obtained from the other through an
orthogonal rotation. As in the result, letx and z̄n denote
the respective optimal solution of (1) when the two sets
of m anchors were used. Assumption (H2) implies that
the recovered locationx of the unknown source can be
obtained through the same orthogonal rotation ofz̄n.

(R2) Without Assumption (H2) (i.e.,A
T
A+ρC is only positive

semidefinite, which is referred to as the “hard case” in
the literature of trust region methods), it is not known
whether we would still have the same interpretation in
(R1). The difficulty lies with the facts that there might
be multiple solutionsx of (1) and that it is very hard to
characterize them (see [21, Sect. 5]).

B. Equivalence to GTRS

Let the optimal solution of (15) be denoted byȳ := (ū, v̄) ∈
ℜn ×ℜm(m−1)/2 (recalln = m+ 1). We assume that

Y = ΠKn
+
(r)(−D +A∗(ȳ)) (33)

solves (9) (suchY exists, for example, under the conditions
in Thm. 3.6).

The Schoenberg-Young-Householder theorem [27], [30]
says (note that(−Y ) is a Euclidean distance matrix as we
negatedY in leading to (9)) that the rows ofZ ∈ ℜn×r,
which satisfies

1

2
JY J = ZZT , (34)

are localizations of(m+ 1) points that satisfy the constraints
in (9). Let zi denote the coordinates (column vector) of the
ith point and

ZT = [z1, . . . , zm+1].

Then we have

−Y ij = ‖zi − zj‖2, ∀ i, j = 1, . . . ,m+ 1 (35)

and

‖zi−zj‖2 = Dij = ‖ai−aj‖2, ∀ i, j = 1, . . . ,m. (36)

Define

z0 :=

m∑

i=1

zi/m andz̄i := zi−z0, ∀ i = 1, . . . ,m+1. (37)

Then the set of locations of the firstm points{z̄1, . . . , z̄m} are
centered at the origin and they obviously satisfy‖z̄i − z̄j‖ =
‖ai − aj‖ for i, j = 1, . . . ,m. According to Prop. 4.1, there
exists an orthogonal matrixP ∈ Or such that

z̄i = Pai, ∀ i = 1, . . . ,m and z̄m+1 = Px, (38)

wherex is the optimal solution of (1). In other words, the
locations of(z1, . . . , zn) can be translated to(a1, . . . , am,x)
after the shifting (37) and rotation (38). We note that those
localizations are also centered:

ZT e =

m+1∑

i=1

zi = 0. (39)

This can be easily verified through (34) asJe = 0. We have
the following technical lemma.

Lemma 4.2:Recall ȳ := (ū, v̄) ∈ ℜm+1 × ℜm(m−1)/2 is
the optimal solution of (15). We have

ūm+1 = −
m∑

i=1

(
‖ai − x‖2 − r2i

)
.

Proof: Throughout this proof, we use the factn = m+1.
Denote [

Ŷ1 ŷ
ŷT ŷ0

]
:= Q(−D +A∗(ȳ))Q,

whereŶ1 ∈ Sm. It follows from (11) that

Y = ΠSn
+
(r)(J(−D +A∗(ȳ))J)

+(−D +A∗(ȳ))− (J(−D +A∗(ȳ))J)

= JY J + (−D +A∗(ȳ))− (J(−D +A∗(ȳ))J)

= 2ZZT + (−D +A∗(ȳ))−Q

[
Ŷ1 0
0 0

]
Q. (40)

The second equality above used (13) and the last equality
used (34) and (20). Because(−Y ) is the EDM generated by
{z1, . . . , zn}, the last column ofY is

Y (:, n) = −[‖z1 − zn‖2, . . . , ‖zm − zn‖2, 0]T .

We compare the last column ofY with the last column of the
right-hand-side matrix in (40).

−




‖z1 − zn‖2
...

‖zm − zn‖2
0


 = 2




〈z1, zn〉
...

〈zm, zn〉
〈zn, zn〉


+




−r21
...

−r2m
ūm+1




−Q

[
Ŷ1 0
0 0

]
Qen.
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Here, we use the structure ofA∗(ȳ), whose last column is
[0, · · · , 0, ūm+1]

T . And en is thenth coordinate vector inℜn.
By the definition ofQ, we haveQen = −e/

√
n and

Q

[
Ŷ1 0
0 0

]
Qen = − 1√

n
Q

[
Ŷ1e
0

]

=

[
− 1√

n
Ŷ1e+

eT Ŷ1e√
n(n+

√
n)
e

0

]
+

[
0

eT Ŷ1e/n

]
.

Therefore, we have

−




‖z1 − zn‖2
...

‖zm − zn‖2
0


 = 2




〈z1, zn〉
...

〈zm, zn〉
〈zn, zn〉


+




−r21
...

−r2m
ūm+1




−




− 1√
n
Ŷ1e+

eT Ŷ1e√
n(n+

√
n)
e

eT Ŷ1e/n


(41)

The last equation in (41) gives

ūm+1 = eT Ŷ1e/n− 2‖zn‖2. (42)

Summing the firstm equations in (41) yields

−
m∑

i=1

‖zi − zn‖2 = 2

m∑

i=1

〈zi, zn〉 −

n∑

i=1

r2i +
1√
n
eT Ŷ1e−

n− 1√
n(n+

√
n)

eT Ŷ1e

= 2

m∑

i=1

〈zi, zn〉 −
n∑

i=1

r2i + eT Ŷ1e/n. (43)

Subtracting (43) from (42) and re-arranging the like-terms
leads to

ūm+1 = −
m∑

i=1

(
‖zi − zn‖2 − r2i

)
− 2〈

m∑

i=1

zi + zn, zn〉

= −
m∑

i=1

(
‖zi − zn‖2 − r2i

)
(by (39))

= −
m∑

i=1

(
‖P (ai − x)‖2 − r2i

)
(by (38))

= −
m∑

i=1

(
‖ai − x‖2 − r2i

)
.

This proves our result.
Now we are ready to present our characterization of the

solution of optimality condition (26). In the characterization,
we list all the assumptions that have been made so far to
clarify the situation when such characterization holds. The first
two assumptions, as assumed in [3], remove the possibility of
“hard case” of the trust region subproblem from happening
and the third condition assumes that the problem (9) can be
solved globally. The result is that there is a close relationship
between the obtained solutions, as characterized below.

Theorem 4.3:Consider the SSLP problem (1). Let the
matricesA and C be defined as in (25). Let̄y := (ū, v̄) ∈
ℜm+1×ℜm(m−1)/2 solve the dual problem (15). Assume that

Assumptions (H1) and (H2) hold and that the matrixY defined
in (33) is an optimal solution of (9). Then, we must have

ρ = −2ūm+1,

whereρ is the (unique) optimal solution of (26). Moreover,
the two problems (1) and (9) return the same optimal objective
value.

Proof: Consider the optimality condition (26). The second
equation in (26) simply requiresρ0 = ‖x‖2. It is easy to see
that

Az = −2




〈a1,x〉
...

〈am,x〉


+ ρ0e, Cz =

[
x

0

]

and

c =




r21
...
r2m


−




‖a1‖2
...

‖am‖2


 =: p1 − p2.

The first equation in (26) can be written as

A
T
(Az+ p2) + ρ

[
x

0

]
= A

T
p1 − ρg. (44)

We note that theith component of(Az + p2) is ‖ai − x‖2.
After re-arranging terms in (44), we obtain

A
T




‖a1 − x‖2 − r21
...

‖am − x‖2 − r2m


 = −ρ

[
0

−0.5

]
− ρ

[
x

0

]
,

which by the definition ofA yields

ρ = 2

m∑

i=1

(
‖ai − x‖2 − r2i

)
= −2ūm+1. (by Lemma 4.2)

Now let {zi} be defined by (37). The optimal objective
value of (9) is

1

2
‖Y +D‖2

=
1

2

m∑

i,j=1

(Y ij +Dij)
2 +

m∑

i=1

(Y i(m+1) +Di(m+1))
2

=
1

2

m∑

i,j=1

(‖zi − zj‖2 −Dij)
2 +

m∑

i=1

(‖zi − zm+1‖2 −Di(m+1))
2 (by (35))

=
m∑

i=1

(‖zi − zm+1‖2 −Di(m+1))
2 (by (36))

=

m∑

i=1

(‖z̄i − z̄m+1‖2 − r2i )
2 (by (37))

=

m∑

i=1

(‖Pai − Px‖2 − r2i )
2 (by (38))

=

m∑

i=1

(‖ai − x‖2 − r2i )
2.
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Hence, the two problems (1) and (9) return the same optimal
objective value.

This result characterizes the nice situation defined by the
assumptions (H1) and (H2). The unpleasant situation happens
when (H1) and (H2) fail to hold. As already remarked in (R2)
after Prop. 4.1, it would be hard to characterize the optimal
solution of the GTRS. The good thing is that the failure of
(H1) or (H2) does not contradict the zero-duality gap resultin
Thm. 3.6. In other words, the Lagrangian dual approach would
still have chance to find the global solution of the SSLP under
this situation.

V. NUMERICAL EXAMPLES

This numerical part includes three subsections. Sub-
sect. V-A uses the existing SSLP test problems to show
that the Lagrangian Dual (denoted asLagD) method pro-
vides localization of similar quality as that by the GTRS.
Subsect. V-B further explores the possibility of includingmore
constraints in the SSLP model. For example, if two more fixed
constraints of the type (45) are added to the model,LagD
can accurately recover the unknown sourcex = (−2, 3) in
Example 5.1. In theory, the Lagrangian dual approach can be
straightforwardly extended to the problem of multiple source
localizations. Subsect. V-C demonstrates its efficiency onthree
standard test problems (e.g., the number of unknown sources
are up to300) by comparison with the popular SDP solver
SNLSDP [5]1. All of our results can be reproduced by using
theMatlab codeLagD2. All tests were carried out using the
64-bit version of MATLAB 2012a on a Windows 7 desktop
with a 64-bit operating system having Intel Core 2 Duo CPU
of 3.16 GHz and 4.0GB of RAM.

A. The Case of Single Source

The single source localization problem, treated as a Least-
Square (LS) problem in [3], [4], can be solved by reformulat-
ing it as a generalized trust-region subproblem (GTRS). The
Lagrangian dual approach, as proved in Thm. 4.3 for this case,
also solves the GTRS under the conditions assumed in [3]. We
use the two examples tested in [3], [4] to verify this theoretical
result. We usedHANSO package to solve the Lagrangian dual
problem (15).

Example 5.1:[3, Example 1] There are5 known sensors
(anchors){ai} in the plane (r = 2) whose coordinates are
{
(6, 4)T , (0,−10)T , (5,−3)T , (1,−4)T , (3,−3)T

}
.

The unknown source’s coordinates arex = (−2, 3)T . The
exact distances(‖x − ai‖) and the observed noisy distances
(ri = ‖x− ai‖+ ǫi) are given by

exact 8.0622 13.1529 9.2195 7.6157 7.8102

noisy 8.0051 13.0112 9.1138 7.7924 8.0210.

Each noise componentǫi is a realization of a Gaussian
distributed random variable with mean zero and standard
deviation0.1. The GTRS solution is(−2.018, 2.9585), which

1Available from http://www.math.nus.edu.sg/∼mattohkc/SNLSDP.html.
2Available from http://www.personal.soton.ac.uk/hdqi.

is a relatively good approximation of the true source location.
The solution obtained by the Lagrangian dual approach is
(−2.0189, 2.9585), same as obtained by GTRS. The Lagrange
multiplier ūm+1 = 1.1122. Therefore,ρ = −2ūm+1 should
be a good approximation to the optimal solution of GTRS by
Thm. 4.3.

Example 5.2:[4, Example 4.3] In this example,100 in-
stances are randomly generated. In each instance, there are5
sensors whose locationsaj and the source locationx are ran-
domly generated from a uniform distribution over the square
[−10, 10]× [−10, 10]. The observed distancesdj are given by
‖aj − x‖ + ǫj with ǫj being independently generated from a
normal distribution with mean zero and standard deviationσ.

We testedGTRS and the Lagrangian dual methodLagD
on Example 5.2.GTRS aims at finding the root ofϕ(ρ) = 0
in (27). It is known that the root is contained in the interval
(ρ,∞) andϕ(ρ) is strictly decreasing over this interval, where

ρ = −1/λ1(C,A
T
A)

and λ1(C,A
T
A) is the largest eigenvalue of the matrix

(A
T
A)−1/2C(A

T
A)−1/2 (see [3, Sect. II(B)]).

In our implementation ofGTRS, we first narrow the half-
line interval (ρ,∞) to (ρ, ρ), where ρ = ρ + 10i0 and i0
is the first positive integeri such thatϕ(ρ + 10i) < 0.
By the strictly decreasing property ofϕ, the root must lie
in the interval(ρ, ρ). We then use the bisection method (as
suggested in [3]) to find the root. The tolerance used to
terminateGTRS is |ϕ(ρ)| ≤ 10−3 (smaller tolerance such
as 10−5 would not achieve significantly more accuracy in
localization). ForGTRS, Iter is the number of function
evaluations ofϕ till the termination. ForLagD, Iter is the
number of iterations used byHANSO package. We also report
the squared position error‖x̄−x‖2, wherex̄ is the solution by
the corresponding method. All results are based on the average
over 100 random realizations. It can be seen thatLagD and
GTRS return localizations with highly similar squared position
errors, which are consistent with our theoretical finding in
Theorem 4.3.

Example 5.2 GTRS LagD
σ Iter ‖x̄− x‖2 Iter ‖x̄− x‖2

1.00E-03 11 1.20E-06 36 1.21E-06
1.00E-02 11 1.38E-04 41 1.38E-04
1.00E-01 12 1.73E-02 39 1.73E-02
1.00E+00 42 1.46 37 1.45

TABLE I
MEAN SQUARED POSITION ERROR OFGTRS AND LAGD METHODS

B. Including More Constraints

One advantage of the Lagrangian dual approach is its capa-
bility of incorporating more information about the unknown
source. For example, we may have a good chance to know in
advance the distance to the anchorai from the sourcex, i.e.,

‖x− ai‖ = ri for somei.

Such constraints are common in the literature of Euclidean
distance matrix completion problems in the form of that the
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distanceDij is known for some pair(i, j). For example, such
constraints appear in the Euclidean distance matrix comple-
tion formulation of the famousKissing number problem of
sphere packing(see [10, Problem 504]). Each of such prior
information would introduce one more quadratic constraintto
the GTRS approach, which would need one more Lagrangian
multiplier ρ in order to state the corresponding conditions
of (26). The existing global optimality theory as well as the
GTRS algorithm (i.e., bisection method) for the one quadratic
equation case would run into difficulties in extension.In
contrast, the Lagrangian dual approach would just take sucha
constraint as a linear equation because we always have (from
Part II(c) )

r2i = ‖x− ai‖2 = Yin = 0.5〈Ein, Y 〉, (45)

whereEij is the zero matrix except its having the value1 at
the positions(i, j) and(j, i).

In this case, the problem (9) then becomes

min
1

2
‖Y +D‖2 s.t.

{
A(Y ) = b, Y ∈ Kn

+(r)
〈Ein, Y 〉 = 2r2i

We can derive its corresponding Lagrangian dual problem,
which is also unconstrained. Consequently, it would be
straightforward to generalize the Lagrangian dual approach
to including this case. In order to appreciate this capability
of the Lagrangian dual approach, let us have another look at
Example 5.1.

Example 5.3:Assume that the distance betweenx anda2

is known. That is,‖x−a2‖ =
√
173 (note that it is the largest

distance among all measured distances). The Lagrangian dual
approach foundx = (−1.9982, 3.0003), a much accurate
localization with the error‖x − (−2, 3)‖ = 1.8 × 10−3. If
the distances to the first two anchorsa1 and a2 are also
respectively known to be

√
65 and

√
173, the Lagrangian dual

approach would recover the truex with the error2.5× 10−8.
The latter case would enforce two more quadratic constraints
to the GTRS approach.

C. The Case of Multiple Sources

Another advantage of the Lagrangian dual approach is that
the Euclidean distance embedding reformulation (7) of the
SSLP does not depend on the number of the unknown source
as long as we can define the initial matrixD. Therefore, it
can handle multiple unknown sources. Below, we demonstrate
its efficiency by comparison with the well known SDP relax-
ation method studied in [5] (denoted bySNLSDP) on several
standard test problems.

Example 5.4:This is the test problem in [5, III(C)]. The
true positions of then unknown sensorsx1, . . . ,xn are
independently generated by the uniform distribution on the
unit square[−0.5, 0.5]2. The edge setN is generated by
considering only pairs of points that have distances less than
R = 0.3:

N = {(i, j) : ‖xi − xj‖ ≤ R, 1 ≤ i < j ≤ n} .
There are four (m = 4) anchors either taking to be (a)outer
anchors[±0.45,±0.45] or (b) inner anchors[±0.2,±0.2]. The
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Fig. 1. Comparison of localizations ofLagD before and after the Refinement
step on Example 5.4:n = 100, 4 outer anchors,R = 0.3, nf = 0.2, random
state0. The symbol+ represents the true positions of the sensors and⋄
represents the localization byLagD.

edge setM is defined by

M = {(i, k) : ‖xi − ak‖ ≤ R, 1 ≤ i ≤ n, 1 ≤ k ≤ m} .
It is assumed that the distancesdij anddik are perturbed by
random noisesǫij andǫik as follows:

dij = ‖xi − xj‖|1 + nf ∗ ǫij | (i, j) ∈ N
dik = ‖xi − ak‖|1 + nf ∗ ǫij | (i, k) ∈ M,

whereǫij , ǫik are independent standard normal random vari-
ables andnf is the noisy factor taken to benf = 0.2.

Example 5.5:This is the test problem in [29] and is a
modification of Example 5.4 in the following way. A total
of N sensors are generated as in Example 5.4. Setm = 0.1N
(i.e., 10% of the sensors are anchors) andn = N − m are
unknown sensors. The remaining calculations are the same as
in Example 5.4.

To follow theSNLSDP solver [5] and also for the compar-
ison purpose, we calculate the Root Mean Square Distance
(RMSD) to measure the accuracy of the estimated positions
x̂i, i = 1, . . . , n:

RMSD =
1√
n

(
n∑

i=1

‖x̂i − xi‖2
)1/2

.

One of the very useful techniques that have been developed
in [5] to improve the localization quality of theSNLSDP
solver is the Refinement step, which is a gradient descent
method applied to the objective distance function defined in
[5, Eq.(18)] (for details, see [5, Part V]). We found that
this Refinement step also improves the localization quality
of our LagD solver. Figure 1 shows the improvement of the
localization of LagD before and after the Refinement step.
Hence, we will report the resultingRMSD by LagD with this
refinement step.

In Tables II and III,cpu time are in seconds.Iter denotes
the number of iterations used. ForLagD, it is the number
of iterations used byHANSO. The initial point forHANSO is
provided by the Newton method [23] on the convex relaxation
problem of (7) with Kn

+(r) being replaced by its convex
counterpartKn

+. All other parameters ofHANSO are taken to
be their default values.

We include here a brief discussion on the computational
complexity of the algorithms involved. The complexity of
LagD comes from two parts. One is computing the initial
point by solving the convex relaxation problem of (7), which
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is done by the quadratically convergent Newton’s method of
[23]. The other part is from theHANSO package. We refer
to [19] for its computational analysis (we report the number
of iterations used byHANSO in Tables II and III). As for the
GTRS, it is also an iterative algorithm and its complexity relies
on how the functionϕ(ρ) is computed or approximated. We
refer to [3] for details. TheSNLSDP solver solves a convex
SDP and hence has polynomial time complexity, which does
not necessarily imply it is faster (see Tables II and III).

Examples LagD SNLSDP
Name n cpu Iter rmsd cpu Iter rmsd

60 0.6 35 5.12E-2 1.6 21 8.28E-2
80 0.4 17 3.45E-2 2 22 3.82E-2
100 0.5 20 2.95E-2 4 23 2.93E-2

5.4(a) 150 1 22 2.22E-2 18 24 2.24E-2
180 2 23 1.89E-2 39 24 1.91E-2
200 3 24 1.84E-2 61 23 1.87E-2
250 5 26 1.65E-2 182 23 1.67E-2
300 10 29 1.44E-2 494 23 1.46E-2
60 0.3 16 4.49E-2 1 21 9.86E-2
80 0.3 16 3.25E-2 2 22 3.45E-2
100 0.5 15 2.86E-2 4 22 2.78E-2

5.4(b) 150 1 15 1.98E-2 20 24 1.98E-2
180 1 16 1.83E-2 43 23 1.83E-2
200 3 16 1.68E-2 68 23 1.66E-2
250 5 16 1.49E-2 196 23 1.48E-2
300 10 17 1.37E-2 563 23 1.36E-2

TABLE II
COMPARISON OFLAGD AND SNLSDP ON EXAMPLE 5.4(a): OUTER

ANCHORS AND EXAMPLE 5.4(b): INNER ANCHORS.

We report the average results on50 randomly generated
instances for each of the examples. Thermsd columns in
Tables II and III show that bothLagD andSNLSDP yielded
the localizations of similar quality in terms ofrmsd (i.e., all in
the order of10−2). However, thecpu used byLagD is only
a small fraction of that used bySNLSDP, especially when
n is of a few hundreds. Those results clearly demonstrate
the potential of the Lagrangian dual approach for various
localization problems. The research serves a good starting
point for further investigations to be discussed in the next
section.

Finally, we would like to point out thatLagD used longer
time for Example 5.4(a) (n = 60) than that forn = 80, 100
(see Table II). This was due to the mechanism ofHANSO
package in evaluating the ‘smallest” vector in the convex hull
of the used gradients. Over the50 random runs, there occurred
a few cases thatLagD used more iterations and hence longer
time to terminate forn = 60 compared to that forn = 80 and
n = 100. This is reflected in the number of iterations used.
In the table,Iter = 35 for n = 60 andIter=17 and 20 for
n = 80, 100 respectively.

VI. CONCLUSION

There exist a few methods for source localization problems,
especially for sensor network localization. For the single
source localization problem, two methods stand out because
of their global optimality properties. One is the generalized
trust-region subproblem approach studied by Beck et al. [3].
Another is the Lagrangian dual approach studied by Qi [23]

and Qi and Yuan [24] for Euclidean distance embedding
problems. When specialized to the SSLP, the Lagrangian dual
approach is proved to be equivalent to the GTRS approach.
Moreover, a nice geometrical interpretation of the assumptions
used by the GTRS approach is revealed. We also study when
the Lagrangian dual problem has an optimal solution and
characterized when the zero duality gap holds for the SSLP.

The reported numerical results on SSLP are consistent with
our theory in the sense that the resulting algorithmLagD
provides localizations of similar quality as that ofGTRS.
Moreover, the numerical results on multiple source localization
problems clearly shows the great potential of the Lagrangian
dual approach when compared to the popularSNLSDP solver
[5]. We also show that the Lagrangian dual approach can
handle the fixed distance constraint of the type (45). A more
general type of the distance constraint takes the form:

ℓij ≤ ‖xi − xj‖ ≤ uij for some(i, j),

where ℓij and uij are the lower and upper bounds of the
distance betweenxi andxj . Such constraints arise from many
real applications, see e.g., [15]. However, the current form of
the Lagrangian dual approach cannot be directly used to deal
with such constraints. We leave this as a future research topic.

Another future topic, as suggested by one referee, is to
design efficient algorithms for the maximum likelihood (ML)
formulation of the localization problem based on the efficient
methods such as the Lagrangian dual approach for the least-
squares (LS) formulation. A pioneering work has been done
in [4], [2] which makes use of the GTRS to solve the ML
formulation of the SSLP. We may follow a similar framework
of [4] to design a sequential algorithm that uses the Lagrangian
dual approach in each step.
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