
SIAM J. MATRIX ANAL. APPL. c© 2013 Society for Industrial and Applied Mathematics
Vol. 34, No. 1, pp. 67–93

A SEMISMOOTH NEWTON METHOD FOR THE NEAREST
EUCLIDEAN DISTANCE MATRIX PROBLEM∗

HOU-DUO QI†

Abstract. The nearest Euclidean distance matrix problem (NEDM) is a fundamental compu-
tational problem in applications such as multidimensional scaling and molecular conformation from
nuclear magnetic resonance data in computational chemistry. Especially in the latter application,
the problem is often large scale with the number of atoms ranging from a few hundreds to a few
thousands. In this paper, we introduce a semismooth Newton method that solves the dual problem
of NEDM. We prove that the method is quadratically convergent. We then present an application
of the Newton method to NEDM with H-weights. We demonstrate the superior performance of
the Newton method over existing methods including the latest quadratic semidefinite programming
solver. This research also opens a new avenue toward efficient solution methods for the molecular
embedding problem.

Key words. Euclidean distance matrix, semismooth Newton method, quadratic convergence

AMS subject classifications. 49M45, 90C25, 90C33

DOI. 10.1137/110849523

1. Introduction. Finding a Euclidean distance matrix (EDM) that is nearest
to a given data matrix is a fundamental computational problem in many applications
including multidimensional scaling and molecular conformation from nuclear magnetic
resonance data in computational chemistry. We do not intend to give a detailed
account of the importance of EDM to the two applications. Instead we simply point
to the excellent books [6] by Borg and Groenen and [12] by Cox and Cox for the
former application and [13] by Crippen and Havel, and to the review paper [36] (and
references therein) by Neumaier for the latter. We also refer to a recent paper [16]
by Fang and O’Leary for algorithmic comparisons on different approaches to the
EDM completion problem, which is closely related to ours. For its link to the latest
development in semidefinite programming, see Dattorro [14], Toh [45], and the recent
survey [30] by Krislock and Wolkowicz. The purpose of this paper is to propose an
efficient Newton method for large scale problems of this type. Below we describe the
problem in detail and review some existing methods that motivate our research.

Let Sn denote the space of n×n symmetric matrices equipped with the standard
inner product 〈A,B〉 = trace(AB) for A,B ∈ Sn. Let ‖ · ‖ denote the induced
Frobenius norm. Let Sn

+ denote the cone of positive semidefinite matrices in Sn

(often abbreviated as X � 0 for X ∈ Sn
+). The so-called hollow subspace Sn

h is
defined by

Sn
h := {A ∈ Sn : diag(A) = 0} ,

where diag(A) is the vector formed by the diagonal elements of A. A matrix D is
an EDM if D ∈ Sn

h , and there exist points p1, . . . , pn in IRr (r ≤ n − 1) such that
Dij = ‖pi − pj‖2 for i, j = 1, . . . , n. IRr is often referred to as the embedding space,

∗Received by the editors September 28, 2011; accepted for publication (in revised form) by Dianne
P. O’Leary September 21, 2012; published electronically January 29, 2013.

http://www.siam.org/journals/simax/34-1/84952.html
†School of Mathematics, University of Southampton, Highfield, Southampton SO17 1BJ, UK

(H.Qi@soton.ac.uk).

67

68 HOU-DUO QI

and r is the embedding dimension when it is the smallest such r. It is well known
that a matrix D ∈ Sn

h is an EDM if and only if

(1) J(−D)J � 0 and J := I − eeT/n,

where I (or In when the indication of dimension is needed) is the identity matrix in
Sn and e is the vector of all ones in IRn. The origin of this result can be traced back
to Schoenberg [42] and an independent work [47] by Young and Householder. See
also Gower [23] for a nice derivation of (1). The corresponding embedding dimension
r = rank(JDJ) ≤ n− 1.

It is noted that the matrix J , when treated as an operator, is the orthogonal
projection onto the subspace e⊥ := {x ∈ IRn : eTx = 0}. The characterization (1)
simply means that D is an EDM if and only if D ∈ Sn

h and D is negative semidefinite
on the subspace e⊥:

(2) −D ∈ Kn
+ :=

{
A ∈ Sn : xTAx ≥ 0, x ∈ e⊥

}
.

It is easy to check whether a given data matrix D is an EDM via (1). If it is not,
then it is often possible to calculate the nearest EDM to D in order to retain as much
distance information as possible. This problem can be formulated as the following
nearest Euclidean distance matrix problem:

(3) vp := min ‖D −X‖2/2 s.t. (subject to) X ∈ Sn
h ∩ Kn

+.

Given (−D) used in (2), the matrix D in (3) should be −D. This change of sign has
been widely adopted to reformulate (3) (see, e.g., [19, 17, 1]) and it reminds us that
the objective is to minimize a distance. The widely used H-weighted version (see [1])
is defined as

(4) min ‖H ◦ (D −X)‖2/2 s.t. X ∈ Sn
h ∩ Kn

+,

where H ∈ Sn is nonnegative (i.e., Hij ≥ 0) and ◦ denotes the Hadamard product
among matrices. In practice, the magnitude of Hij reflects the level of accuracy of
the corresponding distance Dij . The H-weighted problem is much more difficult to
solve than (3) (note that (4) reduces to (3) when H = E, the matrix of all ones in
Sn). Our main purpose in this paper is to develop a fast convergent Newton method
for (3) and then apply it to (4). Below we conduct a brief literature review on both
problems.

Problem (3) has been the main subject of several important papers. We first
note that the feasible region is the intersection of the subspace Sn

h and the closed
convex cone Kn

+. Hence, alternating projection methods of Dykstra–Han type [15, 24]
are a choice. In fact, one such method, called modified alternating projection (MAP),
was studied by Glunt et al. [19]. The same method was independently studied by
Gaffke and Mathar [17], but based on a different projection formula on Kn

+ (see (15)
and (17)). However, MAP does not apply to (4) unless H = E. Problem (3) (and
in general (4)) can also be solved by semidefinite programming (SDP) initiated by
Alfakih, Khandani, and Wolkowicz [1] (see also [2]). We note that the dimension of
Sn
h is n(n−1)/2, as is the dimension of the cone En of the Euclidean distance matrices,

where En := Sn
h ∩ (−Kn

+) (see [26]). Alfakih et al. introduced their interesting linear

mapping, KV : Sn−1
+ �→ En, defined by

KV (X) = diag(V XV T)eT + ediag(V XV T)T − 2V XV T ,

COMPUTING THE NEAREST EUCLIDEAN DISTANCE MATRIX 69

where V ∈ IRn×(n−1) satisfies V TV = In−1 and V T e = 0. Then (4) is equivalent to
the problem

(5) min ‖H ◦ (KV (X)−D)‖2/2 s.t. X ∈ Sn−1
+ .

It is also interesting to note that the mapping KV also allows for Slater’s condition
to hold (see [1, Cor. 2]). Alfakih, Khandani, and Wolkowicz studied an interior point
method based on the Gauss–Newton direction. This method can deal only with
problems with size up to 100. Problem (5) (possibly with more linear equalities) was
one of the major convex quadratic semidefinite programs studied by Toh [45], where
problem size n can be up to a few thousand. Other linear mappings instead of KV can
be used; see [30]. Generally speaking, specific transformations must take place before
SDP can be applied to (3) and (4). Such transformations aim to shift the difficulty
of handling the cone Kn

+ to new objective functions defined on Sn
+. The cost is that

the new objective function is more complicated than the original distance function.
Those transformations tend to destroy the nice geometric properties of Kn

+, which we
will take advantage of to develop our Newton method.

Problem (3) also plays a very important role in solving the embedding problem.
In multidimensional scaling, the given matrix D is often called dissimilarity and the
embedding dimension r should be small, whereas in molecular conformationD is often
called a predistance matrix (i.e., D ∈ Sn

h with Dij ≥ 0 for all i, j) and the embedding
dimension r = 3. Therefore, the well-known embedding problem [20] is to find the
nearest EDM with a low embedding dimension r:

(6) min ‖D −X‖2/2 s.t. X ∈ Sn
h ∩ Kn

+ and rank(JXJ) ≤ r.

Compared to (3), problem (6) is nonconvex and hence is extremely difficult to solve.
Phase I of the two-phase methods in [20] for (6) is to find the optimal solution of (3)
and modify it as a starting point for the Phase II method. Further developments can
be found in [21, 22]. Fast algorithms for (3) are crucial in those applications.

Problem (3) also bears a remarkable resemblance to the nearest correlation matrix
problem:

(7) min ‖C −X‖2/2 s.t. diag(X) = e, X ∈ Sn
+,

where C ∈ Sn is given. The constraints define the set of all n×n correlation matrices.
Higham [28] studied this problem and made it widely accessible to the community of
numerical analysis and optimization. The subsequent research, all trying to design ef-
ficient algorithms for (7), includes (to name just a few) [31, 8, 38, 45, 7]. An important
approach which emerged from those studies is the Lagrangian dual approach, which
was first applied to (7) by Malick [31] and Boyd and Xiao [8]. The dual approach
was then studied by Qi and Sun [38] to design what is now known as one of the most
efficient methods for (7): the semismooth Newton method. The link between the dual
approach and that used in classical computational mathematics (see e.g., [33, 34]) was
well discussed in [38]. This class of research also motivated our research in this paper.

When applied to problem (3), the Lagrangian dual problem (in the form of min-
imization) becomes (see [34, Thm. 2.2] and also [41, 31, 8])

(8) vd := min
y∈IRn

θ(y) := ‖ΠKn
+
(D +Diag(y))‖2/2− ‖D‖2/2,

where ΠKn
+
(·) denotes the orthogonal projection onto the closed convex cone Kn

+,

and Diag(y) is the diagonal matrix with y being its diagonal. Function θ(·) is just

70 HOU-DUO QI

once continuously differentiable, but convex. Furthermore, (8) must have an optimal
solution (see Proposition 2.1), which can be found through the first-order optimality
condition

(9) F (y) := ∇θ(y) = diag
(
ΠKn

+
(D +Diag(y))

)
= 0.

If y is a solution of (9), then

(10) X := ΠKn
+
(D +Diag(y))

is the optimal solution of (3). This follows from the zero duality gap result (i.e.,
vp = −vd), which can be easily proved via writing down the Lagrangian function of
(3) and using Proposition 2.1. Hence, it is enough to solve the dual problem and it
is relatively easy to solve as it is defined in IRn rather than in the significantly larger
space Sn.

It follows from the projection formula (17) of Gaffke and Mathar that F (y) is
strongly semismooth1 because it is a composition of linear mappings and ΠSn

+
(·) (the

orthogonal projection onto Sn
+), and ΠSn

+
(·) is known to be strongly semismooth

[44, 9]. Now it becomes natural to develop the semismooth Newton method. Given
y0 ∈ IRn and letting k := 0, compute Vk ∈ ∂F (yk) and

(11) yk+1 = yk − V −1
k F (yk), k = 0, 1, 2,

Since F is the gradient of θ, ∂F is often called the generalized Hessian of θ, denoted by
∂2θ(y). We refer to [38, sect. 3] for a detailed development of (11) for (7). The above
arguments leading to the Newton method (11) for (3) fail to hold for the H-weighted
problem (4) because the projection onto Kn

+ under the H-weights does not have an
analytical formula. It is already very difficult to calculate the projection under the
H-weights, let alone compute its generalized Jacobian.

Therefore, our main tasks in this paper are (i) to address the quadratic conver-
gence of (11); (ii) to demonstrate its superior numerical performance, especially on
large scale problems; and (iii) to apply it to the H-weighted problem (4).

The paper is organized as follows. Sections 2 and 2.1 are devoted to the Newton
method (11). In section 2.2, we include some notation and technical results. One
of the results states that problem (3) is constraint nondegenerate (Theorem 2.3).
A characterization of the constraint nondegeneracy (Proposition 2.4) generalizes the
corresponding result in SDP of Alizadeh, Haeberly, and Overton [3]. In section 3,
we conduct quadratic convergence analysis of the Newton method (11). The main
result is Theorem 3.3, which says that every matrix in the generalized Jacobian of F
at the optimal solution is positive definite. This result then leads to the quadratic
convergence result Theorem 3.5. Section 4 includes an application of the Newton
method to the H-weighted problem (4). We report our numerical results in section 5,
and we conclude the paper in section 6 by discussing the use of the Newton method
in future research.

2. Preliminaries. In this section, we first list most of the notation used in this
paper and review two formulae of ΠKn

+
. We finish this section by establishing two re-

sults on the existence of an optimal dual solution for (8) and constraint nondegeneracy
of (3).

1A (locally) Lipschitz function Φ : IRm �→ IR� is said to be strongly semismooth at x ∈ IRm if
(i) Φ is directionally differentiable at x; and (ii) for any V ∈ ∂Φ(x + h), Φ(x + h) − Φ(x) − V h =
o(‖h‖2), h ∈ IRm, where ∂Φ(x) denotes the generalized Jacobian of Φ at x in the sense of Clarke [11,
sect. 2.6].

COMPUTING THE NEAREST EUCLIDEAN DISTANCE MATRIX 71

2.1. Notation and two formulae of ΠKn
+
. Apart from Sn, Sn

+, Sn
h , Kn

+, J ,

diag, and Diag mentioned in the introduction, we also need the following (“:=” means
“define”): ei is the ith unit basis vector in IRn and e is the vector of all ones. E is
the matrix of all ones. Define the Householder matrix Q by

(12) Q := I − 2

vT v
vvT , v = [1, . . . , 1,

√
n+ 1]T ∈ IRn,

where vT is the transpose of v. We note that Q is symmetric and orthogonal: Q2 = I.
We often partition a matrix X ∈ Sn into blocks

X =

[
X1 x
xT x0

]
, with X1 ∈ Sn−1, x ∈ IRn−1, x0 ∈ IR.

ΠSn
+
(X) is the orthogonal projection of X onto Sn

+. For a close convex cone C in Sn,
its polar cone C∗ is defined by

C∗ := {X ∈ Sn : 〈X, A〉 ≤ 0 ∀ A ∈ C} .

The normal cone NKn
+
(A) of Kn

+ at A ∈ Kn
+ is defined by

NKn
+
(A) :=

{
X ∈ Sn : 〈X, A−A〉 ≤ 0 ∀ A ∈ Kn

+

}
.

Since Kn
+ is convex, the tangent cone TKn

+
(A) of Kn

+ at A ∈ Kn
+ can be conveniently

defined as the polar cone of NKn
+
(A):

(13) TKn
+
(A) :=

(
NKn

+
(A)

)∗
.

We let lin(TKn
+
(A)) denote the largest linear space contained in TKn

+
(A). A ◦ B :=

[AijBij] is the Hadamard product between two matrices A and B of the same size.
For subsets α, β of {1, . . . , n}, denote Bαβ as the submatrix of B indexed by α and
β (α for rows and β for columns). Bα denotes the submatrix consisting of columns of
B indexed by α, and |α| is the cardinality of α.

There are two known formulae for computing ΠKn
+
. One is due to Hayden and

Wells [25, Thm. 2.1]:

(14) A ∈ Kn
+ ⇐⇒ QAQ =:

[
Â â
âT â0

]
and Â ∈ Sn−1

+

and

(15) ΠKn
+
(A) = Q

[
ΠSn−1

+
(Â) â

âT â0

]
Q, ∀ A ∈ Sn,

where (and throughout this paper) Q is the Householder matrix defined in (12).
Because of (15), the cone Kn

+ can be described as follows:

Kn
+ =

{
Q

[
Z z
zT z0

]
Q :

Z ∈ Sn−1
+

z ∈ IRn−1, z0 ∈ IR

}
.

Its polar cone (Kn
+)

∗ is then given by(
Kn

+

)∗
=

{
Q

[
Z 0
0 0

]
Q : Z ∈ −Sn−1

+

}
.(16)

72 HOU-DUO QI

The other projection formula is due to Gaffke and Mathar [17, eq. (29)]:

(17) ΠKn
+
(A) = A+ΠSn

+
(−JAJ) ∀ A ∈ Sn.

We note that the original projection formula of Gaffke and Mathar is onto (−Kn
+).

Each formula has its own advantage. Formula (15) states that the projection is in
fact carried out onto Sn−1

+ , while (17) brings the formula to the defining space Sn.
We will use the Gaffke–Mathar formula in our numerical implementation and the
Hayden–Wells formula for our analysis because it brings out the rich structures that
exist in TKn

+
(A).

2.2. Existence of optimal dual solutions and constraint nondegeneracy.
The following result on the coerciveness of the dual problem (8) ensures that it must
have an optimal solution.

Proposition 2.1. The function θ(·) in (8) is coercive, i.e., θ(y) → +∞ as
‖y‖ → +∞. Consequently, the dual problem (8) must have an optimal solution.

Proof. Suppose to the contrary that θ(·) is not coercive. Then there must exist
a sequence {yk} such that ‖yk‖ → +∞ and θ(yk) ≤ c for some constant c > 0.
We consider the sequence {yk/‖yk‖}, which, without loss of generality, is assumed to
converge to y∗. Because Kn

+ is a cone, we have

c

‖yk‖2 ≥ θ(yk)

‖yk‖2 =
1

2

∥∥∥∥ΠKn
+

(
D

‖yk‖ +
Diag(yk)

‖yk‖

)∥∥∥∥2 − 1

2

‖D‖2
‖yk‖2 .

Taking the limit on both sides of the above inequality, we have (due to the continuity
of the projection operator ΠKn

+
(·))

‖ΠKn
+
(Diag(y∗))‖ ≤ 0,

which means ΠKn
+
(Diag(y∗)) = 0. Consequently, Diag(y∗) ∈ (Kn

+)
∗.

It follows from (16) that there exists Z ∈ −Sn−1
+ such that

Diag(y∗) = Q

[
Z 0
0 0

]
Q or, equivalently, QDiag(y∗)Q =

[
Z 0
0 0

]
.

Obviously, the last column of QDiag(y∗)Q is zero:

0 = QDiag(y∗)Qen = − 1√
n
QDiag(y∗)e = − 1√

n
Qy∗,

where we used Qen = −e/
√
n. The nonsingularity of Q implies y∗ = 0, contradicting

‖y∗‖ = 1. This proves that θ(·) is coercive.
Constraint nondegeneracy plays a very important role in optimization; see [3,

Def. 5], [10, Def. 9], and [37, sect. 2] for its use in SDP. Generally speaking, it en-
sures a certain regularity of optimal solutions. For our problem (3), the constraint
nondegeneracy is defined as follows.

Definition 2.2. We say that the constraint nondegeneracy holds at A ∈ Sn
h ∩Kn

+

if

(18) diag
(
lin (TKn

+
(A))

)
= IRn.

COMPUTING THE NEAREST EUCLIDEAN DISTANCE MATRIX 73

Let A ∈ Kn
+ and

(19) A = Q

[
Z z
zT z0

]
Q, Z ∈ Sn−1.

Then Z � 0 by (14). We assume that rank(Z) = r and let λ1 ≥ λ2 ≥ · · · ≥ λr > 0 be
the r positive eigenvalues of Z in nonincreasing order. Let Λ = Diag(λ1, . . . , λr). We
assume that Z takes the following spectral decomposition:

(20) Z = U

[
Λ

0

]
UT ,

where U ∈ IR(n−1)×(n−1) and UTU = In−1. The normal cone NKn
+
(A) is given by [19,

Thm. 3.1]:

NKn
+
(A) =

⎧⎨⎩Q

⎡⎣ U

[
0 0
0 M

]
UT 0

0 0

⎤⎦Q : −M ∈ Sn−r−1
+

⎫⎬⎭ .

Let

(21) U :=

[
U 0
0 1

]
∈ IRn×n.

Then U
T
U = I, and the normal cone can be equivalently written as

NKn
+
(A) =

⎧⎨⎩QU

⎡⎣ [
0 0
0 M

]
0

0 0

⎤⎦U
T
Q : −M ∈ Sn−r−1

+

⎫⎬⎭ .

By definition (13) of the tangent cone in terms of NKn
+
(A), we have

TKn
+
(A) =

⎧⎨⎩QU

⎡⎣ [
Σ1 Σ12

ΣT
12 Σ2

]
a

aT a0

⎤⎦U
T
Q :

Σ1 ∈ Sr,Σ2 ∈ Sn−r−1
+

Σ12 ∈ IRr×(n−r−1)

a ∈ IRn−1, a0 ∈ IR

⎫⎬⎭(22)

=

⎧⎨⎩Q

⎡⎣ U

[
Σ1 Σ12

ΣT
12 Σ2

]
UT a

aT a0

⎤⎦Q :
Σ1 ∈ Sr ,Σ2 ∈ Sn−r−1

+

Σ12 ∈ IRr×(n−r−1)

a ∈ IRn−1, a0 ∈ IR

⎫⎬⎭ .(23)

The last equality used the facts that U is nonsingular and [aT , a0] is not restricted.
Now we are ready to prove the following result.

Theorem 2.3. Constraint nondegeneracy holds at each feasible point A of prob-
lem (3).

Proof. We need only prove condition (18). It follows from (22) that

lin(TKn
+
(A)) =

⎧⎨⎩QU

⎡⎣ [
Σ1 Σ12

ΣT
12 0

]
a

aT a0

⎤⎦U
T
Q :

Σ1 ∈ Sr

Σ12 ∈ IRr×(n−r−1)

a ∈ IRn−1, a0 ∈ IR

⎫⎬⎭ .(24)

It is obvious from (23) that

A = Q

[
0(n−1)×(n−1) a

aT a0

]
Q ∈ lin(TKn

+
(A)) ∀ [aT , a0] ∈ IRn.

74 HOU-DUO QI

Let b ∈ IRn be arbitrary. We will find [aT , a0] ∈ IRn such that

(25) diag(A) = b.

We calculate the diagonal of A. For i = 1, . . . , n, we have

Aii = eTi Q

[
0(n−1)×(n−1) a

aT a0

]
Qei = trace

(
Qei(e

T
i Q)

[
0(n−1)×(n−1) a

aT a0

])
= eTn (Qeie

T
i Q)

[
2a
a0

]
= − 1√

n
eT (eie

T
i Q)

[
2a
a0

] (
using Qen = − 1√

n
e

)
= − 1√

n
(eTi Q)

[
2a
a0

]
.

We therefore have

diag(A) = − 1√
n
Q

[
2a
a0

]
.

Substituting this into (25) to solve for a and a0, we obtain[
2a
a0

]
= −

√
nQb.

With such choice of a and a0 in A, we have b = diag(A) ∈ diag(lin(TKn
+
(A))). This

proves (18) and hence the constraint nondegeneracy at A.
Theorem 2.3 is not practical enough for our use. We now develop a result for

later use. Let Ei := eie
T
i for i = 1, . . . , n, and let

Bi := QEiQ =:

[
Bi

1 bi

(bi)T bi0

]
with Bi

1 ∈ Sn−1.

Let U be defined as in (20). We define the corresponding index sets

(26) α(Z) := {i : λi > 0} and α(Z) := {1, 2, . . . , n− 1} \ α(Z).

Whenever no confusion arises, we abbreviate α(Z), α(Z) as α and α, respectively.
We write

U = [Uα, Uα] .

We further define

(27)

Ci :=

⎡⎣ [
UT
α Bi

1Uα UT
α Bi

1Uα

UT
α Bi

1Uα 0

]
UT bi

(bi)TU bi0

⎤⎦ = U
T
BiU −

⎡⎣ [
0 0
0 UT

α Bi
1Uα

]
0

0 0

⎤⎦ ,

where U is defined by (21).
Proposition 2.4. The matrices {Ci}ni=1 are linearly independent at each feasible

point A of (3).

COMPUTING THE NEAREST EUCLIDEAN DISTANCE MATRIX 75

Proof. We note that the constraint nondegeneracy condition (18) is equivalent to

Sn
h + lin(TKn

+
(A)) = Sn,

which in turn is equivalent to

(28)
(
Sn
h

)⊥
∩
(
lin(TKn

+
(A))

)⊥
= {0},

where (Sn
h)

⊥ denotes the subspace orthogonal to Sn
h .

Because of Theorem 2.3, (28) holds. We prove the claim by contradiction. As-
sume that {Ci}ni=1 are linearly dependent. Then there exists 0 �= h ∈ IRn such that∑n

i=1 hiCi = 0. It follows from (27) that

n∑
i=1

hiCi = U
T
(∑

(hiBi)
)
U −

⎡⎣ [
0 0
0 UT

α

∑
(hiB

i
1)Uα

]
0

0 0

⎤⎦
= U

T
(
Q(Diag(h))Q

)
U −

⎡⎣ [
0 0
0 UT

α

∑
(hiB

i
1)Uα

]
0

0 0

⎤⎦ ,(29)

where we used the trivial identity

(30)

n∑
i=1

hiBi = Q(Diag(h))Q.

Hence,
∑n

i=1 hiCi = 0 implies

(31) U
T
(
Q(Diag(h))Q

)
U =

⎡⎣ [
0 0
0 UT

α

∑
(hiB

i
1)Uα

]
0

0 0

⎤⎦ .

It is obvious that Diag(h) ∈ (Sn
h)

⊥. For any A ∈ lin(TKn
+
(A)), we have

〈Diag(h), A〉 = 〈UT
Q(Diag(h))QU, U

T
QAQU〉 =

〈
UT
α

∑
(hiB

i
1)Uα, 0

〉
= 0.

The first equality used the fact that QU is orthogonal because both Q and U are
orthogonal. The second equality used (31) and the structure of lin(TKn

+
(A)) in (24).

Hence

0 �= Diag(h) ∈
(
Sn
h

)⊥
∩
(
lin(TKn

+
(A))

)⊥
,

which contradicts (28). This proves the linear independence of {Ci}ni=1.
As a matter of fact, it is not hard to derive the constraint nondegeneracy at A from

the linear independence of {Ci}ni=1. In other words, linear independence of {Ci}ni=1

is equivalent to constraint nondegeneracy at A. It is interesting to note that this
equivalent characterization is a natural extension of a result of Alizadeh, Haeberly,
and Overton [3, Thm. 6] on primal nondegeneracy in SDP from Sn

+ to Kn
+.

76 HOU-DUO QI

3. Quadratic convergence. This section is mainly concerned with the quad-
ratic convergence of the Newton method (11). Globalizing the Newton method is
straightforward, as the dual problem (8) is convex (see section 5). Our key result is
that every matrix in ∂2θ(y) is positive definite when y is an optimal solution of (8).
This result will lead to the desired quadratic convergence. To facilitate our analysis,
we need to study the structure of ∂2θ(y) = ∂F (y).

It follows from the definition of F (y) in (9) and the Gaffke–Mathar formula (17)
that (also using diag(D) = 0)

F (y) = y + diag(ΠSn
+
(−J(D +Diag(y))J).

The Jacobian chain rule of Clarke [11, Thm. 2.6.6] implies

(32) ∂2θ(y)h ⊆ h− diag
(
∂ΠSn

+
(Y)(J(Diag(h))J)

)
,

where Y := −J(D+Diag(y))J . We will reveal the rich structures in ∂ΠSn
+
(Y)(JDiag

(h)J) step by step to prove our ultimate result on quadratic convergence of (11).

3.1. Generalized Jacobian of ΠSn
+
(·). Let

(33) Y := −J(D +Diag(y))J and Y = PΛPT ,

where PTP = I and Λ := Diag(λ1, . . . , λn), with λ1 ≥ λ2 ≥ · · · ≥ λn being eigen-
values of Y in nonincreasing order. For those eigenvalues, define the corresponding
symmetric matrix Ω ∈ Sn with entries

(34) Ωij :=
max{λi, 0}+max{λj , 0}

|λi|+ |λj |
, i, j = 1, . . . , n,

where 0/0 is defined to be 1.
We further define three index sets

(35) α(Y) := {i : λi > 0}, β(Y) := {i : λi = 0}, γ(Y) := {i : λi < 0}.

We will drop the dependence of those indices on Y whenever no confusion arises. We
have the following formula describing ∂ΠSn

+
(Y).

Proposition 3.1 (see [43, Prop. 2.2]). Suppose that Y ∈ Sn has the spectral

decomposition as in (33). Then V ∈ ∂ΠSn
+
(Y) if and only if there exists Ṽ ∈ ∂ΠS|β|

+

(0)

such that

(36) V (H) = P

⎡⎢⎣ H̃αα H̃αβ Ωαγ ◦ H̃αγ

H̃T
αβ Ṽ (H̃ββ) 0

ΩT
αγ ◦ H̃T

αγ 0 0

⎤⎥⎦PT ∀ H ∈ Sn,

where H̃ := PTHP .
Therefore, to specify an element V ∈ ∂ΠSn

+
(Y) one needs to specify the cor-

responding Ṽ from ∂ΠS|β|
+

(0). It is usually complicated to specify all elements in

∂ΠS|β|
+

(0) (see [32], which is solely devoted to a detailed characterization). But for us

we need only the following property on Ṽ :

(37) 〈Z1, Ṽ (Z2)〉 ≤ ‖Z1‖‖Z2‖ ∀ Z1, Z2 ∈ S|β|.

This can be easily proved by using [10, eq. (17)].

COMPUTING THE NEAREST EUCLIDEAN DISTANCE MATRIX 77

The general description in (36) is not adequate for our further analysis. We need
to break it down to reveal the structure of our problem. Next we establish a useful
relationship between P and Q.

3.2. Relationship between P and Q. The following identity has been used
by Glunt et al. [19, p. 591]:

(38) Q

[
In−1 0
0 0

]
Q = J.

It follows from (33) that

(39) Y = Q

[
Ŷ1 0
0 0

]
Q,

where we denote

(40) −Q(D +Diag(y))Q =:

[
Ŷ1 ŷ
ŷT ŷ0

]
with Ŷ1 ∈ Sn−1.

Let Ŷ1 ∈ Sn−1 take the spectral decomposition

(41) Ŷ1 = W Λ̂WT ,

where Λ̂ := Diag(λ̂1, . . . , λ̂n−1), with λ̂1 ≥ · · · ≥ λ̂n−1 being eigenvalues of Ŷ1 and
W ∈ IR(n−1)×(n−1), WTW = In−1. Define

(42) α̂ := {i : λ̂i > 0}, β̂ := {i : λ̂i = 0}, γ̂ := {i : λ̂i < 0},
and

(43) W = [Wα̂, W
̂β , Wγ̂].

Then we have

Y :=

[
Ŷ1 0
0 0

]
=

[
W 0
0 1

] [
Λ̂

0

] [
WT 0
0 1

]
.

This means that in addition to {λ̂1, . . . , λ̂n−1}, 0 is the last eigenvalue of Y and en
is the corresponding eigenvector. It follows from (39) that Y and Y share the same
set of eigenvalues because Q is orthogonal. The relationship between index sets α, β,
and γ in (35) and α̂, β̂, and γ̂ is

α = α̂, β = β̂ ∪ {|α̂|+ |β̂|+ 1}, and γ = {i+ 1 : i ∈ γ̂}.
We define W by

(44) W :=

[
Wα̂ W

̂β 0 Wγ̂

0 0 1 0

]
=
[
Wα W β W γ

]
,

where

Wα :=

[
Wα̂

0

]
, W β :=

[
W

̂β 0

0 1

]
, and W γ :=

[
Wγ̂

0

]
.

We then arrive at

Y = QYQ = QWΛW
T
Q.

Therefore, the matrix P in (33) can be chosen to satisfy

(45) P = QW and W is defined by (44).

78 HOU-DUO QI

3.3. Structure of ∂ΠSn
+
(Y)(JDiag(h)J). We let

(46) H := JDiag(h)J and H := QDiag(h)Q =:

[
H1 h

hT h0

]
,

where H1 ∈ Sn−1. By the identity in (38), we have

H = Q

[
H1 0
0 0

]
Q, and hence QHQ =

[
H1 0
0 0

]
.

We also note from (45) that

Pα = QWα, Pβ = QWβ , and Pγ = QW γ .

We also recall from Proposition 3.1 that H̃ = PTHP . It follows that

H̃αα = PT
α HPα = W

T

αQHQWα = WT
α̂ H1Wα̂.

Similarly, we can calculate

H̃αβ =
[
WT

α̂ H1Ŵβ 0
]
, H̃αγ = WT

α̂ H1Wγ̂

and

H̃ββ =

[
WT

̂β
H1Ŵβ 0

0 0

]
, H̃γγ = WT

γ̂ H1Wγ̂ .

We have now completed our preparation to describe any element in ∂ΠSn
+
(Y)

(JDiag(h)J) for h ∈ IRn. The description uses only the spectral information of Ŷ1 in
(41) and H1 defined in (46). We note that h and h0 in H of (46) do not appear in
our description, which we state as a proposition.

Proposition 3.2. For any y ∈ IRn, let Y := −J(D+Diag(y))J , which assumes
the spectral decomposition (33). Let matrix Ω ∈ Sn be as defined in (34). Let H :=
JDiag(h)J for a given h ∈ IRn. Then a matrix L ∈ ∂ΠSn

+
(Y)(H) if and only if there

exists Ṽ ∈ ∂ΠS|β|
+

(0) such that

(47) L = PW(H)PT ,

where P is defined by (45) and

(48)

W(H) :=

⎡⎢⎢⎢⎢⎣
WT

α̂ H1Wα̂

[
WT

α̂ H1Ŵβ 0
]

Ωαγ ◦WT
α̂ H1Wγ̂[

WT
̂β
H1Wα̂

0

]
Ṽ

([
WT

̂β
H1Ŵβ 0

0 0

])
0

ΩT
αγ ◦WT

γ̂ H1Wα̂ 0 0

⎤⎥⎥⎥⎥⎦ .

Proof. This result is just a new interpretation of the formula in Proposition 3.1
in terms of the above calculations.

This proposition will be used to study the nonsingularity of ∂2θ(y) in the next
section. Let us first list two facts that will be used there.

COMPUTING THE NEAREST EUCLIDEAN DISTANCE MATRIX 79

The first fact is a simple observation on ‖h‖ for h ∈ IRn:

(49) ‖h‖2 = ‖Diag(h)‖2 = ‖PTDiag(h)P‖2 = ‖WT
QDiag(h)QW‖2 = ‖WT

HW‖2.

The second fact is about an inequality. Let

Gβ :=

[
WT

̂β
H1Ŵβ WT

̂β
h

hTW
̂β h0

]
, G

̂β :=

[
WT

̂β
H1Ŵβ 0

0 0

]
.

It is easy to see that ‖G
̂β‖ ≤ ‖Gβ‖ and

‖Gβ‖2 − ‖G
̂β‖

2 = 2‖WT
̂β
h‖2 + h2

0.

Hence we have

(50) ‖Gβ‖(‖Gβ‖ − ‖G
̂β‖) ≥ ‖WT

̂β
h‖2 + 1

2
h2
0.

3.4. Nonsingularity of ∂2θ(y). We are ready to prove the following result.
Theorem 3.3. Let y be an optimal solution of the dual problem (8). Then every

matrix M ∈ ∂2θ(y) is positive definite.
Proof. We continue to use the notation developed so far. Let M ∈ ∂2θ(y). Our

purpose is to prove 〈h, Mh〉 > 0 for all 0 �= h ∈ IRn. For such h, we recall that
H := JDiag(h)J and Y := −J(D + Diag(y))J . It follows from (32) and (47) that

there exists Ṽ ∈ ∂ΠS|β|
+

(Y) satisfying

Mh = h− diag
(
PW(H)PT

)
,

where W(H) is defined by (48).
We now calculate 〈h, Mh〉:

〈h, Mh〉 = ‖h‖2 − 〈Diag(h), PW(H)PT 〉 = ‖h‖2 − 〈PTDiag(h)P, W(H)〉
= ‖h‖2 − 〈WT

QDiag(h)QW, W(H)〉 (by (45))

= ‖WT
HW‖2 − 〈WT

HW, W(H)〉 (by (49), (46))

= 2
{
‖WT

α̂ h‖2 + ‖WT
α̂ H1Wγ̂‖2 − 〈WT

α̂ H1Wγ̂ , Ωαγ ◦ (WT
α̂ H1Wγ̂)〉

}
+ 2

{
‖WT

̂β
H1Wγ̂‖2 + ‖WT

γ̂ h‖2 + ‖WT
γ̂ H1Wγ̂‖2/2

}
+ ‖Gβ‖2 − 〈Gβ , Ṽ (G

̂β)〉.

The last equality made use of (48) and the structure of W
T
HW :

W
T
HW =

⎡⎢⎢⎢⎣
WT

α̂ H1Wα̂ WT
α̂ H1Ŵβ WT

α̂ h WT
α̂ H1Wγ̂

WT
̂β
H1Wα̂ WT

̂β
H1Ŵβ WT

̂β
h WT

̂β
H1Wγ̂

hTWα̂ hTW
̂β h0 hTWγ̂

WT
γ̂ H1Wα̂ WT

γ̂ H1Ŵβ WT
γ̂ h WT

γ̂ H1Wγ̂

⎤⎥⎥⎥⎦ .

80 HOU-DUO QI

Define τmax := maxi∈α,j∈γ Ωij . By (34), 0 < τmax < 1. We continue to simplify
〈h,Mh〉:

〈h, Mh〉 ≥ 2
{
‖WT

α̂ h‖2 + ‖WT
γ̂ h‖2 + ‖WT

̂β
H1Wγ̂‖2 + (1− τmax)‖WT

α̂ H1Wγ̂‖2
}

+ ‖WT
γ̂ H1Wγ̂‖2 + ‖Gβ‖2 − ‖Gβ‖‖Ĝβ‖ (by (37))

≥ 2

{
‖WT

α̂ h‖2 + ‖WT
γ̂ h‖2 + 1

2
‖WT

̂β
h‖2

}
+ ‖WT

γ̂ H1Wγ̂‖2

+ 2
{
(1− τmax)‖WT

α̂ H1Wγ̂‖2 + ‖WT
̂β
H1Wγ̂‖2

}
+

1

2
h2
0 (by (50))

≥ 0.(51)

Hence, the assumption 〈h, Mh〉 = 0 would imply

(52) WT
α̂ h = 0, WT

̂β
h = 0, WT

γ̂ h = 0, h0 = 0

and

(53) WT
α̂ H1Wγ̂ = 0, WT

̂β
H1Wγ̂ = 0, WT

γ̂ H1Wγ̂ = 0.

Because of (43) and the nonsingularity of W , (52) implies

(54) h = 0 and h0 = 0.

Since y is an optimal solution of (8), A := ΠKn
+
(D + Diag(y)) is the optimal

solution of (3) by (10). Obviously, A is feasible with respect to the constraints of
(3). Constraint nondegeneracy holds at A due to Theorem 2.3. We assume A is
decomposed as in (19). We now clarify the structure of matrix Z. We recall the
decomposition (40) and Hayden–Wells formula (15) for ΠKn

+
. It follows that

A = Q

[
ΠSn−1

+
(−Ŷ1) −ŷ

−ŷT −ŷ0

]
Q = Q

[
WΠSn−1

+
(−Λ̂)WT −ŷ

−ŷT −ŷ0

]
Q.

Hence, the matrix Z in (19) has the form

(55) Z = WΠSn−1
+

(−Λ̂)WT = W

⎡⎣ 0α̂
0
̂β

−Λ̂γ̂

⎤⎦WT .

Now we recall the definitions of α(Z) and α(Z) in (26). The matrix Z as decom-
posed in (20) also takes the following form:

(56) Z = U

⎡⎣ Λα

0
0

⎤⎦UT .

We note that the indices in γ̂ are

γ̂ =
{
|α̂|+ |β̂|+ 1, . . . , |α̂|+ |β̂|+ |γ̂|

}
with |α̂|+ |β̂|+ |γ̂| = n− 1.

COMPUTING THE NEAREST EUCLIDEAN DISTANCE MATRIX 81

By comparing (55) with (56), we have the following correspondence between eigen-
values indexed by α and those by γ̂:

|α| = |γ̂| and λi = −λ̂n−i for i ∈ α = {1, 2, . . . , |α|}.

Let P̃ be the permutation matrix that maps the order sequence {1, 2, . . . , |γ̂|} to its
reverse order sequence {|γ̂|, . . . , 2, 1}. Then we have the following correspondence
between eigenvectors in U and those in W :

Uα(Z) = Wγ̂ P̃ and Uα(Z) = Wγ with γ := α̂ ∪ β̂.

Then the matrices {Ci}ni=1 defined in (27) are linearly independent by Proposi-
tion 2.4. It follows from (46), (54), and (30) that

H = QDiag(h)Q =

[
H1 h

hT h0

]
=

[
H1 0
0 0

]
and

n∑
i=1

hiB
i
1 = H1.

We recall that U is defined in (21). Now we consider the linear combination∑
hiCi, which has been derived in (29):

n∑
i=1

hiCi = U
T
(
QDiag(h)Q

)
U −

⎡⎣ [
0 0
0 UT

α

∑
(hiB

i
1)Uα

]
0

0 0

⎤⎦
=

⎡⎣ UT
α H1Uα UT

α H1Uα 0
UT
α H1Uα 0 0

0 0 0

⎤⎦ =

⎡⎣ P̃TWT
γ̂ H1Wγ̂ P̃ P̃TWT

γ̂ H1Wγ 0

WT
γ H1Wγ̂ P̃ 0 0

0 0 0

⎤⎦ .

Consequently, (53) forces
∑

hiCi = 0. The linear independence of {Ci} in turn forces
h = 0. Therefore, 〈h, Mh〉 = 0 if and only if h = 0. In other words, 〈h, Mh〉 > 0 for
0 �= h ∈ IRn by (51). This proves that M is positive definite.

We now state some consequences of Theorem 3.3. The first is on the uniqueness
of the optimal solution of the dual problem (8). Let us regard the gradient function
F (y) = ∇θ(y) as a mapping from IRn to IRn. The generalized Jacobian ∂F (y) is said
to be of maximal rank provided that every matrix M in ∂F (y) is of maximal rank (i.e.,
nonsingular) [11, p. 253]. It follows from Theorem 3.3 that ∂F (y∗) is of maximal rank
provided that y∗ is an optimal solution of (8). Then, the inverse function theorem of
Clarke [11, Thm. 7.1.1] and the convexity of (8) lead to the following result.

Corollary 3.4. The dual problem (8) has a unique optimal solution.
The second consequence of Theorem 3.3 is about the quadratic convergence of

the Newton method (11). We state it as a theorem.
Theorem 3.5. The Newton method (11) is quadratically convergent provided that

y0 is sufficiently close to the unique optimal solution y∗ of (8).
Proof. In the quadratic convergence-rate theorem of Qi and Sun [39, Thm. 3.2]

for general semismooth Newton methods, there are three conditions: (i) The function
F is strongly semismooth, which is true for our case because it is a composition
of linear mappings and the strongly semismooth mapping ΠSn

+
(·) [44]. (ii) Every

matrix in the generalized Jacobian of ∂F (y∗) is nonsingular, which has been proved
in Theorem 3.3. The last condition is that the initial point y0 stays close to y∗. This
proves our result.

Since (8) is convex, globalization of the Newton method (11) is an easy task. We
simply use one of the well-developed globalization method studied by Qi and Sun [38]
in our numerical experiment.

82 HOU-DUO QI

4. Application to the H-weighted problem. As briefly mentioned in in-
troduction, the H-weighted problem (4) is much more difficult to solve than the
unweighted case (3). In this section, we develop a global method for this difficult
problem. The most important feature of this method is that each subproblem is a
diagonally weighted problem of (3), and this subproblem can be efficiently solved by
a Newton method similar to (11). The bridge that links the H-weighted problem and
the diagonally weighted problem is the majorization approach introduced by Gao and
Sun [18] for the H-weighted nearest correlation matrix problem. We refer to [18] for
more information about the majorization approach initially used in multidimensional
scaling. We will first demonstrate how this approach works for (4).

4.1. The majorization approach. Denote the objective function in (4) by

f(X) = 0.5‖H ◦ (X −D)‖2.

Obviously, f(·) is quadratic and its Taylor expansion at a given point Y k ∈ Sn is

f(X) = f(Y k) + 〈H ◦H ◦ (Y k −D), X − Y k〉+ 0.5‖H ◦ (X − Y k)‖2.

We replace the quadratic term by a simpler function ‖W 1/2(X − Y k)W 1/2‖2, which
satisfies

‖W 1/2(X − Y k)W 1/2‖ ≥ ‖H ◦ (X − Y k)‖ ∀ X ∈ Sn,

where W := Diag(w) and 0 < w ∈ IRn. A particular choice recommended by Gao
and Sun [18] is

(57) wi := max{τ, max{Hij : j = 1, . . . , n}}, i = 1, . . . , n,

where τ > 0 is a constant. Define

(58) fk(X) := f(Y k) + 〈H ◦H ◦ (Y k −D), X − Y k〉+ 0.5‖W 1/2(X − Y k)W 1/2‖2.

We certainly have the property

(59) fk(X) ≥ f(X) ∀ X ∈ Sn and fk(Y
k) = f(Y k).

Because of this property, fk(X) is called a majorization of f at Y k. The majorization
approach aims to solve the following problem:

(60) min fk(X) s.t. X ∈ Sn
h ∩ Kn

+.

We note that problem (60) is strictly convex, and it has a unique solution, denoted
by Xk+1. We then have (because of (59))

(61) f(Xk+1) ≤ fk(X
k+1) ≤ fk(Y

k) = f(Y k).

In other words, the solution of (60) provides a better point Xk+1 than Y k in terms of
the original objective function. When Y k is chosen to be Xk, property (61) is known
as the sandwich property, and the majorization approach produces a sequence {Xk}
satisfying f(Xk+1) ≤ f(Xk).

Numerical implication of the majorization approach is then to solve a sequence
of the problem (60) starting from X0. Theoretically, we get a sequence of {Xk} with
decreasing function values if we choose Y k = Xk. As a matter of fact, there are
other (better) choices for Y k. We will describe one in section 4.3. Numerically, this
approach is sensible only if the new problem (60) is much easier to solve than the
original problem. We demonstrate below that this is the case.

COMPUTING THE NEAREST EUCLIDEAN DISTANCE MATRIX 83

4.2. Solving subproblem (60). It is observed that problem (60) is actually a
diagonally weighted problem of (3). To see this, we note that

fk(X) =
1

2
‖W 1/2(X − (Y k −Dk))W 1/2‖2

+f(Y k)− 1

2
‖W−1/2(H ◦H ◦ (Y k −D))W−1/2‖2,

where Dk := W−1(H ◦H ◦ (Y k −D))W−1. Ignoring the constant term in fk, problem
(60) is equivalent to

(62) min
1

2
‖W 1/2(X −D

k
)W 1/2‖2 s.t. X ∈ Sn

h ∩ Kn
+,

where D
k
:= Y k −Dk. Because of W = Diag(w), we call this problem a diagonally

weighted version of problem (3).
Let

X̃ := W 1/2XW 1/2 and D̃k := W 1/2D
k
W 1/2.

Then problem (62) is equivalent to

(63) min
1

2
‖X̃ − D̃k‖2 s.t. W−1/2X̃W−1/2 ∈ Sn

h ∩ Kn
+.

It is easy to verify that (because W is diagonal)

W−1/2X̃W−1/2 ∈ Sn
h if and only if X̃ ∈ Sn

h

and

W−1/2X̃W−1/2 � 0 on {e}⊥ if and only if X̃ � 0 on
{
W 1/2e

}⊥
.

Define the closed convex cone as

Kn
w :=

{
X ∈ Sn : X � 0 on

{
W 1/2e

}⊥}
.

It follows from (63) that (62) is equivalent to

(64) min
1

2
‖X̃ − D̃k‖2 s.t. X̃ ∈ Sn

h ∩ Kn
w.

This problem is almost the same as (3) except that Kn
+ is being replaced by Kn

w. We
can develop the Newton method for this problem just as we have done for problem
(3). We summarize this procedure below.

The corresponding dual problem and its first-order optimality condition are (see
(8) and (9), respectively, for problem (3)):

(65) min
y∈IRn

θw(y) :=
1

2
‖ΠKn

w
(D̃k +Diag(y))‖2 − 1

2
‖D̃k‖2

and

Fw(y) := ∇θw(y) = diag
(
ΠKn

w
(D̃k +Diag(y))

)
= 0.

84 HOU-DUO QI

The Newton method therefore takes the following form (see (11)):

(66) yj+1 = yj − V −1
j Fw(y

j), j = 0, 1, 2, . . . ,

where Vj ∈ ∂Fw(y
j).

In order to implement the Newton method (66), we need to characterize the
projection ΠKn

w
(A) for any A ∈ Sn. This can be done as follows. Let Q be the

Householder transformation that maps the vector W 1/2e to [0, . . . , 0,−‖W 1/2e‖]T .
Let

v :=

⎡⎣√w1, . . . ,
√
wn−1,

√
wn +

√√√√ n∑
i=1

wi

⎤⎦T

.

Then

Q = I − 2

vT v
vvT .

According to [25, Thm. 2.1] (which takes S = W 1/2e), we have

ΠKn
w
(A) = Q

[
ΠSn−1

+
(Â1) â

âT â0

]
Q ∀ A ∈ Sn,

where

QAQ =:

[
Â1 â
âT â0

]
with Â1 ∈ Sn−1, â ∈ IRn−1, â0 ∈ IR.

Let

J := Q

[
In−1 0
0 0

]
Q = I − 1∑

wi

√
w
√
w

T
with

√
w :=

⎡⎢⎣
√
w1

...√
wn

⎤⎥⎦ .

Then the corresponding formula (17) of Gaffke and Mathar is

ΠKn
w
(A) = A+ΠSn

+
(−JAJ).

We can repeat the analysis conducted in sections 2.2 and 3 to conclude that the
Newton method (66) is quadratically convergent (see Theorem 3.5). We omit the
details.

4.3. Global method for the H-weighted problem. Having addressed the
quadratic convergence of the Newton method (66), we are ready to formally state our
global method for the H-weighted problem (4). There exist a couple of globalization
strategies. One is to follow the algorithmic framework of Gao and Sun [18] based
on the majorization argument (e.g., choose Y k = Xk). Another is to cast the ma-
jorization function fk as a proximal gradient approximation to the objective function
f , and hence the resulting proximal gradient method can be applied. Our numerical
results (not reported here) suggest that the second strategy works better. In this
paper, we adopt the accelerated proximal gradient (APG) method (e.g., choose Y k to
be an extrapolation of the two iterates Xk and Xk−1), recently studied by Jiang et al.

COMPUTING THE NEAREST EUCLIDEAN DISTANCE MATRIX 85

[29] for large scale linearly constrained convex quadratic semidefinite programming
(QSDP). We describe this method below.

Algorithm 4.1. Inexact accelerated proximal gradient method (IAPG).
Step 1. Choose X0 ∈ Sn. Let Y 0 := X0, t0 := 1. Set k := 0.
Step 2. Define the function fk by (58). Find an approximate minimizer Xk+1 of

the problem (60).
Step 3. Compute tk+1 := (1 +

√
1 + 4t2k)/2.

Step 4. Compute

Y k+1 := Xk+1 +

(
tk − 1

tk+1

)
(Xk+1 −Xk).

Let k := k + 1 and return to Step 2.
We have the following remarks regarding this algorithm.

(R1) An obvious choice of the initial pointX0 is obtained by solving the unweighted
problem (3). If we keep tk = 1 instead of updating tk in Step 3, Algorithm 4.1
becomes the majorization method of Gao and Sun [18].

(R2) The subproblem (60) is solved by the Newton method (66). Let yk+1 be the
approximate solution obtained by this Newton method. Then Xk+1 is given
by

Xk+1 := W−1/2X̃k+1W−1/2 and X̃k+1 := ΠKn
w
(D̃k +Diag(yk+1)).

We also calculate

Zk+1 := W 1/2(X̃k+1 − (D̃k +Diag(yk+1)))W 1/2.

If yk+1 is the exact solution of the dual problem (65), then Xk+1 is the
optimal solution of (62), and (Wyk+1, Zk+1) are the Lagrange multipliers
corresponding to the two constraints in (62). Consequently, ∇fk(X

k+1) −
Diag(Wyk+1) − Zk+1 = 0. Since the dual problem (65) is solved approxi-
mately, Xk+1 is only an approximate solution of (62), and (Wyk+1, Zk+1)
are approximate multipliers. This is why the method is called the inexact
APG (see [29] for more detailed justification of why only solving the sub-
problem to certain accuracy is still adequate to obtain the desired complexity
result described in (R4)).

(R3) The level of the accuracy for each subproblem can be specified, but with
involved formulations. The interested reader can refer to [29, eq. (32)] for
those formulations. We simply use the stopping criterion, proposed by [29],
to terminate the Newton method (66) for the dual problem (65) when

‖∇θw(y
k+1)‖ ≤ min

{
1/t3.1k , 0.2‖∇fk(X

k)−Diag(Wyk)− Zk‖
}
.

Because tk increases to ∞, the approximate solution yk+1 (and hence Xk+1)
becomes more and more accurate as the algorithm progresses.

(R4) It has become well known (because of the work [35, 4, 46] and many others)
that APGs possess the following complexity result:

f(Xk)− f(X∗) = O(1/k2),

where X∗ is an optimal solution of (4). For the inexact APG described in
Algorithm 4.1, the above complexity still holds (see [29, Thm. 3.1]) subject

86 HOU-DUO QI

to the subproblem being solved to certain accuracy. We omit the details.
Our main contribution in applying IAPG is that the subproblem (60) can be
efficiently solved by applying the Newton method (66) to its dual problem
(65).

(R5) Without a proper convergence check, Algorithm 4.1 may lead to an infinite
loop. In our implementation, we used the stopping criterion (69) to terminate
Algorithm 4.1.

5. Numerical results. In this section, we conduct numerical tests on both
problem (3) and the H-weighted problem (4). For the former we use the Newton
method (11), and for the latter we use Algorithm 4.1. At each of its iterations,
Algorithm 4.1 uses the Newton method (66) to solve its subproblem (62). Since both
Newton methods in their current forms are only locally quadratically convergent, we
used a globalized version of each of the Newton methods in our implementation. The
globalized version we used is taken from [38, Alg. 5.1]. This globalized Newton method
is globally and quadratically convergent (see the convergence analysis in [38, Sect. 5]).

We just like to make three remarks about this globalized Newton method. We
use (11) as an example. The first remark is about calculating the matrix Vk. This
can be done by adapting the computing procedure of [38, sect. 5(a)] to our function
F . We summarize the calculation in a lemma. For simplicity, we drop the iteration
index k on y. We also recall that E is the matrix of all ones.

Lemma 5.1 (computing Vy ∈ ∂F (y)). Let Y := −J(D + Diag(y))J have the
spectral decomposition (33), with index sets α, β, and γ being defined by (35). Then
a matrix Vy ∈ ∂F (y) can be computed as

Vyh = h− diag
(
P (My ◦ (PTHP))PT

)
∀ h ∈ IRn,

where H := JDiag(h)J and My is defined by

My :=

⎛⎜⎝ Eαα Eαβ (τij(y)) i∈α
j∈γ

Eβα 0 0
(τji(y)) i∈α

j∈γ
0 0

⎞⎟⎠, τij(y) :=
λi

λi − λj
, i ∈ α, j ∈ γ.

Evaluating the explicit form of Vy costs a prohibitive O(n4) operations. We there-
fore choose the conjugate gradient (CG) method [27], which requires matrix-vector
products only and avoids computing the explicit form of Vy, to solve the Newton
equation (11). The second remark is about preconditioning CG by the diagonal pre-
conditioner of Vy. The preconditioner can be calculated by adapting the computing
procedure of [7, sect. 3.2] for the problem (7) to our case. The computational com-
plexity is about 2n3, similar to that of [7].

Our last remark is about extending the Newton method to handle additional fixed
distance constraints:

(67) Xij = Dij for (i, j) ∈ B,

where B is the index set that fixes those known distances Dij . Toh [45] included such
constraints in solving (5). Our test Example 5.6 considers such additional constraints.
Our methodology and computation can be extended to this case in a natural way. To
see this, let Ao : Sn �→ IR|B| denote the linear mapping that fixes the off-diagonal
distances in (67) indexed by B. We further let

b :=
(
Dij

)
(i,j)∈B ∈ IR|B| and A(X) :=

(
diag(X)
Ao(X)

)
.

COMPUTING THE NEAREST EUCLIDEAN DISTANCE MATRIX 87

For two column vectors y and z, we use MATLAB notation (y; z) to denote the
column vector (yT , zT)T . The nearest EDM problem (see (3)) that has the extra
constraints (67) becomes

min ‖D −X‖2/2 s.t. A(X) = (0; b) and X ∈ Kn
+.

The corresponding dual problem becomes (see (8))

min
(y;z)∈IRn+|B|

θ(y, z) := ‖ΠKn
+
(D +A∗(y; z))‖2/2− 〈b, z〉 − ‖D‖2/2,

with A∗ being the adjoint of A. The first-order optimality condition becomes (see
(9))

F (y; z) := ∇θ(y; z) = A
(
ΠKn

+
(D +A∗(y; z))

)
− (0; b) = (0; 0).

The Newton method becomes (see (11))

(yk+1; zk+1) = (yk; zk)− V −1
k F (yk; zk), k = 1, 2, . . . ,

where Vk ∈ ∂F (yk; zk). The new dual problem, as well as the function F (y; z), is
structurally similar to what we have in (8) and (9). As a consequence, the calculation
of the generalized Jacobian matrix Vk, which is essential to our Newton method, can
be done via Lemma 5.1 with diag being replaced by A and Diag by A∗. Moreover,
the preconditioning CG used to solve the Newton equation goes through without any
difficulties. However, if we have too many extra constraints of the type (67), we
may lose the property of constraint nondegeneracy, which in turn may destroy the
quadratic convergence of the Newton method. We like to point out that it is a very
complicated issue to know which constraints enjoy the constraint nondegeneracy and
which do not.

We will test the following problems. The first two problems are of dense type,
i.e., Dij �= 0 when i �= j, while the remaining three enjoy certain sparsity patterns.
The first three problems are the type of unweighted problem (3), and the last two
are of H-weighted problem (4). Examples 5.3–5.6 refer to the EDM1 problem of Toh
[45].

Example 5.2 (see [19]). The predistance matrix D is randomly generated with
values uniformly distributed between 10−5 and 10.

Example 5.3. This problem is a slight modification of the EDM1 problem of Toh
[45]. First, we generate n random points, x1, . . . , xn, in the unit cube centered at the
origin in IR3. We calculate Dij = ‖xi − xj‖2 (the squared distance between xi and
xj .) We then add to D an n × n random symmetric matrix with entries in [−α, α],
where α = 0.3 in our test.

Example 5.4. This is the EDM1 problem of [45] except that the H-weight matrix
is taken to be H = E. First, we generate n random points, x1, . . . , xn, in the unit
cube centered at the origin in IR3. Then we set Dij = ‖xi − xj‖2 if the distance is
less than a certain cut-off distance R; otherwise, set Dij = 0. R = 1 in our test.

Example 5.5. This is the EDM1 problem of [45] except that we do not have
fixed distances. Generate matrix D as in Example 5.4 with various choices of R. The
weight matrix H is chosen to be the 0-1 matrix having the same sparsity pattern as
D. Density is calculated by nnz(D)/numel(D).

Example 5.6. This is the EDM1 problem of [45]. Generate D and H as in
Example 5.5. The set of indices where additional distances of the type (67) are fixed
is given by B := {(1, j) : D1j �= 0, j = 1, . . . , n} .

88 HOU-DUO QI

All tests were carried out using the 64-bit version of MATLAB R2011b on a
Windows 7 desktop with a 64-bit operating system having Intel Core 2 Duo CPU of
3.16 GHz, and 4.0 GB of RAM. In Table 1, we compare the Newton method with
MAP [19] and the QSDP solver of Toh [45]. It follows from [17] (see also [31, Thm. 5.1])
that the alternating projection method is actually the gradient method for the dual
problem with step size 1. Therefore, the error measured between successive iterates
by MAP is the norm of the gradient ‖∇θ(y)‖. Therefore, we terminate MAP when

(68) Res := ‖∇θ(yk)‖ ≤ tol,

with tol = 10−5, and we stop the Newton method when (68) is satisfied with tol =
10−6. The reason why we chose 10−5 for MAP is that it run into difficulties in some
cases for higher accuracy (e.g., took too many iterations to have one more digit of
accuracy). On the contrary, the Newton method can quickly reach a higher accuracy.
This is well reflected by the CPU time (in hh:mm:ss format) and the number of
iterations (Iter columns) used by the two methods. The starting point for both
methods was set to 0, and the maximum iterations of MAP are capped at 2000. As for
the QSDP solver, we used the default parameter settings. The Obj column contains
returned objective function values by each method. The results reported below are
the average on 10 randomly generated instances of each test problem.

The performance of the Newton method on unweighted problems in Table 1 is
outstanding. It took under 1 minute to solve problems with n = 2000, which is
equivalent to about 2 million independent variables in each problem. An interesting
observation is that once it reached the level ‖∇θ(yk)‖ ≤ 10−1, the Newton method
converged at a quadratic rate, taking just a few more steps to reach the required
accuracy of 10−6. This observation seems independent of problem size and probably
justifies why it took only about 4–8 steps to terminate for all the problems. On
the contrary, MAP used an increasing number of iterations as n increased. We note
that the complexity of one iteration of MAP is about one full eigenvalue-eigenvector
decomposition. The large number of iterations needed by MAP slows its convergence
and takes a long time to terminate. For example, Newton took about 8 seconds to
solve Example 5.4 (n = 1000) while MAP used about 13 minutes. When n = 2000,
the numbers are 51 seconds for Newton versus nearly 2 hours for MAP, which reached
the maximum iteration with ‖θ(yk)‖ ≈ 10−3. This lower accuracy of the final iterate
is reflected by the corresponding (slightly) lower objective function value of 84996
compared to 84998 returned by the Newton method. This is because the final matrix
returned by MAP is not yet (but close to) an EDM due to the low accuracy. QSDP

suffers difficulties similar to MAP when n gets bigger than 1000. When n = 2000, QSDP
took more than 9 hours to terminate. As QSDP is a general solver for quadratic
semidefinite programs, we feel that it has much room to improve on our test problems
by taking advantage of the problem structure. An encouraging observation is that all
methods were able to return almost the same objective function value on each test
problem.

One important issue that was brought up by a referee is the scaling when using
the Newton method. The following test problem was suggested by a referee. First,
the n points X = [x1, x2, . . . , xn] are generated by X = rand(n-1,n). We then
calculate Dij = ‖xi − xj‖2. Finally, D is perturbed by small quantities via D =
D + 0.01 ∗ randn(n,n). For example, when n = 800, the Newton method, without
scaling, would lose its quadratic convergence. This is because the step length was
too small after a couple of iterations. The culprit is that D contains large distances.

COMPUTING THE NEAREST EUCLIDEAN DISTANCE MATRIX 89

T
a
b
l
e
1

C
o
m
pa

ri
so
n

be
tw

ee
n
N
ew

to
n
,
M
A
P
,
a
n
d
Q
S
D
P
o
n
u
n
w
ei
gh

te
d
p
ro
bl
em

s.

N
ew

to
n

M
A
P

Q
S
D
P

n
It
er

cp
u

R
es

O
b
j

It
er

cp
u

R
es

O
b
j

It
er

cp
u

g
a
p

O
b
j

1
0
0

5
0
.1

6
.5
8
E
-0
8

1
0
8
0
4
.0
1

4
2

0
.1

8
.2
7
E
-0
6

1
0
8
0
4
.0
1

1
2

1
7

2
.7
5
E
-0
7

1
0
8
0
4
.0
4

2
0
0

6
0
.2

8
.6
2
E
-1
0

5
0
7
3
8
.2
9

6
0

0
.6

8
.6
1
E
-0
6

5
0
7
3
8
.2
9

1
2

5
8

7
.0
3
E
-0
7

5
0
7
3
8
.5
4

E
5
.2

5
0
0

5
1
.2

9
.3
8
E
-0
7

3
7
7
6
7
4
.2
6

8
5

7
9
.9
4
E
-0
6

3
7
7
6
7
4
.2
6

1
2

8
:0
5

2
.7
3
E
-0
7

3
7
7
6
7
4
.8
4

1
0
0
0

6
7

3
.6
1
E
-0
9

1
6
4
4
2
8
7
.6
2

1
1
6

5
4

9
.5
8
E
-0
6

1
6
4
4
2
8
7
.6
2

1
2

4
5
:3
8

7
.2
9
E
-0
7

1
6
4
4
2
9
4
.5
5

1
5
0
0

6
2
2

6
.9
2
E
-0
9

3
8
5
6
0
2
6
.5
5

1
4
1

3
:2
0

9
.8
3
E
-0
6

3
8
5
6
0
2
6
.5
4

1
3

2
:2
5
:2
4

9
.8
7
E
-0
8

3
8
5
6
0
2
8
.4
6

2
0
0
0

6
5
5

1
.6
9
E
-0
8

7
0
2
3
7
7
9
.9
8

1
6
1

9
:5
4

9
.1
8
E
-0
6

7
0
2
3
7
7
9
.9
7

1
3

5
:1
4
:3
3

8
.8
2
E
-0
8

7
0
2
3
7
8
3
.1
7

1
0
0

4
0
.1

1
.4
8
E
-0
7

8
.2
7

2
7

0
.1

7
.9
1
E
-0
6

8
.2
7

1
5

1
8

2
.9
4
E
-0
7

8
.2
7

2
0
0

5
0
.2

1
.3
7
E
-0
8

4
3
.2
1

4
6

0
.4

9
.8
8
E
-0
6

4
3
.2
1

1
6

5
0

4
.3
4
E
-0
7

4
3
.2
1

E
5
.3

5
0
0

5
1
.3

1
.5
9
E
-0
8

3
3
3
.5
7

6
1

5
9
.8
1
E
-0
6

3
3
3
.5
7

2
3

6
:1
8

3
.9
3
E
-0
7

3
3
3
.5
9

1
0
0
0

5
6

9
.4
6
E
-0
8

1
4
6
4
.2
4

8
6

4
0

9
.6
3
E
-0
6

1
4
6
4
.2
4

3
6

1
:1
5
:3
1

1
.0
2
E
-0
7

1
4
6
4
.2
6

1
5
0
0

5
1
8

2
.5
3
E
-0
7

3
4
3
8
.7
1

1
0
4

2
:3
1

9
.3
9
E
-0
6

3
4
3
8
.7
1

4
7

4
:0
7
:5
4

6
.9
9
E
-0
7

3
4
3
9
.0
8

2
0
0
0

6
5
4

6
.2
6
E
-0
9

6
2
8
0
.5
9

1
1
8

7
:1
2

9
.8
3
E
-0
6

6
2
8
0
.5
9

5
9

1
2
:2
4
:1
2

4
.1
8
E
-0
7

6
2
8
0
.9
8

1
0
0

6
0
.1

4
.6
5
E
-0
9

1
5
6
.9
2

1
6
2

0
.4

9
.9
4
E
-0
6

1
5
6
.9
2

1
4

1
5

3
.4
1
E
-0
7

1
5
6
.9
2

2
0
0

6
0
.3

1
.3
6
E
-0
7

7
1
8
.2
4

3
4
2

3
9
.9
8
E
-0
6

7
1
8
.2
4

1
6

5
0

6
.2
5
E
-0
7

7
1
8
.2
4

E
5
.4

5
0
0

7
1
.7

3
.3
5
E
-0
7

5
1
1
9
.4
1

8
6
1

1
:0
5

9
.9
6
E
-0
6

5
1
1
9
.4
1

2
0

6
:5
8

8
.5
1
E
-0
7

5
1
1
9
.4
4

1
0
0
0

7
8

5
.5
4
E
-0
7

2
1
3
6
7
.1
4

1
7
8
3

1
3
:0
5

9
.9
7
E
-0
6

2
1
3
6
7
.1
4

2
4

5
0
:4
0

8
.3
6
E
-0
7

2
1
3
6
7
.2
2

1
5
0
0

8
2
4

2
.9
8
E
-0
8

4
7
6
2
9
.3
0

2
0
0
0

4
8
:0
4

2
.7
1
E
-0
4

4
7
6
2
9
.1
7

2
9

3
:2
5
:2
4

1
.0
8
E
-0
7

4
7
6
2
9
.3
3

2
0
0
0

8
5
1

1
.9
1
E
-0
7

8
4
9
9
8
.8
7

2
0
0
0

1
:5
7
:0
3

2
.6
4
E
-0
3

8
4
9
9
6
.7
6

3
5

9
:3
2
:3
8

5
.1
9
E
-0
7

8
4
9
9
9
.0
8

90 HOU-DUO QI

WhenD is scaled toD/max(Dij) to bring all distances between 0 and 1, the quadratic
convergence returns for this scaled matrix. Of course, the obtained solution should
be scaled back by multiplying max(Dij). For this particular problem (n = 800), we
have Iter = 1, cpu = 0.7s, Res = 1.43E-5, and Obj = 2.12E-3. The corresponding
result for MAP (no scaling was used) are Iter = 2, cpu = 0.8s, Res = 4.53E-7, and
Obj = 2.12E-3. For other values of n, we obtained similar results (e.g., Iter =1 for
the Newton method and 2 for MAP). The reason why Newton and MAP took just one
or two iterations is that the starting point is very close to the true solution, bearing
in mind that the true distance matrix is only perturbed by a small amount. For a
general discussion on the need of scaling in optimization methods, we refer the reader
to [5, sect. 1.10, Scaling].

In Tables 2 and 3, we report our numerical experience with Algorithm 4.1 and the
QSDP solver on H-weighted problems with (e.g., Example 5.6) and without (e.g., Ex-
ample 5.5) additional fixed distances (MAP is not applicable to these kind of problems).

Table 2

Comparison between Algorithm 4.1 and QSDP on H-weighted problems. “*” means that psqmr

in QSDP reached the maximum number of steps and the algorithm terminated before reaching the
accuracy.

Algorithm 4.1 QSDP

n = 500 Density R Iter cpu fprog Obj Iter cpu gap Obj
99.79% 1.5 2 4 1.44E-06 1755.9480 23 8:57 1.72E-06 1756.0345
90.80% 1 18 26 5.79E-06 1088.3068 26 7:44 8.83E-06 1088.4785
69.14% 0.8 30 38 1.95E-06 428.3699 24 11:13 1.31E-06 427.6617

E5.5 40.68% 0.6 93 1:33 9.00E-06 85.3167 21 11:10 1.80E-06 85.1006
27.27% 0.5 144 2:08 9.87E-06 26.9529 20 13:46 2.53E-06 26.5405
16.16% 0.4 101 1:30 9.83E-06 6.4204 20 19:15 4.39E-06 6.0031
2.63% 0.2 40 36 9.28E-06 0.0192 20 24:04 1.34E-02* 0.0313

99.79% 1.5 4 1:01 3.19E-07 2666.3489 50 9:03 5.82E-06 2666.6126
90.80% 1 15 1:50 8.81E-06 1551.5751 48 8:34 5.08E-06 1551.6498
69.14% 0.8 27 2:25 3.74E-06 527.9511 43 11:02 2.08E-06 527.2400

E5.6 40.68% 0.6 86 5:10 9.92E-06 95.4337 35 12:57 2.10E-06 95.2293
27.27% 0.5 141 6:54 9.94E-06 28.3609 29 14:59 1.70E-06 27.9579
16.16% 0.4 101 2:43 9.85E-06 6.6095 29 19:52 3.64E-06 6.1862
2.63% 0.2 39 45 9.91E-06 0.0197 21 3:41 6.76E-02* 0.0874

Table 3

Comparison between Algorithm 4.1 and QSDP on H-weighted problems. “*” means that psqmr

in QSDP reached the maximum number of steps and the algorithm terminated before reaching the
accuracy.

Algorithm 4.1 QSDP

n Density R Iter cpu fprog Obj Iter cpu gap Obj
100 91.98% 1 11 1 4.47E-06 34.1656 14 14 2.27E-06 34.1322
200 71.9% 0.8 24 5 3.41E-07 62.0968 16 31 8.62E-06 61.9664

E5.5 500 4.78% 0.25 51 44 9.80E-06 0.16880 21 32:42 2.63E-04* 0.13504
1000 2.56% 0.2 56 4:11 9.59E-06 0.15303 21 3:52:29 1.05E-03* 0.12348
1500 2.57% 0.2 68 13:34 9.82E-06 0.45769 23 13:21:57 1.20E-03* 0.38668
2000 2.59% 0.2 80 17:55 9.77E-06 0.96547 27 36:58:21 4.76E-04* 0.81649
100 91.98% 1 10 5 5.81E-06 50.8218 21 13 7.96E-06 50.7989
200 71.9% 0.8 23 21 2.35E-07 84.1753 29 57 1.97E-06 84.0205

E5.6 500 4.78% 0.25 51 1:04 9.83E-06 0.17051 28 40:57 1.35E-04* 0.13508
1000 2.56% 0.2 56 4:33 9.56E-06 0.15484 30 4:11:52 8.39E-04* 0.12346
1500 2.57% 0.2 68 14:38 9.81E-06 0.46239 33 12:54:59 1.22E-03* 0.39156
2000 2.59% 0.2 80 34:55 9.80E-06 0.97490 36 36:58:49 8.22E-04* 0.83625

COMPUTING THE NEAREST EUCLIDEAN DISTANCE MATRIX 91

In our implementation, we used τ = 0.1 (see (57)). We terminate Algorithm 4.1 when

(69) fprog :=
|
√
f(Xk−1)−

√
f(Xk)|

max{100,
√
f(Xk−1)}

≤ 10−5.

In other words, whenever there is a lack of relative progress on the successive objective
function values, we stop the algorithm. This stopping criterion was suggested by Gao
and Sun [18] for their majorization method. We once again used the default parameter
values for QSDP. In particular, it was terminated when the relative gap defined in [45]
was less than 10−5.

It is observed that theH-weighted problem is much more difficult to solve than the
unweighted one. The difficulty level seems to increase as the density of H decreases.
In Table 2, we tested Examples 5.5 and 5.6 with fixed dimension n = 500, but with
varying densities (ranging from 99.79% to 2.63%). In Table 3, we tested the two
examples with varying dimensions (from n = 100 to 2000) and varying densities (from
91.98% to 2.59%). It is evident that our algorithm performed significantly faster than
QSDP for all the problems. An important observation from those tables as well as
from our extensive numerical experiments not reported here is that when the density
is above about 10%, both Algorithm 4.1 and the QSDP solver returned almost the
same objective function value. However, when it is below 10%, QSDP often terminated
early as the psqmr solver used in QSDP reached the default maximum number of steps.
This observation can be clearly seen from Table 3 for n ≥ 500 with density less than
5%. It is also worth mentioning that one can stop Algorithm 4.1 at any iteration once
a satisfactory approximate solution is obtained. This is because at each iteration of
Algorithm 4.1, the solution of the subproblem solved by Newton method (66) already
provides a Euclidean distance matrix.

6. Conclusion and future research. In this paper, we studied the Newton
method for computing the nearest Euclidean distance matrix from a given predistance
matrix or dissimilarity. Our theoretical analysis is mainly of the unweighted case (3).
The main result is that the Newton method is quadratically convergent. This main
result also holds for the diagonally weighted problem (62), which naturally arises from
a majorization approach for the H-weighted problem (4). Our numerical experiments
showed that the Newton method is extremely efficient even for large scale problems.
This research also provides a solid foundation for other important problems.

One such problem is the embedding problem (6) and its H-weighted version:

(70) min
1

2
‖H ◦ (X −D)‖2 s.t. X ∈ Sn

h ∩ Kn
+ and rank(JXJ) ≤ r.

In distance geometry models for molecular conformation, distances are often known
to be contained in a box, i.e., lij ≤ Dij ≤ uij , 1 ≤ i, j ≤ n. “The difference between
the upper bound and lower bound reflects the accuracy with which the data is known.
To reflect this accuracy in the algorithms, it is important that weighted models be
considered.” For more explanation on the above statement, see [21, p. 114], which
recommends Hij = 1/(1 + 10(uij − lij)). The findings in our paper open a new avenue
for using the Newton method to (70) through a penalty approach (i.e., penalizing the
rank constraint). As correctly pointed out by one referee, the rank constraint would
“break the convexity and duality gap could arise.” The latest research shows that the
duality gap vanishes under reasonable conditions, and the Newton method developed
in this paper plays a very important role in solving (70) (see [40] for details).

92 HOU-DUO QI

For the H-weighted problem (4), we proposed a majorization approach, which at
each iteration solves a diagonally weighted problem. As seen from Tables 2 and 3, this
approach sometimes took a good number of iterations to reach the required accuracy.
Given that the inner problem can be efficiently solved, we plan to investigate strategies
for improving the efficiency of the majorization approach as well as other approaches.

Acknowledgments. The author would like to thank Prof. K.-C. Toh of the
National University of Singapore for his help on using the QSDP solver on the test
problems. The author also wishes to thank the two referees for their valuable com-
ments and constructive suggestions, which have significantly improved the quality of
the paper.

REFERENCES

[1] A. Y. Alfakih, A. Khandani, and H. Wolkowicz, Solving Euclidean distance matrix com-
pletion problems via semidefinite programming, Comput. Optim. Appl., 12 (1999), pp. 13–
30.

[2] S. Al-Homidan and H. Wolkowicz, Approximate and exact completion problems for Eu-
clidean distance matrices using semidefinite programming, Linear Algebra Appl., 406
(2005), pp. 109–141.

[3] F. Alizadeh, J.-P. A. Haeberly, M. L. Overton, Complementarity and nondegeneracy in
semidefinite programming, Math. Program., 77 (1997), pp. 111–128.

[4] A. Beck and M. Teboulle, A fast iterative shrinkage-thresholding algorithm for linear in-
verse problems, SIAM J. Imaging Sciences, 2 (2009), pp. 183–202.

[5] D. P. Bertsekas, Nonlinear Programming, 2nd ed., Athena Scientific, Nashua, NH, 1999.
[6] I. Borg and P. J. F. Groenen, Modern Multidimensional Scaling: Theory and Applications,

2nd ed., Springer Ser. Statist., Springer, New York, 2005.
[7] R. Borsdorf and N. J. Higham, A preconditioned Newton algorithm for the nearest corre-

lation matrix, IMA J. Numer. Anal., 94 (2010), pp. 94–107.
[8] S. Boyd and L. Xiao, Least-squares covariance matrix adjustment, SIAM J. Matrix Anal.

Appl., 27 (2005), pp. 532–546.
[9] X. Chen, H. Qi, and P. Tseng, Analysis of nonsmooth symmetric-matrix-valued functions

with applications to semidefinite complementarity problems, SIAM J. Optim., 13 (2003),
pp. 960–985.

[10] Z. X. Chan and D. Sun, Constraint nondegeneracy, strong regularity, and nonsingularity in
semidefinite programming, SIAM J. Optim., 19 (2008), pp. 370–396.

[11] F. H. Clarke, Optimization and Nonsmooth Analysis, John Wiley & Sons, New York, 1983.
[12] T. F. Cox and M. A. A. Cox, Multidimensional Scaling, 2nd ed., Chapman and Hall/CRC,

Boca Raton, FL, 2001.
[13] G. Crippen and T. Havel, Distance Geometry and Molecular Conformation, John Wiley &

Sons, New York, 1988
[14] J. Dattorro, Convex Optimization and Euclidean Distance Geometry, Meboo Publishing

USA, Palo Alto, CA, 2005.
[15] R. L. Dykstra, An algorithm for restricted least squares regression, J. Amer. Statist. Assoc.,

78 (1983), pp. 839–842.
[16] H.-R. Fang and D. P. O’Leary, Euclidean distance matrix completion problems, Optim.

Methods Softw., 27 (2012), pp. 695–717.
[17] N. Gaffke and R. Mathar, A cyclic projection algorithm via duality, Metrika, 36 (1989),

pp. 29–54.
[18] Y. Gao and D. F. Sun, A Majorized Penalty Approach for Calibrating Rank Constrained

Correlation Matrix Problems, Technical Report, Department of Mathematics, National
University of Singapore, Singapore, 2010.

[19] W. Glunt, T. L. Hayden, S. Hong, and J. Wells, An alternating projection algorithm for
computing the nearest Euclidean distance matrix, SIAM J. Matrix Anal. Appl., 11 (1990),
pp. 589–600.

[20] W. Glunt, T. L. Hayden, and W.-M. Liu, The embedding problem for predistance matrices,
Bull. Math. Biol., 53 (1991), pp. 769–796.

[21] W. Glunt, T. L. Hayden, and R. Raydan, Molecular conformations from distance matrices,
J. Comput. Chem., 14 (1993), pp. 114–120.

COMPUTING THE NEAREST EUCLIDEAN DISTANCE MATRIX 93

[22] W. Glunt, T. L. Hayden, and R. Raydan, Preconditioners for distance matrix algorithms,
J. Comput. Chem., 15 (1994), pp. 227–232.

[23] J. C. Gower, Properties of Euclidean and non-Euclidean distance matrices, Linear Algebra
Appl., 67 (1985), pp. 81–97.

[24] S. P. Han, A successive projection method, Math. Programming, 40 (1988), pp. 1–14.
[25] T. L. Hayden and J. Wells, Approximation by matrices positive semidefinite on a subspace,

Linear Algebra Appl., 109 (1988), pp. 115–130.
[26] T. L. Hayden, J. Wells, W.-M. Liu, and P. Tarazaga, The cone of distance matrices,

Linear Algebra Appl., 144 (1991), pp. 153–169.
[27] M. R. Hestenes and E. Stiefel, Methods of conjugate gradients for solving linear systems,

J. Res. Nat. Bur. Stand., 49 (1952), pp. 409–436.
[28] N. J. Higham, Computing the nearest correlation matrix—a problem from finance, IMA J.

Numer. Anal., 22 (2002), pp. 329–343.
[29] K. Jiang, D. Sun, and K.-C. Toh, An inexact accelerated proximal gradient method for large

scale linearly constrained convex SDP, SIAM J. Optim., 22 (2012), pp. 1042–1064.
[30] N. Krislock and H. Wolkowicz, Euclidean distance matrices and applications, in Handbook

on Semidefinite, Conic and Polynomial Optimization, M. Anjos and J. Lasserre, eds.,
Springer, New York, 2012, pp. 879–914.

[31] J. Malick, A dual approach to semidefinite least-squares problems, SIAM J. Matrix Anal.
Appl., 26 (2004), pp. 272–284.

[32] J. Malick and H. S. Sendov, Clarke generalized Jacobian of the projection onto the cone of
positive semidefinite matrices, Set-Valued Anal., 14 (2006), pp. 273–293.

[33] C. A. Micchelli, P. W. Smith, J. Swetits, and J. D. Ward, Constrained �p approximation,
J. Construct. Approx., 9 (1985), pp. 93–102.

[34] C. A. Micchelli and F. I. Utreras, Smoothing and interpolation in a convex subset of a
Hilbert space, SIAM J. Sci. Stat. Comput., 9 (1988), pp. 728–746.

[35] Y. Nesterov, A method of solving a convex programming problem with convergence rate
O(1/k2), Soviet Math. Dokl., 27 (1983), pp. 372–376.

[36] A. Neumaier, Molecular modeling of proteins and mathematical prediction of protein struc-
ture, SIAM Rev., 39 (1997), pp. 407–460.

[37] H.-D. Qi, Positive semidefinite matrix completions on chordal graphs and constraint nonde-
generacy in semidefinite programming, Linear Algebra Appl., 430 (2009), pp. 1151–1164.

[38] H. Qi and D. Sun, A quadratically convergent Newton method for computing the nearest
correlation matrix, SIAM J. Matrix Anal. Appl., 28 (2006), pp. 360–385.

[39] L. Qi and J. Sun, A nonsmooth version of Newton’s method, Math. Programming, 58 (1993),
pp. 353–367.

[40] H.-D. Qi and X. M. Yuan, Computing the Nearest Euclidean Distance Matrix with Low Em-
bedding Dimensions, Tech. Report, School of Mathematics, University of Southampton,
Southampton, UK, 2012.

[41] R. T. Rockafellar, Conjugate Duality and Optimization, CBMS-NSF Reg. Conf. Ser. Appl.
Math. 16, SIAM, Philadelphia, 1974.

[42] I. J. Schoenberg, Remarks to Maurice Fréchet’s article “Sur la définition axiomatique d’une
classe d’espace vectoriels distanciés vectoriellement applicables sur l’espace de Hilbert,”
Ann. Math., 36 (1935), pp. 724–732.

[43] D. F. Sun, The strong second-order sufficient condition and constraint nondegeneracy in
nonlinear semidefinite programming and their implications, Math. Oper. Res., 31 (2006),
pp. 761–776.

[44] D. F. Sun and J. Sun, Semismooth matrix valued functions, Math. Oper. Res., 27 (2002),
pp. 150–169.

[45] K. C. Toh, An inexact path-following algorithm for convex quadratic SDP, Math. Program-
ming, 112 (2008), pp. 221–254.

[46] P. Tseng, On Accelerated Proximal Gradient Methods for Convex-Concave Optimization,
Tech. report, University of Washington, Seattle, WA, 2008.

[47] G. Young and A. S. Householder, Discussion of a set of points in terms of their mutual
distances, Psychometrika, 3 (1938), pp. 19–22.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

