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A Fast Matrix Majorization-Projection Method for
Penalized Stress Minimization With Box Constraints

Shenglong Zhou , Naihua Xiu, and Hou-Duo Qi

Abstract—Kruskal’s stress minimization, though nonconvex
and nonsmooth, has been a major computational model for
dissimilarity data in multidimensional scaling. Semidefinite
programming (SDP) relaxation (by dropping the rank constraint)
would lead to a high number of SDP cone constraints. This
has rendered the SDP approach computationally challenging
even for problems of small size. In this paper, we reformulate
the stress optimization as an Euclidean distance matrix (EDM)
optimization with box constraints. A key element in our ap-
proach is the conditional positive-semidefinite cone with rank
cut. Although nonconvex, this geometric object allows a fast
computation of the projection onto it, and it naturally leads to a
majorization-minimization algorithm with the minimization step
having a closed-form solution. Moreover, we prove that our EDM
optimization follows a continuously differentiable path, which
greatly facilitated the analysis of the convergence to a stationary
point. The superior performance of the proposed algorithm is
demonstrated against some of the state-of-the-art solvers in the
field of sensor network localization and molecular conformation.

Index Terms—Raw stress, multidimensional scaling, Eu-
clidean distance matrix, semidefinite programming, majorization-
minimization, sensor network localization.

I. INTRODUCTION

KRUSKAL’S stress minimization [1], though nonconvex
and nonsmooth, has been a major computational model

for dissimilarity data in multidimensional scaling (MDS) [2],
[3]. Its popularity among the practitioners has been significantly
enhanced by its companion algorithm SMACOF [4], [5]. In the
particular application of range-based sensor network localiza-
tion (SNL), the stress minimization is equivalent to the max-
imum likelihood criterion if the disturbances of the observed
ranges are of white noises. In its original form, for a given sub-
set of dissimilarities (e.g., noisy distances) denoted by {δij}
among n items, the stress minimization tries to find a best set
of embedding points xi ∈ �r , i = 1, . . . , n such that they solve
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(see [3, P. 171])

min σr (X) :=
∑

i,j

Wij (‖xi − xj‖ − δij )
2 , (1)

where the weights Wij > 0 if δij is known and 0 otherwise, the
norm ‖ · ‖ is the Euclidean norm in �r , and X := [x1 , . . . ,xn ]
is the matrix of coordinates. The most interesting case is when
r is small (e.g., r = 2, 3 for visualization). The function σr (X)
is known as the raw stress.

In many applications such as molecular conformation [6],
lower and upper bounds data on the distances are also known:

�ij ≤ ‖xi − xj‖ ≤ uij , ∀ (i, j), (2)

where 0 ≤ �ij ≤ uij and �ii = uii = 0. In applications such
as nonlinear dimensionality reduction [7] and sensor network
localization (SNL) [8], [9], upper bounds uij can be computed
by the shortest path distances and �ij can be simply set to be
zeros.

Prior to the stress criterion, the classical MDS (cMDS)
[10]–[12] (see also [8], [13]) may be the only viable method
for dissimilarity data. The key difference is that cMDS
uses “squared” distances ‖xi − xj‖2 , which naturally lead
to advanced Euclidean Distance Matrix (EDM) models [14,
Sec. III(A)]. In contrast, the stress function makes use of “plain”
distances ‖xi − xj‖, which often lead to models based on coor-
dinates [15]. Existing research that attempts to represent plain
distances by EDM often leads to a large number of positive
semidefinite cone constraints, making the resulting matrix opti-
mization problem extremely challenging to solve (see, e.g., [14,
Eq. (8)]). The purpose of this paper is to propose a new EDM re-
formulation of the stress criterion under box constraints. We will
develop a fast majorization-projection method, which falls in
the general framework of [16]. Its superior performance against
several state-of-the-art algorithms will be demonstrated through
a number of artificial SNL data and real data from molecular
conformation.

In the following, we give a short literature review that mo-
tivated our research, followed by our proposed approach and
main contributions.

A. Literature Review

We will discuss two groups of algorithms, namely the coor-
dinates descent algorithms (enhanced by the majorization tech-
nique) and methods of matrix optimization including the EDM
and the Semi-Definite Programming (SDP) approach.

(a) Algorithms of coordinates descent. Early popularity of
the stress minimization criterion was largely due to the fact
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that classical optimization methods can be applied directly and
was subsequently enhanced by the well-known algorithm of
SMACOF [4]. The key idea of SMACOF was to construct a ma-
jorization function m(X,Xk ) at the current iterate Xk such
that σr (X) ≤ m(X,Xk ). Instead of minimizing σr (X), it min-
imizes m(X,Xk ) to get the next iterate Xk+1 . Since the ma-
jorization function is convex and quadratic, a system of linear
equations is solved each step to get Xk+1 . The algorithm is
well documented in [3, Ch. 8]. However, as demonstrated in [9],
SMACOF performs poorly for SNL problems.

In another important development, the stress function can be
majorized componentwise in the sense that

σr (X) ≤ m1(x1 ,X
k ) + m2(x2 ,X

k ) + · · · + mn (xn ,Xk ),
(3)

with each piece mi(xi , X
k ) being easy to be minimized. There-

fore, (3) leads to a distributed optimization (see [15, Sec. I (C)]
for a relevant review). A nice example can be found in [14,
Sec. III (C)], where it is showed that both the squared and the
plain distances can be majorized as

‖xi − xj‖2 ≤ q(xi ,xj ,X
k ) (4)

and

−‖xi − xk‖ ≤ l(xi ,xj ,X
k ), (5)

with the functions q(·) and l(·) being respectively quadratic
and linear in xi and xj , constructed in such a way that each
piece mi(·) in (3) can be obtained through those functions. We
will show that this simple majorization scheme works well for
some problems while having difficulties with other problems
described in the numerical part.

Convex relaxation also represents a major approach to (1).
For example, based on the observation

(‖xi − xj‖ − δij )2 = min
‖y‖=δi j

‖xi − xj − y‖2 ,

Soares et al. [15] studied the convex relaxation by replacing
the constraint ‖y‖ = δij by its convex counterpart ‖y‖ ≤ δij .
This convex relaxation scheme is further enhanced by Piovesan
and Erseghe [17] and it is solved by an Alternating Direction
Method of Multipliers (ADMM). The convex relation with the
majorization technique was considered in [18]. Another type of
stress majorization was proposed in [9], resulting in the well-
known ARAP (As Rigid As Possible) algorithm for SNL. All
of those methods are of distributed nature and we will compare
them with our method in the numerical part.

(b) EDM and SDP optimization. They are matrix optimiza-
tion and are very popular in the past decade because they often
provide a flexible framework to obtain convex relaxation that
can be solved by off-shelf SDP solvers. Early applications of
EDM and SDP to molecular conformation and SNL can be re-
spectively found in [6] and [19]. There exist a large body of
publications that are beyond our scope to review here. We only
focus on those that are pertinent to the problem (1).

Let Sn denote the space of all n × n symmetric matrices,
endowed with the standard inner product. Let Sn

+ be the cone of
positive semidefinite matrices in Sn . A matrix D ∈ Sn is called
an EDM if there exist a set of points xi ∈ �r , i = 1, 2 . . . , n

such that the (i, j)th element of D is given by

Dij := ‖xi − xj‖2 , i, j = 1, . . . , n.

Here “:=” means “define”. The smallest dimension r is called
the embedding dimension of D and r = rank(JDJ), where
J := I − 1

n 11T is known as the centring matrix with I being
the identity matrix in Sn and 1 being the vector of all ones
in �n . We use Dn to denote the set of all Euclidean distance
matrices of size n × n.

If D ∈ Dn is given, one can easily generate a set of the em-
bedding points {xi} by applying the classical MDS [3, Ch. 12].
Therefore, the stress problem (1) can be reformulated in terms
of EDM as

minD

∑
i,j Wij

(√
Dij − δij

)2

s.t. D ∈ Dn , rank(JDJ) ≤ r.
(6)

In the application of SNL, some of the data points of xi are
already known to be anchors. That is, xi = ai , i = 1, . . . , m
are known. In this case, the distances Dij among the anchors
are known. The problem (6) with the fixed distance constraints
Dij = ‖ai − aj‖2 , i, j = 1, . . . , m is same as [14, Problem (6)].
By dropping the rank constraint, Problem (6) has a natural SDP
reformulation as shown in [14, Problem (8)]:

minD,T ∈Sn

∑
i,j Wij (Dij − 2Tij δij )

s.t. D ∈ Dn ,Dij = ‖ai − aj‖2 , i < j = 2, . . . , m
T 2

ij ≤ Dij for i < j = 2, . . . , n.

This problem is SDP because the inequalities T 2
ij ≤ Dij can be

represented as SDP cone constraints via the Schur complement:
[

1 Tij

Tij Dij

]
∈ S2

+ , i < j = 2, . . . , n

and D ∈ Dn can also be represented as SDP constraints on Sn
+

due to the known characterization [10]:

D ∈ Dn ⇐⇒ diag(D) = 0 and −(JDJ) ∈ Sn
+ .

Hence, there are about n(n − 1)/2 cone constraints on S2
+

and one big cone constraint on Sn
+ in addition to at least

(n + m(m − 1)/2) linear constraints. Even for a small n, this
presents a challenging task for off-shelf SDP solvers such as
SDPT3 [20]. We note that this challenge has not taken the rank
constraint into account.

We finish our review by mentioning two variants of the stress
function. When the squared distance is used, we have the so-
called S-stress problem [3, Ch. 11]:

min σS (X) =
∑

i,j

Wij (‖xi − xj‖2 − δ2
ij )

2 .

Its SDP relaxation is simpler than that for (1) (see [21, Sec. III]
for a detailed description). Its EDM relaxation has been studied
in [22]–[25] and [26]–[28]. When the absolute value is used to
measure the error, we end up with the so-called robust MDS
problem:

min σR (X) =
∑

i,j

Wij

∣∣‖xi − xj‖2 − δ2
ij

∣∣ , (7)

whose SDP relaxation is initially studied by Biswas and Ye
[19]. This framework of [19] has been followed up by many. In
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particular, the edge-based SDP relaxation seems to stand out as
a viable numerical model [29], [30] and the software SFSDP
[31] is a high-level implementation of such SDP specifically
developed for SNL. However, a common drawback among those
EDM/SDP models is that they are “centralized”, meaning that
a large linear systems is usually solved each step and hence it is
computationally expensive.

B. Our Approach and Main Contributions

The question to solve is the stress minimization (1) with the
box constraints (2). In terms of EDM, it is the problem (6) with
the box constraints. We state it below:

minD

∑
i,j Wij

(√
Dij − δij

)2

s.t. D ∈ Dn , rank(JDJ) ≤ r
D ∈ B := {A ∈ Sn | L ≤ A ≤ U} ,

(8)

where Lij := �2
ij and Uij := u2

ij , i, j = 1, . . . , n.
It is known [32] that

D ∈ Dn ⇐⇒ diag(D) = 0 and −D ∈ Kn
+ , (9)

where Kn
+ is the conditional positive semidefinite cone:

Kn
+ :=

{
A ∈ Sn |vT Av ≥ 0 for all v ∈ �n with vT 1 = 0

}
.

The geometric object Kn
+(r), known as the conditional positive

semidefinite cone with rank-r cut [33], is defined by

Kn
+(r) := Kn

+ ∩ {A ∈ Sn | rank(JAJ) ≤ r}.
We define the distance between a point A ∈ Sn and Kn

+(r):

dist(A, Kn
+(r)) := min{‖A − Y ‖ | Y ∈ Kn

+(r)},
where the matrix norm ‖A‖ is the Frobenius norm. Define the
function g : Sn �→ � by

g(A) :=
1
2

dist2(−A, Kn
+(r)), ∀ A ∈ Sn . (10)

We emphasize that (−A) is used in the definition of g(A) be-
cause it is (−D) that belongs to Kn

+ in (9). It is obvious that
−D ∈ Kn

+(r) if and only if g(D) = 0. Therefore, the problem
(8) is equivalent to

minD f(D) :=
∑

i,j Wij

(√
Dij − δij

)2

s.t. g(D) = 0, D ∈ B,
(11)

where the diagonal constraint diag(D) = 0 in (9) has been in-
tegrated into the box constraint in B due to Lii = Uii = 0. We
refer to (11) as the Square-Root EDM (SQREDM) model for the
stress minimization (1) with the box constraint (2).

Let us take a close look at the model (11). The objective
f(D) is convex, though it may not be differentiable at some
points. The box constraint B is as simple as we can wish for.
The difficult part is the nonlinear equation defined by g(D),
which measures the violation of the feasibility of a matrix −D
belonging to Kn

+(r). It has long been known that cMDS works
very well as long as the matrix D is close to be Euclidean. This
means that small violation of being Euclidean would not cause
a major concern for the final embedding. Therefore, we propose
to penalize the function g(D) to get the following optimization

problem:

min Fρ(D) := f(D) + ρg(D), s.t. D ∈ B, (12)

where ρ > 0 is a penalty parameter. We further propose a ma-
jorization method for (12). At the current iterate Dk , we will
construct a convex majorization function gm (D,Dk ) for g(D)
and update Dk by

Dk+1 = arg min f(D) + ρgm (D,Dk ) s.t. D ∈ B. (13)

The rest of the paper is to provide the water-tight evidences both
in theory and numerically to justify the proposed approach. The
main contributions are summarized as follows.

i) We will show in Theorem 3.2 that the optimal solution
of the penalized problem (12) is an approximately op-
timal (i.e., ε-optimal) solution of the original problem
(11). Moreover, any accumulation point of the generated
sequence {Dk} is an approximate KKT point of (11)
(Theorem 3.7(ii)). We note that the classical results on
penalty methods [34] are not applicable here because
both the function f(D) and g(D) are not differentiable.

ii) The majorization function can be economically con-
structed via PCA (Principle Component Analysis) on
a centralized data matrix. Furthermore, the subprob-
lem (13) can be computed in a distributed fashion (i.e.,
computed elementwise) each with a close-form formula
(Proposition 3.5 and Eq. (29)). The use of the depressed
cubic equation in deriving the formula is interesting on
its own, given its recent success in compressed sensing
[35].

iii) Although the objective function f(D) is not differen-
tiable, we will show that it follows a continuously dif-
ferentiable path during the iteration process (Proposi-
tion 3.6). This technical result is important because it
avoids using the subdifferential of f(·) to perform the
convergence analysis in Theorem 3.7, which shows that
any accumulation point is a stationary point of (12).

iv) Finally, the efficiency of the proposed algorithm is
demonstrated against a few state-of-the-art methods
(SMACOF (Matlab implementation from [36]), ARAP [9],
ADMMSNL [17] and SFSDP [31]) on a number of artifi-
cial and real data sets, which include SNL and molecular
conformation problems. The embedding quality of our
method is comparable to or exceeds the best results by
these benchmark methods and our method only uses a
fraction of the computing time by the others. The speed
advantage becomes extremely superior for large network
localizations.

C. Organization of the Paper

In Section II, we will describe how the penalty function g(A)
is constructed through a PCA-style formula. We will study its
properties, which will lead to a natural choice of majoriza-
tion. Section III contains the main theoretical contributions. We
will develop our square-root EDM model and a fast algorithm.
We will show that the subproblem by majorization is well de-
fined and has a closed-form solution. We will also establish the
convergence results for the proposed algorithm under reason-
able conditions. The superior performance of the algorithm is
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demonstrated in Section IV against a few of state-of-the-art
methods on test problems from SNL and molecular conforma-
tion. We conclude the paper in Section V.

II. PENALTY FUNCTION AND ITS MAJORIZATION

The main purpose of this section is to show how the penalty
function g(·) in (10) can be efficiently computed and how its
majorization function gm (D,Dk ) can be constructed at a given
point Dk .

For a given matrix A ∈ Sn , we consider its orthogonal projec-
tion onto Kn

+(r). Since Kn
+(r) is not convex (unless r ≥ n − 1),

the projection is not unique. Let us denote all the projections by
ΠB

Kn
+ (r)(A), which is defined by

ΠB
Kn

+ (r)(A) := arg min
D∈Sn

‖A − D‖ s.t. D ∈ Kn
+(r). (14)

We use ΠKn
+ (r)(A) to denote any one element in ΠB

Kn
+ (r)(A).

We will show below that one particular element can be explic-
itly computed by the eigen-value decomposition (EVD) of the
matrix (JAJ). We make it precise below because it is important
to understand our model and for the fast implementation of our
algorithm.

Suppose A ∈ Sn has the following EVD:

A = λ1p1pT
1 + λ2p2pT

2 + · · · + λnpnpT
n ,

where λ1 ≥ λ2 ≥ . . . ≥ λn are the eigenvalues of A in non-
increasing order, and pi , i = 1, . . . , n are the corresponding
orthonormal eigenvectors. We define a PCA-style matrix trun-
cated at r:

PCA+
r (A) :=

r∑

i=1

max{0, λi}pipT
i . (15)

The following results have been proved in [33].
Lemma 2.1. For a given matrix A ∈ Sn and an integer r ≤ n.

Let ΠKn
+ (r)(A) be any one element in ΠB

Kn
+ (r)(A). The following

results hold.
i) [33, Eq. (26), Prop. 3.3] We have

〈ΠKn
+ (r)(A), A − ΠKn

+ (r)(A)〉 = 0.

ii) [33, Prop. 3.4] The function

h(A) :=
1
2
‖ΠKn

+ (r)(A)‖2

is well defined and is convex. Moreover,

ΠKn
+ (r)(A) ∈ ∂h(A),

where ∂h(A) is the subdifferential of h(·) at A.
iii) [33, Eq. (22), Prop. 3.3] One particular ΠKn

+ (r)(A) can
be computed through

ΠKn
+ (r)(A) = PCA+

r (JAJ) + (A − JAJ) (16)

Remarks:
R1) In fact, the computational formula for ΠKn

+ (r)(A) in
Lemma 2.1(iii) is a special choice of what is proved in
[33, Prop. 3.3], where ΠKn

+ (r)(A) is characterized by
ΠSn

+ (r)(JAJ) with Sn
+(r) being the positive semidefi-

nite cone with rank-r cut. The PCA+
r (JAJ) is just a

special choice of ΠSn
+ (r)(JAJ) following (15) and [33,

Lemma 2.2] or [37, Lemma 2.9]. We choose PCA+
r

mainly because of its computational simplicity. From
now on, we use ΠKn

+ (r)(A) defined by (16).
R2) It follows from the definition g(A) in (10) and (14) that

g(A) =
1
2
‖A + ΠKn

+ (r)(−A)‖2 . (17)

Lemma 2.1 allows us to represent g(A) in terms of h(A).
This relationship is so important that we include it in the
following result.

Lemma 2.2. We have for any A ∈ Sn

g(A) =
1
2
‖A‖2 − h(−A) and ‖ΠKn

+ (r)(A)‖ ≤ 2‖A‖.

Hence, g(A) is a difference of two convex functions.
Proof: It follows from Lemma 2.1(i) that

〈−A, ΠKn
+ (r)(−A)〉 = ‖ΠKn

+ (r)(−A)‖2 .

Substituting this into the first equation below to get

g(A) =
1
2
‖A‖2 +

1
2
‖ΠKn

+ (r)(−A)‖2 + 〈A, ΠKn
+ (r)(−A)〉

=
1
2
‖A‖2 +

1
2
‖ΠKn

+ (r)(−A)‖2 − ‖ΠKn
+ (r)(−A)‖2

=
1
2
‖A‖2 − 1

2
‖ΠKn

+ (r)(−A)‖2

=
1
2
‖A‖2 − h(−A).

Since 0 ∈ Kn
+(r) and ΠKn

+ (r)(A) ∈ ΠB
Kn

+ (r)(A), we have

‖A − ΠKn
+ (r)(A)‖ = dist(A, Kn

+(r)) ≤ ‖A − 0‖ = ‖A‖,
which, by the triangle inequality, yields

‖ΠKn
+ (r)(A)‖ ≤ ‖ΠKn

+ (r)(A) − A‖ + ‖A‖ ≤ 2‖A‖.
This is the second claim in the lemma. �

It follows from the convexity of h(·) and ΠKn
+ (r)(·) being a

subgradient of h(·) (Lemma 2.1(ii)) that

h(−D) ≥ h(−Z) + 〈ΠKn
+ (r)(−Z), −D + Z〉, ∀ D,Z ∈ Sn .

This, with Lemma 2.2, implies for any D,Z ∈ Sn

g(D) =
1
2
‖D‖2 − h(−D)

≤ 1
2
‖D‖2 − h(−Z) + 〈ΠKn

+ (r)(−Z), D − Z〉

=: gm (D,Z). (18)

Obviously, g(D) = gm (D,D) for any D. Hence, gm (·, ·) is a
majorization of g(·) [3, Ch. 8].

III. SQUARE-ROOT EDM MODEL (SQREDM):
THEORY AND ALGORITHM

This is the major section that establishes the theory and algo-
rithmic analysis for our proposed approach. It has three parts. In
the first part, we study the relationship between the square-root
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EDM model (11) and its penalized problem (12). A key con-
cept in this part is the ε-optimality. In the second part, we show
that the majorized subproblem (13) has a closed form solution,
which can be computed componentwise. Convergence analysis
in included in the final part.

A. Quality of the Penalized Problem

We note that the classical results on penalty methods [34] for
the differentiable case (i.e., all functions involved are differen-
tiable) are not applicable here. Our investigation on the penalty
problem (12) is concerned on the quality of its optimal solution
when the penalty parameter is large enough. We first introduce
the concept of ε-optimality.

Definition 3.1: (ε-optimal solution) Suppose D∗ is an opti-
mal solution of (11). For a given error tolerance ε > 0, a point
D̂ is called an ε-optimal solution of (11) if it satisfies

D̂ ∈ B, g(D̂) ≤ ε and f(D̂) ≤ f(D∗).

Obviously, if ε = 0, D̂ would be an optimal solution of (11).
We will show that the optimal solution of (12) is ε-optimal
provided that ρ is large enough. Let D∗

ρ be an optimal solution
of the penalized problem (12) and Dr be any feasible solution
of the original problem (11). If the lower bound matrix L ≡ 0,
then we can simply choose Dr = 0. Define

ρε :=
f(Dr )

ε
.

We have following theorem.
Theorem 3.2: Let ε > 0 be given. For any ρ ≥ ρε , D∗

ρ must
be ε-optimal. That is,

D∗
ρ ∈ B, g(D∗

ρ) ≤ ε and f(D∗
ρ) ≤ f(D∗).

Proof: Since D∗
ρ is an optimal solution of (12), we have D∗

ρ ∈
B. The rest follows from the following chain of inequalities.

f(Dr ) = f(Dr ) + ρg(Dr ) (because g(Dr ) = 0)

= Fρ(Dr ) ≥ Fρ(D∗
ρ)

(because D∗
ρ is an optimal solution of (12))

= f(D∗
ρ) + ρg(D∗

ρ)

≥ ρg(D∗
ρ). (because f(D∗

ρ) ≥ 0)

Therefore, we have

g(D∗
ρ) ≤

f(Dr )
ρ

≤ f(Dr )
ρε

= ε.

Furthermore, we have

f(D∗) = f(D∗) + ρg(D∗)

(because D∗ ∈ Kn
+(r), hence g(D∗) = 0)

= Fρ(D∗) ≥ Fρ(D∗
ρ)

(because D∗
ρ is an optimal solution of (12))

= f(D∗
ρ) + ρg(D∗

ρ)

≥ f(D∗
ρ). (because ρg(D∗

ρ) ≥ 0)

This completes our proof. �

Theorem 3.2 states that a global solution of the penalized
problem is also an ε-optimal for the original problem provided
that ρ is large enough. The local version of this result is about
ε-approximate KKT point. Let the Lagrangian function for (11)
be

L(D, β) := f(D) + βg(D), ∀ D ∈ Sn , β ∈ �.

We say a given D̂ is a KKT point of (11) if there exist β̂ > 0
and Γ̂ ∈ ∂DL(D̂, β̂) such that g(D̂) = 0 and

〈Γ̂, D − D̂〉 ≥ 0, ∀ D ∈ B. (19)

For a given ε > 0, we say D̂ is an ε-approximate KKT point
of (11) if β̂ > 0, g(D̂) ≤ ε and (19) holds. We will show in
Theorem 3.7(ii) that any accumulation point of the generated
sequence by our algorithm will be an ε-approximate KKT point.

B. Solving the Subproblem

We now address how the subproblem (13) is to be solved. For
ease of reference, we write the objective function f(D) as in
the following form:

f(D) = ‖
√

W ◦ (
√

D − Δ)‖2 ,

where
√

W and
√

D are the componentwise square-root of D
and W respectively, and ◦ is the Hadamard product between
two matrices (e.g., A ◦ B := (AijBij )). The solution of the
subproblem (13) is about computing an improved solution, de-
noted by Z+ , from the current point Z by solving the problem:

Z+ := arg min {f(D) + ρgm (D,Z)} , s.t. D ∈ B. (20)

This subproblem has a perfect separability property that makes
it very easy to solve as we see below.

Z+ = arg min
D∈B

f(D) + ρgm (D,Z)

= arg min
D∈B

‖
√

W ◦ (
√

D − Δ)‖2

+
ρ

2
‖D‖2 + ρ〈ΠKn

+ (r)(−Z),D − Z〉

= arg min
D∈B

〈W,D〉 − 2〈W ◦ Δ,
√

D〉

+
ρ

2
‖D‖2 + ρ〈ΠKn

+ (r)(−Z),D〉

= arg min
D∈B

ρ

2
‖D − Zρ‖2 − 2〈W ◦ Δ,

√
D〉

= arg min
D∈B

1
2
‖D − Zρ‖2 − 2

ρ
〈W ◦ Δ,

√
D〉, (21)

where the matrix Zρ := −W/ρ − ΠKn
+ (r)(−Z). Therefore, the

solution Z+ can be computed elementwise due to the separable
property in (21):

Z+
ij = arg min

1
2

[Dij − (Zρ)ij ]
2 − 2

ρ
Wij δij

√
Dij

s.t. Lij ≤ Dij ≤ Uij . (22)

We denote the subproblem solution process by

Z+ = SQREDM(W, Δ, Z). (23)
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We will show how SQREDM can be computed.
Let us consider a simplified one-dimensional optimization

problem, whose solution will eventually give rise to SQREDM.
For given ω ∈ � and α ≥ 0, we aim to compute

x+(ω, α) := arg min
x≥0

p(x) :=
1
2
(x − ω)2 − 2α

√
x

=: dcroot[ω, α]. (24)

We will prove below that x+ (we often drop its dependence on
(ω, α) when no confusion is caused) is well defined and it can be
computed through finding the positive root of a depressed cubic
equation. This is why we denote x+(ω, α) by dcroot[ω, α]
for easy reference later on.

If α = 0, it is obvious that x+ = max{0, ω}. The following
result considers the case α > 0.

Proposition 3.3: Suppose α > 0. Define

u :=
α

2
, v :=

ω

3
, and τ := u2 − v3 .

Then the solution x+ is unique and x+ > 0. Moreover, x+

depends on the sign of τ and is stated as follows
i) If τ ≥ 0, then

x+ =
[
(u +

√
τ)1/3 + (u −√

τ)1/3
]2

ii) If τ < 0, then ω > 0 and

x+ = 4v cos2 (φ/3) with cos (φ) = u/v3/2 > 0.

Proof: For x > 0, the objective function p(x) in (24) is dif-
ferentiable and the first and second derivatives are

p′(x) = x − ω − α/
√

x and p′′(x) = 1 +
α

2
x−3/2 .

It follows that p′(x) < 0 when x > 0 is close to 0 and p′′(x) ≥ 1
for all x > 0. Hence, p(x) is decreasing near 0 and it is strongly
convex on the half line (0,+∞). Therefore, the problem (24)
has a unique solution and x+ > 0. Moreover, we must have

p′(x+) = x+ − ω − α√
x+

= 0. (25)

Introducing y :=
√

x+ , we get

y3 − ωy − α = 0, (26)

which is known as the depressed cubic equation and has three
roots (in the complex planes). However, we need to find the
positive real root. For Case (i) τ ≥ 0, the positive root of (26)
is given by the Cardan formula [38, Ch. 7] (the other two roots
are complex)

y = (u +
√

τ)1/3 + (u −√
τ)1/3 .

and hence x+ = y2 gives the solution in Case (i).
For Case (ii), τ < 0 implies v3 > u2 , which yields v > 0

(hence ω > 0). Once again, by Cardan’s formula, the cubic
equation (26) has three real roots, namely y1 = 2

√
v cos φ/3,

y2 = 2
√

v cos
(

π + φ

3

)
and y3 = 2

√
v cos

(
2π + φ

3

)
,

where cos (φ) = u/v3/2 (a detailed proof for the above three
roots can be found in [39] and a more assessable reference is

[35]). Since cos (φ) > 0, it is easy to see that the only positive
root is y1 . And x+ = y2

1 gives the result in Case (ii). �
The above result shows that x+(ω, α) > 0 whenever α > 0.

The next result states that it can be bounded away from 0 by a
constant whenever ω and α satisfy certain bounds.

Proposition 3.4: Suppose there are two given constants C >
0 and c > 0. Then there exists γ > 0 such that

x+(ω, α) ≥ γ ∀ (ω, α) staisfying |ω| ≤ C, α ≥ c.

Proof: Suppose the result is not true. Then there exists a
sequence {ωk , αk}, k = 1, . . . , with |ωk | ≤ C and αk ≥ c such
that

lim
k→∞

x+(ωk , αk ) = 0.

By the proof in Proposition 3.3 (see (25)), x+(ωk , αk ) > 0 must
be the solution of the following equation:

x+(ωk , αk ) − ωk − αk/
√

x+(ωk , αk ) = 0.

Multiplying
√

x+(ωk , αk ) on the both sides of the equation
above and taking limits, we get

0 = lim
k→∞

[
(x+(ωk , αk ))3/2 − ωk

√
x+(ωk , αk )

]

= lim
k→∞

αk ≥ c > 0.

The contradiction establishes the result claimed. �
Proposition 3.3 can be readily extended to the case where the

constraint is an interval instead of x ≥ 0.
Proposition 3.5: Let B denote the interval [a, b] in � with

0 ≤ a ≤ b. Let

x+
B := arg min

x∈B
p(x) =

1
2
(x − ω)2 − 2α

√
x. (27)

Then we have

x+
B = ΠB (x+) = ΠB (dcroot[ω, α]),

where ΠB (x+) denote the nearest point in B from x+ and it is
given by

ΠB (x+) = Π[a,b](x+) = min{b, max{a, x+}}. (28)

Proof: Proposition 3.3 showed that x+ > 0 is the unique
optimal solution of the problem (24) and p′(x+) = 0. Since
p(x) is strongly convex over x > 0, this means that p′(x) < 0
for x < x+ and p′(x) > 0 for x > x+ . We consider three cases.
Case 1: x+ ∈ [a, b]; Case 2: x+ > b and Case 3: x+ < a.

For Case 1, it is obvious that x+ is also the optimal solution of
(27). Therefore, x+

B = x+ and x+ = ΠB (x+) because x+ ∈ B.
For Case 2, it follows that p′(x) < 0 for all x ∈ [a, b]. This means
that p(x) is strictly decreasing over the interval [a, b]. Hence,
b is the optimal solution of (27) and x+

B = b. It is obvious that
b = ΠB (x+) since x+ > b. For Case 3, it follows that p′(x) > 0
for all x ∈ [a, b]. This means that p(x) is strictly increasing over
the interval [a, b]. Hence, a is the optimal solution of (27) and
x+

B = a. It is obvious that a = ΠB (x+) since x+ < a. For all
three cases, we proved x+

B = ΠB (x+) as claimed in the result.
�
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Algorithm 1: SQREDM Method.
1: Input data: Dissimilarity matrix Δ, weight matrix W ,

penalty parameter ρ > 0, lower-bound matrix L,
upper-bound matrix U and the initial D0 . Set k := 0.

2: Update: Compute Dk+1 by (30) and (31).
3: Convergence check: Set k := k + 1 and go to Step 2

until convergence.

It follows from Propositions 3.3 and 3.5 that the optimal
solution Z+

ij in (22) can be computed as follows:

Z+
ij = Π[Li j ,Ui j ]

(
dcroot[(Zρ)ij ,Wij δij /ρ]

))
. (29)

Consequently, Z+ = SQREDM(W,Δ, Z) in (23) is well defined
and its elements can be computed by (29).

C. The Majorization Algorithm and Its Convergence

With the preparations above, we are ready to state our ma-
jorization algorithm. Let Dk ∈ B be the current iterate. We
update it by solving the majorization subproblem (13) to get
Dk+1 . It follows from the solution of (20) with Z replaced by
Dk that

Dk+1 = SQREDM(W,Δ,Dk
ρ ) (30)

with

Dk
ρ := −W/ρ − ΠKn

+ (r)(−Dk ). (31)

It is easy to see that the update scheme falls within the general
framework of majorization-minimization [16]. Moreover, our
minimization problem has the closed-form formula (30) with
(29) being a projection. Hence, it is a majorization-projection
algorithm. Because it is based on the square-root EDM model
(11), we refer to this matrix majorization-projection method as
SQREDM, which is summarized in Algorithm 1.

Being a majorization update, (30) enjoys the commonly
known majorization inequalities as follows: For k = 1, 2, . . . ,

Fρ(Dk ) = f(Dk ) + ρg(Dk ) = f(Dk ) + ρgm (Dk,Dk )

(13)
≥ f(Dk+1) + ρgm (Dk+1 ,Dk )

(18)
≥ f(Dk+1) + ρg(Dk+1)

= Fρ(Dk+1). (32)

The functional sequence {Fρ(Dk )} is non-increasing and con-
verges because it is bounded from below by 0. This is also the
type of convergence that is enjoyed by all majorization methods.
However, we would like to establish stronger convergence on
the iterates sequence {Dk} itself.

A major obstacle in analysing the convergence for the square-
root EDM model (11) is the non-differentiability of the objective
function. Our first result below shows that the objective f(·) is
actually differentiable along the generated sequence. We need
the following two reasonable assumptions:

Assumption 1: The constrained box B is bounded.
Assumption 2: For Δ and U , we require Uij > 0 if δij > 0.

Assumption 1 can be easily satisfied (e.g., setting the upper
bound to be twice the largest δ2

ij ). Assumption 2 means that if
δij > 0, then we certainly do not want the upper bound Uij = 0;
otherwise Lij = 0 and the corresponding Dij is forced to be
0, a very poor approximation to positive δij . With these two
assumptions, we are able to establish the differentiability of
f(·) along the generated sequence.

Proposition 3.6: Suppose Assumptions 1 and 2 hold. Let
{Dk} be the sequence generated by Algorithm 1. Then the
following hold.

i) f(D) is continuously differentiable at Dk , k = 1, 2, . . . , .
ii) The sequence {Dk} is bounded and f(D) is continuously

differentiable at any of its limits.
Proof: (i) We write f(D) in terms of Dij :

f(D) =
∑

i,j

WijDij − 2
∑

i,j

Wij δij

√
Dij +

∑

i,j

Wij δ
2
ij .

We will prove for any given pair (i, j), ∂f(D)/∂Dij exists and
is continuous at any point Dk . We consider two cases. Case
1: Wij δij = 0. This implies f(D) is a linear function of Dij

and ∂f(D)/∂Dij = 2Wij is constant and hence is continuous.
Case 2: Wij δij > 0. It follows from (29) and (30) that

Dk
ij = Π[Li j ,Ui j ]

(
dcroot[(Dk−1

ρ )ij , (Wij δij )/ρ]
)
.

Let αij := (Wij δij )/ρ > 0 and ωk−1
ij := (Dk−1

ρ )ij . It fol-
lows from Proposition 3.3 (because αij > 0) that (xk

ij )
+ :=

dcroot[ωk−1
ij , αij ] > 0 and from (28) that

Dk
ij = Π[Li j ,Ui j ]((xk

ij )
+) ≥ min{Uij , x

+
ij} > 0, (33)

where the last inequality used the fact that Uij > 0 because of
δij > 0 by Assumption 2. It is obvious that

∂f(D)
∂Dij

∣∣∣Dk
i j

= Wij

(
1 − δij /

√
Dk

ij

)
,

which is continuous at Dk
ij > 0. This proved (i).

(ii) Since B is bounded (Assumption 1) and Dk ∈ B, the
sequence {Dk} is bounded. Let D̂ be one of its limits. Without
loss of any generality, let us assume Dk → D̂. The proof below
is the continuation in (i). For a given pair (i, j), if Wij δij = 0,
we have seen in (i) that ∂f/∂Dij is a constant (independent
of Dk ). We only need to consider the case Wij δij > 0, which
implies δij > 0 and Uij > 0 by Assumption 2.

It follows from (31) that there exists a constant C > 0 such
that

∣∣ωk
ij

∣∣ = |(Dk
ρ )ij | ≤ ‖Dk

ρ ‖ ≤ ‖W‖/ρ + ‖ΠKn
+ (r)(−Dk )‖

≤ ‖W‖/ρ + 2‖Dk‖ ≤ C,

where we used the boundedness of {Dk} and Lemma 2.2.
Proposition 3.4 implies that there exists γ > 0 such that
(xk

ij )
+ ≥ γ for k = 1, . . . , .. It follows from (33) that

Dk
ij ≥ min{Uij , (xk

ij )
+} ≥ min{Uij , γ}.

Taking limit on the left-hand side, we get D̂ij ≥ min{Uij , γ} >

0. Hence, ∂f(D)/∂Dij exists and is continuous at D̂ij . This
proved (ii). �
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We are ready to state our main convergence result
Theorem 3.7: Let the function Fρ(D) be defined in (12) and

let {Dk} be the sequence generated by the SQREDM method.
i) We have

Fρ(Dk+1)−Fρ(Dk )≤−ρ

2
‖Dk+1−Dk‖2 , k=1, 2, . . . .

Consequently, ‖Dk+1 − Dk‖ → 0.
ii) Let D̂ be an accumulation point of {Dk}. Then for any

D ∈ B, we have

〈∇f(D̂) + ρD̂ + ρΠKn
+ (r)(−D̂), D − D̂〉 ≥ 0. (34)

That is, D̂ is a stationary point of the problem (12).
Moreover, for a given ε > 0, if D0 ∈ Kn

+(r) ∩ B and

ρ ≥ ρε :=
f(D0)

ε
,

then D̂ is an ε-approximate KKT point of (11).
iii) If D̂ is an isolated accumulation point of the sequence

{Dk}, then the whole sequence {Dk} converges to D̂.
Proof: (i) We are going to use the following facts that are

stated on Dk+1 and Dk . The first one is due to the convexity of
f(D)

f(Dk ) ≥ f(Dk+1) + 〈∇f(Dk+1), Dk − Dk+1〉. (35)

The second fact is the identity:

‖Dk+1‖2−‖Dk‖2 =2〈Dk+1−Dk,Dk+1〉−‖Dk+1 − Dk‖2 .
(36)

The third fact is due to the convexity of h(D) (see
Lemma 2.1(ii)):

h(−Dk+1) − h(−Dk ) ≥ 〈ΠKn
+ (r)(−Dk ), −Dk+1 + Dk 〉.

(37)
The last one is the optimality condition of the problem (13): for
all D ∈ B, we have

〈∇f(Dk+1) + ρDk+1 + ρΠKn
+ (r)(−Dk ), D − Dk+1〉 ≥ 0,

(38)
which is well-defined because we already established the dif-
ferentiability of f at Dk+1 (Proposition 3.6(i)) and the problem
(13) is convex. Those four facts yield the following chain of
inequalities:

Fρ(Dk+1) − Fρ(Dk )

= f(Dk+1) − f(Dk ) + ρg(Dk+1) − ρg(Dk )

(35)
≤ 〈∇f(Dk+1), Dk+1 − Dk 〉 + ρg(Dk+1) − ρg(Dk )

= 〈∇f(Dk+1), Dk+1 − Dk 〉
+ (ρ/2)(‖Dk+1‖2 − ‖Dk‖2) − ρ[h(−Dk+1) − h(−Dk )]

(36)
= 〈∇f(Dk+1) + ρDk+1 , Dk+1 − Dk 〉

− (ρ/2)‖Dk+1 − Dk‖2 − ρ[h(−Dk+1) − h(−Dk )]

(37)
≤ 〈∇f(Dk+1) + ρDk+1 + ρΠKn

+ (r)(−Dk ), Dk+1 − Dk 〉
− (ρ/2)‖Dk+1 − Dk‖2

(38)
≤ −(ρ/2)‖Dk+1 − Dk‖2 .

This proves that the sequence {Fρ(Dk )} is non-increasing and
it is also bounded below by 0. Taking the limits on both sides
yields ‖Dk+1 − Dk‖ → 0.

(ii) Suppose D̂ is the limit of a subsequence {Dk� }, � =
1, . . . ,. Since we have established in (i) that (Dk� + 1 − Dk� ) →
0, the sequence {Dk� +1} also converges to D̂. Now taking
the limits on both sides of (38) on {k�}, we reach the desired
inequality (34). We now prove D̂ is an ε-approximate KKT
point. It follows from Lemmas 2.1(ii) and 2.2 that

∇f(D̂) + ρD̂ + ρΠKn
+ (r)(−D̂) ∈ ∂L(D̂, ρ),

which is the condition (19) with β̂ = ρ. We only need to show
g(D̂) ≤ ε. Since D0 ∈ Kn

+(r) ∩ B, we have

f(D0) = f(D0) + ρg(D0) (because g(D0) = 0)

(13)
≥ f(D1) + ρgm (D1 ,D0) (because D0 ∈ B)

(18)
≥ f(D1) + ρgm (D1) ≥ · · ·

(32)
≥ f(Dk ) + ρg(Dk ).

Taking the limit on the right-hand side yields

f(D0) ≥ f(D̂) + ρg(D̂) ≥ ρg(D̂),

where we used f(D̂) ≥ 0. Therefore, it has

g(D̂) ≤ f(D0)
ρ

≤ f(D0)
ρε

= ε.

We proved that D̂ is an ε-approximate KKT point of (11).
(iii) We note that we have proved in (i) that (Dk+1 − Dk ) →

0. The convergence of the whole sequence to D̂ follows from
[40, Prop. 7]. �

We finish this section with two more remarks.
R1) A direct consequence of Proposition 3.6 is that the ob-

jective f(D) is continuously differentiable on the path
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P := cl (∪∞
k=1Pk ), where cl(Ω) denotes the closure of

a set Ω,

Pk :=
{
D | D = βDk + (1 − β)Dk−1 , 0 ≤ β ≤ 1

}
.

Moreover, P is bounded.
R2) The continuous differentiability along the path P of the

generated points saves us from making extensive use of
subdifferential in nonsmooth optimization in order to
prove the optimality result in Theorem 3.7.

IV. NUMERICAL EXPERIMENTS AND COMPARISON

In this part, we will conduct extensive numerical experiments
of our algorithm SQREDM using MATLAB (R2014a) on a desk-
top of 8 GB memory and Inter(R) Core(TM) i5-4570 3.2 Ghz
CPU, against 4 leading solvers on the problems of SNL in two
dimensions (r = 2) and Molecular Conformation (MC) in three
dimensions (r = 3). Our conclusion is that SQREDM is very
competitive and significantly exceeds the performance of all 4
solvers in many scenarios. For instance, the solution quality of
SQREDM is comparable to the best results by the 4 solvers and
the time used is only a small fraction of what was used by them.
This section includes the following parts: Test problems, Im-
plementation of SQREDM, Selection of benchmark methods and
Numerical comparison.

A. Test Problems

We first describe our test problems so that our implementation
and the selection of the benchmark methods may be related to
them.

(a) SNL test problems. As pointed out in the Introduction,
stress minimization coincides with the maximum likelihood
principle in SNL if the observed ranges among sensors are per-
turbed by the white noise. Hence, SNL has been widely used to
test the viability of the proposed methods for stress minimiza-
tion (e.g., [15]). In such a problem, we typically have m anchors
(e.g., sensors with known locations) and the rest sensors need to
be located. We use two examples for our test. One has a regular
network topology and the other is non-regular.

Example 4.1: (Square Network) This example is widely
tested since its detailed study in [41]. In the square region
[−0.5, 0.5]2 , 4 anchors x1 = a1 , · · · ,x4 = a4 (m = 4) are
placed at (±0.2,±0.2). The generation of the rest (n − m)
sensors (xm+1 , · · · ,xn ) follows the uniform distribution over
the square region. The noisy Δ is usually generated as follows.

δij := ‖xi − xj‖ × |1 + εij × nf|, ∀ (i, j) ∈ N
N := Nx ∪Na

Nx := {(i, j) | ‖xi − xj‖ ≤ R, i > j > m}
Na := {(i, j) | ‖xi − aj‖ ≤ R, i > m, 1 ≤ j ≤ m} ,

where R is known as the radio range, εij ’s are independent
standard normal random variables, and nf is the noise factor
(e.g., nf = 0.1 was used in the tests and it corresponds to 10%
noise level). In literature (e.g., [41]), this type of perturbation
in δij is known to be multiplicative and follows the unit-ball
rule in defining Nx and Na (see [42, Sec. 3.1] for more detail).
The corresponding weight matrix W and the lower and upper
bound matrices L and U are given as in the table below. Here,

Fig. 1. Ground truth EDM network with n = 500 nodes.

M is a large positive quantity. For example, M := n maxij Δij

is the upper bound of the longest shortest path if the network is
viewed as a graph.

Example 4.2: (EDM word network) This problem has a non-
regular topology and is first used in [42] to challenge existing
localization methods. In this example, n points are randomly
generated in a region whose shape is similar to the letters “E”,
“D” and “M”. The ground truth network is depicted in Fig. 1.
We choose the first m points to be the anchors. The rest of the
data generation is same as in Example 4.1.

(b) MC test problems. Molecular conformation has long
been an important application of EDM optimization [6]. We
collected real data of 12 molecules derived from 12 struc-
tures of proteins from the Protein Data Bank (PDB) [43].
They are 1GM2, 304D, 1PBM, 2MSJ, 1AU6, 1LFB,
104D, 1PHT, 1POA, 1AX8, 1RGS, 2CLJ. They pro-
vide a good set of test problems in terms of the size n, which
ranges from a few hundreds to a few thousands (the smallest
n = 166 for 1GM and the largest n = 4189 for 2CLJ). The dis-
tance information was obtained in a realistic way as done in [44]
and is described in the following example.

Example 4.3: (Real PDB data) Each molecule comprises n
atoms {x1 , . . .xn} in �3 and its distance information is col-
lected as follows. If the Euclidean distance between two of
the atoms is less than R, the distance is chosen; otherwise no
distance information about this pair is known. For example,
R = 6&Å (1&Å = 10−8 cm) is nearly the maximal distance
that the nuclear magnetic resonance (NMR) experiment can
measure between two atoms. For realistic molecular conforma-
tion problems, not all the distances below R are known from
NMR experiments, so one may obtain c% (e.g., c = 50%) of
all the distances below R. Denote Nx the set formed by indices
of those measured distances. Moreover, the distances in Nx can
not be exactly measured. Instead, only lower bounds �ij and
upper bounds uij are provided, that is for (i, j) ∈ Nx ,

�ij = max {1, (1 − |εij |)‖xi − xj‖} ,

uij = (1 + |εij |)‖xi − xj‖.
where εij ∼ N(0,nf2 × π/2) are independent normal random
variables. In our test, we set the noise factor nf = 0.1 and the
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parameters W, Δ, L, U ∈ Sn are given as in the table below,
where M > 0 is the upper bound (e.g., M := n maxij Δij ).

B. Implementation

The SQREDMAlgorithm 1 is easy to implement. For its input,
we already defined Δ, L and U matrices for the test problems.
For the initial point, we follow the popular choice used in [7], [8]√

D0 := Δ̂, where Δ̂ is the matrix obtained by the shortest path
distances among Δ. If Δ has no missing values, then Δ̂ = Δ. We
now address the remaining issues that are the stopping criterion
and choice of the penalty parameter ρ.

(c) Stopping criterion. It follows from Theorem 3.7 that the
objective sequence {Fρ(Dk )} is non-increasing. We define the
relative progress in Fρ by

Fprogk :=
Fρ(Dk−1) − Fρ(Dk )

1 + Fρ(Dk−1)
.

Having less progress alone in Fρ is not enough to terminate the
algorithm. We will also need to ensure that the current iterate
Dk is close to Kn

+(r). It follows from (16) that

Kprogk :=
2g(Dk )
‖JDkJ‖2 =

‖Dk + ΠKn
+ (r)(−Dk )‖2

‖JDkJ‖2

=
‖PCA+

r (−JDkJ) + (JDkJ)‖2

‖JDkJ‖2

= 1 −
∑r

i=1

[
λ2

i − (λi − max{λi, 0})2
]

λ2
1 + . . . + λ2

n

≤ 1,

where λ1 ≥ λ2 ≥ . . . ≥ λn are the eigenvalues of (−JDkJ).
The smaller Kprojk is, the closer Dk is to Kn

+(r). The benefit
of using Kprog over g(D) is that the former is independent of
any scaling of D. We terminate SQREDM when

Fprogk ≤ √
n10−5 and Kprogk ≤ 10−3 .

(d) Measuring the solution quality. For this purpose, we
adopt a widely used measure RMSD (Root of the Mean Squared
Deviation) defined by

RMSD :=

[
1

n − m

n∑

i=m+1

‖x̂i − xi‖2

]1/2

,

where xi’s are the true positions of the sensors in our test
problems and x̂i’s are their corresponding estimates. The x̂i’s
were obtained by applying cMDS to the final output of the dis-
tance matrix, followed by aligning them to the existing an-
chors through the well-known Procrustes procedure (see [9], [3,
Ch. 20] or [50, Prop. 4.1] for more details). Furthermore, upon
obtaining x̂i’s, a heuristic gradient method can be applied to
improve their accuracy and it is called the refinement step in
[41]. We report rRMSD to highlight its contribution. As we will

Fig. 2. RMSD error of the estimated positions obtained from SQREDM with
penalty parameter ρ. (a) Example 4.1 (n = 200, R = 0.2). (b) Example 4.2
(n = 200, m = 20, R = 10).

see, all tested methods benefit from this step, but with varying
degrees.

(e) Choice of the penalty parameter. In principle, the penalty
parameter ρ should start from a small value and is then eventu-
ally increased in a way that should depend on the latest progress
made (see [34, p. 495]). The optimal choice of ρ is dependent
upon the size and geometry of the network and the distance
information available.

To see the dependence of our method on the penalty pa-
rameter ρ, we tested it on Example 4.1 (regular layout) and
Example 4.2 (irregular layout) with varying ρ such that ρ/

√
n ∈

{0.5, 1, 1.5, 2, . . . , 10}. Now under a given ρ, we ran each test
instance 20 times and recorded the average RMSD. A plot of
RMSD vs ρ/

√
n for the two examples can be found in Fig. 2.

A pleasing feature is that the plot closely follows a straight line
in both cases. This means that SQREDM is quite robust to the
change of ρ when it is in the order of

√
n. In our implementation,

we fixed ρ and used ρ =
√

n.

C. Selection of Benchmark Methods

(f) On some simple majorization methods. We first demon-
strate how a simple majorization method (SMM) that falls in
the framework of (3) with (4) and (5) works. It is suggested
by a referee and is implied by the framework studied in [14].
The quadratic function in (4) and the linear function in (5) are
respectively given by

q(xi ,xj ,X
k ) = 2‖xi − xk

i ‖2 + 2〈dk
ij ,xi − xk

i 〉
+ 2‖xj − xk

j ‖2 − 2〈dk
ij ,xj − xk

j 〉 + ‖dk
ij‖2

where dk
ij := xk

i − xk
j and for xk

i �= xk
j ,

l(xi ,xj ,X
k )

= −‖dk
ij‖−1(〈dk

ij ,xi − xk
i 〉 − 〈dk

ij ,xj − xk
j 〉) − ‖dk

ij‖
We note that the quadratic function q(xi ,xj ,X

k ) does not have
any coupled terms between xi and xj . Hence the individual
majorization function mi(xi , X

k ) in (3) can be constructed
through those quadratic and linear functions.

We also note that Soares, Xavier and Gomes developed two
other important “simple” majorization methods, respectively re-
ferred to as SMLL (Stable Maximum-Likelihood Localization)
[18] and diskRelax [15]. As pointed out in [18, Sec. V],
SMLL “receives an initialization from a convex approximation
method. The initialization will hopefully hand to nonconvex
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Fig. 3. Performance of three majorization methods: diskRelax, SMM and
SQREDM on Example 4.1 with n = 100 and varying radio ranges R. Left:
rRMSD error of the estimated positions. Right: Time consumed.

refinement algorithms a point near the basin of attraction of
the true minimum.” However, our choice of the initialization (if
not provided by a package) is the embedding by cMDS, which is
cheap to compute and commonly used. It appears that cMDS ini-
tialization is not good enough for SMLL for many tested cases in
this paper. We therefore will not compare it with SQREDM in our
experiments. One common and nice feature of those methods is
that they are free from tuning any algorithmic parameters.

The performance of SMM and diskRelax (with compari-
son to SQREDM) was demonstrated on Examples 4.1 with vary-
ing ranges R. For diskRelax, we set MAXITER = 104 and
epsilon = 10−3 . The setting for SMM was same as those for
SMACOF. The initial point for both methods was the cMDS
embedding. We ran each test instance 20 times and recorded
their average rRMSD. The reason for reporting rRMSD is that
the refinement step significantly improved the solution quality
for both methods. The results were plotted in Fig. 3. It can be
observed that both SMM and diskRelax returned high qual-
ity embedding only when the radio range was sufficiently large
(e.g., R ≥ 0.8 for diskRelax and R ≥ 1.2 for SMM.) This
essentially means that only a small number of dissimilarities δij

are not known. In contrast, SQREDM worked well also for small
ranges (e.g., R = 0.2). We also note that the linear function
l(xi ,xj ,X

k ) is poorly scaled when xk
i and xk

j are close to each
other and it is even not well-defined when xk

i = xk
j because it

involves the term 1/‖xk
i − xk

j ‖. Moreover, this drawback would
create difficulties in establishing convergences of SMM on the
iterates {Xk}. On the time consumed, SMM was the fastest,
while diskRelax took proportionally significantly more time
to terminate. Furthermore, this test problem is moderate in size
(n = 100) when compared to our tested problems below with
n ranging from a few hundreds to a few thousands. Our experi-
ments showed that they only worked for a small number of our
tested problems. It was pointed out to us by one of its authors
[15] that diskRelax tends to work well for networks whose
unknown sensors lie on the convex hull of some anchors. How-
ever, both Examples 4.1 and 4.2 do not meet this assumption.
Therefore, we will not include the two methods in our further
numerical experiments.

(g) Four benchmark methods and their computational
complexities. Out of many published methods, we select four
representative state-of-the-art methods for comparison due to
their high-quality code implementation and availability. Those
methods have been shown to be capable of returning satisfac-
tory localization/embedding in many applications. Those meth-
ods are SMACOF [4] whose MATLAB implementation is taken

from [36]; ARAP [9], ADMMSNL [17], and SFSDP [31]. SMA-
COF is a traditional method for the stress minimization and has
a high reputation in experimental sciences [3]. ARAP can yield
satisfactory embedding especially when the noisy factor nf is
small. ADMMSNL is motivated by [15] and aims to enhance the
package diskRelax of [15] for the SNL problems (r = 2).
Its current implementation does not support the embedding for
r ≥ 3. All the three methods are for the stress minimization
problem (1). However, SFSDP is developed for the problem
(7). We include it because SFSDP is a high-level MATLAB
implementation of the SDP approach and is capable of solv-
ing large scale problems with high-quality embedding. It truly
serves as a benchmark method for any embedding algorithms.

In our tests, we used all of their default parameters except
one or two in order to achieve the best results. In particular, for
ARAP, tol = 10−2 and IterNum = 40 to speed up the termi-
nation. For SFSDP we set pars.SDPsolver = “sedumi”
because it returns the best overall performance. For SMACOF,
we set rtol = 10−2 , iter = 103 and its initial point was the
embedding by cMDS on Δ. ADMMSNL used the same setting for
SMACOF.

We briefly discuss the computational complexity of those
methods. For SMACOF, the update formula [3, Eq. (8.28]) is

(Xk+1)T = V −B(Xk )(Xk )T , (39)

where V is an n × n matrix solely dependent on the weight
matrix W and V − is the Moore-Penrose inverse (only calculated
once), B(Xk ) can be obtained using about (3/2)n(n − 1)r
operations (see [3, Eq. (8,24)]). The data matrix Xk is of r × n
and (39) involves matrices of n × n multiplying an n × r matrix.
Hence, the total complexity of SMACOF is O(rn2) per iteration.
As emphasized in [9, p. 35:14], the overall complexity of ARAP
is O(nk3) with k being the average number of neighbours of
the nodes. If k is about

√
n, then the overall complexity would

be about O(n2.5). This may justify why ARAP used much time
to terminate in some of our test problems reported below.

The computational complexity of ADMMSNL at each node i is
analysed in [17, Sec. V] and is primarily dominated by solving a
nonlinear optimization problem of size r(1 + Ni), where Ni is
the size of the neighbourhood of i. This nonlinear optimization
can be simplified and solved by standard optimization meth-
ods such as Newton’s method, which makes use of gradient
and Hessian information. SFSDP uses the SDP solver “se-
dumi” whose complexity is O(s2κ2.5 + κ3.5) where s is the
number of decision variables and κ the number of rows of the
linear matrix inequality constraints. This is in addition to some
computational techniques that exploit the sparsity properties in
the linear equations encountered. Since our computation each
iteration is dominated by ΠKn

+ (r)(−D) in the construction of
the majorization function gm in (18), the overall computational
complexity of SQREDM is about O(rn2) (we used MATLAB’s
built-in function eigs.m to compute PCA+

r (A) in (15)).

D. Numerical Comparison

In this part, we report extensive numerical results on the three
examples, which in total have 14 problems. In each test case,
we randomly generate 20 samples (set rng(’shuffle’)
in Matlab) and the reported results are the average on them.
For instance, if we were to test the case n = 200, R = 0.2 in
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Fig. 4. Localization by the five methods for Example 4.1 with n = 200, R = 0.2.

Fig. 5. Comparison of five methods for Example 4.1 with n = 200, R = 0.2.

TABLE I
COMPARISONS OF FIVE METHODS FOR EXAMPLE 4.1: rTime: CPU (IN SECONDS) BY THE REFINEMENT STEP; Time: TOTAL CPU BY EACH METHOD INCLUDING

rTime (WE OMITTED THE RESULTS OF ADMMSNL WHEN R =
√

2, n ≥ 400 SINCE IT MADE OUR DESKTOP RUN OUT OF MEMORY, AND OMITTED THE RESULTS

OF ARAP WHEN R =
√

2, n ≥ 1000 SINCE IT CONSUMED OVER 10 HOURS)
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Fig. 6. Localization for Example 4.2 with n = 500, R = 10.

TABLE II
COMPARISONS OF FIVE METHODS FOR EXAMPLE 4.2

TABLE III
COMPARISONS OF THREE METHODS FOR EXAMPLE 4.3

For data 1RGS and 2CLJ, our desktop ran out of memory with SFSDP, and hence, we omitted its results

Example 4.1, we would have generated 20 such networks in the
way described in the example. This subsection includes three
parts, signposted by (h), (i), (j), which are respectively for the
three examples with varying size n.

(h) Comparison on Example 4.1 (200 ≤ n ≤ 2000). The
quality of the general performance of the five methods can
be better appreciated through visualizing their key indicators
(RMSD, rRMSD, and the CPU time consumed). For this pur-
pose, we tested Example 4.1 with a moderate size n = 200 and

R = 0.2, which rendered many missing values in Δ. The ac-
tual embedding by each method was shown in Fig. 4, where
the four anchors were plotted in green square and x̂i in pink
points were jointed to its true location (blue circle). It can be
visibly seen that the clear winners are ARAP and SQREDM,
followed by SFSDP, SMACOF and ADMMSNL. Clearly,
there exist a number of miss-placed sensors by SMACOF,
SFSDP and ADMMSNL both before and after the refinement
step.
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Fig. 7. Molecular conformation by SMACOF, SFSDP and SQREDM. Above: 1GM2 (n = 166). Below: 1LFB (n = 641).

As expected, the performance for all the methods improves
as R increases from 0.2 to 1.4. This is because we have more
distance information in Δ as the radio range gets bigger. The
results on the three indicators were plotted in Fig. 5. It can be
seen that ARAP and SQREDM are again joint winners in terms
of both RMSD and rRMSD. However, the time used by ARAP is
the longest. This comes as no surprise because its complexity
depends on the cubic of the average node degree k. As R in-
creases, k increases as well. When R gets bigger than 0.6, both
ADMMSNL and SFSDP produced similar rRMSD as ARAP and
SQREDM, while the time consumed byADMMSNL is significantly
larger than that by SFSDP and SQREDM. We note that SQREDM
used about 5 seconds in all cases and the time by SFSDP is just
below 10 seconds. However, as we will see,SQREDM scales well
when n gets larger, while SFSDP scales badly when n reaches
a few thousands. This is demonstrated below.

We tested 8 problems with n = 400, 500, 1000, 2000 and
R = 0.2,

√
2 respectively. We ran each problem 20 times and

recorded average results in Table I, where SD is the standard
deviation of RMSD. When R =

√
2, Δ has no missing values

(since the sensors are restricted to a unit square region). For
this case, all methods worked satisfactorily with rRMSD in the
order of 10−3 . We note that SQREDM and ARAP benefited lit-
tle from the refinement step because their RMSD are already in
the order of 10−3 . Furthermore, SQREDM used only a fraction
of cpu time consumed by other methods. When R = 0.2, Δ
has many missing values and hence it is sparse. The picture is
significantly different. RMSD by SQREDM and ARAP are in the
order of 10−3 , while both RMSD and rRMSD by ADMMSNL and

SFSDP are in the order of 10−1 , which is in the order of the
unit region. Therefore, SQREDM generated the most accurate
results and used the least time (e.g., for n = 2000, R =

√
2, 33s

(SQREDM) vs 4019s (SFSDP)).
(i) Comparison on Example 4.2 (400 ≤ n ≤ 2000). The

purpose of testing this example is to see how those methods
behave for networks with irregular layout. In this test, we fix
the radio range R = 10, which generated Δ with many missing
elements (i.e., Δ is sparse). For the visualization purpose, we
plotted the results after the refinement step for the case of n =
500 and m = 20, 40, 60. As shown in Fig. 6, the black points
were anchors and the rest were sensors. Compared with the
shape of the ground truth EDM network in Fig. 1, the letters
‘E’, ‘D’ generated by ADMMSNL, SMACOF and SFSDP became
clearer as m increased, but ‘M’ was still deformed. ARAP well
captured the shapes of the three letters when m = 20 but got a
slightly deformed ‘M’ for m = 40. By contrast, SQREDM was
capable of capturing the shapes of the three letters for both cases.

Next, we tested 8 problems with n = 400, 500, 1000, 2000
and m = 20, 40 respectively. Also, each problem was run 20
times with the averaged results being reported in Table II, where
it is easily observed that SQREDM always generated the lowest
rRMSD except for the case (n = 500, m = 20), where ARAP
achieved the lowest rRMSD 0.409 while SQREDM obtained
0.455. In terms of computational speed, SQREDM is the fastest
and only used a fraction of the cpu consumed by other methods.

(j) Comparison on Example 4.3 (166 ≤ n ≤ 4189). These
12 problems represent a very challenging set of embedding prob-
lems in three dimensions (r = 3) because of the three reasons.
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One is that the size n ranges from hundreds to a few thousands.
The second reason is that the dissimilarity matrix Δ is very
sparse and the third reason is that the lower and upper bounds
�ij and uij for (i, j) ∈ Nx have to be physically satisfied due
to the properties of the atoms involved. Any violation of such
box constraints would lead to certain level of deformation in
the final embedding. Our method has a unique advantage in that
it always obeys those box constraints, while others may not.
Furthermore, both ADMMSNL and ARAP are purposely designed
for SNL problems (i.e., r = 2). Their current implementations
do not support the case r = 3. Hence, we have to exclude those
two methods from our comparison.

In our test, we fixed R = 6, c = 50% and nf= 0.1. The gen-
erated embeddings by the remaining three methods for the two
molecules 1GM2 and 1LFBwere shown in Fig. 7, where the true
and estimated positions of the atoms were plotted by blue circles
and pink stars respectively. Each pink star was linked to its cor-
responding blue circle by a pink line. For both cases, SQREDM
almost conformed the shape of the original data. Clearly, the
other two failed to conform. The complete numerical results for
the 12 problems were reported in Table III. It can be clearly
seen that SQREDM performed significantly better in all three
indicators: RMSD, rRMSD and Time. In particular, the time used
by SQREDM is just a small fraction of that by the other two. For
example, SQREDM only used 36.83s for 2CLJ, which is a very
large data set with n = 4189. We feel that the significance of our
proposed method in terms of the solution quality and the speed
has been well demonstrated through this class of problems.

V. CONCLUSION

It is known that existing methods such as SMACOF and SDP
relaxations for the stress minimization do not work satisfactorily
in the context of SNL problems. In this paper, we considered
the stress criterion under box constraints. The key concept used
is the EDM cone with rank-r cut, which governs how well a
dissimilarity matrix can be approximated by a true EDM with
low-embedding dimensions. Based on this geometric concept,
we developed a very fast algorithm, whose major computation
for each step is from computing a few largest eigenvalues of a
symmetric matrix (and the corresponding eigenvectors). Hence,
the overall computational complexity of each step is O(rn2).
We further established its theoretical convergence to a station-
ary point. One significant result is that the algorithm follows
a smooth path despite the objective function is not everywhere
differentiable. This result has led to a neat and water-tight con-
vergence analysis. The performance of the proposed algorithm
has been demonstrated against a few leading algorithms both
SNL and MC problems. Based on our extensive numerical ex-
periments, it is safe to say that SQREDM is capable of producing
embeddings comparable to the best results by the tested algo-
rithms, but only uses a small fraction of their computing time.
In particular, our algorithm is potentially very useful and com-
petitive for large scale embedding problems.

The proposed model and the algorithm has a wider applica-
tions other than SNL and MC problems. For example, it could
be applied to image data for dimensionality reduction as done
in [7] and problems studied in [45], [46]. It also remains to
be seen whether the developed techniques can be used for the

variants of the stress function considered in [3] and for outlier
removal in the robust MDS [47]–[49]. We plan to investigate
those problems in near future.
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